
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. X, NO. Y, MONTH 2016 1

Endogenous probabilistic reserve sizing and
allocation in unit commitment models:

cost-effective, reliable and fast
Kenneth Bruninx, Student Member, IEEE, and Erik Delarue, Member, IEEE

Abstract—In power systems with high shares of variable and
limitedly predictable renewables, power system operators need
to schedule flexible load, generation and storage to maintain the
power system balance when forecast errors occur. To ensure
a reliable and cost-effective power system operation, novel
reserve sizing and allocation methods are needed. Although
stochastic formulations of the unit commitment problem allow
calculating an optimal trade-off between the cost of scheduling
and activating reserves, load shedding and curtailment, these
models may become computationally intractable for real-life
power systems. Therefore, in this paper, we develop a novel set
of probabilistic reserve constraints, which allows internalizing
the reserve sizing and allocation problem in a deterministic unit
commitment model, considering the full cost of reserve allocation
and activation. Extensive numerical simulations show that this
novel formulation yields UC schedules that are nearly as cost-
effective as the theoretical optimal solution of the stochastic model
in calculation times similar to that of a deterministic equivalent.

Index Terms—Probabilistic reserve constraints, deterministic
unit commitment, stochastic unit commitment, wind power,
reserve sizing, reserve allocation, reserve activation.

NOMENCLATURE

I Set of power plants, indexed by i.
J Set of time intervals, indexed by j.
K Set of energy storage units, indexed by k.
L Set of reserve levels, indexed by l.
S Set of wind power scenarios, indexed by s.

Decision variables

χj,s Curtailment of RES-based generation at time
interval j under scenario s, MW.

χL+
j,l Curtailment of RES-based generation as upward

reserve provider at time interval j in reserve
level l, MW.

χL−
j,l Curtailment of RES-based generation as down-

ward reserve provider at time interval j in re-
serve level l, MW.
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φj,s Load shedding at time interval j under scenario
s, MW.

φL+
j,l Load shedding as upward reserve provider in

time interval j in reserve level l, MW.
acNSR+
i,j,l Activation cost of non-spinning reserves pro-

vided by fast-starting power plant i at time
interval j in reserve level l, e.

acR+
i,j,l Activation cost of upward spinning reserves pro-

vided by power plant i at time interval j in
reserve level l, e.

acR−i,j,l Activation cost of downward spinning reserves
provided by power plant i at time interval j in
reserve level l, e.

cCO2
i,j,s CO2-emission cost of conventional power plant

i at time interval j under scenario s, e.
cFi,j,s Fuel cost of conventional power plant i at time

interval j under scenario s, e.
cRi,j,s Ramping cost of conventional power plant i at

time interval j under scenario s, e.
cSU
i,j,s Start-up cost of conventional power plant i at

time interval j under scenario s, e.
gi,j,s Output of conventional power plant i at time

interval j under scenario s, MW.
gES
k,j,s Net output of energy storage system k at time

interval j under scenario s, MW.
nsr+

i,j Non-spinning reserves delivered by power plant
i at time interval j, MW.

nsrL+
i,j,l Non-spinning reserves delivered by power plant

i at time interval j in reserve level l, MW.
r+
i,j Upward spinning reserve provided by power

plant i at time interval j, MW.
r−i,j Downward reserve provided by power plant i at

time interval j, MW.
rES,+
k,j Upward reserve provided by energy storage sys-

tem k at time interval j, MW.
rES,−
k,j Downward reserve provided by energy storage

system k at time interval j, MW.
rES,L+
k,j,l Upward reserve provided by energy storage sys-

tem k at time interval j in reserve level l, MW.
rES,L−
k,j,l Downward reserve provided by energy storage

system k at time interval j in reserve level l,
MW.

rL+
i,j,l Upward spinning reserve provided by power

plant i at time interval j in reserve level l, MW.
rL−
i,j,l Downward spinning reserve provided by power

plant i at time interval j in reserve level l, MW.
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Parameters

λφ Value of lost load, e/MWh.
τ Duration of the time interval, h.
Ps Probability of scenario s.
P+
j,l Probability of activation of reserves scheduled in

upward reserve level l at time interval j.
P−j,l Probability of activation of reserves scheduled in

downward reserve level l at time interval j.
Dj Electricity demand at time interval j, MW.
D+
j,l Upward reserve requirement at time interval j in

reserve level l, MW.
D−j,l Downward reserve requirement at time interval j

in reserve level l, MW.
GF
j,s Wind power output at time interval j under sce-

nario s, MW.

I. INTRODUCTION

IN low-carbon power systems with high shares of renew-
ables (RES) ensuring reliability may become an increas-

ingly critical issue. Some forms of RES-based electricity gen-
eration, notably wind and solar PV, have a stochastic character,
i.e., they are variable (not or only limitedly dispatchable)
and to some extent unpredictable. Deviations from what is
expected, e.g., forecast errors, need to be overcome with up-
or downward regulation of dispatchable generation, load or
storage. Moreover, the variability of this RES-based generation
requires this reserve capacity to be sufficiently flexible. In this
regard, novel power system operation methods will be needed
to properly size and allocate operational reserves, in order
to ensure a reliable and cost-efficient operation of the power
system. Optimal reserve scheduling is the result of a trade-
off between (1) the cost of load shedding and curtailment of
RES-based generation and (2) the cost of reserve allocation
or procurement, i.e., the cost to have reserves available, and
the cost of reserve activation or deployment, i.e., the cost of
dispatching or activating these reserves [1], [2].

