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Abstract—A versatile and intuitive way of interacting with
smart devices consists of a 3D-touchscreen in the air above the
device, combined with gesture recognition. In this paper, the
limitations of hand tracking and gesture recognition using existing
hardware in smartphones will be investigated. To accomplish
hand tracking and gesture recognition, the two loudspeakers of
the device send ultrasonic tones in combination with a Maximum
Length Sequence (MLS), after which the microphones pick up the
potentially altered reflected signal again. The Doppler-response
on the tones yields information about the speed of the hand above
the device and the acoustic channel estimation obtained from the
MLS estimates the distance at which the hand is present. The
position estimation module estimates the 3D-position of the hand
in a predefined grid of eight regions and hereby achieves an
accuracy above 77 % in all cases. For the gesture recognition,
features are extracted from both the Doppler-response as well
as the acoustic channel estimation. A simple decision tree then
classifies the performed gesture. Experimental results show that
the accuracy of the gesture recognition module achieves an
accuracy between 87 and 100 %.
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I. INTRODUCTION

Gesture recognition is getting more and more attention as
a key technique for interacting with smart devices, alongside
the traditional touchscreen and voice recognition [1]. Because
most touchscreens of these devices are only a few fingers wide,
a virtual ”3D-touchscreen” would be a very attractive alterna-
tive [2]. Such a gestural interface above the device would allow
a user to control his/her smart device without touching it, just
by performing gestures in mid-air. Many different techniques
have already been explored to achieve gesture recognition,
including image processing [3], RF-based [4] and ultrasound
[5]. Hand tracking however has been attempted in 2D by
[2], but to the author’s knowledge, 3D hand tracking using
ultrasound in smart devices has not been attempted before. In
this work, the limits for gesture recognition and hand tracking
using only the two loudspeakers and two microphones already
present in most high-end smart devices like the iPhone 5 or
Samsung Galaxy Note 4 will be investigated.

The paper is structured as follows: in section II, an
overview of the related literature is given. Section III discusses
the proposed framework and section IV describes the proposed
approach on how to recognize gestures or estimate the hand
position using this framework. Finally, section V introduces
the hardware used for developing our testbed and provides the
accuracy results.

II. RELATED WORK

A gesture recognition-implementation which only lever-

ages one microphone and one loudspeaker of a smartphone
and makes use of the Doppler effect, was introduced by [5] as
”Dolphin”. A single 21 kHz tone is emitted by the loudspeaker,
after which the microphone receives the potentially altered
signal again. Both speaker and microphone have a sampling
frequency of 48 kHz. If a hand or other object is moving above
the smartphone, other frequencies are present in the frequency
domain of the received signal as a result of the Doppler effect.
These frequencies are higher than 21 kHz if the hand moves
towards the microphone and lower if the hand moves away,
respectively according to formulas (1) and (2) [5], [6]. In
these formulas, v, is the speed of sound, vy is the speed of
the hand and f;. and f,.. are transmitted and received tone’s
frequencies respectively.
A gesture consisting of a sequence of movements over time,
can be represented by a vector of +1 and -1’s, according
to the direction of the movement in each time bin. This
vector is then compressed into a motion indicating sequence,
which consists only of discontinuous +1 and -1’s. Using
this approach, the performed gesture is first classified in a
gesture group according to the direction vector, after which
the original spectrum vector is used for more fine-grained
machine classification. The classification accuracy is as high
as 94 % over a set of 24 predefined gestures. This last result
is obtained after a thorough investigation of which machine
learning technique performed best on the provided features.
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Another attempt to recognize gestures above a mobile de-
vice using only microphones and loudspeakers, is Microsoft’s
”SoundWave” [6]. SoundWave also plays tones between 18
and 22kHz to extract the speed of a target using a Doppler-
analysis, similar to [5]. Also, the proximity and size of the hand
can be estimated from the amplitude of the observed reflected
signal. All the above properties are measured over time, which
allows to classify a scrolling gesture, a single- or double tap, a
two-handed seesaw (the hands moving opposite directions) and
a sustained motion gesture. SoundWave works on a number of
different laptops and tablets and reaches accuracies between
87 and 100 % depending on the target.



