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Abstract—Magnetic resonance spectroscopic imaging (MRSI)
reveals chemical information that characterizes different tissue
types in brain tumors. Blind source separation techniques are
used to extract the tissue-specific profiles and their correspond-
ing distribution from the MRSI data. We focus on automatic
detection of the tumor, necrotic and normal brain tissue types
by constructing a 3-dimensional MRSI tensor from in vivo 2D-
MRSI data of individual glioma patients. Non-negative canonical
polyadic decomposition (NCPD) is applied to the MRSI tensor
to differentiate various tissue types. An in vivo study shows that
NCPD has better performance in identifying tumor and necrotic
tissue type in glioma patients compared to previous matrix-based
decompositions, such as non-negative matrix factorization and
hierarchical non-negative matrix factorization.

Index Terms—Non-negative canonical polyadic decomposition,
Magnetic resonance spectroscopic imaging, Glioma, l1 regular-
ization.

I. INTRODUCTION

Accurate characterisation and localization of pathologic
tissue types play a key role in diagnosis and treatment planning
of brain tumors. The tumor region of glioblastoma multiforme
(GBM) could consist of several tissue types, which represent
actively growing tumor, necrosis or normal brain tissue [1]. In
recent years, many advanced MR modalities such as Mag-
netic Resonance Spectroscopic Imaging (MRSI), perfusion-
weighted MRI (PWI) and diffusion weighted MRI (DWI)
are being used to characterize brain tumors and detect full
tumor extent [2]. MRSI is a non-invasive imaging technique
that provides spectral profiles in a two- or three- dimensional
voxel grid, from which the spatial distribution of metabolite
concentrations can be estimated. Each voxel in the MRSI
grid has a spectrum composed of several peaks corresponding
to the metabolites present in that grid. The area under the
peak is proportional to the metabolite concentration. MRSI has
been successfully applied to diagnosis and prognosis of brain
tumors. There are many algorithms for MRSI data analysis
available in the literature that aim at tissue characterisation,
tumor localization and classification. In particular, nonnegative
matrix factorization (NMF) and hierarchical NMF (hNMF)
have shown potential to differentiate different tissue patterns
in MRSI of GBM patients [1]. However, the performance of
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hNMF deteriorates in the presence of artifacts because it can
handle only three tissue types (tumor, necrotic and normal).

Higher order tensors have certain properties that are not
present in a matrix [3]. Tensor decompositions are now being
used in various biomedical applications like genomics [4],
EEG and fMRI data analysis [5] and smart patient monitoring
[6]. In recent years there is an increasing trend to convert
the data represented in a matrix to a 3rd order tensor [7].
Tensorization of the matrix is mainly motivated by the fact that
tensor decompositions can be unique under mild conditions
without imposing additional constraints [8], [9]. The 2-D
MRSI signal can naturally be represented as a 3-way tensor P
as shown in Fig. 1. The mode-1 and mode-2 of the tensor P
represent the spatial dimension of the 2-D MRSI signal and
mode-3 represents the spectra from all voxels.

Fig. 1: 3-way spatial tensor representation of 2-D MRSI data.

To extract different tissue types from the spatial tensor P , we
can use block term decomposition (BTD) in R rank-(Lr,Lr,1)
block terms [10]. The (Lr,Lr,1) BTD for a third-order tensor
P ∈ RI×J×K can be written as:

P ≈
R

∑
r=1

(ArBT
r )◦Sr (1)

where Sr represents the tissue-specific spectral pattern, ArBT
r

having rank Lr represents the corresponding spatial distribution
with Ar ∈ RI×Lr , Br ∈ RJ×Lr and ‘◦’represents outer product.
The rank Lr for each tissue type plays an important role in
the decomposition, which depends on the factors like size and
shape of the tissue type. The rank Lr is not known a priori
and it is difficult to estimate it from the MRSI data. Also
there is no guarantee that the spatial distribution follows a
low-rank structure so that it can be represented by a low rank
matrix ArBT

r . Because of these problems, we developed a new
tensorization of the 2-D MRSI signal which allows to exploit
the low-rank structure.
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In this article, we propose a novel algorithm for the
detection of tumor, necrotic and normal tissue types from
MRSI signals. The algorithm first applies a window method
to enhance the peaks and reduce the length of the spectra,
and then constructs a 3-D MRSI tensor. Decomposing this
tensor using NCPD with common factor in mode-1 and
mode-2, allows to retrieve the tissue-specific spectral profiles
from the NCPD factor matrices. Preliminary studies have
been previously presented in [11]. The paper is organized as
follows: Section II explains the MRSI data acquisition protocol
and the preprocessing steps that are performed. In Section III,
the construction of the MRSI tensor and the NCPD algorithm
for tissue type differentiation is explained. The performance
evaluation of the proposed NCPD algorithm in comparison
with one-level NMF and hNMF using short-echo time (TE)
1H 2D-MRSI datasets from glioma patients is done in Section
IV. Discussions are presented in Section V and finally the
paper is concluded in Section VI.

