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We present a theory of periodically driven, many-body localized (MBL) systems. We argue
that MBL persists under periodic driving at high enough driving frequency: The Floquet operator
(evolution operator over one driving period) can be represented as an exponential of an effective
time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive
this result by constructing a sequence of canonical transformations to remove the time-dependence
from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be
sharpened by estimating the probability of adiabatic Landau-Zener transitions at many-body level
crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose
a phase diagram of driven MBL systems.

Introduction. Recently, there has been much inter-
est in quantum many-body localized (MBL) systems and
their properties [1–14, 17–24]. MBL phase is character-
ized by an extensive set of emergent local integrals of mo-
tion (LIOMs) [12, 13], which lead to quantum ergodicity
breaking, and in particular, absence of thermalization.
Therefore, MBL systems cannot be described by con-
ventional statistical mechanics. Existing works explored
experimental manifestations of MBL systems, and pre-
dicted universal dynamical properties following a sudden
quantum quench, including logarithmic growth of entan-
glement entropy [6, 8–10, 12, 13], as well as characteristic
decay [22] and revivals [23] of local observables.

In this paper, we study the behaviour of MBL sys-
tems under periodic driving. Previous works on driven
many-body systems focused mostly on the translation-
ally invariant case [25–30]. In particular, D’Alessio and
Polkovnikov [27] conjectured that, if the dynamics is gen-
erated by switching between an ergodic and an integrable
(but translationally-invariant) Hamiltonian, a transition
will be observed in function of the driving frequency: At
low frequency, the system shows heating to an infinite
temperature, while at high frequency the dynamics is de-
scribed by an effective Hamiltonian written as a sum of
local terms, leading to localization in the energy space.
Though very long time scales can indeed be needed for
energy to get dissipated [31], it was argued that driven
ergodic systems typically delocalize and heat up to an in-
finite temperature at any driving frequency [28, 30, 32].

There are three main motivations to our work. First,
studying the response of many-body systems to periodi-
cally varying fields is a conventional experimental probe
in systems of cold atoms in optical lattices [33, 34],
which are promising candidates for realizing the MBL
phase [35, 36]. Second, theoretically little is known about
general properties of quantum many-body systems under
time-varying fields (beyond linear-response). Finally, we
investigate the conjecture in [27], in the context of MBL

systems, where counter-arguments based on ergodicity
fail in an obvious way.

We consider a time-dependent periodic Hamiltonian
H(t) = H(t+T ) and we split it in its mean and oscillating

parts: H(t) = H(0) + V (t) with H(0) = 1
T

∫ T
0

dtH(t).
We analyze the one-cycle evolution operator U(T ) =:
e−iH∗T , where H∗ is an effective (Floquet) Hamiltonian,
which a priori can be nonlocal, and where the evolution
operator U(·) solves

i
d

dt
U(t) = H(t)U(t), U(0) = 1. (1)

We study the case where the time-averaged Hamiltonian
H(0) is fully MBL (i.e. has all its eigenstates localized),
and determine conditions on V (t) so that H∗ is still lo-
cal and fully MBL which implies, in particular, energy
localization [37]. Our work consists of two parts:

(a) We show that H∗ is MBL via successive canon-
ical transformations. Our method is directly inspired
by the scheme devised by Imbrie [17] (see also [38]) to
establish the existence of a localized phase for time-
independent Hamiltonians. As this scheme allows to go
beyond asymptotic expansions, we claim that it furnishes
a more robust foundation to MBL in driven systems than
the use of Magnus expansion [27]. We emphasize both
that H(0) can be fully MBL even when the instantaneous
HamiltonianH(t) is ergodic for most or even all t ∈ [0, T ],
and that V (t) is not required to vary continuously with
time (square signals as in [39] are allowed).

(b) We assume that V (t) involves only a few harmon-
ics, i.e. varies smoothly with time. In that case, we don’t
expect the scheme mentioned in (a) to lead to optimal
conditions on the lowest possible frequency to ensure
MBL. Instead, we base our analysis on an analogy with
the multi-level Landau-Zener problem. In particular, we
argue that at sufficiently low frequency, the Floquet op-
erator strongly mixes states with a very different spatial
structure, thus inducing delocalization.
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Based on (a) and (b), we propose a qualitative phase
diagram of driven MBL systems (see Fig. 1).
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FIG. 1. Qualitative phase diagram of the driven MBL sys-
tem. For ν/g > 1 (and W/g < 1), the transition is deter-
mined by (15): W/g ∼ (ν/g)−1. For ν/g ≤ 1 (and W/g ≥ 1),
and for a smooth driving, the transition is predicted by (24):
W/g ∼ (ν/g)−a with a ∼ ξ.

