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Abstract 

Retrofitting the existing building stock is among the most important objectives and imperative to meet 

societal goals to reduce primary energy demand and anthropogenic greenhouse gas emissions. District 

heating systems have proven to supply heat for buildings both energy- and cost-efficiently. Thermal 

microgrids can be understood as a subcategory of district heating systems: small scale, bi-directional, 

low temperature and potentially fed by different thermal sources. Given a suitable combination of loads, 

number of and distance between buildings they can offer economic and environmental advantages 

compared to the supply by individual heating systems per building. We present a novel method using 

data analysis techniques on geo-referenced building stock data to identify suitable configurations of 

buildings that yield a cost-efficient thermal microgrid. For the identification both semantic and spatial 

data from a database are combined using fuzzy logics and cost-benefit analysis. We apply the method 

using a case study featuring a database of 306 buildings potentially to be retrofitted. As a result, we can 

identify 9 groups of in total 25 buildings that would form a microgrid featuring up to 17.4% cost benefits 

compared to an individual heat supply. This would save approximately 30% of the building induced CO2 

emission of the community.  

Keywords: building retrofit, district heating, thermal microgrids, clustering, fuzzy logics, GIS, cost-

benefit analysis 

1 Introduction 

In Europe, retrofitting of the existing building stock is one of the most important objectives and 

imperative to reduce anthropogenic greenhouse gas emissions (GHG). In temperate climates, most of the 

building-induced GHG are emitted by the heating systems that are mostly still based on fossil fuels. In 

Switzerland, for example, 70% of the residential buildings use oil or gas heating [1]. Current retrofit rates 

however range only between 1-2%, therefore necessary upgrade of the building stock only happens 

slowly. 

District heating systems have proven to be an efficient and cost-effective alternative to individual heating 

systems. Conventional district heating systems are mostly large scale, aiming at many connected 

buildings with large heating loads. It usually consists of one-to-many connections from a central heating 

plant to the consumer using a distribution network. Due to decreasing loads of low-energy buildings, the 

competitiveness of conventional district heating systems is under pressure [2]. 

Thermal microgrids (TMG) can be understood as small scale thermal networks that connect multiple 

and decentralized heat sources, storage and consumers. As buildings increasingly utilize local 

renewable energy sources such as geothermal or solar thermal energy, connecting them offers benefits 
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for exchanging heat between producers and consumers and thus balancing demand and supply of 

stochastic sources and consumption. Addressing not only energy but also exergy efficiency, such 

networks can be operated at much lower temperatures than conventional district heating systems. The 

concept of thermal microgrids is especially interesting for small-scale local networks, for example 

among neighbors. Short distribution distances, a reduction of investment costs due to economies of 

scale, joint investment capacities and local balancing of demand and supply are some of the benefits 

that make TMG attractive. The challenge for leveraging these benefits is, however, to identify suitable 

building candidates within the building stock. Due to the exponential growth of possible combinations, 

manual search for combinations within large building stocks is next to impossible. New methods and 

tools that utilize geographical information systems and energy systems analysis are necessary to 

identify optimal configurations of heat production and choice of technologies [3].  

In this work we propose a two-step method to identify suitable configurations of buildings within a 

large building stock for which a thermal microgrid yields cost-efficiency benefits and thus supports the 

mitigation of GHG. First, buildings need to be identified for which the exchange of the current heating 

system would be beneficial, which represents a filtering problem. Second, as thermal energy networks 

are dependent on the spatial distribution of nodes, the spatial relation of the building candidates needs 

to be considered. 

The paper is structured as follows. In section 2 we provide the relevant background on district heating, 

thermal microgrids, the use of information systems and related data analysis techniques with special 

focus on applications for the built environment. In section 3 we describe the method for automated 

identification of microgrid candidates and cost-efficiency evaluation before we apply it on a case study 

using building data of 306 buildings in section 4. In section 5 we discuss the results and provide an 

outlook on further steps. 

2 Background  

2.1 District heating systems (DHS) 

2.1.1 Benefits and challenges 

Extensive research and application have proven the economic and environmental viability and benefit 

of district heating systems (DHS), also for low-energy building applications. Olsen et. al  [4] mention 

the flexibility and direct integration of Renewable Energy Sources (RES) in combination with large-

scale heat sources as advantages of a low-energy DHS. They demonstrate that over a 30-year period, a 

low-energy district heating systems can be competitive and offers economic advantages compared to 

individual ground-source or air-source heat pump solutions. Dalla Rosa and Christensen [5] use a case 

study to show that a low temperature district heating for low-energy housing can be realized at 

approximately 20% lower cost for the energy unit than a scenario based on individual ground source 

heat pumps. On a larger scale, Lund et al., [6] examine the future role of DHS in Denmark using 100% 