II. MATERIALS

A. Data acquisition

A total of 28 (22 grade IV, 3 grade II and 3 grade II astro-
cytoma with focal progression to a grade III glioma) 2D-1H
MRSI data was acquired from 17 glioma patients on a 3T MR
scanner (Achieva, Philips, Best, The Netherlands) at the Uni-
versity Hospital of Leuven using the protocol [12]: A point-
resolved spectroscopy (PRESS) sequence was used as the
volume selection technique with a bandwidth of 1.3kHz for the
conventional slice-selective pulses; repetition time (TR)/ echo
time (TE): 2000/35ms; Field of view (FOV): 160×160mm2;
maximal volume of interest (VOI): 80×80mm2; slice thick-
ness: 10mm; acquisition voxel size: 10×10mm2; reconstruc-
tion voxel size: 5×5mm2; receiver bandwidth: 2000Hz; sam-
ples: 2048; number of signal averages: 1; water suppression
method: multiple optimizations insensitive suppression train
[13]; first- and second-order pencil beam shimming; parallel
imaging: sensitivity encoding with reduction factors of 2 (left-
right) and 1.8 (anterior-posterior); scan time: around 3min
30s. Automated pre-scanning optimized the shim in order
to yield a peak width consistently under 20Hz full-width
half-maximum (FWHM). The study and the experimental
procedures involving human subjects have been approved by
the ethical committee of the institute.

B. Data processing

The raw MRSI data were exported from the Philips platform
after performing the following post-processing steps: zero
filling in k space, transformation from k space to normal space,
automatic phase correction and eddy current correction. The
residual water component was removed from the MRSI data
using Hankel Lanczos singular value decomposition with par-
tial reorthogonalization (HLSVD-PRO) [14]. A model order
of 30 and a passband of 0.25 to 4.2 parts per million (ppm)
was used in HLSVD-PRO algorithm. After removing the water
component, baseline correction and baseline offset correction
was performed. All the pre-processing was done using the

Matlab (The MathWorks, Inc., Natick, Massachusetts, United
States) based software, SPID [15].

The spectra were aligned in frequency using a simulated
reference spectrum, which was generated using the parameters
given in [16]. The complex-valued pre-processed spectra were
truncated to the region 0.25-4.2 ppm and the truncated spectra
were normalized to unit norm (l2). Voxels outside the MRSI
PRESS excitation volume are excluded from the analysis.

III. METHOD

A. MRSI tensor construction
For each voxel in the MRSI grid, a reduced real-valued

spectrum X is constructed from the corresponding complex-
valued pre-processed spectrum. Elements of the vector X are
obtained by moving an overlapping window over the spectrum,
where the ith element of X is the sum of squares of absolute
value of all the elements in the ith window segment,

X(i) =
L

∑
j=1

si( j)s∗i ( j) (2)

si is the spectrum at the ith segment, s∗i is its complex conjugate
and L is the length of the window segment. Fig. 2a shows the
construction of a vector X from the spectrum. The resulting
vector X can be considered as a denoised and reduced-length
version of the original spectrum. The window length L is
chosen such that it covers the widest peak in the spectra and
step value is chosen as L

4 . Use of vector X has the following
advantages:

1) It reduces the length of spectra without losing vital
information required for tumor tissue type differentiation.

2) It gives more weight to the peaks and makes the signal
smoother and non-negative.

A 3-way MRSI tensor T is constructed by stacking XXT from
all the voxels in the MRSI grid as shown in Fig. 2(b).

Fig. 2: (a) Construction of reduced spectrum, X from the pre-
processed spectra. SOS: sum of squares. (b) Construction of
the MRSI tensor T from the reduced spectra, X . K is the total
number of voxels in the 2D MRSI excitation volume.

B. Non-negative CPD
Non-negative canonical polyadic decomposition (NCPD) is

a tensor decomposition method, where the tensor is decom-
posed into a sum of rank-one tensors with non-negativity
constraints on the factor matrices [17].
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X ≈ JABCK≡
R

∑
r=1

ar ◦br ◦ cr, A,B,C ≥ 0 (3)

where A = [a1,a2, ...,aR] ∈ RI×R
+ , B = [b1,b2, ...,bR] ∈ RJ×R

+

and C = [c1,c2, ...,cR] ∈ RK×R
+ are non-negative factor matri-

ces. R is the rank, defined as the number of rank-one terms.
In the MRSI tensor T , the frontal slices are symmetrical,

therefore we constrain the frontal slices of each NCPD rank-
one term to be symmetric. To maintain symmetry, a common
factor matrix is used for mode-1 and mode-2 in the NCPD as
shown in Fig. 3. After performing the NCPD on the MRSI
tensor T we obtain two factor matrices S and H, where S
represents the tissue-specific patterns of the reduced spectra
and H represents the spatial distribution of each tissue type.