Model. For concreteness, we assume that our system
is a one-dimensional spin-1/2 chain of size L. We make
the following assumptions: (a) The Hamiltonian H(0) is
fully MBL, and therefore it has a complete set of LIOMs.
Choosing the LIOMs to be the local spins σzj , H(0) takes
the form (see [12, 13, 17])

H(0) =
∑
i

εjσ
z
j +

∑
i<j

εi,jσ
z
i σ

z
j + . . .

+
∑

i1<···<in

εi1,...,inσ
z
i1 . . . σ

z
in + . . . (2)

where |εi1,...,in | ∼ e−(in−i1)/ξ, except at rare resonant
spots. Through this work we assume thatH(0) is strongly
localized: ξ � 1. (b) The energies εi1,...in are functions
of the local disorder, hence random; we set

〈εi〉 = E0, 〈(εi − E0)2〉 = W 2, (3)

and we assume E0 ∼W . (c) The driving is of the form

V (t) =
∑
i

Vi(t),
1

T

∫ T

0

dt Vi(t) = 0, ‖Vi(t)‖ ∼ g, (4)

where g is the driving strength, and where Vi(t) =
Vi(t+T ) are local around site i, implying ‖[Vi(t), σwj ]‖ .
e−|i−j|/ξ for w = x, y, z.

Localization at high frequency. To get explicit
expressions, we take H(0) to be given by the first sum in
(2) only [40], while for V (t) we take the simple toy model

V (t) =
∑
i

∑
w1,w2=x,y,z

Jw1,w2

i,i+1 (t)σw1
i σw2

i+1 (5)

with Jw1,w2

i,i+1 (t) = Jw2,w1

i,i+1 (t) and

sup
t,i,w1,w2

|Jw1,w2

i,i+1 (t)| ≤ g. (6)

It is one of our main observations that, for ν = 1/T
large enough compared to g, the uniform bound (6) is all
we need: as we argue now, MBL in periodically driven
systems can be understood in very much the same way
as MBL in isolated systems.

Let H∗ be such that U(T ) = e−iH∗T . There exists
a periodic unitary P (t) = P (t + T ) such that U(t) =
P (t)e−iH∗t; indeed we just define P (t) by

P (t) = U(t)eiH∗t. (7)

This can be equivalently stated as

P †(t)
(
H(t)− i

d

dt

)
P (t) = H∗. (8)

We now change the point of view and we take (8) as our
starting point: we don’t assume to know H∗ and we look
for a periodic unitary P (t) = P (t+T ) satisfying P (0) = 1
such that the right hand side of (8) is time-independent.

Formally, (8) is solved by successive approximations:
P (t) = limn→∞ P1(t) . . . Pn(t). We write H1(t) = H(t)
and, for n ≥ 1, we will determine Pn(t) so as to make
Hn+1(t) “as close as possible” to a time-independent
Hamiltonian, where Hn+1(t) is defined by

P †n(t)
(
Hn(t)− i

d

dt

)
Pn(t) = Hn+1(t) (n ≥ 1). (9)

If the procedure is successful, Hn(t) becomes truly time-
independent in the limit n→∞: H∗ = limn→∞Hn(t).

As an exemplary case, let us implement the first step
of the scheme, i.e. determine P1(t) and H2(t). As in [17],
we decompose V (t) as V (t) = V per(t) + V res(t), where
V res(t) includes the resonant transitions, that cannot be
treated in perturbation:

V res(t) =
∑

(i,i+1)∈Res

∑
w1,w2=x,y,z

J
(w1,w2)
i,i+1 (t)σ

(w1)
i σ

(w2)
i+1 .

