Automated VeriFast: Supporting Formal Specification
Authoring through Specification Inference

Mahmoud Mohsen
mahmoud.mohsen@cs.kuleuven.be

~ Bart Jacobs
bart.jacobs@cs.kuleuven.be

iMinds-DistriNet, Dept. C.S., KU Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

ABSTRACT

VeriFast is a sound modular formal Verification tool for C
and Java programs. It accepts programs annotated with pre-
conditions and postconditions written in separation logic as
an input and verifies the correctness of the code with respect
to these annotations. In this paper, we present Automated
VeriFast which is a new extension or an automation layer
that lies on top of VeriFast that, given a partially annotated
program, offers to attempt to incrementally improve the an-
notations, e.g. by inferring a fix to the specification of a pro-
gram fragment that fails to verify. Our thesis is that such
small, interactive inference steps will have practical bene-
fits over non-interactive specification inference approaches
by allowing the user to guide the inference process and by
being simpler and therefore more predictable and diagnos-
able. Our current prototype is able to infer preconditions,
postconditions, and loop invariants for some programs that
manipulate linked lists.

Keywords

Automated VeriFast; Annotation Inference; Separation Logic

1. INTRODUCTION

Authors in [4] mentioned that they focused more while im-
plementing VeriFast on fast verification, expressive power,
and the ability to diagnose errors easily rather than on au-
tomation. This is what differentiates VeriFast from other
tools, such as Smallfoot or jStar [1, 3] which focus on auto-
matic verification. Infer [2] reflects the latest development
of the latter tools adopting the approach of full automation.
This approach facilitates the integration of Infer, as a static
analysis tool, into the software development cycle at Face-
book. From another perspective, Infer had to accept less
preciseness in favour of being fully automated. These tools
are handling memory correctness, but they ignore a wide
range of the other possible functional errors.

Automated VeriFast, on the other hand, follows another
approach, similar to the iterative incremental approach de-
scribed in [5], in which the final goal may not be a full auto-
matic verifier, but certainly a verifier that requires much less
effort and time from users. Using VeriFast, programs can be
verified for memory and functional correctness. Therefore,
Automated VeriFast keeps track of the changes happening
to the length of the lists in order to infer not only memory
specification but also some of the functional properties of
linked lists.

2. SYMBOLIC EXECUTION

VeriFast is a modular verification tool in the sense that
it symbolically executes each routine separately and refers
to other routines’ contracts to verify calls. The symbolic
execution step can be described by symbolic transition re-
lations, which are relations from initial symbolic state o to
outcomes o. A symbolic state o = (>_, h, s) consists of >
representing assumptions, written in first order logic, gen-
erated based on annotations that have been already verified
leading to this state, a symbolic heap h which contains per-
missions, known as chunks in VeriFast, for accessing certain
memory locations, and a symbolic store s. The output o is
either a final symbolic state or an error abort.

Automated VeriFast is an automation layer above the Ver-
iFast core layer. The source code is first verified by VeriFast;
if the result is abort, Automated VeriFast will add more
annotations trying to find a symbolic transition that can
transfer the last sybmbolic state, before abort, to another
state o’ = (>, h’, s’) where o’ # abort. If Automated Ver-
iFast is unable to add any more annotations and ¢’ = abort
then the user has to intervene because either a problem ex-
ists in the source code or there is a limitation in Automated
VeriFast.

3. THE AUTOMATION LAYER

The automation layer, built on top of VeriFast, introduces
two new functionalities triggered by two new buttons added
to the VeriFast interface, namely Auto-Predicate and Auto-
Fix. The first button should be pressed once at the be-
ginning of the verification process to automatically gener-
ate predicates for different data structures used within the
program. As a general rule, Automated VeriFast generates
predicates for all C structs defined in the program.

The second button is for fixing errors detected by the Ver-
iFast core layer. These two new functionalities create an in-
teractive framework in which the user can either accept the
solution provided by Automated VeriFast, choose to write
his own annotations manually, or combine both automation
with his/her experience in writing formal annotations.

4. ABSTRACTION AND RECURSIVE PRED-
ICATES

Predicates, in VeriFast, are a data abstraction technique
in which related data can be encapsulated together in one en-
tity that can be decapsulated later when the data is needed.
User defined predicates are required to describe an induc-
tive data structure, such as a linked list or a tree. Users



can define recursive predicates which invoke themselves to
describe such inductive data structures.