Fig. 3: Non-negative CPD of MRSI tensor T : MRSI tensor
T is decomposed into R rank-1 tensors. Common factor S is
used in mode-1 and mode-2 to maintain symmetry of frontal
slices. Each si gives a tissue-specific reduced spectral pattern
and the corresponding hi gives the spatial distribution of the
respective tissue type, upon reshaping. Non-negativity of S and
H is imposed in the decomposition.

Each rank-one term obtained from the NCPD of the MRSI
tensor T is expected to correspond to a particular tissue
type, although it is not always guaranteed with the current
formulation. Here, we assume that in most of the voxels the
spectra belong to a particular tissue type, with the exception
of a few voxels whose spectra may contain a mixture of at
most two tissue types. Therefore, the factor matrix H will be
sparse, meaning that each row will mostly have only one high
value. A further refinement of the NCPD method exploits the
sparsity assumption in the factor matrix H by imposing a l1
regularization on it. The NCPD with l1 regularization (NCPD-
l1) can be written as

[S∗,H∗] = arg min
S≥0,H≥0

‖T −
R

∑
i=1

S(:, i)◦S(:, i)◦H(:, i)‖2
2

+λ‖Vec(H)‖1 (4)

where S and H are the aforementioned factor matrices and
λ is the parameter which controls the sparsity. In this work,
the tensor decomposition was performed using the Tensorlab
Matlab package [18]. Non-negativity constraints, common
factors to maintain symmetry and l1 regularization are applied
using the structured data fusion method [19] available in
Tensorlab.

C. Spectral recovery and non-negative least squares

The NCPD of the MRSI tensor T gives the factor matrix
S, which contains the reduced spectral patterns specific to
different tissue types. However, it is desirable to recover tissue-
specific spectral sources as vectors of the same length as
the pre-processed MRSI spectra, which are more interpretable
since they can be directly compared to the original spectra.
To this end, a least squares problem is solved, and the matrix
of spectral sources representing the tissue-specific spectral
patterns W is:

W = (H†Y T )T (5)

where H† is the Moore-Penrose pseudoinverse of the NCPD
factor matrix H and Y is the matrix containing the unit
normalized spectra from all voxels as its columns. The source
spectra W can be estimated as complex-valued or magnitude
vectors by using complex-valued or magnitude spectra Y in
equation (5), respectively.

In the NCPD of MRSI tensor T , the factor matrix H
corresponds to the weights of the linear combination of S(:
, i)S(:, i)T and not the linear combination of source spectra W .
Also, the tensor is constructed using the normalised spectra,
therefore voxels having relatively small values compared to
other spectra will also get enhanced and will have higher
abundances. The abundances of the sources in the original
unnormalised spectra are more meaningful and represent the
true distribution. Also we want the abundances to represent
the weights in the linear combination of source spectra W .
To address these problems, spatial distributions, HD of the
different tissue types is calculated using non-negative least
squares with l1 regularization:

HD(:, i) = argmin
x≥0
‖Wx−Yun(:, i)‖2

2 +λ1‖x‖1 (6)

where, HD(:, i) is the distribution of source spectra in each
voxel, W contains the estimated source spectra and Yun(:, i)
is the original unnormalised spectrum of each voxel. The
problem in equation (6) is solved for all the voxels in the
MRSI grid using a Matlab based large-scale l1-regularized
least squares problem solver [20]. When the estimated source
spectra W and the MRSI voxel spectra are complex-valued,
the real and imaginary part are concatenated to form a single
real-valued matrix, which is then used as input to the non-
negative least squares problem with l1 regularization. Tissue
distribution maps are obtained by reshaping the rows of HD
to the 2D-MRSI grid.

D. Initialization

The NCPD algorithm needs initial values for S and H and
the non-negative least squares [20] algorithm needs initial val-
ues for HD. Initializing S, H and HD with uniformly distributed
pseudorandom numbers between 0 and 1 gives good solution,
but the results are not exactly the same between different
runs. Although the solutions are similar between different runs,
poor initial values may result in sub-optimal solutions. To
find good initialization values, first we take the singular value
decomposition (SVD) of the matrix Y , Y =UΣV H , where the
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columns of the matrix Y are the complex spectra from each
voxel. Reduced spectra Sinit are constructed from R dominant
left-singular vectors as explained in Section III-A and are used
as initial value for S in the NCPD algorithm. Initial values
for H are obtained through least squares as Hinit = (S†

initM)T ,
where M is a matrix whose columns are the reduced spectra
X from each voxel. Least squares may introduce negative
values in Hinit . However, these negative values are typically
rare and small in amplitude. Moreover, the NCPD algorithm
in Tensorlab can handle negative initial values. A vector of all
ones was used to initialize HD in the final non-negative least
squares step.