where Res is a time-independent set containing bonds
where resonances (possibly) occur, defined as follows. Let
us denote the eigenstates of H(0) by |η〉, corresponding
thus to all possible configurations of up and down spins.
We say that (i, i + 1) ∈ Res if there exist two states |η〉
and |η′〉 as well as w1, w2 such that 〈η′|σ(w1)

i σ
(w2)
i+1 |η〉 6= 0

and such that

inf
k∈Z0

|∆H(0)
η,η′ − 2πkν| ≤ δν (10)

where ∆H
(0)
η,η′ = 〈η′|H(0)|η′〉− 〈η|H(0)|η〉 and where δ �

1 is some (partially arbitrary) threshold. The probability
that (i, i+ 1) ∈ Res is bounded as

P((i, i+ 1) ∈ Res) ≤ Cδ, (11)

independently of ν and W (see Supplementary Mate-
rial I).
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We now proceed to the perturbative analysis: We de-
compose P1(t) as P1(t) = P res1 (t)P per1 (t) and we deter-
mine P per1 (t). We define it as P per1 (t) = eA1(0)e−A1(t)

where A1(t) is a dimensionless anti-hermitian matrix sat-
isfying

[H(0), A1(t)]− i
dA1(t)

dt
= V per(t) (12)

with A1(t) = A1(t+T ). Since H0 is MBL and since (10)
is violated for the transitions of V per(t),

A1(t) =
∑

i,w1,w2

A
(w1,w2)
i,i+1 (t)σ

(w1)
i σ

(w2)
i+1 (13)

with the bounds

sup
t,i,w1,w2

|A(w1,w2)
i,i+1 (t)| ≤ δ−1g/ν (14)

(see Supplementary Material II). We compute

H3/2(t) := P per,†1 (t)

(
H(t)− i

d

dt

)
P per1 (t)

= H(0) + V res(t) +
∑
n≥1

adnA1(t)

n!

(
nV per(t)

n+ 1
+ V res(t)

)

with adA(B) = [A,B] (to simplify the expression we pre-
tended that eA1(0) = 1 [41]). This expansion converges if
δ−1g/ν is sufficiently small, see (2.7)-(2.10) in [17].

From now on we assume that δ−1g/ν � 1, so that, ex-
cept for V res1 (t), all the time-dependent terms in H3/2(t)
have been reduced by one factor δ−1g/ν at least. We
now define P res1 (t) as to get rid of V res1 (t). Thanks to
(7), there exists P res1 (t) so that

P res,†1 (t)

(
H(0) + V res(t)− i

d

dt

)
P res1 (t)

is time-independent. The main point is that, thanks to
(11), the Hamiltonian H(0) + V res(t) acts non-trivially
only on small and far between connected sets of bonds
(the resonant spots). Therefore, though P res1 (t) is not
explicit, we know that it cannot ruin the localization, as
it acts only inside the resonant spots.

The first step is now completed, defining H2(t) via
(9). In order to iterate the scheme, we decompose again

H2(t) = H
(0)
2 + V (2)(t) with H

(0)
2 = 1

T

∫ T
0

dtH2(t), and

we need to make sure that H
(0)
2 is MBL. As the diagonal

part of H
(0)
2 is still given in leading approximation by

H(0), with disorder strength W , and as the off-diagonal
elements are at most of order δ−1g2/ν from the expres-
sion of H3/2(t), we find the condition δ−1g2/ν � W .
Dropping the artificial factor δ−1, the conditions for lo-
calization read

g/ν � 1, g2/νW � 1. (15)

Unless the driving varies smoothly with time, we expect
in general delocalization if one of these bounds get vio-
lated (see Supplementary Material III).

All the key points to proceed with the reduction of the
time-dependent part of H(t) at further and further scales
did show up already at the first scale, and most of the
technical work involved in the process can at this point
be borrowed from [17]; this includes the expansion of the
perturbation in graphs, combinatorics estimates involved
in the expansions of perturbative change of variables, the
precise statement of resonance conditions, etc. (see Sup-
plementary Material IV for higher order resonances).
Localization at lower frequency. We now consider

the case where the driving contains only a few harmonics
(e.g. Vi(t) = cos(2πνt)V i with V i time-independent) and
we argue that delocalization occurs at frequencies which
are lower than the threshold given by (15).