One of these novel power system scheduling methods is
the so-called stochastic unit commitment (SUC) model. The
direct representation of the uncertainty via a set of scenarios
in the unit commitment (UC) model leads to an optimal
trade-off between reliability and operational system cost [2].
By imposing a common UC schedule for all scenarios, the
sizing of reserves is internalized in a SUC model. Since
scheduled units are dispatched in the second-stage dispatch
problem, the activation costs of the scheduled reserves are
taken into account during the sizing and allocation process,
resulting in an optimal trade-off between reliability, curtail-
ment of RES-based generation and the full cost of providing
flexibility. In other words, the amount of required reserves
is optimized endogenously, a process we will refer to as
‘the internalization of the reserve sizing problem’. However,
these SUC models are not devoid of disadvantages. First, the
computational cost of solving such a SUC problem may be
high and may strongly increase with the number of scenarios
one considers, depending on the solution technique employed.
In addition, solution stability requirements impose a lower
limit on the number of scenarios one needs to use to ensure a

meaningful solution of the SUC problem [2]. Improved model
formulations [3], decomposition techniques and parallelization
[4]–[8], advanced scenario reduction methods [9], [10], ,
relaxations of the problem [11] and hybrid UC formulations
with additional, explicit reserve constraints [2] are used to
reduce the computational burden of solving SUC problems.
Especially scenario-based decomposition and parallelization
may strongly reduce the computational effort associated with
solving SUC problems, as it breaks, to some extent, the
intimate relationship between the number of scenarios and
the computational cost [6]–[8]. Second, the quality of the
solution of the SUC model is highly dependent on the quality
of the scenario generation and reduction techniques used to
produce a representative set of scenarios [9], [12]. Third, in
real-life power systems, one needs to consider multiple sources
of uncertainty and multiple regions, drastically increasing the
complexity of the problem at hand. However, if one succeeds
in capturing the underlying stochasticity in a sufficiently small
set of scenarios, resulting in a tractable SUC problem, this
approach yields the optimal decision under uncertainty.

To avoid the computational burden associated with solving
a SUC problem and the complex trade-off between the cost of
scheduling reserves and reliability during the optimization of
the UC schedule, modelers often resort to deterministic unit
commitment (DUC) models with explicit, exogenous reserve
requirements. Especially probabilistic reserve requirements –
i.e., reserve sizing based on the probability that a forecast
error of a certain size occurs – have gained attention over
the last years [13], [14]. For example, Wang et al. [13] show
that a probabilistic reserve requirement outperforms other
reserve rules in a DUC model when dealing with uncertainty
on wind power forecasts. However, most DUC formulations
fail to account for the expected cost of activation of these
reserves during the allocation process, typically resulting in
sub-optimal UC schedules. To improve the performance of
DUC formulation, some researchers include a fixed activation
cost per reserve provider [15].

Alternative UC formulations, such as robust UC (RUC)
models [16], interval unit commitment (IUC) models [17],
chance-constrained UC formulations [18] and hybrid methods
[2], have been suggested to approximate the performance of
the SUC model at a reasonable computational cost. In RUC
models potential realizations of wind power generation are
represented as an interval around the central forecast, and thus
one avoids assumptions regarding individual scenarios [19]. In
the IUC model, the set of scenarios used in a SUC problem
is reduced to three distinct scenarios: the central forecast, an
upper limit scenario and a lower limit scenario [17]. The IUC
and RUC formulations are computationally less demanding
than the equivalent SUC model because these formulations
consider fewer scenarios [17] or an interval around the central
forecast [20]. The RUC and IUC model hedge the system
against any realization within an interval around the central
forecast, thus providing the same level of reliability. Both
the RUC and IUC formulation internalize the reserve sizing
problem, but do not account for the reserve activation costs
during the sizing and allocation process, i.e. while solving
the UC problem. The SUC model generally produces less
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conservative, more cost-efficient UC schedules [17], [20].
Chance-constrained UC formulations [18] try to speed up the
convergence of a SUC problem or to reduce the conservatism
of a DUC formulation by imposing that certain constraints,
typically the power balance, should be satisfied with a certain
probability. Small and unlikely violations of the constraints are
tolerated, effectively relaxing the problem, while guaranteeing
a solution with a certain reliability (e.g. an upper limit on the
loss of load probability (LOLP)). Similarly, the so-called bud-
get of uncertainty can be used to alleviate the conservatism of
the RUC formulation [20]. However, by setting this reliability
level or budget of uncertainty ex-ante, the chance-constrained
UC and RUC problem no longer guarantee an optimal trade-
off between the cost of providing reserves and the cost of
load shedding. Hybrid methods [2] combine a-priori reserve
sizing rules and dedicated scenario reduction methods with
a SUC formulation in order to speed up the convergence
of the SUC problem to a stable solution. Although hybrid
methods effectively internalize the reserve sizing problem and
account for activation costs during the allocation process, the
limited number of scenarios considered may lead to over- or
underestimation of the activation probability, thus the expected
activation cost, of the scheduled reserves [2], [21].

In this paper, we propose a novel set of probabilistic reserve
constraints which allows accounting for the probability and
cost of activation of reserves during the allocation process
in a DUC formulation, effectively allowing (1) internalizing
the reserve sizing problem and (2) optimizing the allocation
of reserves. The obtained UC schedules are nearly as cost-
effective as that obtained from an equivalent SUC model and
significantly better than the corresponding DUC schedules.
The computational cost remains low compared to an equivalent
SUC problem and is in the same order of magnitude as that
of a DUC problem. Compared to the scientific literature, the
added value of the proposed model, referred to as the DUC-PR
formulation in the remainder of this paper, lies in the simulta-
neous (1) internalization of the reserve sizing problem and (2)
consideration of reserve allocation and activation costs in the
sizing and allocation process without the need for stochastic
programming techniques. The DUC-PR model internalizes the
reserve sizing problem in the UC optimization, which allows
the consideration of inter-temporal constraints and ‘trading’ of
risk over time. Chance-constrained DUC formulations include
similar (discretized) probability distributions to introduce, e.g.,
LOLP (loss of load probability) constraints in the optimization
problem [22], [23]. However, during the reserve scheduling
process, the reserve activation costs are typically not consid-
ered. Xiao et al. [24] present a DUC-PR model similar to that
in Section II-A, but simplify the representation of the power
system. Ramping constraints, the minimum stable operating
point of power plants providing non-spinning reserves and
their start-up cost, as well as energy storage systems and the
regulation services they may offer, are neglected by Xiao et al.
[24]. In contrast, all these elements are considered in full detail
in the DUC-PR formulation presented below. Moreover, the
value of scheduling and activating downward flexibility will
be explicitly monetized during the reserve scheduling process,
an effect which is not considered in [24].

The remainder of this paper is organized as follows. First,
we present the models employed in this paper. A SUC and
DUC model will be used as a reference. The DUC-PR for-
mulation and the reserve activation probability calculation are
discussed extensively. Second, the performance of the models
is discussed in Section III. Last, a conclusion is formulated.