E. Source number estimation

The NCPD algorithm needs the number of sources (i.e.
decomposition rank) as input. Estimating the rank from the
input spectra/ tensor T is a difficult problem. The literature on
estimation of decomposition rank from the tensor is limited.
Tensorlab package [18] has a method rankest, which estimates
the rank based on the L-curve of the number of rank-one terms
in a CPD. However, this method gives good results when the
noise is low or when the decomposition is exact, which is
not the case for our MRSI tensor T . The estimated rank R
from this method is much higher than the required number
of sources for a good tissue type differentiation. In [21] a
Bayesian model based on automatic relevance determination
is proposed for NMF, which also estimates the model order
R along with non-negative factor matrices. In this method,
the estimated model order is dependent on the choice of the
dispersion parameter, which represents the tradeoff between
the data fidelity and the regularization terms. Selecting the
optimal dispersion parameter for each MRSI dataset is difficult
and it is as hard as selecting the rank itself. In this paper we
will use the covariance matrix based approach to estimate the
number of sources.

Let A be the data matrix of size K×N where the rows rep-
resent K spectra of length N from all the voxels in the MRSI
grid. Then the K×K sample covariance matrix is estimated as
C = 1

N−1 [(A− Ā1T
N)(A− Ā1T

N)
T ], where Ā = 1

N−1 ∑
N
i=1 Ai and

1N is a vector of all ones with length N. The eigenvalues of the
covariance matrix C are denoted by λ1 ≥ λ2 ≥ λ3 ≥ ...≥ λK .
The number of sources is estimated as the minimum number
R such that the cumulative sum of eigenvalues is greater than
99% of the sum of all eigen values.

R∗ = argmin
R

[
∑

i=R
i=1 λi

∑
i=K
i=1 λi

≥ 0.99] (7)

where R∗ is the estimated number of sources. When the data
matrix A is constructed from the original complex valued
spectra, the estimated number of sources is high. Therefore,
we use the reduced spectra in A to calculate the covariance
matrix C. Reduced spectra suppress noise and small variations
present in the original spectra resulting in fewer eigenvalues
significantly larger than zero in the covariance matrix C.
Therefore, using reduced spectra to estimate R provides a good
estimate for the number of sources in many MRSI datasets.
However, when the MRSI data contain spectra of less quality

or having more artifacts the estimated number of sources is
still too high. To overcome this problem we incorporate prior
knowledge about the maximum number of sources (includes
tissue types + artifacts) for estimating the number of sources.
Let the maximum number of sources be P. If R∗ obtained
from (7) is less than or equal to P (R∗ ≤ P), then the number
of sources is set to R∗ and is used in the NCPD algorithm.
When R∗ obtained from (7) is greater than P (R∗>P), only the
largest P+1 eigenvalues of C are retained and the remaining
ones are set to zero. Then the number of sources is estimated
as in equation (7) with K set to P+1, i.e the set of eigenvalues
is reduced to the largest P+1 values only.

F. Source and distribution correlation

The performance evaluation of the algorithms in the in vivo
study was analyzed using two measures:

1) Source correlation: In this paper we have defined two
types of source correlation:

(a) Source correlation Type I (SC1): The source correlation
is calculated as Pearson’s linear correlation coefficient
between the estimated source spectrum and the tissue-
specific spectrum based on expert labeling of the in
vivo MRSI voxels [1]. The tissue-specific spectrum
based on expert labeling (src_expt) for a particular
tissue type is computed as the average of all the spectra
from the voxels labelled by the expert as belonging
to that tissue type. The construction of expert spectra,
src_expt for the tumor tissue is shown in Fig. 4.

src_expt =
Y1 +Y2 + ......+Yn

n
SC1 = r(W (:,T ),src_expt)

where SC1 is the Type I source correlation, W (:,T )
is the estimated source spectrum corresponding to a
particular tissue type, src_expt is the expert labeled
spectrum corresponding to that particular tissue type,
Y1,Y2, ....,Yn are the spectra from the voxel that are
marked by the expert as belonging to that particular
tissue type and r is Pearson’s linear correlation coeffi-
cient.

(b) Source correlation Type II (SC2): First Pearson’s lin-
ear correlation coefficients are calculated between the
estimated source spectrum and all the spectra in the
voxels that are marked by the expert as belonging to a
particular tissue type. Then the source correlation SC2
is calculated by taking the average of Pearson’s linear
correlation coefficients.

SC2 =
r(W (:,T ),Y1)+ .......+ r(W (:,T ),Yn))

n

where SC2 is the Type II source correlation, W (:,T )
is the estimated source spectrum corresponding to a
particular tissue type.

2) Distribution correlation (DC): Distribution correlation is
calculated as Pearson’s linear correlation coefficient be-
tween the estimated distribution map corresponding to
a particular tissue type and the distribution map based
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on expert labeling (dist_expt). For each tissue type, a
distribution map based on expert labeling is obtained by
using values equal to the l2 norm of the corresponding
spectra for all voxels labeled as a certain tissue class, and
values of 0 for the other voxels as shown in Fig. 4.