Our argument relies on the analogy with the multi-
level Landau-Zener problem. It is convenient to slightly
modify the notations: We introduce the dimensionless
parameter λ = νt and function V̂ (λ) = V (λ)/g, so that

H(λ) = H(0) + gV̂ (λ). (16)

We assume that g/W � 1 is small enough so that each
Hamiltonian H(λ) is MBL for any λ ∈ [0, 1] with a local-
ization length comparable to ξ (the localization length of
H(0)). For the sake of exposition, let us split V̂ = V̂d+V̂od
such that V̂d is the part of the perturbation that com-
mutes with H(0). Then we write α and Eα = Eα(λ)
for the eigenvectors and energies of H(0) + gV̂d(λ). As λ
goes through a cycle, these levels can cross, whereas the
levels of H(λ) have an avoided crossing (see Fig. 2(a)).
The character of a pairwise level crossing is determined
by (i) the matrix element of the operator V̂ (λ) be-
tween the energy levels |α〉, |β〉 that undergo the crossing,
Mαβ = 〈β|V̂d(λc)|α〉, where λc is the value of parameter
λ at which crossing takes place, and by (ii) the speed at

which the crossing is passed: vαβ =
d(Eα(λ)−Eβ(λ))

dλ ν. In
the Landau-Zener problem (crossing of just two levels),
the transition amplitude is given by (see e.g. [42]):

Sα→α = exp(−Cαβ), Cαβ ≡ π
|Mαβ |2

vαβ
, (17)

and therefore one can distinguish three regimes: (i) adi-
abatic, when parameter Cαβ � 1; in this case, the sys-
tem ends up in eigenstate β after the crossing is passed,
and the probability to stay in the “excited” state α is
exponentially small; (ii) diabatic, when Cαβ � 1; in this
case, the system stays in state α; (iii) intermediate, when
Cαβ ∼ 1; in this case, the system ends up in a super-
position of states α and β at long times, with approxi-
mately similar weights. The three regimes are illustrated
in Fig. 2(b-d).

As we will now argue, in our problem the relevant
crossings, which lead to delocalization at low frequency,
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FIG. 2. (a) Spectrum of the many-body localized system as
a function of parameter λ. (b-d) Three kinds of level cross-
ings: (b) Adiabatic, when the system follows instantaneous
eigenstate, (c) Diabatic, when the system ends up in the orig-
inal eigenstate, and (c) Intermediate, when the system is in a
superposition of two states at long times.

occur between levels that differ only by a small number of
LIOMs. Let us consider two levels α, β, which have dif-
ferent values of local integrals of motion only in a region
R of size x � L. We first show that there is a scale x1,
such that at x � x1 the crossings between states which
differ in region R are very rare, while at x � x1 there
are many such crossings. There are 2x different levels
which have different value of LIOMs in the region R and
are identical outside R, and an overwhelming majority
of these levels lives in a band of width of order W

√
x

[44]. Therefore, the typical level spacing for this group
of levels can be estimated as:

∆(x) ≈W
√
x

2x
. (18)

On the other hand, the typical change of energy difference
between two levels α, β, whose LIOMs differ only in the
region R, can be estimated as

δEαβ(x) ∼ g|〈α|V̂ |α〉 − 〈β|V̂ |β〉| ∼ g
√
x, (19)

when δλ ∼ 1, and where we used ‖V̂i‖ ∼ 1. If δEαβ(x) is
much smaller than the level spacing ∆(x), the levels in
this group typically do not cross. In the opposite limit,
δEαβ � ∆(x), there are multiple level crossings of this
kind. The scale x1 can therefore be estimated from the
condition δEαβ(x̄) ≈ ∆(x1), which gives:

x1 = log2

W

g
. (20)

At x & x1, each level α therefore crosses multiple other
levels which differ from α by changing values of some or
all LIOMs in (any) region of size x.

Next, let us understand the character of crossings be-
tween levels α, β that have different LIOMs only in a
region R or size x (assuming that such a crossing is en-
countered as λ is varied). First, we estimate the speed at
which the crossing is passed: vαβ(x) ∼ δEαβν ∼ gν

√
x.

Second, we note that the typical matrix element of a lo-
cal operator between two MBL eigenstates which differ
in region R, is given by:

Mαβ(x) ∼ g〈α|V̂ |β〉 ∼ g
√
xe−x/ξ. (21)

The value of the parameter Cαβ(x) characterizing the
crossing is then given by:

Cαβ(x) ∼ g
√
x

ν
e−2x/ξ. (22)

The crossing is in the intermediate regime (the two cross-
ing levels mix strongly at long times) at scale x2, which
can be estimated from the relation Cαβ(x2) ∼ 1:

x2 ≈
ξ

2
log

g

ν
. (23)

At x � x2, (nearly) all crossings are in the diabatic
regime, while at x� x2 crossings are adiabatic.