For example, the following struct represents a list of nodes,
where each node has a data field and a pointer to the next
node:

struct node {
struct nodex next;
int value;

Automated VeriFast auto-generates the following recur-
sive predicate for the node struct:
/* @predicate node (struct node xnode; int count) =
node =— 0 7 count =— 0 :
node—>next |—> 7next &x&
node—>value |—> ?value &x&
malloc_block_node (node) &x&
node(next, ?countl) &x&
count = countl + 1 &*& count > 0; @x/

These recursive predicates are essential especially to gen-
erate the loop invariant; otherwise, the size of the heap can
become unbounded if new heap allocations happen within
the loop body. Folding/unfolding predicates or as we call
them in this paper encapsulating and decapsulating predi-
cates are the way to gather nodes of the same linked list to-
gether in one predicate or separate them in different nodes.
In VeriFast, this can be accomplished using the commands
open and close.

Although VeriFast has the functionality of auto-open and
auto-close presented in [5], Automated VeriFast has, in some
cases, to auto-generate the open or close command on its
own.

S. INFERRING ROUTINES’ CONTRACTS

Routines’ contracts are written in the form of requires
and ensures. The keyword requires consumes the heap
chunks that are required by the routine from the global heap
during the verification of the routine call and produces the
heap chunks to the local heap during the verification of the
routine itself. On the contrary, ensures produces the heap
chunks to the global heap during the routine’s call verifica-
tion and consumes the heap chunks from the local heap of
the routine after verifying the routine’s body. This imple-
mentation of requires and ensures is based on the frame
rule in separation logic which introduced the concept of lo-
cality.

This concept of locality allowed Automated VeriFast to
limit its expectation of memory errors into two categories.
Either there is a need for a heap chunk that doesn’t exist in
the heap or there is a heap chunk that exists and it is not
needed.

The following example is a stack_push routine, which is
part of a stack implementation, in which a new node is
pushed into the stack:

void stack_push(struct stack xstack, int value)
//@ requires true;
//@ ensures true;

1
2
3
4
5 struct node *n = malloc(sizeof(struct node));
6 if (n = 0) { abort(); }

7 n—>next = stack—>head;

8 n—>value = value;

9 stack—>head = n; }

Verifying stack_push using VeriFast in this form, where

both precondition and postcondition have empty heaps, raises

an error in line no. 7 where VeriFast tries to access the head
field of the stack while no heap chunk representing this field
exists in the heap. Automated VeriFast solves the error by
adding an annotation that represents the stack and its fields
encapsulated in a stack predicate in the precondition of the
routine. If an error is produced during the verification of a
call of this function, then the responsibility will be on the
caller not the callee. This preserves the compositional prop-
erty of VeriFast and hence Automated VeriFast.

With the new added annotation, VeriFast will next abort
with a memory leak error and a heap h consisting of node n
and stack stack. To overcome this error, the node fields will
be encapsulated into a predicate node and then encapsu-
lated with the stack’s fields into a stack predicate. Finally
this stack predicate will be added to the postcondition of
the function. The final contract of the function will be as
following:

//@ requires true &x& stack(stack, ?count);
//@ ensures true &+& stack(stack, count + 1);

The ?count is a fresh variable denoting some unknown
value representing the length of the stack. Automated Ver-
iFast was able to figure out that the length of the stack
increased by one as it can be seen in the postcondition.

6. LOOP INVARIANT

Automated VeriFast deals with loops as if it deals with
recursive routines. The loop invariant is written in the form
of pre/postcondition. A loop is considered by Automated
VeriFast as a routine that contains a call to itself and keeps
calling itself recursively as long as the loop’s condition holds.
When the loop’s condition is true and the loop enters one
or more iterations, the heap chunks required by the loop’s
precondition should exist in the local heap of the loop before
the start of each iteration.

Acknowledgments.

This work was funded by the Flemish Research Fund through
grant G.0058.13.

7. REFERENCES

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn.
Smallfoot: Modular automatic assertion checking with
separation logic. In FMCO November 2005, Revised
Lectures, pages 115-137, 2005.

[2] C. Calcagno and D. Distefano. Infer: An automatic
program verifier for memory safety of C programs. In
NFM April 2011. Proceedings, pages 459-465, 2011.

[3] D. Distefano and M. J. Parkinson. jStar: towards
practical verification for java. In OOPSLA October
2008, pages 213-226, 2008.

[4] B. Jacobs, J. Smans, and F. Piessens. A quick tour of
the VeriFast program verifier. In APLAS November
2010. Proceedings, pages 304-311, 2010.

[5] F. Vogels, B. Jacobs, F. Piessens, and J. Smans.
Annotation inference for separation logic based
verifiers. In FMOODS, FORTE June 2011. Proceedings,
pages 319-333, 2011.