DC = r(HD(:,T ),dist_expt)

where DC is the distribution correlation, HD(:,T ) is the
estimated distribution vector corresponding to a particular
tissue type, dist_expt is the expert labeled distribution
vector corresponding to that particular tissue type.

Because of heterogeneity, the tumor tissue is modelled by
more than one source spectrum in many patients. In this case,
the average of source spectra and sum of the corresponding
distribution maps are used in the calculation of SC1 and DC,
respectively. Whereas, for SC2, only the maximum correlation
among the source spectra is retained for averaging. In NCPD
algorithm the estimated source spectra and the MRSI voxel
spectra are complex signals. Therefore, the real and imaginary
part of the complex spectra are concatenated to form a real
signal, which is then used in the calculation of correlation.
Since absolute spectra were used in NMF and hNMF, source
correlation was calculated on the spectra directly.

Fig. 4: Generation of expert labeled tissue-specific (Tumor)
spectrum and distribution vector. Calculation of source and
distribution correlation is shown in the box. Sij is the spectra
at ith column and jth row. The tissue type T-tumor or C-control
is shown between braces.

IV. RESULTS ON BRAIN TUMOR DATASET

To test the feasibility of spatial tensor representation as
shown in Fig.1 in tissue type differentiation, we constructed a
spatial tensor P using magnitude spectra and applied (Lr,Lr,1)
BTD on the spatial tensor for one high grade (grade IV)
MRSI dataset. The spatial tensor P is decomposed into 6
rank (Lr,Lr,1) terms with rank Lr = 10,10,9,8,5,5. The
corresponding distribution maps of the different sources are
shown in Fig. 5b. Non-negative constraints are applied to the

source mode (mode-3) only. The rank Lr is chosen manually
by trying different combinations and selecting the one which
gives the best results. For comparison, we have shown the
distribution maps obtained from the MRSI tensor T (shown
in Fig.2) of the same dataset using NCPD-l1 algorithm with 6
sources in Fig. 5c. The MRSI grid superimposed on anatomical
image and the expert labelling is shown in Fig. 5a. Comparing
the distribution maps in Fig. 5b and 5c with the expert labelling
in Fig. 5a, we can observe that the tissue type differentiation is
not good using a spatial tensor representation with (Lr,Lr,1)
BTD compared to an XXT based tensor representation with
NCPD. The output of spatial tensor with (Lr,Lr,1) BTD is
sensitive to choice of Lr and choosing a suitable Lr for all the
R sources is difficult. Therefore the results are demonstrated
for only one high grade glioma patient.

(a) MRSI voxel grid and expert label

(b) Distribution maps: (Lr,Lr,1) BTD of spatial tensor P

(c) Distribution maps: NCPD of MRSI tensor T

Fig. 5: (a) Left to right, First image: T2-weighted anatomical
MR image of a brain tumor with areas of necrosis. Second
image: voxels within the MRSI excitation volume superim-
posed on anatomical image. Third image: expert labeling,
where yellow (horizontal + vertical line) indicates necrotic,
red (horizontal line) indicates tumor, dark blue (slanted +
horizontal line) indicates normal, light blue (vertical line)
indicates normal/tumor and green (slanted line) indicates
spectra of poor quality. (b) Tissue distribution maps obtained
from an (Lr,Lr,1) block term decomposition of spatial tensor
P . First three images from the left correspond to tumor,
necrotic and normal tissue distribution respectively. Remaining
three images correspond to bad spectra/artefact. (c) Tissue
distribution maps obtained using the NCPD-l1 algorithm on the
MRSI tensor T . First three images from the left correspond to
tumor, necrotic and normal tissue distribution respectively. Re-
maining three images correspond to tumor, normal tissue and
bad spectra/artefact distribution respectively. In this dataset
the tumor tissue is modelled by two sources. For all the
distribution maps, hot colormap was used, where dark area
represents lower values and light area represents higher values.

In order to evaluate the performance and validate the
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Fig. 6: Box-plot of Type I source correlation, Type II source correlation and distribution correlation values obtained from
NCPD without regularization, NCPD with l1 regularization , single stage NMF and hNMF algorithms. Zero correlation values
indicate that the specific tissue type was not recovered.