The properties of the Floquet operator, most impor-
tantly the way it mixes states with very different spatial
structure, depend on the relation between length scales
x1, x2 given by (20,23). If x2 � x1, during one period of
driving, each level experiences multiple crossings which
are in the intermediate or adiabatic regime. This means
that the operator U(T ) cannot be considered a small per-
turbation of Ug=0(T ) = exp(−iTH(0)), as it changes the
values of most LIOMs. Hence, in this case we expect that
the eigenstates of U(T ) are delocalized.

From (20,23), we deduce that the condition x2 � x1

for localization is written in terms of the frequency ν as

g

ν

( g
W

)1/a

� 1, with a =
ξ log 2

2
. (24)

By the above reasoning, we expect delocalization once
condition (24) gets violated. See Fig. 3.

No crossing

Diabatic crossings

x2x1

No crossing

Adiabatic

Diabatic crossings

x2x1

FIG. 3. Scales x1 and x2 (here d = 2 for visualization). Left
panel: at high frequency, when (24) holds, all the crossings
are typically diabatic. Right panel: at lower frequency, when
(24) is violated, adiabatic crossings typically appear.
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Discussion. In summary, we have provided strong
analytical evidence that many-body localization per-
sists under periodic driving, if the driving frequency
is high enough. The MBL phase in driven systems
is characterized by the existence of an MBL (time-
independent) effective Hamiltonian, implying thus (i) the
existence of an extensive number of local conservation
laws [12, 13, 20, 21]; (ii) area-law for all, but an expo-
nentially small fraction of Floquet eigenstates [12, 14–16];
(iii) logarithmic spreading of entanglement entropy of ini-
tial product states [6, 8–10, 12, 13]. At sufficiently low
driving frequencies, the system undergoes a transition
into the delocalized phase.

We note that our results are in agreement with two
previous recent studies [39, 43], which provided qualita-
tive arguments and numerical evidence for the existence
of the MBL phase at large driving frequency and delo-
calization at small frequency.
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[15] K. Van Acoleyen, M. Mariën, F. Verstraete, Phys. Rev.

Lett. 111.17, 170501 (2013)
[16] Let us consider LIOMs that are obtained from the phys-

ical spins by a quasilocal unitary transformation that is

generated by a time-dependent Hamiltonian (the oper-
ator iA in our case). Then the work in [15] shows that
such quasilocal unitaries preserve the area-law property.

[17] J. Z. Imbrie, arXiv:1403.7837 (2014).
[18] D. Pekker, G. Refael, E. Altman, E. Demler, and V.

Oganesyan, Phys. Rev. X 4, 011052 (2014).
[19] J. A. Kj̈all, J. H. Bardarson, F. Pollmann, Phys. Rev.

Lett. 113, 107204 (2014).
[20] V. Ros, M. Mueller, and A. Scardicchio, arXiv:1406.2175

(2014).
[21] A. Chandran, I. H. Kim, G. Vidal, and D. A. Abanin,

arXiv:1407.8480 (2014).
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SUPPLEMENTARY MATERIAL: A THEORY OF MANY-BODY LOCALIZATION IN PERIODICALLY
DRIVEN SYSTEMS

Content of the Supplementary Material: Sections I and II contain straightforward computations that allow us to
derive the relations (11), (13) and (14) in the main text. Section III bridges a link between our two conditions (15)

and (24) for localization. In Section IV, we show how to estimate the probability of resonances in higher orders.

I. Derivation of (11). A Gaussian approximation
yields

P((i, i+ 1) ∈ Res)

≤
∑
k 6=0

∑
a,b∈{0,±2}

P(|aεi + bεi+1 − 2πkν| ≤ δν)

∼
∑

k 6=0;a,b

∫ +∞

−∞

dz

W
e
− (z−2πkν)2

(δν)2 e−
(z−(a+b)E0)2

W2

∼
∑

k 6=0;a,b

δν
e
− (2πkν−(a+b)E0)2

(δν)2+W2√
(δν)2 +W 2

= δ
∑
a,b

∑
k 6=0

e
− (2πk−(a+b)E0/ν)

2

δ2+(W/ν)2√
δ2 + (W/ν)2

≤ Cδ,

where the last bound follows from the fact that k 6= 0 and
E0 ∼W , so that the sum over k can be approximated by
an integral of a probability density.