The only paper the author is aware of that discusses
hand tracking in smartphones using ultrasonic technology, is
FingerIO [2]. The creators present a way to track the motion
of a fingertip in 2D. They transform the device into an active
sonar system which transmits 18 - 20 kHz sound waves with a
speaker. A nearby finger causes additional reflections of these
signals, which are picked up by the two microphones. The
arrival time of these reflections at both microphones depends
on the position of the finger. This difference in arrival time can
be estimated using a key property of Orthogonal Frequency
Divison Multiplexing (OFDM), namely that a sample error in
identifying the beginning of the symbol translates linearly into
phase changes in the frequency domain. Using this scheme,
the sample offset between transmitted and received signal
can be extracted and thus the time elapsed between them is
known. Also knowing the speed of sound allows calculating the
distance travelled by the sound signal. Combining the distance
measurements from both microphones and constraining the
search-space beforehand to one side of the considered device
leads to an unambiguous position estimation in 2D-space.

The advantages of using ultrasound methods for gesture
recognition or hand tracking are in general the low computa-
tional power this solution requires [5], the availability of the
needed hardware and the lack of requiring special wearable
equipment. This approach is also not disturbed by ordinary
noise or light [1] and it provides a wider operating range
and angle than vision-based approaches. All these factors
make it an attractive solution for implementation on portable
devices. [5], [7] A disadvantage of the ultrasound method
is that an accurate distance measurement for a fast-changing
environment is difficult to calculate because of the relatively
low sampling frequency in comparison with the speed of sound
[2]. Also, the static hand position can roughly be derived, but
it is not possible to derive the shape of the hand. Static gesture
recognition will thus be impossible with this method, and as
a result computer vision techniques are much more suited for
this purpose.

III. FRAMEWORK

This section discusses the framework, as shown in Figure
1, that is used throughout this work. It consists of three
main building blocks: a Doppler information gathering block,
an acoustic channel estimation block and a gesture recogni-
tion/position estimation block. The first two gather relevant
information about the environment of the smart device and the
last one processes this information such that a predefined ges-
ture can be recognized or the hand position can be estimated.
The two information gathering blocks perform active sensing,
which means they each send a specific signal and analyze its
response. These signals are transmitted and received at the
same time in buffers of 2048 samples at a sampling frequency
(fs) of 48kHz. Section III-C further discusses these choices
of parameters.

A. Doppler information

The first information gathering block aims to extract the
speed of an object moving above the smart device and makes
use of the Doppler-effect to do so. One speaker emits a 21 kHz-
tone, while the other emits a 22.031 25 kHz-tone. These exact
frequencies are chosen because they assure there are integer
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Fig. 1: The two blocks on the left collect information on the
environment, of which features are extracted. These are passed
to the central block, which recognizes the performed gesture
or estimates the hand position.

multiples of cycles of the sine wave per buffer, 896 and
940 respectively. Thus, a clear peak in the frequency domain
without sidelobes caused by discontinuities at the edges of
each buffer is obtained. A moving hand above the smart device
causes reflections with higher or lower frequencies than the
emitted ones. The speed of this hand can then be derived
according to equation (3), where f,.. and f;,. are the received
and transmitted frequencies in Hz and v, and vy, are the speed

of sound and the speed of the hand in ms™1.
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Figure 2 shows a two seconds long spectrogram of the
received signal around the emitted 21 and 22 kHz tones. The
duration of one time bin is 2048 samples, which corresponds
to 42.67ms. The frequency resolution per bin is then fﬁ =
23.4375Hz, which provides a speed resolution of 0.2ms™*
according to equation (3). Experimental results show that the
average hand speed during a gesture is about 1.2ms™!, so
this accuracy suffices. The speed is computed for each time
bin during this two seconds and plotted versus time, which can
be seen in Figure 3.
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Fig. 2: A spectrogram of the received signal, where the trans-
mitted tone and the Doppler-shifted tones can be distinguished.
Here, a sweep from bottom to top has been performed.