TABLE I: Mean, standard deviation, median, MAD and range of source correlation (Type I and Type II) and distribution
correlation for 28 glioma datasets. The results are shown on tumor and necrotic tissue type for NCPD without regularization,
NCPD with l1 regularization, single stage NMF and hNMF algorithms. P-values indicate the statistical significance of higher
median for the NCPD-l1 algorithm (* indicates statistical significance for p < 0.01)

Spectral correlation Type I Spectral correlation Type II Distribution correlation
NCPD NCPD-l1 NMF hNMF NCPD NCPD-l1 NMF hNMF NCPD NCPD-l1 NMF hNMF

Tumor
Mean 0.891 0.898 0.619 0.617 0.752 0.759 0.496 0.496 0.699 0.702 0.477 0.403

std dev 0.264 0.265 0.339 0.346 0.229 0.231 0.281 0.287 0.234 0.236 0.273 0.269
median 0.975 0.978 0.757 0.767 0.829 0.841 0.574 0.560 0.775 0.789 0.552 0.482
MAD 0.015 0.015 0.134 0.146 0.041 0.041 0.111 0.179 0.057 0.046 0.135 0.178
Range 0.994-0.866 0.997-0.878 0.960-0.406 0.956-0.417 0.908-0.696 0.908-0.704 0.871-0.286 0.837-0.321 0.900-0.396 0.896-0.357 0.803-0.155 0.844-0.024
p-value 0.1753 - <0.0001* <0.0001* 0.3269 - <0.0001* <0.0001* 0.4745 - <0.0001* <0.0001*

Necrosis
Mean 0.984 0.988 0.960 0.929 0.896 0.899 0.891 0.855 0.852 0.855 0.687 0.661

std 0.017 0.015 0.098 0.233 0.079 0.076 0.151 0.238 0.132 0.132 0.134 0.203
median 0.991 0.993 0.991 0.992 0.922 0.926 0.946 0.945 0.900 0.905 0.726 0.698
MAD 0.005 0.004 0.003 0.004 0.037 0.037 0.025 0.032 0.044 0.045 0.089 0.114
Range 0.998-0.935 0.998-0.936 0.996-0.581 0.998-0.897 0.987-0.686 0.987-0.686 0.987-0.405 0.989-0.593 0.961-0.411 0.967-0.409 0.840-0.384 0.847-0.473
p-value 0.2238 - 0.075 0.3879 0.3639 - 0.0844 0.1965 0.4622 - 0.0001* 0.0001*

tissue differentiation ability, three algorithms, NCPD (with
and without l1 regularization), single stage NMF and hNMF
were applied on 28 in vivo 1H MRSI datasets (22 grade IV, 3
grade II and 3 grade II astrocytoma with focal progression to
a grade III glioma) from 17 patients with gliomas. The Type
I, Type II source correlation and the distribution correlation
for tumor and necrotic tissue obtained from NCPD without
regularization, NCPD with l1 regularization, single stage NMF
and hNMF are shown as box-plots in Fig. 6. From Fig. 6 it is
clearly evident that source and distribution correlation values
are higher and less scattered when using NCPD-l1 compared to
single stage NMF and hNMF. The NCPD algorithm is unable
to extract tumor tissue in 2 out of 28 datasets, whereas the
single stage NMF and hNMF algorithms do not estimate tumor
tissue in 5 datasets. The correlation values of the tissue types
which are not recovered are set to zero (Fig. 6). A summary
of the results i.e, mean, standard deviation (std dev), median,
median absolute deviation (MAD) and range is shown in Table
I. In case of tumor tissue, NCPD-l1 has the highest mean
and median values for source and distribution correlation. To
check whether there is a significant increase in the median, we
have performed a one-sided Wilcoxon rank sum test with 1%
significance level (α = 0.01) [22]. The Wilcoxon rank sum

test was performed between the correlations obtained from
NCPD-l1 and other algorithms and the corresponding p-values
are shown in Table I. There was a significant increase in the
median of SC1, SC2 and DC from NCPD-l1 compared to
single stage NMF and hNMF, which is evident from the p-
values (p < 0.01). However, the increase in the median was
not significant compared to NCPD without regularization (p
> 0.05). In case of necrotic tissue, the performance of all the
algorithms is good. NCPD-l1 has significantly higher mean
and median values compared to single stage NMF and hNMF
for DC (p < 0.01). On the other hand, single stage NMF
and hNMF has slightly better median values for SC2 but the
increase is not significant (p > 0.01). For the necrotic sources
NCPD-l1 has slightly better median values for correlation
than NCPD (no regularization), but the differences are not
significant (p > 0.01).

For all the MRSI datasets, the rank was automatically
estimated using the method explained in section III-E. Fig.
7 shows the estimated ranks for 28 MRSI datasets with and
without using prior knowledge. From Fig. 7 we can observe
that the estimated rank was higher in many MRSI datasets
and after applying the maximum possible tissue types as prior
knowledge in the second stage the estimated ranks are reduced.
The tissue types are assigned to the sources manually by
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Fig. 7: Estimated number of sources from the covariance
matrix for 28 MRSI datasets with and without using the
maximum number of tissue types as prior knowledge. The
horizontal line indicates the maximum number of tissue types
used as prior knowledge in the analysis (P = 8).

visualizing the estimated distribution maps, expert labelling
and the estimated source spectra.