II. METHODOLOGY

Each of the UC models discussed below is designed to
obtain the least-cost UC schedule that allows meeting the
demand for electrical energy subject to given operational
constraints and uncertain wind power production, the only
source of uncertainty considered in this paper. Reserves are
allocated, implicitly (SUC) or explicitly (DUC-PR & DUC),
in these UC models. To isolate the impact of the different
approaches to represent uncertainty in a UC model, the starting
point for the SUC, DUC and DUC-PR problems will be
the same set of 500 wind power forecast scenarios. These
scenarios are generated for each day using a scenario gener-
ation technique based on Pinson et al. [21], [25], using the
statistical characterization of the wind power forecast error
described in [14]. The ability of the aforementioned technique
to capture the uncertainty on the wind power forecast in a set
of discrete scenarios is extensively discussed in [21]. For the
SUC model, we employ a modified probability distance-based
scenario reduction technique to select a number of critical
scenarios (here: 30) for consideration in the SUC problems
[9]. For the DUC and DUC-PR problems, we calculate an
empirical probability density function of the possible wind
power realizations from this set of scenarios for each time step
in the optimization, which serves as an input for the reserve
sizing procedure (Section II-B). Differences in performance
due to mismatches in information available in the different
UC models are thereby avoided.

The resulting UC schedules are evaluated in terms of opera-
tional cost, curtailment of the uncertain RES-based generation
and load shedding, by running Monte-Carlo economic dispatch
(ED) simulations for a new, large set of scenarios (here: 500).
These scenarios are generated via the aforementioned scenario
generation technique [21], [25], using the original statistical
characterization of the uncertainty [14]. The dispatch model
is set up as a DUC model and is executed for each scenario
individually, without any reserve requirements, with the UC
status set to that obtained from the DUC, DUC-PR or SUC
model and the wind power forecast replaced by the wind power
scenario at hand. If non-spinning reserves are considered, fast-
starting units may start-up and shut-down during dispatch if
they are scheduled during the UC optimization. Note that the
set of scenarios considered during dispatch is identical in the
evaluation of the SUC, DUC-PR and DUC schedules to ensure
comparability of the results.

In all the UC models presented in this paper, the network
constraints are omitted, as we did in [26]. This assumption
may lead to transmission congestion, especially under high
wind penetration levels [27]. However, the Belgian power
system, which provides the basis for our case study, has
enough (internal) transmission capacity to make the effect of
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congestion essentially negligible [28]. Currently, redispatching
to alleviate transmission congestion affects 0.08% of the
yearly electricity production and increases the annual oper-
ating cost by approximately 0.3% (2.9 million EUR per year)
[28]. Omitting the transmission constraints does therefore not
significantly affect the conclusions of this case study. The
omission of transmission constraints however significantly
reduces the computational burden associated with solving the
UC problems. For example, Papavasiliou et al. [29] report that
a transmission-constrained SUC model for a relatively small
system with 375 transmission lines requires from several to
tens of hours to achieve a reasonably small duality gap, even
for a relatively small number of scenarios.

Starting from a SUC formulation, the DUC and DUC-PR
models are introduced as simplifications of that SUC model.
A full description of these UC models can be found in [21]1.

A. UC Models

In a SUC model, the power plants are scheduled and
dispatched in such a way that the overall expected operational
cost over the simulated time period and a certain set of sce-
narios is minimized. These scenarios are discrete realizations
of the uncertain variable, in this case wind power. The total
operational cost consists of fuel costs cFi,j,s, start-up costs cSU

i,j,s,
ramping costs cRi,j,s, CO2-emission costs cCO2

i,j,s and the cost of
load shedding (λφ · φj,s, with φj,s the load shed and λφ the
value of lost load). The objective function reads

min
∑
j

∑
s

Ps
(∑

i

(cSU
i,j,s + cFi,j,s + cCO2

i,j,s + cRi,j,s) (1)

+ τ · λφ · φj,s
)

where Ps is the probability of a scenario s (set S). The
fuel cost (cFi,j,s) and the CO2-emission cost are dependent
on the output of the power plant i (set I) on time step
j (set J) in scenario s, the fuel used and the technology.
Ramping costs are triggered by changes in output of the power
plant. The start-up cost cSU

i,j,s is scenario-dependent, as fast-
starting power plants can have a different UC status in each
scenario if they provide non-spinning reserves. For all other
units, the optimization procedure determines a common UC
schedule that minimizes the overall expected operational cost.
The only first-stage variables in this SUC model are thus the
commitment status-variables of the power plants, excluding
those that are considered to be ‘fast-starting’.

This optimization is subjected to a number of constraints.
First, the supply and demand for electricity must be equal at
all time steps j in each scenario s:

∀j,∀s : Dj −φj,s =
∑
i

gi,j,s +GF
j,s−χj,s +

∑
k

gES
k,j,s (2)

The demand Dj on each time step j is assumed to be known
and fixed. This demand must be met in each scenario by (1)
electricity generated from dispatchable power plants gi,j,s; (2)
the uncertain wind power forecast GF

j,s, which can be curtailed

1In [21], the DUC-PR model is referred to as a ‘probabilistic UC formu-
lation’.

(0 ≤ χj,s ≤ GF
j,s)

2; (3) the net injection of power from energy
storage (ES) systems gES

k,j,s and (4) the shedding of load φj,s.
The dispatch over a set of scenarios and the constraint of a
common UC status – except for fast-starting units – abolishes
the need for explicit reserve requirements [2]. Consequently,
the full reserve allocation and activation cost are both taken
into account directly during the UC optimization. Second,
the power plants have several techno-economical constraints,
such as a minimum and maximum output level, minimum
up and down times and ramping rates, different per fuel
and technology. Last, the ES systems are included in the
model. The net output of ES system k (gES

k,j,s) can be positive
(discharging) or negative (charging) and is constrained to the
capacity of the ES system. The energy content of the ES
system is limited to a minimum and maximum level. The
dispatch over all scenarios ensures the technical feasibility of
activating the scheduled ES-based reserves [26].

In a DUC model, one only considers the (most-likely)
forecast scenario, which is assumed to occur with a probability
of 1. The objective function of the DUC model expresses the
minimization of the operational cost under forecast conditions:

min
∑
j

(∑
i

(cSU
i,j + cFi,j + cCO2

i,j + cRi,j) + τ · λφ · φj
)

(3)

Since the DUC formulation only considers one scenario, the
index s has been dropped.