Though we derived (11) through a Gaussian approx-
imation for simplicity, it is much more general; the im-
portant point is that the distribution of εi does not force
the energies to be such that aεi + bεj is typically near a
value of the form 2πkν for some k 6= 0, for which the key
ingredient was here E0 ∼W . Finally, it may appear as a
surprise that W is not involved in the bound (11). This

is a consequence of our assumption 1
T

∫ T
0

dt V (t) = 0, im-
plying that we can discard k = 0 in (11). The condition

on W appears later, when requiring that H
(0)
2 is MBL in

(15).
II. Derivation of (13)-(14). The proof of these re-

lations relies crucially on the fact that condition (10) is
violated, and that H0 is MBL, i.e. that a local operator
couples only a few close LIOMs (due to our simplifica-
tions, this is here obvious since both the eigenstates of
H(0) and the perturbation terms Vi(t) are strictly local).
In terms of the matrix elements, (12) reads(

∆H
(0)
η,η′ − i

d

dt

)
〈η′|A1(t)|η〉 = 〈η′|V per(t)|η〉,

〈η′|A1(t)|η〉 = 〈η′|A1(t+ T )|η〉.

When ∆H
(0)
η,η′ = 0, i.e. for η = η′, the solution exists

thanks to the condition 1
T

∫ T
0

dt V per(t) = 0 and is given
by

〈η|A1(t)|η〉 = i

∫ t

0

ds 〈η|V per(s)|η〉

where we have chosen the initial condition 〈η′|A1(0)|η〉 =

0. When ∆H
(0)
η,η′ 6= 0, i.e. when η 6= η′, the solution is

given by

〈η′|A1(t)|η〉 = i

∫ t

0

ds e
−i∆H

(0)

η,η′ ((t−s))〈η′|V per(s)|η〉

+ i
e
−i∆H

(0)

η,η′ t

1− e
−i∆H

(0)

η,η′T

∫ T

0

ds e
−i∆H

(0)

η,η′ (T−s)〈η′|V per(s)|η〉.

Using again the condition 1
T

∫ T
0

dt V per(t) = 0, we may

replace e
−i∆H

(0)

η,η′ (T−s) by e
−i∆H

(0)

η,η′ (T−s) − 1 in this last
integral, and use the bound∣∣∣∣∣∣e

−i∆H
(0)

η,η′ (T−s) − 1

1− e
−i∆H

(0)

η,η′T

∣∣∣∣∣∣ ≤ 2

mink∈Z0
{|T∆H

(0)
η,η′ − 2πk|}

.

Since the resonance condition (10) is always violated by
the matrix elements of V per(t), we obtain the bound

sup
t
|〈η′|A1(t)|η〉| ≤ Cδ−1T sup

t
|〈η′|V per(t)|η〉| ∀η, η′.

From there, since (12) is linear, we recover (13)-(14).
III. Smooth vs non-smooth V (t). As it is seen a

posteriori from (24), the conditions (15) are not always
optimal conditions for localization. This comes from the
fact that, when the driving V (t) varies smoothly with
time, i.e. is concentrated on a few harmonics, the way
we control the solutions of (12) can be improved in some
regimes. In view of our estimates based on the Landau-
Zener crossings, we would like to consider smaller values
of ν, violating the contraint g/ν < 1, while requiring
now g/W � 1. Here we show how our renormaliza-
tion scheme could be adapted to deal with this case, pro-
viding a direct argument for localization in this regime,
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while the more physical arguments leading to the con-
dition (24) ensured primarily that the system delocalizes
once this latter condition is violated. We keep however
the discussion at the level of general ideas (in particular
we do not show how to recover (24)), postponing a more
throughout investigation for further works.