RES and reducing the space heating demand by 75%, showing that by consequent application it can 

make a substantial contribution to the reduction of fossil fuels and thus CO2 emissions.  
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Recent studies have also looked into small scale and scarce density district heating systems. Truong 

and Gustavsson [7] investigate a small scale district heating system in respect to various generation 

technologies and conclude that the smaller the heat production the lesser the benefit of co-generation of 

heat and electricity is. Reidhav and Werner [8] conducted a large study on over 3000 single family 

houses in Sweden and demonstrate that the economic profitability of such sparse district heating is 

strongly connected to the distribution costs, marginal costs for heat generation and non-technical 

factors such as polices and taxation. They conclude that district heating in sparse areas can be 

profitable but, in the Swedish context, requires an annual heat delivered per house of 50 GJ/a and a 

linear heat density greater than 2 GJ/m or more. 

The general challenge of a thermal network is the distribution of heat, the related heat losses and 

pumping costs. For an economically competitive solution, generation and distribution costs must not be 

higher than for an individual solution, therefore the distribution costs must be lower than the difference 

between individual and district heat generation costs [2], [9]. This accounts for both, energy as well as 

monetary costs. Key parameters influencing the efficiency of distribution are heat losses, pumping 

costs and load management. Heat losses are greatly influenced by the chosen system temperatures, 

flow rates, pipe properties and length. In conventional systems they account for up to 5-15% of the heat 

delivery [9]. Current and future low-energy buildings are especially challenging as the require much 

less heat. Pumping costs in electricity are influenced by the pressure drop in the network, necessary 

flow rates and pipe properties. However, they only account for approximately 0.5% of the heat delivery 

[9]. 

2.1.2 Geographical information systems for energy systems design  

Due to advances in Geo-Information Systems (GIS) and available computing power, spatial methods 

are increasingly utilized for analyzing and designing large scale energy systems. The work of [10] 

provides an overview on the research on GIS in the field of renewable energy sources, distinguishing 

between three core research fields, a) decision support systems, b) the evaluation of distributed 

electricity generation and c) decentralized generation and rural electrification. Cities such as London 

have mapped heat demand and existing networks [11] in order to identify potential areas for future 

DHS. Nielsen and Möller [12] describe the relation between placement of buildings and the potential 

for the application of DHS. Ideal configurations show both, a large demand within a confined area and 

the availability of local heat sources. They utilize a GIS model containing all necessary information for 

cost evaluation in order to identify suitable areas for DHS in Denmark from a socio-economic 

perspective. Besides the mapping of information such as the heat demand, GIS databases are used for 

spatial analysis related to RES potential analysis, development and deployment.  

2.1.3 Thermal microgrids 

Thermal microgrids (TMG) can be understood as a sub-category of district heating. They are 

characterized by small spatial dimensions in which they connect different decentralized consumers, 

producers and storage facilities. An exemplary TMG, for example, might connect a building with solar 

thermal generation, a building that supplies waste heat, a geothermal storage with a central or several 
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decentralized heat pumps to achieve different levels of temperatures required for the different uses in 

the buildings connected. Another characteristic of TMG is that they ideally supply buildings that use 

low-temperature space heating systems which require low inlet temperatures just above room 

temperature. This also impacts the temperatures of heat to be supplied and thus the operational 

temperature of the TMG. Following the principle of low-exergy, temperature differences between the 

heat source and the application are kept as low as possible by optimally matching demand and supply 

[13], [14]. High efficiency, low-lift heat pumps can be used to generate the necessary heat using only a 

fraction of high potential energy such as electricity (exergy) and environmental heat (anergy) to 

generate the necessary heat [15]. This fraction is expressed by the Coefficient of Performance (COP). 

Current implementations show a COP above 4 [16] and higher up to 13 in lab settings [15], which 

means that a heat pump uses 1 unit of exergy, in this case electricity, to deliver 13 units of heat to the 

building. This allows for the efficient use of environmental heat sources such as ground heat and low 

temperature waste heat for heating applications. Whereas district heating systems of the current 3rd 

generation use operational temperatures below 100°C [3], low temperature district heating systems 

operate at temperatures between 10 and 20°C when using decentralized heat pumps [17] and around 

approximately 35 to 40°C when using a centralized heat pump. Lower supply temperatures also result 

in significantly lower distribution heat losses and the option of utilizing seasonal storage using ground 

heat exchangers. Studies and first installations on district scale in Switzerland show the potential to 

attain significant performance and thus reductions of CO2 for building operation [16], [18]. 

2.2 Methods of data analysis: filtering and clustering 

To identify suitable building candidates to form thermal microgrids, first a filtering problem and 

second a problem of spatial proximity needs to be solved. Fuzzy logic and clustering represent suitable 

methods to address these problems.  