The result of an in-vivo example is shown in Fig. 8. NCPD-
l1, single stage NMF and hNMF methods are applied to a
16× 16 voxel grid shown in the second row of Fig. 8a. The
spectra which are truncated to the region 0.25-4.2 ppm are
of length 517. The reduced spectra are constructed using a
window length L = 20 and the window is moved with a step-
size of 5 samples. Therefore the size of the MRSI tensor
T with 16× 16 (K = 256) voxels is 100× 100× 256. For
this dataset the number of sources was estimated as R = 7,
the same rank was used for the single stage NMF algorithm.
The seven sources and their corresponding distribution maps
obtained from NCPD-l1 and NMF methods are shown in Fig.
8b, 8c, 8d and 8e. Using the hNMF method, only three sources
are obtained as shown in Fig. 8f and 8g. Fig. 8g shows
that the hNMF method identifies the normal and necrotic
(SC1 = 0.9971) tissue properly but fails to recover the tumor
tissue. Single-stage NMF identifies normal and necrotic tissue,
but only the necrotic source is good (SC1 = 0.9941) and the
normal source deviates a lot from the expert as shown in 8d
(first row). In the single stage NMF method the recovered
tumor tissue (SC1= 0.6041) and its corresponding distribution
(DC = 0.4262) are bad and it is difficult to identify it as tumor
tissue from the source spectrum. The NCPD method identifies
all three tumor (SC1 = 0.9875), necrotic (SC1 = 0.9854) and
normal tissue types. Fig. 8b and 8c show that the estimated
tissue sources and their corresponding spatial distribution are
accurate when compared to expert labeling. In this example
we have estimated seven sources and their corresponding
distributions from rank-7 NCPD-l1. Three sources correspond
to tumor, necrosis and normal tissue type, the other four
sources correspond to artifacts (Fig. 8b and 8c: 7th row) and
spectra from the outer edges of the voxel grid (Fig. 8b and 8c:
4th, 5th and 6th row) which are contaminated by the chemical
shift displacement artifact.

V. DISCUSSION

The 2D-MRSI data can be directly represented as a third-
order tensor. A (Lr,Lr,1) BTD based approach can be used to
extract the different tissue types from this spatial tensor. The
problem with this approach is that it is difficult to find the rank
Lr of the factor matrices. The rank Lr is patient specific and
it is different for different tissue types. Even when the ranks
Lr are approximately known, this method does not perform
better than single stage NMF or hNMF algorithms. This has
motivated us to find a new way to represent 2-D MRSI data
in a tensor.

In this paper, we have proposed a method to represent the
2D-MRSI data in a tensor using a reduced format of the spec-
tra. A novel tissue type differentiation algorithm based on non-
negative canonical polyadic decomposition with l1 regulariza-
tion was developed. This study explored the feasibility and
efficiency of the proposed algorithm (NCPD-l1) in recovering
the normal, tumor and necrotic tissue patterns for patients with
glioma using short-TE MRSI data. The previous matrix-based
algorithms, NMF and hNMF failed consistently in extracting
tissue-specific spectral patterns. NMF failed because the tumor
spectral profile is not sufficiently uncorrelated from a linear
combination of other tissue patterns: normal and necrosis [1].
Also, sometimes the NMF algorithm extracts individual peaks
as sources and these sources do not represent the tissue-
specific spectral patterns. The problem with the hNMF [1] is
that the algorithm is designed for a maximum of three sources
and cannot handle artifacts. Therefore, in [1] the voxels at the
outer edge of the PRESS excitation volume are removed to
minimize the effect of artifacts. By doing this we can lose
the voxels belonging to clinically relevant tissue types. In the
MRSI grid shown in Fig. 8, if we remove 2 or 3 outer rows
or columns of voxels the necrotic tissue is almost lost. Also,
due to heterogeneity of the tissue some datasets require more
than one source to model that tissue type. In this case, hNMF
fails to model all the tissue types with only 3 sources.

The hNMF algorithm is mainly designed to handle GBMs.
When the hNMF algorithm is used on low grade gliomas, the
second stage of hNMF is not applied and hNMF reduces to
single stage NMF with two sources. NMF with more than
two sources performs better compared to hNMF in MRSI
data, which does not contain necrotic tissue type (low grade
gliomas). In high grade gliomas containing necrotic tissue
type, hNMF performs better than single stage NMF because
the second stage in the hNMF separates tumor and necrotic
tissue type. In NCPD, MRSI data with more tissue types as in
high grade glioma with necrotic tissue can be modelled using
a higher number of sources and low grade gliomas with less
artifacts can be modelled using a lower number of sources.
The proposed NCPD algorithm can better separate tumor and
necrotic tissue type than hNMF in high grade gliomas and
better separate tumor tissue from other ones in low grade
gliomas than NMF.