1) Speed features: Many possible features can be extracted
from the graph in Figure 3, of which some are listed next. The
duration of the gesture is calculated as the difference between
the first and the last index at which the speed is nonzero. The
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Fig. 3: The speed of a hand above the device, calculated using
the dominant frequencies in the spectrogram above.
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Fig. 4: The cross-correlation of the speed vectors depicted in
Figure 3. The index of the peak is negative, which means the
hand has crossed the bottom microphone first, before crossing
the top microphone.

minimum and maximum speed(s) are the positive and negative
peaks and the time difference of when these occur are the
differences between the indices of these peaks multiplied by
the sampling frequency. The power of these speed signals is
calculated as ) v;2, with v; the speed vector of microphone <.
Also, the speed vectors for both microphones are correlated to
get information about the time difference of the hand crossing
both microphones. Depending on the sign of the index of the
maximum of this cross-correlation, the hand has crossed the
top or the bottom microphone first. Figure 4 shows a plot of
this cross-correlation. Last, the total signal is correlated with
one cycle of moving towards and away from the microphone
in this same signal. The number of peaks in this correlation
indicates how many taps the user performed, as can be seen in
Figure 5. This is a key feature for detecting whether a double-
or triple tap has been performed.
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(a) When no doubletap is per- (b) When a doubletap is per-
formed, only one peak can be formed, two peaks can be distin-
distinguished. guished

Fig. 5: Cross-correlations of one tap with the total speed vector
for one microphone.
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Fig. 6: Impulse response of the acoustic channel calculated as
the cross correlation of the transmitted and received signals.
The first peak in this IR is the direct path signal. Subsequent
peaks are caused by reflections of a hand above the micro-

phone.

B. Acoustic Channel Estimation

The second information gathering block tries to obtain
some distance measurements between the hand and the speak-
ers and microphones. When a Maximum Length Sequence
(MLS) of 2048 samples is transmitted by the loudspeakers and
received again by the microphones, the impulse response (IR)
of the channel can easily be calculated as the cross-correlation
of the two [8], [9]. The reason a MLS is chosen for this
purpose is because of its good autocorrelation properties. If
the impulse response of a system is h[n] and the MLS is s[n],
then the output of a linear time-invariant system is given by
y[n] = h[n] x s[n]. Correlating with the MLS on both sides of
this equation gives ¢, = h[n] * Rss and because Ry4(T) ~ 0,
¢sy ~ h[n] is valid [10]. Figure 6 shows a plot of this IR.
Because the transmitter and receiver are not synchronized, the
exact timing of when the transmission began is unknown to
the receiver. However, the direct path peak is extracted from
the IR and the relative positions of the sensors are known,
so a correction term can be added to the distance estimation.
This correction term consists of the time ¢, the signal has
travelled from the speaker to the corresponding microphone.
Reflections in the calculated IR show up as peaks, and the
timing of these peaks leads to a distance estimation as in
equation (4).

N+ M
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In the above equation, N is the number of samples between
the direct path component and the reflected signal and M is
the number of samples corresponding to the correction term
teorr. This way d;;, which is the distance the sound wave
traveled from speaker i to the hand and then to microphone
J» can be calculated for all four possible combinations of d;;.
The maximum distance to be detected is set to be 17 cm, as
for greater distances the peaks in the cross-correlation due to
reflections of the hand can no longer be distinguished.

d “

Another possibility for the gesture recognition is to only
measure two distances, being di; and dis. The reason for
this is that gestures are often performed too fast to get decent
consecutive distance measurements.

1) Distance features: First, the distance vectors containing
d11 and das for each buffer in the two seconds long interval are
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Fig. 7: The distance of the hand from the top and bottom
microphone respectively. It can be seen that the hand has
passed the bottom microphone first.

subtracted from the maximum to be detected distance in order
to get a vector that starts and ends at zero amplitude (d; =
17 —d;). As such, the cross-correlation of the distance vectors
from each microphone becomes more readable. The resulting
vectors per microphone are plotted in Figure 7. An overview of
the features that can be extracted from these distance vectors
is given next. The differences between the first and last indices
where the signal is nonzero gives an indication for the duration
of the gesture. The peaks in these vectors correspond to the
minimum distances between the hand and each microphone
during a gesture and their indices indicate when this occurs.
Similar to the speed vectors, the power of each distance vector
is calculated as Zdig. Last, correlating the distance vectors
of both microphones in exactly the same way as the speed
vectors also yields valuable timing information.