2.2.1 Fuzzy logic 

For filtering problems combining multiple criteria, fuzzy logic represents an intuitive-to-use and wide-

spread method used in typical engineering applications. Harris, Sivanandam et. al and Suganthi et. al 

[19]–[21] provide overviews of fuzzy logic application related to renewable energy. Most applications 

however do not have a direct spatial relation. Typical examples apply fuzzy functions to spatial data 

fields or field-like characteristics often represented in GIS [22]–[24]. Furthermore, Dutta [25] manages 

spatial constraints on a set of landmarks by means of fuzzy logic applied to derived features. Chow and 

Tram [26] and Ying and Pan [27] use fuzzy logic for load forecasting of land use and assess derived 

spatial characteristics such as distance from a highway using fuzzy logic. Arabacioglu [28] uses fuzzy 

functions to assess spatial properties of architectural space. However, there are no applications of fuzzy 

logic that use the proximity of objects and thus spatialize a fuzzy logic as it is required for the intended 

microgrid identification. 

2.2.2 Hierarchical and partitioning clustering 

Clustering is a widespread method to classify data into groups or clusters. Xu and Wunsch [29] 

describe foundations and current state-of-the-art of the method. The combination of network design 
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and clustering as a data analysis technique is used for different applications in context to infrastructure 

such as to detect and map water pollution [30], to profile road accident hotspots [31] or to identify local 

wind patterns for the modelling of renewable energy systems [32]. Fazlollahi et. al [33] utilize GIS data 

and clustering of urban areas for optimizing the design and operation of district energy systems, 

identifying zones ‘where consumers, resources and technologies are integrated’. Cartina et al. [34] 

apply clustering to electrical networks to identify feeder characteristics. Further cases in building stock 

management are discussed in the next subsection.  

“As clustering relies on the distance between objects, it is inherently spatial.” [35]. Therefore, 

clustering is appropriate for the identification of spatial relation of objects but not for the filtering by 

qualitative criteria. However, as buildings stocks to be analysed may be large, efficient spatial 

clustering is of interest. There are two main classes of clustering methods: hierarchical clustering and 

partitioning clustering. Whereas hierarchical clustering has a typical computational complexity of 

O(N2), the partitioning clustering algorithm k-means performs better with a complexity of O(NKd) with 

N objects, K clusters and d dimensions [36]. However, k-means assumes a fixed number of clusters and 

convex cluster sets. For purpose of comparison, these two types serve as representative clustering 

algorithms in the paper. 

2.3 Building stock management 

2.3.1 Building stock models and retrofit strategies 

For predicting the future energy use with related emissions and for evaluating scenarios and strategies, 

building stock models are important. Swan and Ugursal [37] and Kavgic et al. [38] review the state of 

the art techniques of building stock modelling in research, the existing models and approaches and their 

use for policy making. The typical parameters that these models build on are categories of building age, 

type of building, heat distribution type, energy source, construction or year of refurbishment and type 

of dwelling. Bottom-up building engineering models serve to assess the reduction potentials of energy 

efficiency measures and technologies for the building stock based on these parameters. For this 

purpose, the approaches usually define scenarios that apply measures over the entire building stock 

following standard combinations of measures and performance estimation. However, these models are 

usually suited for analysis only and do not derive solutions and planning strategies, such as the 

proposal of microgrid configurations. Furthermore, different classification methods are applied to 

buildings stock data. Usually, the parameters in the building stock data are used to derive groups and to 

assign measures for energy efficiency. A typical example is the type-age classification that has been 

developed for Germany by the Institut für Wohnen und Umwelt [39] and recently extended to Europe. 

2.3.2 Clustering and buildings stocks 

In terms of more sophisticated data analysis techniques different approaches related to energy use in 

building stocks exist. Santamouris et. al [40] apply clustering to a database of 320 schools in Greece 

and build groups based on normalized energy consumption. Gaintani et al. [41] identify typical 

building properties and parameters of the schools using k-means clustering. Jones et. al [42] cluster a 

building stock by building properties, such as heated ground floor area, facade, window to wall ratio. 
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Yamaguchi et.al [43] identify district types and provide typical energy performance by simulating 

buildings in a representative district. However, all these classification approaches mostly focus on 

energy demand and retrofit actions and use either building parameters, such as age or usage, or the 

energy consumption for classification. None of them considers the suitability of buildings for 

microgrids as a classification category. 

Moreover, as part of the research project ‘Zernez Energia 2020’ [44] which also serves as the case 

study for this work, the authors have recently developed a method to cluster buildings based on the 

performance of retrofit measures [45]. The method allows identifying groups of buildings that react 

similar to retrofit measures. By identifying groups of buildings and their most cost-efficient retrofit 

measures, the development of retrofit strategies for the entire building stock is possible and has been 

executed as part of the project.  