To ensure that real-time mismatches between the forecasted
wind power production and the realized wind power produc-
tion can be compensated, explicit reserve requirements are
added to the model:

∀j : D+
j ≤

∑
i

(r+
i,j + nsr+

i,j) +
∑
k

rES+
k,j + χj (4)

∀j : D−j ≤
∑
i

r−i,j +
∑
k

rES−
k,j (5)

At each time step j, sufficient upward (D+
j ) and downward

(D−j ) reserves must be available. The reserves provided by
online conventional units (r+

i,j and r−i,j) are restricted by
the minimum and maximum stable operating points and the
remaining rampable capacity of the power plants. Fast-starting
units that are not committed in the forecast scenario (non-
spinning reserves, nsr+

i,j), scheduled wind power curtailment
(χj) and regulation services provided by the ES systems
(rES+
k,j ) may further fulfill the upward reserve requirement3.

Downward reserves may also be offered by the ES systems
(rES−
k,j ). To ensure the real-time availability of the reserves

offered by the ES systems, the ES-based reserves are limited
to the scheduled output and the capacity of the ES systems, as
described in [26]. The feasibility of deploying the scheduled

2Note that we assume that excess RES-based generation may be curtailed at
no explicit cost. Indeed, the only cost perceived by the system operator is the
opportunity cost of not utilizing available RES-based generation. An explicit
cost for curtailing RES-based generation can be included in the objective
function analogously to the cost of load shedding (

∑
j

∑
s Ps · τ ·λφ ·φj,s).

3If a shortage of supply occurs in the forecast scenario, the demand for
reserves has to be relaxed before load shedding occurs. The introduction of a
slack variable, restricted to positive values and penalized at a high cost (less
than λφ) in the objective function, allows this. For sake of simplicity, this is
not included explicitly in the model description.
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ES-based reserves is enforced in a worst-case activation sce-
nario (i.e. activation of all reserves in one direction, upward
or downward) [26].

In the DUC model, only the allocation costs of spinning
reserves are implicitly considered. Indeed, the optimization
problem is constrained by the reserve requirements, which
trigger additional operational costs, i.e. the reserve allocation
costs. By assumption, non-spinning reserves may be scheduled
at no explicit cost. As the reserves are not ‘dispatched’ during
the allocation process, the expected cost of activating these
reserves is not accounted for during the UC optimization.
The model thus has insufficient information available to
make a trade-off between spinning, non-spinning reserves and
regulation services offered by the ES systems. In addition,
load shedding (upward flexibility) and additional real-time
curtailment of RES-based generation (downward flexibility)
are not considered explicitly as reserve providers, in contrast
to the SUC formulation. Implicitly, one assumes that this trade-
off has been made ex-ante in the reserve sizing problem [1].

The DUC-PR model builds further on the DUC formulation
above, but includes the reserve requirements in a novel way
and accounts for the activation cost of scheduled reserves.
The upward and downward reserve requirements are split in L
levels, each of which will correspond to a specific activation
probability (upward P+

j,l or downward P−j,l). The calculation
of the reserve levels and the corresponding activation prob-
abilities is the subject of Section II-B. Reserve requirements
(4)-(5) are replaced by Eq. (6)-(7):

∀j,∀l : D+
j,l =

∑
i

(rL+
i,j,l + nsrL+

i,j,l) +
∑
k

rES,L+
k,j,l (6)

+ χL+
j,l + φL+

j,l

∀j,∀l : D−j,l =
∑
i

rL−
i,j,l + χL−

j,l +
∑
k

rES,L−
k,j,l (7)

Additional load shedding (φL+
j,l ≥ 0) and curtailment of RES-

based generation (χL−
j,l , χL+

j,l ≥ 0) are explicitly considered as
flexibility options. Assuming wind power is the only source
of uncertainty, upward RES-based reserves are constrained to
the ‘scheduled’ curtailment, i.e. curtailment of the forecasted
wind power:

∀j :
∑
l

χL+
j,l ≤ χj ≤ G

F
j (8)

If it is cost-optimal not to schedule downward reserves in
reserve level l, this is allowed by considering additional
curtailment χL−

j,l of unexpected increases in RES-based gener-
ation. Conventional reserves are constrained to the remaining
ramping capacity and minimum and maximum stable gen-
eration level of power plant i, as in the DUC model. The
scheduled reserves are allocated to at least one reserve level
l:

∀i,∀j :
∑
l

rL+
i,j,l = r+

i,j (9)

∀i,∀j :
∑
l

rL−
i,j,l = r−i,j (10)

∀i,∀j :
∑
l

nsrL+
i,j,l = nsr+

i,j (11)

∀i,∀j,∀l : rL+
i,j,l, r

L−
i,j,l, nsr

L+
i,j,l ≥ 0 (12)

Similarly, we assign the ES-based reserves, restricted to the
capacity and scheduled output of the ES systems [26], to one
or more reserve levels l:

∀k, ∀j :
∑
l

rES,L+
k,j,l = rES+

k,j (13)

∀k, ∀j :
∑
l

rES,L−
k,j,l = rES−

k,j (14)

∀k, ∀j,∀l : rES,L−
k,j,l , rES,L+

k,j,l ≥ 0 (15)

The cost of activating reserves (acR+
i,j,l, ac

NSR+
i,j,l , acR−i,j,l, τ ·λφ ·

φ+
j,l) can now be explicitly added to the objective function. In

the DUC-PR model, Eq. (1) is replaced by

min
∑
j

(∑
i

(cSU
i,j + cFi,j + cCO2

i,j + cRi,j) + τ · λφ · φj
)

(16)

+
∑
j

∑
l

(
P+
j,l

(∑
i

(acR+
i,j,l + acNSR+

i,j,l ) + τ · λφ · φL+
j,l

)
+P−j,l

∑
i

acR−i,j,l

)
The operational cost under forecast conditions (first line in
Eq. (16)) is complemented with the reserve activation costs
(second and third line in Eq. (16)). These activation costs
are dependent on the probability of activation of the reserve
level (upward: P+

j,l, downward: P−j,l) and the operational costs
associated with each flexibility option (spinning reserves acR+

i,j,l

and acR−i,j,l, non-spinning reserves acNSR+
i,j,l or load-shedding

τ · λφ · φ+
j,l) scheduled to provide the reserves in this level.