C. System parameters

A summary of the most important system parameters of
the framework can be found in Table I. For this proof-of-
concept, the sampling frequency is kept at 48kHz and thus
the MLS is situated in the hearable spectrum. For a real
implementation however, it is advised to set the sampling
frequency to at least 96 kHz, so the MLS can be placed in the
ultrasound spectrum. This is not possible in Matlab because
the incoming samples cannot be processed fast enough at this
rate. The buffersize is chosen to be 2048 samples, which is
the lowest possible for the algorithm to be able to run in
Matlab. A smaller buffersize would provide faster subsequent
distance measurements due to a shorter MLS without having
an impact on the speed measurements, provided the time bins
in the spectrogram are chosen equally long. However, the
Playrec utility does not perfectly synchronize the transmitter
and receiver so a considerable part of the transmitted signal
would be lost. To minimize the relative size of this lost part,
the buffersize should be large enough.

System parameters

Sampling frequency f 48 kHz
Doppler frequencies 21kHz / 22.031 25 kHz
Bandwidth MLS 0 — 18kHz
Buffersize B 2048

TABLE 1

IV. GESTURE RECOGNITION & POSITION ESTIMATION

This section investigates how to recognize a set of gestures
using the most relevant of all possible features extracted from
the gathered information and how to estimate the hand position
using the distance measurements.

A. Gesture Recognition

Considering all the extracted features, the following ges-
tures are proposed to be recognized:

Sweeps Taps Other

Left - Right Double tap @ bottomside Downwards - Upwards
Right-Left Double tap @ topside Upwards - Downwards
Bottom-Top

Top-Bottom

TABLE II: The different gestures

The recognition of these gestures can be performed using
a heuristic method as well as a machine learning method. The
main goal of this work is not to achieve the best possible
gesture recognition as such, nor find out what the best machine
learning algorithms are for this purpose, but rather gaining a
good insight in the possible features which best characterise a
set of gestures and paving the way for future implementations
on gesture recognition using a similar framework. Thus, a
simple heuristic decision tree is built as gesture recognizer.
Important features in this tree are the power of the speed-
and distance vectors, the cross correlation of one tap with
the total speed vector and the index of the maximum in the
cross correlation of the speed vectors. A few possibilities for
machine learning methods would be a trained decision tree or
random forest, a Hidden Markov Model, an Artificial Neural
Network or a Support Vector Machine. Given the decent results
using the decision tree, it is expected that a random forest will
provide even better results. The implementation of any of this
methods however is left for future work.

B. Position estimation

In section III-B, four distance measurements have been
performed to be able to estimate the three position coordinates
of a user’s hand in a coordinate system fixed to the smart
device. The measured distances can be written as follows, with
Si = (7i,vi,2i) € R3 of speaker i € 1,2 the 3D position
coordinates of the speakers. Similarly, M; are the coordinates
of the microphones and H the coordinates of the hand.

di1 = [|S1 — H|| + [[M; — H||
daz = [|S1 — H|| + [[M2 — H]|
dyo =[Sz —H| + M2 —H||’
d21 = ||S2 — H|| + |[M; — H|

As the speaker- and microphone positions are known, there
are only 3 unknowns in this system: the x-, y- and z-coordinate
of the user’s hand. So actually only 3 distances would be
required for it to have an exact solution. There are four



distances measured however, which provide some redundant
information. This redundancy can be exploited to achieve a
more accurate position estimation in the presence of noise.
Instead of solving a system of three equations exactly, all four
measured distances are used to compose an overdetermined
system, which is then solved in the least-squares sense. This
reduces the bias error and variance on the measurements and
thus introduces some noise reduction on the estimation.

V. HARDWARE SETUP AND RESULTS

For this proof-of-concept, a computer runs the gesture
recognition and position estimation algorithm in Matlab. The
Playrec utility [11] is used for playing and recording the audio-
signals in real-time. To simulate the smart device, two external
speakers and microphones are attached to a smartphone model,
the Samsung Galaxy Note 4. The speakers are the standard
ones for a Samsung Galaxy S6 and the microphones are simple
electret condenser microphones [12]. To interface these with
the computer, a soundcard and an amplifier are needed. The
soundcard is a Roland Octa-capture [13] and the amplifier is
an RDL RU-PAS518 [14]. This described setup, without the
computer, is depicted in Figure 8.

Fig. 8: The used hardware setup.

The results of the gesture recognition using some of the
features and the position estimation according to the least-
squares solution are discussed next.