However, the application of retrofit measures as developed in the aforementioned approach does not 

utilize the available spatial data. Thermal microgrids strongly rely on spatial considerations; their 

performance depends on the number and distance of buildings included. Due to the many different 

possible combinations of connections between buildings the extension of the performance-based 

clustering method for the identification of thermal microgrids would cause high computational loads. 

For this reason we utilize fuzzy logics as presented in the following section. 

3 Multi-dimensional data analysis for thermal microgrids 

3.1 Thermal microgrid design 

The thermal microgrid setup in this approach is based on borehole ground heat exchanges (GHE) for 

ground heat extraction and seasonal heat storage. A central heat pump creates the required temperature 

for low temperature heating applications such as thermally activated slabs, floor-, ceiling- or wall 

heating. The heat is distributed using an underground water network operated at low temperatures. The 

small temperature difference between the supply and the environment temperature allows for small 

distribution heat losses. The small temperature difference between the source and the heating inlet 

temperature allows for a high coefficient of performance (COP) of the heat pump, thus requiring low 

electricity consumption for heat generation. Due to reasons of heating capacity, efficiency and comfort 

a low temperature heating system is only feasible given an appropriate insulation of the envelope.  

3.2 Building candidate selection criteria 

The GIS building database is used as data source for both spatial and building data. In terms of building 

data, the CO2 emissions and the age of the current heating systems are the first decisive parameters. 

CO2 conversion factors in combination with data on heating end-use demands and type of the heating 

system are used to estimate CO2 emissions. If the current heating system emits large amounts of CO2 or 

the heating system of the building is older than 20 years, the building is selected as potential candidate. 

If a heating system is older than 20 years it has or will soon reach end of life, its retrofit is therefore 

upcoming and thus the opportunity to change to a heating system with less emissions. The spatial data 

used for the clustering are the geo-coordinates of the buildings.  
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3.3 Microgrid identification and evaluation 

As in large building stocks the identification of suitable groups is a difficult task, the central objective 

of the evaluation and performance assessment procedure is the automated identification of building 

groups for potential microgrids. The basis for this process is the translation of the selection criteria to 

fuzzy evaluation functions that are applicable to the building stock database. Then fuzzy logic 

identifies buildings that are close enough to each other and fulfil the other criteria. 

Instead of considering the real pipe length for the identification process we use a simplified proximity 

criterion based on the distance between the selected buildings which is generated automatically using 

the coordinates of the buildings. The objective is to avoid the laborious layout of networks that is not 

possible for the combinations of all possible network configurations. For the 306 buildings in the test 

building stock of Zernez, 2306 combinations are possible, which is approximately 1.3·1092. The 

limitation of the size of microgrids for example to a maximum of five buildings per network reduces 

that number to 2.1·1010, which is still very high. Therefore, due to the many possible combinations, 

even when using automated approximations for the pipe length, the calculation of pipe length and 

performance would lead to a very high computational load even for the small building stock of the case 

study. For this reason, the identification process is based on a pair-wise comparison involving only two 

buildings instead of larger groups; this leads to distance matrix with 93’000 members to be calculated, 

which is more feasible. After the potential microgrid identification more precise methods to estimate 

the pipe length are used. 

3.3.1 Fuzzy functions 

We use fuzzy functions, as described by [19] to translate the selection criteria into unique 

mathematically defined and computable functions. For this purpose, one-sided triangular fuzzy 

functions, as shown in Figure 1, are used to generally define the membership 
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where x is the value to be assessed and xl and xu are the lower and upper limit of the ramp.  

 

Figure 1: Scheme of the fuzzy function used 

This approach allows the assessment of values of one building, e.g., the age of the heating or the 

building’s CO2 emissions. 

μ(x) 

x xl xu 



 

 8 

 

3.3.2 Spatial fuzzy functions 

Whereas these fuzzy functions only deal with building data of a single building, microgrids involve 

more buildings including their spatial configuration. For this purpose, the evaluation is extended using 

spatial information in fuzzy functions. As first example, a membership function of closeness of two 

buildings is set up. This spatial extension of the membership function uses a Euclidian distance 

function d: 

      
2 2

, , , ,, min  with indices 1.. ; 1..i j j m i n j m i n max maxd B B x x y y m m n n
 

      
 

, (2)  

where x and y are the corner coordinates with the least distance of two buildings B1 and B2. An 

additional algorithm determines the closest corners to use for this purpose. The pairwise comparison 

for all buildings forms the distance matrix D that has the size n2 for n buildings, which is in case of 306 

buildings approximately 93’000. The application of the membership function µis close on D identifies all 

pairs of buildings that are close enough to form a microgrid. 