Spinning reserves result in fuel and CO2-emission costs. The
activation cost of non-spinning reserves (acNSR+

i,j,l ) additionally
contains start-up costs. As the ramp-rate at which the reserves
are activated is unknown, the associated ramping costs are not
considered as reserve activation costs during the reserve alloca-
tion process. Activating upward reserves will always result in
an operational cost increase (acR+

i,j,l, ac
NSR+
i,j,l ≥ 0). Downward

reserves may however trigger cost reductions (acR−i,j,l ≤ 0),
as fuel is saved if conventional generation is replaced by an
unexpected increase in RES-based generation. The activation
cost of curtailment (downward flexibility) is assumed to be
zero4, while the expected volume of additional load shedding
(upward flexibility, P+

j,l · τ · φ
L+
j,l ) is penalized at the value of

lost load λφ.

B. Reserve sizing and probability of activation

The probability that the scheduled reserves are activated de-
pends on the forecast of intermittent generation, changing from
time step to time step. Assuming we have a full description

4If curtailment of RES-based generation entails an explicit cost for the
system operator, these costs can be included in the objective of the DUC-PR
problem (Eq. (16)) analogously to the cost of load shedding under forecast
conditions (

∑
j τ · λφ · φj ) and as a reserve provider (

∑
j

∑
l P

+
j,l · τ · λ

φ ·
φL+
j,l ).
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Fig. 1. Assuming that the probability distribution of the forecast error
(pj(GFj )), the demand Dj and the forecasted wind power production GFj are
known, one can calculate the probability of a positive or negative forecast error
occuring, thus the probability of activation of some predefined reserve levels.
For example, with L = 5, the probability of activation of reserves scheduled
in D+

j,2 is given by the grey area (P+
j,2). Likewise, the probability of activation

of D−
j,1 (P−

j,1) is given by the shaded surface. Note that interval on which
the activation probability of downward reserves is calculated is limited by the
demand Dj . The form of distribution pj(GFj ) is purely illustrative.

of the probability density function of the wind power forecast
error (pj(GFj )), the different reserve levels and the associated
probability of activation can be calculated as follows. First, we
divide the domain of the probability density function pj(GFj )
in a predefined number of intervals 2L (L intervals for positive
forecast errors, L intervals for negative forecast errors) (Fig.
1). Each of the resulting intervals corresponds to a reserve
level (D+

j,l and D−j,l). Second, the probability of activation of
reserves scheduled in each of these intervals can be determined
via Eq. (17)-(18), assuming a uniform discretization and with
∆D the width of the reserve levels:

∀j,∀l : P+
j,l =

∫ GF
j −(l− 1

2 )·∆D

−∞
pj(G

F
j ) dx (17)

∀j,∀l : P−j,l =

∫ Dj

GF
j +(l− 1

2 )·∆D

pj(G
F
j ) dx (18)

In a DUC model, reserves are typically sized to cover a
certain percentage of the range of forecast errors [14]. For the
case study below, we quantify the upward D+

j and downward
D−j reserve requirements at each time step as the smallest
quantities that cover the full range of the wind power forecast
error at each time step (Fig. 1, D+

j and D−j ). This makes the
total reserve requirement comparable in the DUC and DUC-
PR simulations, as in this case by definition

∑
lD
−
j,l = D−j

and
∑
lD

+
j,l = D+

j .

The reserve requirements in the DUC and DUC-PR prob-
lems are limited to the ‘useful’ domain: only reserve require-
ments that could avoid load shedding or curtailment of RES-
based generation are considered. For example, the demand for
downward reserves is limited to the amount of RES-based
generation that can be absorbed by the power system (no
downward reserves above Dj , Fig. 1).

III. CASE STUDY

In Section III-A, we explore the impact of the number
of reserve levels employed in the DUC-PR problem and
compare the scheduled flexibility to that obtained with the
SUC and DUC models. In Section III-B and III-C, the resulting
operational cost and computational performance of the DUC-
PR model are compared to that of an equivalent SUC and DUC
model, based on simulations for four representative weeks.

The simulations are run for a power system inspired on the
Belgian power system, assuming a 30% wind power penetra-
tion (annually, energy basis). The peak demand at transmission
system level in this system typically occurs in winter time
and equals about 14 GW, while the lowest demand – around
6 GW – typically occurs during daytime in the summer.
The annual Belgian electricity demand at transmission level
amounts to about 83 TWh [30]. Electrical energy generated
from RES other than wind (7% of the annual electric energy
demand) is treated as a demand correction and cannot be
curtailed. The demand profile and wind power data (2013)
are obtained from Elia, the Belgian TSO [30]. The Belgian
conventional generation system, consisting of 71 power plants
and combined-heat-and-power plants, in total 13,920 MW of
dispatchable capacity, has been taken from Elia [30]. The
nominal efficiency of the plants is based on the type, the fuel
and the age of the power plant [21]. Open-cycle gas turbines
and oil-fired units with a size of less than 100 MW, a minimum
up- and down time of one time step and the capability to
ramp from zero output to full capacity within a time step are
considered as ‘fast-starting units’. In total 35 fast-starting units
(with a cumulative capacity of 1,118 MW) are considered in
this case study. One pumped hydro ES (PHES) system has
been included, with a maximum capacity of 1,308 MW, a
round-trip efficiency of 75% and a storage capacity of 3,924
MWh. The minimum energy content of the storage facility is
set to 10% of its storage capacity. The CO2-price is set to
10 e/t CO2. The value of lost load is set to 10,000 e/MWh.
Curtailment is assumed to be free.

The planning horizon is 24 hours. The time step equals 15
minutes, in order to adequately capture the impact of the uncer-
tain wind power generation on the scheduling and dispatching
of the conventional power plants and energy storage systems,
as advocated by Pandz̆ić et al. [17] and Troy et al. [31]. Note
that the time resolution of a UC model may have a significant
impact on the cost-effectiveness of the resulting UC schedules
and the computational cost to obtain those solutions.

The UC models are implemented in GAMS 24.4 and
MATLAB 2012b. CPLEX 12.6 is used as solver. Calculations
are run on the ThinKing HPC cluster of the KU Leuven, using
a 2.8 GHz machine with 20 cores and 64 GB of RAM. The
optimality gap was set to 0.5%.

A. Reserve levels & scheduled flexibilty

In this section, we study the behavior of the DUC-PR model
in detail based on simulations performed for one particular day
(the first day of week 39). On this day, the forecasted wind
power ramps up from 1,000 MW to 6,000 MW, capable of
covering approx. 47% of the demand for electrical energy.
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Fig. 2. Increasing the number of reserve levels typically leads to reduced operational costs (left), but increases the expected load shedding volume (center)
and the calculation time (right). The operational cost is shown relative to the cost as obtained from the equivalent DUC model. The markers indicate the
(un)availability of non-spinning reserves, the solid lines correspond to the results obtained with a DUC-PR model w.r.t. the number of reserve levels L (bottom
axis) and the dashed lines visualize the equivalent SUC results as a function of the number of scenarios considered (top axis).