A. Gesture recognition

In order to illustrate the extracted features are sufficient to
distinguish the different gestures with an acceptable accuracy,
a simple decision tree gesture recognizer is built and its
performance is assessed on a validation set. This tree only
makes use of a selected set of features, but the recognition
results are already decent. Table III represents the confusion
matrix of which gestures are recognized if a certain gesture
is performed. These tests have been carried out by the author
himself and each gesture has been performed thirty times. As
can be found in the table, the accuracy lies between 87 and
100 %, even when making use of a simple decision tree to
recognize the gestures.

B. Position estimation

Unlike the gesture recognizer, the position estimation is
less accurate in estimating the exact position of the hand.
This is due to the inaccurate distance measurements and the

Recognized
Performed DT DT BT TB LR RL UuDb | DU
@ bottom | @ top | sweep | sweep | sweep | sweep
Double Tap
@ bottom W% ’ 0%z ) B B
Double Tap
@ top - 100 % - - - -
Bottom - Top B . 100 % _ B B
sweep
Top - Bottom B _ _ 90 % B 7% . 39
sweep
Lef'l - Right B . 3% . 97 % _
sweep
Right - Left : ) : 3% | 7% | 90 %
sweep
Up - Down - - 13 % - - = 87 % =
Down - Up - - 10% | 3% - - - 87 %

TABLE III: Performed gestures - confusion matrix

Estimated
TL TL BL BL TR TR BR BR
HIGH | LOW | HIGH | LOW | HIGH | LOW | HIGH | LOW

8% | 3% | T% | 3% - = -

Real

Top Left
HIGH
Top Left
LOW
Bottom Left
HIGH
Bottom Left
LOW
Top Right
HIGH
Top Right
LOW
Bottom Right
HIGH
Bottom Right
LOW

10 % | 87 % - 3% - - -

3% - 90 % | T % - - -

- 10 % | 90 % - - -

77 % | 10 % | 13 %

10 % | 77 % - 13 %

- - 90 % | 10 %

- 3% | 3% |93 %

TABLE IV: Position estimation - confusion matrix

noise sensitivity of the least-squares estimation. To overcome
this limitation of the used minimal setup of two speakers and
two microphones, the space above the device is divided into a
number of regions. The algorithm then detects in which region
the hand is present instead of estimating an exact position. This
approach makes sense because the hand is not a point in space
but occupies a certain region of a finite size itself. The number
of regions is experimentally set to eight, after establishing the
accuracy was acceptable for this amount. A grid with fewer
regions would yield a higher accuracy, but would limit the
applications for the system. In a grid with more regions, the
hand would always be present in multiple ones. Thus, the space
above the device is divided into four 2D regions and two height
regions. The results of the position estimation in these eight
regions can be found in Table IV, with accuracies for each
region varying between 77 and 93 %.

C. Comparison with state-of-the-art

The results of the presented gesture recognition algorithm
are comparable with the method discussed in ’SoundWave”
[6], while the method presented in this work is able to distin-
guish a much larger gesture variety thanks to the extra sensors
and associated features. The classification results of "Dolphin”
[5] are better than the ones obtained in this paper, because
they reported their results after a thorough investigation which
machine learning method gave the best results on their data,
which is left for future work in this paper. A major benefit of



the approach discussed in this paper with respect to "Dolphin”
however is that this approach allows to perform both hand
tracking and gesture recognition simultaneously.

The tracking accuracy of FingerlO is much higher than the
accuracy of the method in this paper, but FingerIO only
estimates a position in 2D, while this paper offers a 3D-
tracking solution. As such, it allows its use in a wider variety
of applications, such as extensive touchless interaction smart
devices or operating the multimedia system in cars.

VI. CONCLUSION

A framework for gesture recognition and position estima-
tion in devices with two loudspeakers and two microphones has
been described. The emphasis of the work on gesture recog-
nition lies mostly on an investigation of the extracted features
themselves, rather than on the method used to recognize the
gestures. The novelty with respect to other implementations
lies in the use of two speakers and two microphones that are
currently present in most high-end smart devices and adding
channel estimation-features in addition to the Doppler-features.
In the end, a performed gesture could be recognized with an
accuracy between 87 and 100 % and the hand position could
be estimated with an accuracy above 77 % in all of the eight
regions above the device.
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