3.3.3 Criteria translation 

Figure 2 shows the membership functions µhigh emissions for the emissions, µold heating system for the age of the 

heating system and µis close for the distance with a histogram showing the frequency of the parameters in 

the database of the case. 

 
Figure 2: Membership functions for the criteria combined with percentage histograms 
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3.3.4 Identification of microgrids 

After the evaluation of the data by the three membership functions, a fuzzy logic function serves to 

identify candidates for microgrids. This function identifies building pairs that have high emissions or 

an old heating system and that are at the same time close enough to form a microgrid. The fuzzy logic 

function for this purpose is 

 . (3) 

The resulting membership function µmicro grid affine delivers a microgrid matrix M with the building pairs 

suitable for microgrids; the matrix has the same dimensions as the distance matrix but a range from 0 to 

1. A further algorithm identifies clusters, which are the proposed microgrids, among this pair matrix by 

agglomerating connected buildings in the matrix and adds up the distance and the heat demand per 

cluster; these data allow assessing the performance of the microgrid. 

3.3.5 Alternative identification for large data set 

The complexity of the method described up to here is O(N2). For large data sets, a more good-natured 

scaling is of interest. For this purpose, it is possible to replace pair-wise comparison of proximity 

determination by using well-established clustering algorithms. As a consequence, fuzzy logic is only 

used to filter for buildings that require a new heating system, neglecting the spatial aspect of proximity: 

 
new heating system much emissions old heating system    . (4) 

In a next step, all building candidates identified by filtering are arranged using clustering algorithm to 

form the microgrids. Input for this process are the locations of the centers of the buildings with the 

advantages described above, such as a k-means algorithm with a complexity proportional to N. 

3.3.6 Evaluation of microgrids 

The main evaluation criterion is the reduction of CO2 emissions of a retrofit measure in relation to the 

expected investment cost, which determines the cost-effectiveness of the measure. This concerns the 

microgrid solution as well as the alternative, in this case the installation of a ground heat exchanger and 

a heat pump. The investment costs are chosen as they represent the main fraction of the total costs and 

are the decisive factor for building owners. The cost effectiveness e is defined as: 

 2CO

inv

V
e

c





 (5) 

where ΔVCO2 is the reduction of CO2 emissions in tons per year for the measure and Δcinv its investment 

costs. 

For assessing the emissions, the changes in efficiency of the heat supply system, the conversion factors 

of the energy sources used and the heat losses caused by the transport in the pipes are considered. The 

 micro grid affine much emissions old heating system is close     
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effect on emissions ΔVCO2 is defined as the difference of the current emissions of the buildings assigned 

to the cluster VCO2,ex to the expected emissions of the new microgrid configuration VCO2,mg : 

 . (6) 

In detail, the sum of the thermal energy demand of the buildings Qth combined with the respective 

system effectiveness η and the conversion factor k coupled to the used energy source define the 

emissions: 

  
2, ,CO mg mg mg loss th iV k Q Q    and (7) 

 
2, , , ,CO ex ex i mg i th iV k Q  (8) 

Data for η and k are listed in the Appendix, Table 1. 

In case of the microgrid solution, the heat losses of the network Qhl also need to be added to the heat 

demand. To estimate the heat losses we use the approach by Frederiksen and Werner [9]. The losses 

depend on the on the pipe length L, the average pipe diameter da, the degree hours G and the 

transmission coefficient K: 

 2hl aQ K d LG . (9)  

The degree hours for a low-temperature thermal such as for the case study can be approximated to 

500,000°Ch [9]. With a transmission coefficient K of 0.25 W/m2K and an average diameter of 0.025 m, 

the annual heat losses are 19.6 kWh/m 

3.3.7 Investment Costs 

The data used for the calculation of the investment costs for the heat distribution network cnetwork, the 

fixed and variable costs for the plant (ground heat exchanger and heat pump) cpeak,plant and cfix,plant are 

based on empirical surveys of actual building costs in Switzerland within the framework of the GEAK 

[46].   

The pipe diameters are approximated using the equation from Frederiksen and Werner [9]. They are 

derived from existing heating networks and use the linear heat density (Qs/lpipe) as a key indicator, 

where Qs is the heat delivered to the building and lpipe the length of the pipe route as estimated above: 

 𝑑𝑝𝑖𝑝𝑒 = 0.0486 ∗ 𝐿𝑁 (
𝑄𝑠 

𝑙𝑝𝑖𝑝𝑒
) + 0.0007 (10) 

The investment costs for the microgrid solution can be estimated by adding the costs of the distribution 

network to the fixed and variable costs of the heating plant: 