The effect of the number of reserve levels L on the expected
operational cost, reliability and calculation time of the DUC-
PR schedule is illustrated in Fig. 2. The expected operational
cost (Fig. 2, left) is normalized with respect to the operational
cost as obtained from the corresponding DUC model. In the
same figure, the performance of the equivalent SUC model as
a function of the number of scenarios considered during the
UC optimization is visualized.

Discretizing the reserve requirement and accounting for
the activation costs of the scheduled reserves results in a
significant drop in operational costs if one considers sufficient
reserve levels (Fig. 2). Two effects are at play. First, the
DUC-PR model will ‘relax’ reserve constraints by scheduling
load shedding as a reserve provider during the UC phase
(Fig. 3b and 3e). Although this results in some load shedding
during dispatch (Fig. 2, center), the expected operational cost
is significantly lower (Fig. 2, left). This effect is the strongest
when one does not consider non-spinning reserves. Spinning
reserves are typically provided by larger units, which makes
following the upward reserve requirement exactly more diffi-
cult. To provide the last few MW’s of upward reserve capacity,
a new unit may have to be committed, which may result in
a higher expected operational cost than curtailing some load.
In other words, the allocation and expected activation cost of
the last MW’s of reserves is higher than the expected cost
of a limited volume of load shedding. Non-spinning reserves
are smaller in size and have lower allocation and expected
activation costs if scheduled in a reserve level with a low
activation probability. Hence, less load shedding is scheduled
as a reserve provider in these cases. Second, the consideration
of the activation costs allows scheduling an optimal mix
of technologies to provide upward and downward flexibility.
For example, when non-spinning and spinning reserves are
available, the operational cost keeps decreasing while the load
shedding volume remains constant. For this particular day, the
second effect has a less pronounced impact on the operational
cost (Fig. 2), but does affect the scheduled flexibility (Fig. 3).
Note that the decrease in operational costs levels off above
a certain number of reserve levels L. As of that point, more
detailed representations of the distribution of the forecast error
do not lead to further improvements in the UC schedule, but

do increase the complexity of the problem, as illustrated by the
moderate increase in calculation time (Fig. 2, right). Solving
a DUC model takes 30 to 90 seconds. This calculation time
increases to 80 to 190 seconds (DUC-PR, L = 10). When
non-spinning reserves are available, the complexity of the
problem and the calculation time typically increase. The higher
calculation times associated with the DUC-PR problems may
be linked to the size of problem. The DUC problem contains
approx. 240,000 equations and 170,000 variables, of which
55,000 are binary variables. The equivalent DUC-PR problem,
considering 10 reserve levels, contains 462,000 equations and
752,000 variables, of which 191,000 are binary variables. Note
however that the increase in calculation time with the number
of reserve levels is moderate compared to the evolution of the
calculation time of solving the extensive form of the SUC
problem with the number of scenarios considered (Fig. 2,
right).

The presented analysis is analogous to a solution stability
study in stochastic programming [2], [9], [32]. If one takes too
few scenarios into account, the SUC model will underestimate
the required reserves, which results in high load shedding
volumes (Fig. 2, center) and high operational costs (Fig. 2,
left) during dispatch. In this particular case, 30 scenarios are
required to obtain a so-called stable solution [2], [9]. Note
that the evolution of the expected load-shedding volumes is
opposite to that in the DUC-PR solutions. Starting from a
UC schedule in which load shedding is not expected to occur,
load shedding is gradually scheduled as a flexibility option
with increasing granularity in the reserve levels in the DUC-
PR model. On the contrary, the SUC formulation starts from
a UC schedule with high volumes of expected load shed-
ding, reducing this volume as more detailed representations
of the uncertain wind power forecast are considered (i.e.
a higher number of scenarios). When non-spinning reserves
are available, the complexity of the problem increases, but
the calculation time decreases drastically. The quality of the
resulting UC schedule is heavily dependent on the number of
scenarios. Considering 30 scenarios, the SUC schedule out-
performs the DUC-PR solution (Fig. 2, left). The calculation
time required to solve the extensive form of the SUC problem
however also strongly increases with the number of scenarios
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Fig. 3. The scheduled upward reserve capacity per technology and per UC formulation. In the top row, only spinning and PHES-based reserves are allowed.
In the bottom row, non-spinning reserves are available. The solid black line indicates the total upward reserve requirement. The DUC-PR formulation employs
five reserve levels (L = 5). The SUC model considers 30 scenarios.

considered and rises from approx. 750 seconds to 5,800 (5
scenarios) to 96,000 seconds (30 scenarios) (Fig. 2, right). The
SUC problem size increases from approx. 1,000,000 equations
and 642,000 variables, of which 245,000 binary variables, (5
scenarios) to 26,607,000 equations and 14,635,000 variables,
of which 5,357,000 are binary variables (30 scenarios). Note
that decomposition techniques and parallelization – not ex-
plored in the context of this paper – may strongly reduce the
computational cost of solving the SUC problems (see e.g. [8]).

Figure 3 illustrates the scheduled upward flexibility as
obtained from a DUC, DUC-PR and SUC model for this par-
ticular day. The DUC-PR model contains five reserve levels.
We will focus on the scheduled upward flexibility because
of the large impact of possible load shedding. However, a
similar analysis could be conducted for downward flexibility.
Several effects are visualized in Fig. 3. First, the DUC-
PR model actively schedules load shedding (φ) as upward
flexibility, lowering the effective upward reserve requirement.
As a result, fewer units have to be committed (Fig. 3a-3b and
3d-3e). When non-spinning reserves are available, more cost-
effective low-activation-probability flexibility is available to
meet the reserve requirement. Significantly less load shedding
is scheduled (Fig. 3d-3e). Second, as non-spinning reserves by
assumption do not present any allocation costs and activation
costs are not considered in the DUC formulation, all units that
can provide non-spinning reserves are scheduled by the DUC
model (Fig. 3d). The DUC-PR model typically schedules less
non-spinning reserves and more spinning reserves (nuclear)
due to the high expected activation cost of these non-spinning
reserves (Fig. 3e). Third, less curtailment is scheduled when
non-spinning reserves are available. Fourth, both the DUC and

DUC-PR schedules remain conservative compared to the SUC
solution. Less capacity is scheduled by the SUC model, while
similar load shedding volumes are attained during dispatch
(Fig. 2, center). Especially the potential regulation services
of the PHES system remain underestimated in the DUC-
PR formulation due to the conservative worst-case feasibility
constraints [26]. For a detailed discussion on the coupling
between PHES-based reserves and UC optimization, the reader
is referred to [26].