We have proposed an initialization scheme for the NCPD
algorithm based on SVD of the complex-valued spectra and
spectral reduction of singular vectors. Random initialization
is used in most of the non-negative tensor factorization ap-
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Fig. 8: Tissue pattern differentiation using 1H MRSI: C, T and N represent normal, tumor and necrosis, respectively. (a)
First row: T2-weighted anatomical MR image of a brain tumor with areas of necrosis. Second row: voxels within the MRSI
excitation volume superimposed on anatomical image. Third row: expert labeling, where yellow (horizontal + vertical line)
indicates N, red (horizontal line) indicates T, magenta (no pattern) indicates T/N, dark blue (slanted + horizontal line) indicates
C, light blue (vertical line) indicates C/T and green (slanted line) indicates spectra of poor quality. (b, c) results of NCPD.
(b) The recovered sources from the NCPD-l1 method are shown in black (solid line). First three rows represent C, N and T
spectral sources in black (solid line), with tissue-specific spectra based on expert labeling overlaid in green (dash-dot line).
The remaining four rows represent artifacts and spectra from outer edges. (c) Distribution maps corresponding to spectral
profiles in (b). (d, e) Results of single-stage NMF. (d) The recovered sources are shown in black (solid line), overlaid with
the expert-based tissue-specific spectra in green (dash-dot line). First three rows show normal, necrotic and tumor spectra and
the remaining rows show other spectra obtained using rank-7 NMF. (e) Distribution maps corresponding to (d). (f, g) Results
of hNMF. (f) Recovered sources shown in black (solid line) and expert-based tissue-specific spectra in green (dash-dot line).
First two rows show control and necrotic spectra. (g) Distribution maps corresponding to (f). For all the distribution maps, hot
colormap was used, where dark area represents lower values and light area represents higher values.

plications. In non-negative RESCAL tensor factorization [23],
the factor matrices are initialized using an NMF initialization
method Non-negative Double Singular Value Decomposition
method (NNDSVD) [24]. When NCPD is initialised using
NNDSVD on the reduced spectra, the initial factor matrix
Sinit contains many zero values, which are also retained in the
decomposed factor matrix S. Therefore, the estimated reduced
source spectra are unrealistic and deviate from the actual
tissue-specific reduced spectra. Other initialization methods
based on clustering will have more realistic source spectra
compared to SVD-based methods. The problem with these
methods is that they require some initialization and are com-
putationally intensive [25], [26]. Although our initialization
method is based on SVD, it does not suffer from too many
zero values in the source initialization because the SVD is

applied on the complex-valued spectra and the singular vectors
are made positive by constructing the reduced spectra from
them. The initialized sources are more realistic and close to
the reduced spectra found in the MRSI voxels.

The number of sources for the NCPD algorithm is esti-
mated using the eigenvalues of reduced spectra covariance
matrix. The number of sources is overestimated when no prior
knowledge is used as shown by striped bars in Fig. 7. Use of
prior knowledge about the maximum number of tissue types
prevents this overestimation and results in better number of
sources estimation as shown by solid bars in Fig. 7. In this
method we have used a cut-off of 99% on the cumulative sum
of eigenvalues of C. Whereas, information theoretic criteria
based methods such as in [27], [28] can determine the number
of sources adaptively without the need for a cut-off value.
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However, these methods do not perform well in the presence
of artifacts or when a linear model is not strictly satisfied.
These methods highly overestimate the number of sources in
our MRSI datasets.

The advantage of this tensor method is that the construction
of the MRSI tensor couples the peaks in the spectra because
of the XXT in the frontal slices. Therefore, in the spectral
sources obtained from the NCPD algorithm the peaks will be
coupled, i.e. we will not get individual peaks as sources. The
difference in the results between NCPD without regularization
and NCPD-l1 is negligible because the construction of the
tensor and the extra sources already introduce sparsity in
H. But NCPD-l1 algorithm gives more stable results and
sometimes models the tissue types with less sources. Also,
the computational time is much less in NCPD-l1 compared
to NCPD (without regularization) as it converges in fewer
iterations.

VI. CONCLUSION

The NCPD-l1 algorithm outperforms the existing tissue type
differentiation methods based on NMF and hNMF. The worse
performance of the hNMF is due to the fact that the voxels
in the outer edge of MRSI excitation volume are included in
the assessment. By contrast, NCPD can account for artifacts
and bad voxels present in the outer edges because more
sources (R≥ 3) are used in the decomposition. NCPD is also
able to separate artifacts from tissue sources, but NMF fails
to separate these properly even after using more sources in
the decomposition. The NCPD algorithm has the potential to
replace the hNMF method in unsupervised nosologic imaging
for brain tumors [29], which can be used as a tool to assist
brain tumor diagnosis. Recently, instead of using only the
MRSI signal, a multiparametric (MRSI, cMRI, DWI, PWI)
approach based on a modified hierarchical non-negative matrix
factorization (hNMF) has been used to characterize brain
tumor heterogeneity [30]. In future research we would like
to extend our proposed NCPD algorithm to multiparametric
data and explore whether it has the potential to improve over
hNMF [30].
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