  𝑐𝑖𝑛𝑣 = (𝑐𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ∗ 𝑙𝑛𝑒𝑡𝑤𝑜𝑟𝑘) + (𝑐𝑝𝑒𝑎𝑘,𝑝𝑙𝑎𝑛𝑡 ∗ 𝑃𝑝𝑒𝑎𝑘) + 𝑐𝑓𝑖𝑥,𝑝𝑙𝑎𝑛𝑡  (11) 

2 2 2, ,CO CO mg CO exV V V  
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Using lpipe, dpipe, and the peak load of the microgrid Ppeak, the investment cost cinv for the microgrid in 

context of the case study used can be estimated: 

 𝑐𝑖𝑛𝑣 = (7050
𝐶𝐻𝐹

𝑚2 ∗ 𝑑𝑝𝑖𝑝𝑒 + 750 
𝐶𝐻𝐹

𝑚
) ∗ 𝑙𝑝𝑖𝑝𝑒 + (9000

𝐶𝐻𝐹

𝑘𝑊
∗ 𝑃𝑝𝑒𝑎𝑘, +  29000 𝐶𝐻𝐹)  (12) 

To calculate the investment costs for the individual heat supply of a building using a ground heat 

exchanger and heat pump only the plant costs are used. 

3.3.8 Cost benefit 

The cost benefit of a microgrid solution ∆𝑐𝑠𝑢𝑝𝑝𝑙𝑦 can be calculated by comparing the costs of the 

microgrid solution with the costs of individual supply solution, taking into account the number of 

buildings nB to be supplied. As the costs linked to the heating load Ppeak are the same for both solutions 

they cancel out.  

  ∆𝑐𝑠𝑢𝑝𝑝𝑙𝑦 = (𝑐𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ∗ 𝑙𝑛𝑒𝑡𝑤𝑜𝑟𝑘 + 𝑐𝑝𝑙𝑎𝑛𝑡,𝑀𝐺) − (𝑐𝑝𝑙𝑎𝑛𝑡,𝑖𝑛𝑑 ∗ 𝑛𝐵)  (13) 

Using the costs for network and generation from above leads to the estimation of cost benefit of a 

microgrid as a function of the pipe diameter dpipe, the length of network lpipe and the number of 

buildings nB to be supplied: 

∆𝑐𝑠𝑢𝑝𝑝𝑙𝑦 = (7050
𝐶𝐻𝐹

𝑚2
∗ 𝑑𝑝𝑖𝑝𝑒 + 750

𝐶𝐻𝐹

𝑚
) ∗ 𝑙𝑝𝑖𝑝𝑒 + 29000 𝐶𝐻𝐹 − (29000 𝐶𝐻𝐹 ∗ 𝑛𝐵)  (14) 

The plant costs exhibit the effect of economies of scale: Using one large plant instead of many small 

ones distributes the fixed investment costs and thus lowers the costs for the individual building. 

4 Application scenario 

4.1 Case study  

For the application and exploration of the approach we utilize the research project Zernez Energia 2020 

as case study. The aim of the interdisciplinary research project is to develop a roadmap to transform the 

building stock of the alpine village of Zernez to become free of CO2 emissions in building operation. 

For this purpose, measures on building level such as retrofit as well as on infrastructural level such as 

extension of the existing district heating system and new means of heat and electricity generation are 

researched. As part of the project, detailed information of 306 buildings has been acquired using 

municipal data as well as own surveys. This data is stored in a geo-referenced (GIS) database with over 

50 parameters per building. The database is primarily used for the evaluation and optimization of cost-

optimal retrofit measures for the building stock in order to obtain a transformation strategy towards 

zero emission in operation. As part of this analysis, a variety of different retrofit options are simulated, 

assessed and clustered. The approach and process is described in [45], [47]. 

Analyzing the surveyed building data reveals first insights, for example related to building age and CO2 

emissions: It is not the oldest buildings from the 1870’s that have the highest relative emissions but 

buildings from the 1920’s and 2000’s, the latter showing the highest total energy consumption per 

square meter. The same analysis for the year of installation the heating system leads to similar results. 
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For the buildings of the case study there is therefore no direct correlation between the age of the 

building, the age of its heating system and the CO2 emissions. However, as the lifetime of a heating 

system is limited, it is more likely that older heating systems are exchanged than new ones, proving an 

opportunity for exchanging with a new heating system that emits less CO2.  

4.1.1 Heating systems setup 

For the reason described above, both the individual heat supply solution and the thermal microgrid use 

a ground heat exchanger and a heat pump for heat generation. This combination allows for maximum 

mitigation of CO2, is feasible and applied on community grounds. Furthermore, the remaining 

electricity for heat generation can be supplied using hydropower which is generated on community 

grounds, making this a nearly zero emission heat supply. As a prerequisite for an efficient operation of 

the heat pump, the building envelope needs to be sufficiently insulated. Using the database, the current 

actual heating energy demand is used, the existing state of the envelope is assessed, additional 

insulation is applied if necessary and applicable, and the resulting demand is estimated [47]. The 

heating load Ppeak is derived using approximate load hours for alpine regions [48]. 