B. Performance of the DUC-PR formulation
To evaluate the performance of the DUC-PR formulation

quantitatively, four representative weeks were selected based
on the residual demand5. The week with the residual demand
closest to the average weekly demand for electrical energy
(week 30), the week with the lowest residual energy demand
(week 52), the week with the highest residual energy demand
(week 9) and the week with the highest variability in the
residual load profile (week 39) were selected. For these
weeks, expected operational costs, curtailment of RES-based
generation and loss of load volumes were calculated based
on the SUC model considering 30 scenarios, as well as with
the proposed DUC-PR model considering 5 reserve levels and
the equivalent DUC model. For the expected operational cost
E[TOC], we calculate the 95% confidence interval [E[TOC]−
∆, E[TOC] + ∆] via the minimum variance method [33], as
recommended in [34].

The SUC results will serve as a benchmark, although solu-
tion stability may not be reached in all instances [2]. Especially

5This residual demand is calculated as the difference between the historical
demand time series and the rescaled historical wind power time series.
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when non-spinning reserves may not be scheduled, the SUC
model relies on the PHES system to offer regulation services.
By definition, in absence of so-called bundle constraints,
linking the output or energy storage levels in the different
scenarios, the PHES schedule will be optimized toward the
considered scenarios [21]. Other possible realizations of the
uncertain RES-based generation may contain events that are
not captured by the scenario set considered during the UC
optimization [21]. In this particular case, the SUC model
overestimates the available flexibility of the PHES system,
which results in high volumes of load shedding, hence high
operational costs and wide confidence intervals, in some
instances (Table I). However, due to the computational burden
of solving the extensive form of the SUC problem, we will
limit the number of scenarios considered in the SUC problems
to 30.

During week 30 (average residual demand), the performance
of the DUC-PR and DUC models is comparable. Curtailment
does not occur. The SUC model is outperformed by the DUC
and DUC-PR formulations. The UC schedule obtained with
the SUC model is inadequate to meet the demand without
load shedding in some scenarios, resulting in high expected
load shedding volumes and, consequently, increased expected
operational costs. In addition, load shedding in certain extreme
scenarios increases the variance in the operational cost per
scenario, resulting in a wide confidence interval (13.9 +/−
0.36 Me/week and 13.3 +/− 0.25 Me/week respectively).

Similar effects are observed in week 9 (maximum residual
demand). The DUC-PR formulation however realizes opera-
tional cost savings of approx. 0.1 Me or 0.4% per week (com-
pared to the DUC results) to 0.5 Me or 1.8% per week (com-
pared to the SUC model). Load shedding volumes are similar
in the DUC and DUC-PR results, and significantly lower
than in the SUC results. Consequently, the 95% confidence
interval on the expected operational cost of the SUC schedule
is significantly wider than the same confidence interval on
the DUC and DUC-PR results. Curtailment does not occur.
When considering non-spinning reserves, the performance of
the DUC and DUC-PR models is similar and 0.1 Me per
week worse than that of the SUC formulation.

During periods of low residual demand (week 52), cur-
tailment and downward flexibility become decisive for the
performance of the UC models. The DUC-PR model explicitly
considers the possible cost savings of downward flexibility,
which results in operational cost savings of 0.4 Me per
week (14%) to 0.1 Me per week (4.2%). The difference
in operational cost and curtailment is typically smaller when
non-spinning reserves may be scheduled. As the DUC model
does not see the cost of activation of these units and their
allocation costs are by assumption set to zero, all of them are
scheduled throughout the week. Although this is sub-optimal,
the resulting UC schedule is highly flexible, resulting in an op-
erational cost that approximates that of the DUC-PR schedule.
Convergence issues result in high load shedding volumes, thus
high expected operational costs and wide confidence intervals,
in the SUC solutions.

If the residual demand profile is strongly variable (week 39),
the DUC-PR formulation outperforms the DUC formulation

TABLE I
COMPARISON OF THE DUC, DUC-PR AND SUC RESULTS AFTER MONTE
CARLO ECONOMIC DISPATCH ON 500 WIND POWER SCENARIOS PER DAY

FOR FOUR REPRESENTATIVE WEEKS OF THE YEAR. TOC IS THE TOTAL
OPERATIONAL COST, WITH ∆ A METRIC FOR THE WIDTH OF THE 95%

CONFIDENCE INTERVAL. TOC∗ IS THE TOC EXCLUDING THE COST
ASSOCIATED WITH LOAD NOT SERVED. WUF IS THE WIND UTILIZATION

FACTOR, DEFINED AS THE PERCENTAGE OF AVAILABLE WIND ENERGY
THAT IS ABSORBED IN THE SYSTEM. WS IS THE WIND SHARE, I.E. THE

EFFECTIVE SHARE OF WIND ENERGY IN THE GENERATED ENERGY IN THIS
WEEK, CORRECTED FOR CURTAILMENT. φ IS THE LOAD SHEDDING

VOLUME. ALL VALUES ARE EXPECTED VALUES (E[]).

Spin. Spin. & non-spin.
SUC DUC-PR DUC SUC DUC-PR DUC

E[TOC] (Me) 13.9 13.7 13.8 13.3 13.3 13.2
∆ (Me) 0.36 0.08 0.08 0.25 0.10 0.10
E[TOC∗] (Me) 13.4 13.7 13.8 13.0 13.3 13.2
E[WUF] (%) 100 100 100 100 100 100
E[φ] (MWh) 55.0 0 0 36.0 1.8 0.7
E[WS] (%) 10.6 10.6 10.6 10.6 10.6 10.6

(a) Average residual demand (week 30).