Let us move to the Fourier variables in (12):

G(k) =
1

T

∫ T

0

dt e2iπkνtG(t), k ∈ Z,

for G = A1 and G = V (we work directly with V in-
stead of V per as it would not make sense to maintain
this distinction at this level). Smoothness (more pre-
cisely analyticity) for V (t) in the time domain reads
|V (k)| ∼ ge−c|k| for some c > 0 in the frequency domain.
Eq. (12) becomes

[H(0), A1(k)]− 2πkνA1(k) = V (k), k 6= 0

(remember that V (k = 0) = 1
T

∫ T
0

dt V (t) = 0). Thus,
for any η, η′,

〈η′|A1(k)|η〉 =
〈η′|V (k)|η〉

∆H
(0)
η,η′ − 2πkν

. (25)

Let us first consider the case η 6= η′, so that typically

∆H
(0)
η,η′ ∼ W . As long as ν & W , there is no space for

improvement here. However, for V smooth, the situation
changes once ν �W :∣∣∣∣∣ 〈η′|V (k)|η〉

∆H
(0)
η,η′ − 2πkν

∣∣∣∣∣ ∼ g e−c|k|

|W − 2πkν|
∼ g

W

where we set c ∼ 1 for simplicity. Therefore, in this case,
the (non-valid) condition g/ν � 1 can be replaced by
the (valid) condition g/W � 1, as we expected. The
difference between smooth and non-smooth drivings is
illustrated on Figure S1.

η η′

E(0)

∆H
(0)

η,η′

η η′

E(0)

FIG. S1. Horizontal lines represent the values of E(0)(η, k) =

H
(0)
η − 2πkν for all k ∈ Z, where H

(0)
η = 〈η|H(0)|η〉. Left

panel: a smooth driving V (t) connects only close harmonics,

the shift being due to ∆H
(0)

η,η′ ∼ W . Right panel: if V (t)
is not smooth, harmonics are connected even if they are far
appart, leading to resonant couplings.

We are still left with the diagonal elements (η = η′).

For them, ∆H
(0)
η,η = 0, and the r.h.s. of (25) behaves

like g/ν, which can be very large, independently of the
value of g/W . We notice however that the resonances
in the on-site terms do not need to entail delocalization.
Indeed, for any diagonal Hamiltonian D(t), eq. (8) can

be solved with D∗ = 1
T

∫ T
0

dsD(s) and

P (t) = e−i
∫ t
0

ds (D(s)−D∗). (26)

Taking for D(t) the diagonal part of V (t), we con-
clude that the corresponding matrix P (t), though non-
perturbative, is diagonal, local and preserves the product
structure, hence the localization.

If we were giving a precise description here, then there
is a catch in the above argumentation, if not correctly
interpreted. Indeed, at low frequency, P (t) defined by
(26) does not inherit the smoothness of D(t), i.e. even
if D(k) is non-vanishing only for a few low harmonics
k, P (k) starts only decaying for k & g/ν. As the non-
perturbative rotation matrix given by (26) affects also
the non-diagonal matrix elements, it is not at all clear
that our reasoning could be iterated starting from the
next step of the scheme. Let us simply point our here
that this difficulty is only apparent and can be bypassed
by performing the on-site non-perturbative rotations of
the type (26) only at the right scale of the scheme, after
several rotations of the type (25) have significantly driven
down V (t) (we postpone a more detailed explanation of
this to a further work).
IV. Higher order resonances. As this is truly at

the heart of the localization phenomenon, we check here
explicitly that resonances rarefy quickly as higher and
higher order couplings are considered. A nth-order cou-

pling V
(n)
i (t) is of order (g/ν)n−1g and connects at most

n consecutive spins. A resonance occurs if, for two eigen-
states |α〉 and |β〉 of the effective Hamiltonian at that

scale (i.e. the Hamiltonian H
(0)
m for some m = m(n))

that differ only in a box of size n, we have

(g/ν)n−1g

|∆Eα,β − 2πkν|
& 1 for some k ∈ Z0.

As resonances never occur for |α〉 = |β〉 in the regime
g/ν � 1, we assume |α〉 6= |β〉, where we do not ex-
pect any help from the extra condition k 6= 0. Now, the
quantity mink∈Z |Eβ − Eα − 2πkν| can be visualized as
the distance between Eα and Eβ , projected on a circle
of circumference 2πν (i.e. their difference modulo 2πν).
We need thus to consider 2n eigenvalues on this circle,
so that the average level spacing is of order 2−nν (for a
time-dependent problem, it is of order 2−n

√
nW , which

is not better for any practical purpose) and the small-
est level spacing can be estimated by e−cnν for some
c > 0 with high probability (to be precise: we make
the assumption that there is no conspiracy in the sys-
tem that produces anomalously small spacings, cfr. the
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analogous LLA assumption in [17]). Therefore, if g/ν is small enough, we expect resonances to become quickly
very atypical at higher scales, hence localization.
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