4.2 Results 

4.2.1 Microgrids identification and evaluation 

Using the method described above, 16 potential microgrids featuring between 2 and 28 building 

members are identified (Table 1and Figure ). These buildings exhibit high CO2 emissions for heating, 

their heating system has reached or is near its end of life and they are within a certain vicinity. The total 

sum of building connected in 16 microgrids is 107, which means that roughly 1/3rd of the buildings of 

the community show a potential of CO2 savings using a microgrid. The selected buildings are of mixed 

building typology such as single family houses, multi-story residential and non-residential such as 

hotels and schools. This is illustrated by the difference in heating load between 13 and 1355 GJ/a 

(Figure 3). The largest group of buildings however exhibits a heating load between 50 and 150 GJ/a.  

 

Figure 3: Heating load distribution for all (107) buildings 

The distribution networks connecting all identified buildings of a microgrid are routed to target the 

shortest connecting path by assuming that routes can run through the lots of member buildings. The 
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cost benefit of the microgrids identified over the individual solutions are assessed using the 

calculations described above and displayed in Table 1.  

 

Table 1: Microgrid identified for the building stock of the case study, properties and cost benefit 

The microgrids, their member buildings, their location and distribution over the village is shown in 

Figure 4. 

 

Figure 4: Microgrids identified for the building stock of the case study; selection of best performing microgrids 

(left) 

The results show that, if connected to a microgrid, 9 out of 16 building groups would yield a cost 

benefit between 17.4% and 0.4 % compared to the individual solution. The other groups experience 

higher costs when supplied using a microgrid vs. and individual solution. Table 1 and Figure 5 show 
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the mechanics behind: due to the low density of the village, the length of network to connect larger 

amounts of buildings or buildings at farther distance results in higher distribution costs thus eliminating 

the benefits of economies of scale. The plot in Figure 5 shows a beneficial constellation of 3-4 

buildings connected by a network at lengths between 15 and 31m to yield the highest cost benefit. 

Additionally, the buildings in these groups have low to medium heating loads which increases the 

proportion of the fixed costs for heat generation over the flexible ones that are attributed to the heating 

loads. This makes sharing a heat generation plant advantageous. Microgrids with negative costs 

benefits such as No. 11 additionally feature individual buildings with large heating loads, which require 

the network to be larger dimensioned, thus also increasing the distribution costs. The realization of the 

microgrids with cost-benefits would lead to an approximate reduction of CO2 emission of 663 t/a or 

30% of the total CO2 emission of the building stock. 

 

Figure 5: Cost benefit comparison of microgrids identified; bubble size indicates the number of buildings (x-axis 

uses logarithmic scale) 

4.2.2 Organization and benefits within a microgrid 

The total load of a microgrid is the aggregated load shares of its individual building members. The load 

shares could be used to split the investment costs for the microgrid. This would lead to varying 

investment costs and cost benefits for the different consumers within a microgrid. Consumers with 

small loads would benefit to a much higher degree than consumers with large loads. Firstly, this is due 

to the large portion of fixed vs. flexible costs of an individual solution and secondly, using the load 

share as the divider, they also contribute less to the distribution network of a microgrid solution.  

This requires an internal cost balancing mechanism to make a microgrid solution equally attractive to 

all consumers. This can be achieved by distributing the total cost benefits also using the load shares 

which would results in everyone benefitting. In this case, large consumers would still have the highest 

share in investment, they however also achieve the highest percentage of cost benefits. This way all 

participants would not only be motivated to pursue a joint solution using a microgrid but also, as the 

total investment decreases, to pursue a retrofit in the first place. Table 2 illustrates this at the example 

of microgrid No.1. 
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Table 2: Cost benefit comparison and distribution of individual consumers for microgrid No.1 1 

5 Discussion 

In this work we present a new approach for the automated identification of building candidates for 

thermal microgrids using a geo-referenced building database. The resulting microgrids achieve a 

significant reduction in CO2 and cost benefits of up to 17.4% compared an individual heat supply using 

a ground heat exchanger and heat pump. These results however are highly dependent on the investment 

costs for both solutions. The cost data has been chosen as carefully as possible in regards to the 

conditions of the case study. To assess large quantities of buildings however requires simplifications 

and the use of averaged data that does not take local specificities into account. It might therefore be that 

real specific investment costs are different leading to different results in terms of cost efficiency. Also, 

investment costs were scaled linearly with regards to size and scale of the microgrid. For heat pumps, 

the cost function however is not necessarily linear as larger machines cost less per kW heating power. 

On the opposite, distribution networks with small loads can be built at a lower cost, which would result 

in an additional cost benefit. 