Spin. Spin. & non-spin.
SUC DUC-PR DUC SUC DUC-PR DUC

E[TOC] (Me) 4.2 2.9 3.3 3.1 2.3 2.4
∆ (Me) 0.84 0.04 0.01 0.56 0.05 0.03
E[TOC∗] (Me) 2.6 2.9 3.3 2.2 2.3 2.4
E[WUF] (%) 92.4 87.5 86.7 94.5 91.6 92.4
E[φ] (MWh) 146.6 3.0 0 82.6 4.0 0.1
E[WS] (%) 79.7 75.4 74.8 81.8 79.0 79.7

(b) Minimum residual demand (week 52).

Spin. Spin. & non-spin.
SUC DUC-PR DUC SUC DUC-PR DUC

E[TOC] (Me) 28.9 28.4 28.5 27.4 27.5 27.5
∆ (Me) 0.84 0.16 0.16 0.37 0.20 0.19
E[TOC∗] (Me) 27.9 28.4 28.5 27.1 27.5 27.5
E[WUF] (%) 100 100 100 100 100 100
E[φ] (MWh) 109.5 0 0 31.5 3.0 1.8
E[WS] (%) 13.5 13.5 13.5 13.5 13.5 13.5

(c) Maximum residual demand (week 9).

Spin. Spin. & non-spin.
SUC DUC-PR DUC SUC DUC-PR DUC

E[TOC] (Me) 8.5 8.4 8.8 6.3 6.7 6.9
∆ (Me) 0.99 0.07 0.06 0.68 0.11 0.10
E[TOC∗] (Me) 7.4 8.4 8.8 5.6 6.7 6.9
E[WUF] (%) 96.4 93.8 93.5 97.9 96.0 96.0
E[φ] (MWh) 115.5 0.2 0 73.2 0.7 0.2
E[WS] (%) 50.4 49.1 48.9 51.2 50.2 50.3

(d) Maximum variability in residual demand (week 39).

by 0.2 to 0.4 Me/week (3.0 to 4.7% respectively). This is the
result of scheduling load shedding as upward reserves, which
allows covering the upward reserve requirement with less
online capacity and to a lesser extent, the scheduling of a more
cost-efficient mix of technologies to meet the reserve require-
ment. The SUC model outperforms the DUC-PR formulation
considering non-spinning reserves, despite a higher volume
load shedding, which results in wide confidence intervals, in
the SUC solutions. The resulting WUF is significantly higher.
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TABLE II
MEDIAN, 75th AND 95th PERCENTILE OF THE CALCULATION TIME (PER

UC PROBLEM) FOR THE SUC, DUC AND DUC-PR MODEL.

Spin. Spin. & non-spin
SUC DUC-PR DUC SUC DUC-PR DUC

P50 (s) 19,897 201 138 24,833 281 125
P75 (s) 46,748 267 191 57,256 365 213
P95 (s) +96,000 404 342 +96,000 534 395

C. Computational performance

Table II compares the calculation times (median, 75th and
95th percentile) for the DUC, DUC-PR and SUC problems.
Solving a DUC problem takes approx. two minutes (median
values). Introducing non-spinning reserves does not signifi-
cantly impact the calculation time of the DUC problems. As
discussed above, the DUC formulation does not ‘see’ the com-
plex trade-off between activation and allocation costs, resulting
in fast models, but sub-optimal UC schedules. The spread on
the calculation time is limited: 95% of all simulations yield a
solution in less than 6 minutes.

Solving a DUC-PR problem takes 3.3 to 4.8 minutes (me-
dian values). Considering non-spinning reserves considerably
increases the calculation time. 95% of all simulations terminate
within 6.7 minutes (without non-spinning reserves) and 8.9
minutes (with non-spinning reserves). However, this represents
a significant improvement in calculation time compared to
solving the extensive form of the SUC problem, which requires
approx. 5.5 to 6.9 hours (median values). Recall that we
did not consider decomposition techniques and parallelization,
which may strongly reduce the computational cost of solving
the SUC problems [8].

IV. CONCLUSION

Although the accuracy of RES-based electricity generation
forecasts is improving, power system operators need to procure
up- or downward regulation capacity under the form of dis-
patchable generation or load to overcome inevitable deviations
from the forecasted RES-based generation profile. Stochastic
unit commitment (SUC) models, with a direct representation
of the uncertainty via a set of scenarios in the UC model,
lead to an optimal trade-off between reliability and expected
operational system cost. However, these SUC models may be
computationally costly to solve and the quality of the resulting
UC schedule is highly dependent on the scenarios considered.
In this paper we therefore develop a novel set of probabilistic
reserve requirements. By defining distinct reserve levels, each
with a probability of activation, one can account for the
allocation and expected activation costs in a deterministic UC
model, without the need of a scenario-based representation of
the uncertain RES-based generation. This improves the perfor-
mance of the resulting UC schedule considerably, as shown
in Section III-B. The reason behind these operational cost
reductions is twofold. First, the model is able to account for
possible operational cost savings resulting from the activation
of downward reserves. Although excess RES-based generation
can be curtailed, not absorbing unexpected increases in RES-
based generation may be sub-optimal. Second, activation prob-
abilities allow providing upward reserves cost-effectively by a

mix of (1) cheap, frequently activated running power plants
(spinning reserves), (2) expensive, but rarely activated offline
power plants (non-spinning reserves), (3) energy storage-based
flexibility, (4) load shedding and (5) scheduled curtailment
of forecasted RES-based generation. Without the inclusion of
activation probabilities, this trade-off was not possible in a
DUC model. This allows us to approximate the operational
cost of the stable solution of a SUC model in calculation times
similar to that of a deterministic formulation.

The presented DUC-PR formulation can be used to assess
the impact of uncertainty on reasonably large low-carbon
electric power systems where SUC models could become
computationally intractable. Likewise, independent system op-
erators (ISO) could use this model to optimize their UC
decisions taking into account the uncertainty in their system.

This work may be strengthened in the following ways. First,
considering multiple sources of uncertainty and studying their
interaction may increase the added value of this work. Second,
expanding the presented model to consider transmission con-
straints would allow for a number of interesting applications.
For example, employing this model on multiple interconnected
areas would allow studying how pooling of reserves across
areas, as well as the interaction of uncertainty in different
areas, affects reserve allocation and activation costs. Third, the
dependency of the obtained results on the assumed underlying
distribution could be studied, as the approach above requires
knowledge of the probability of activation of each power plant
offering reserves at each time step. Wrong estimates of these
probabilities may have a significant impact on the performance
of the obtained UC schedule. Fourth, better discretization
schemes may exist and merit further research, but are out of
the scope of the present paper.
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