Thermal microgrids have an interesting potential to contribute to the cost-efficient retrofit of the 

building stock given the proper selection of building members. First, as we can demonstrate on the case 

study, the sharing of infrastructure can have economic advantages. Reductions in investment costs 

allow the installation of innovative and more efficient technologies. Additionally, larger heat 

generation systems such as heat pumps often use more advanced components as the additional costs are 

marginal, thus increasing the internal efficiency. The use of advanced technologies such as ground heat 

exchangers, storage and high-efficiency heat pumps often results in higher investment costs than 

conventional technology. Using such technology in microgrids facilitates their employment in a cost-

effective way. As all members of a microgrids achieve an economic benefit it is more likely that a 

group of building owners pursues a joint investment and therefore a higher number of buildings can be 

retrofitted. This can be supported by suitable policies and subsidy schemes. 

The identification of suitable microgrids in existing building stocks is crucial to realize such benefits. 

Due to the large amount of possible combinations it is not possible to examine all possible microgrid 

combinations manually. We have proposed a two-stage procedure for the identification and selection of 

possible microgrids in building stock data. At the first stage, a simplified procedure identifies suitable 

candidates for microgrids. This procedure translates the verbal description of closeness that is intuitive 

for defining a microgrid to a fuzzy logic description and combines it with other criteria based on the 

building’s characteristics. The advantage of using a fuzzy logic with a proximity matrix in this context 

is its intuitive application. Defining and analyzing the proximity matrix is a quite direct approach to the 
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problem, which requires no further parameter definition for solving the problem. The pair-wise 

combination leads to a complexity of O(N2). This equals the complexity of hierarchical clustering as a 

well-established method. There are better performing methods available for the spatial aggregation, 

such as k-means clustering which feature a complexity proportional to N. However, k-means clustering 

requires further parameter definition such as the number of clusters. This number is not known and 

depends on the tolerable distance between buildings and thus on the network cost parameters. 

Furthermore, k-means is not able to identify convex clusters, however non-convex configurations are 

possible for the given problem. Finally, for the given medium size dataset, computation time for 

network identification compared to other activates in data preparation and post-processing was 

subordinate. Future research including tests with larger datasets will deliver additional data on the 

performance of the proposed fuzzy methods and clustering. 

The estimation of the network-related investment costs requires the design of the future distribution 

network, which requires manual effort and is therefore time-consuming. The sum of the distances 

between the buildings, as acquired from the GIS data, show correlations to the length of pipe networks 

that are constructed for minimal lengths. For the case study this correlation is linear in two steps, for 

network lengths from 0 to 200m and network lengths of more than 200m. Therefore, it seems feasible 

to derive the network length from the sum of the distances between the buildings in a network given 

enough empirical data. This derivation would allow a very quick estimation of the network costs. 

The second stage is a detailed analysis and planning of microgrid candidates, which are the 16 

proposed microgrids in the case study. This includes technical and economic analysis to assess 

feasibility and cost-benefit. The microgrids identified in stage one, featuring a limited number of 

buildings, are key to allow further detailed analysis and planning. This includes the detailed layout of 

the network geometry considering building locations, site boundaries and possible routing of pipes. 

These steps still require the expertise of specialized planners, which prevents this phase from being 

automated completely. 

With the methods proposed above, not all of the microgrids identified exhibit cost-benefits. In future 

research, the evaluation and its criteria will need further examination, especially, to what extend they 

are automatable and how further criteria can be included in the identification and selection procedure in 

the first stage. Moreover, only single heat generation systems are currently considered. Potential further 

extensions of using spatial data could be considering the location of the building in respect to 

feasibility of using ground heat exchangers or the distance to sources of waste heat. Also, the 

availability of local renewable energy generation by solar thermal or photovoltaic panels could be 

considered using the location, geometry and direction of roof surfaces stored in the database. Thermal 

microgrids enable sharing and thus reducing the investment costs as well as the balancing of loads, 

supply and peak shaving due to joint storage. These technologies have high potential to further reduce 

the environmental impact of buildings, however spatial aspects are crucial.  
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Appendix 

Table 1: Conversion factors and efficiencies for different energy sources and heating systems [49]. 

Type of Heating System 

Emissions 
kg CO2  eq. 
per kWh  

Conversion factor oil  0,290 0,85 

Conversion factor electricity  0,459 0,90 

Conversion factor DH  0,045 0,90 

Conversion factor wood 0,017 0,80 

Conversion factor wood chips 0,022 0,80 

Conversion factor heat pump (air/water) 0,061 3,50 

Conversion factor heat pump (water/water) 0,066 4,00 

Conversion factor heat pump (soil/water) 0,066 4,00 

Conversion factor District Heating 0,045 0,90 
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