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The newly developed fully kinetic, semi-implicit, adaptive Multi-Level Multi-Domain

(MLMD) method is used to simulate, at realistic mass ratio, the development of the

Lower Hybrid Drift Instability (LHDI) in the terrestrial magnetotail over a large

wavenumber range and at a low computational cost. The power spectra of the per-

pendicular electric field and of the fluctuations of the parallel magnetic field are

studied at wavenumbers and times that allow to appreciate the onset of the electro-

static and electromagnetic Lower Hybrid Drift Instability (LHDI) branches and of

the kink instability. The coupling between electric and magnetic field fluctuations

observed by Norgren et al. 1 for high wavenumber LHDI waves in the terrestrial mag-

netotail is verified. In the MLMD simulations presented, a domain (”coarse grid -

CG”) is simulated with low resolution. A small fraction of the entire domain is then

simulated with higher resolution also (”refined grid - RG”) to capture smaller scale,

higher frequency processes. Initially, the MLMD method is validated for LHDI sim-

ulations. MLMD simulations with different levels of grid refinement are validated

against standard semi-implicit Particle In Cell simulations of domains corresponding

to both the coarse and the refined grid. Precious information regarding the applica-

bility of the MLMD method to turbulence simulations is derived. The power spectra

of MLMD simulations done with different levels of refinements are then compared.

They consistently show a break in the magnetic field spectra at k⊥di ∼ 30, with di

the ion skin depth and k⊥ the perpendicular wavenumber. The break is observed at

early simulated times, Ωcit < 6, with Ωci the ion cyclotron frequency. It is due to

the initial decoupling of electric and magnetic field fluctuations at intermediate and

low wavenumbers, before the development of the electromagnetic LHDI branch. Evi-

dence of coupling between electric and magnetic field fluctuations in the wavenumber

range where the fast and slow LHDI branches develop is then provided for a Cluster

magnetotail crossing.
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I. INTRODUCTION

The study of turbulence processes, i.e. processes where energy, injected at large scale, is

distributed over a variety of temporal and spatial scales2, may play a key role in explaining

many of the problems still open in the heliophysical and astrophysical domain.

Turbulent cascade is considered a possible explanation for the so called coronal heating

problem3, where large scale convective motion below the solar photosphere results in heat at

the coronal level. In this scenario, large scale Alfvèn waves are generated by magnetic flux

tube interaction and eventually deposit energy at the small scales through turbulent cascade

processes4,5. Alfvén wave mediated turbulence may be responsible for the in-situ heating of

the solar wind6, a so-called ”turbulence laboratory”7. In recent years, the research effort has

focused on identifying the processes responsible for the breaks observed, both at the ion8–10

and at the electron11 scales, in the turbulent spectra of the wind. Candidates are particle

interaction with kinetic Alfvén waves12, proton cyclotron damping13, electron or ion Landau

damping14. The connection between turbulence and magnetic reconnection15 has been ex-

plored more recently. In the ”turbulent reconnection” scenario a stochastic field component

supplied by ongoing turbulent processes reduces the characteristic length scales of magnetic

reconnection and increases the reconnection rate with respect to the classical Sweet-Parker

result16, thus providing a new path to fast magnetic reconnection. Turbulent environments

such as the solar wind have been shown to generate small scale reconnection sites17–20. In

3D kinetic simulations of reconnection from non stochastic initial configurations, turbu-

lence is produced at late times by secondary instabilities in the out-of-plane direction21–23.

Roytershteyn et al. 24 study the influence of turbulence generated by the Lower Hybrid Drift

Instability in magnetic reconnection.

As widespread as the impact of turbulence in space plasmas may be, the understanding

of its underlying physical mechanisms is still far from complete. As it is often the case

in space physics, simulations are used to supplement theoretical investigations and obser-

vations. Kinetic simulations of turbulence, in many different flavors (gyro-kinetic25,26, hy-

brid27,28, Vlasov12, Particle In Cell - PIC29–31) are currently favored over fluid simulations

for the possibility of reproducing from first principles the wave-particle interaction processes

that may inject or remove energy from the turbulent cascade. However, a compromise has

often to be reached between the level of fidelity to nature of a simulation (e.g., a reduced
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mass ratio reduces the computational costs, but risks altering qualitatively the evolution of

the process simulated32) and the range of wavenumbers simulated. This is a particularly

dramatic choice if the aim of the study is to follow the evolution of the turbulent cascade

from the large scale of energy injection to the small (ion or even electron) scales of energy

dissipation.

In this paper, a new approach is proposed for the study of turbulence in magnetized plasmas.

The aim is to reduce the computational cost of the simulations while retaining fundamental

characteristics: a fully kinetic description of both ions and electrons, realistic simulation

parameters and a wide range of wavelengths. The method proposed, the Multi Level Multi

Domain method33–35, is demonstrated through the simulation, at realistic mass ratio, of tur-

bulence generated by the Lower Hybrid Drift Instability (LHDI). In the case of the LHDI, the

use of high mass ratios is essential to ensure a clear separation between the electron and the

ion scales36. The LHDI is considered a turbulence generator because it breaks macroscopic

fields into smaller and smaller structures. The fluctuations in the electric and magnetic fields

driven by the development of the LHDI in an antiparallel configuration similar to the one

in the terrestrial magnetotail are studied over a large range of wavenumbers, at long simu-

lated times and with a realistic mass ratio. The potentially extreme computational costs of

realistic mass ratio simulations37 are avoided since MLMD simulations are performed.

The Lower Hybrid Drift Instability is driven by diamagnetic drift in presence of a gradient

in particle density or temperature38,39. The LHDI is unstable over a large range of wavenum-

bers k ·B ∼ 0 and frequencies ω, Ωci < ω ≤ ΩLH , where Ωci is the ion cyclotron frequency,

ΩLH ∼
√

ΩceΩci is the lower hybrid frequency and Ωce is the electron cyclotron frequency. In

particular, a fastest growing, mostly electrostatic LHDI branch (mode ”A”, Figure 13 later

in the manuscript) develops at the edges of the current sheet with k⊥re ∼ 1 and growth rate

γ ≤ ΩLH
40,41, where re is the electron gyroradius and ⊥ is the current aligned direction per-

pendicular to the main magnetic field component. A slower electromagnetic branch (mode

”B”, Figure 14) develops in thin current sheets (LH/ri ≤ 1, with ri the ion gyroradius and

LH the half thickness of the Harris current sheet42) at the center of the current sheet and

with k⊥
√
rire ∼ 1 and γ ∼ Ωci

36. Kinking instabilities (mode ”C”, Figure 15) with longer

wavelengths k⊥di = 0.5→ 2 and slower growth rates (fractions of Ωci) then follow43–50. The

modification of the LHDI in presence of a large range of guide fields is addressed in Wang

et al. 51 with a gyrokinetic electron, kinetic ion approach that allows to retain realistic ion
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to electron mass ratios. In the present paper, no guide field is used.

The LHDI (and, in particular, its electromagnetic branch located deeper into the current

sheet) has been studied at length for its possible role in generating anomalous resistivity

in collisionless magnetic reconnection43,47,52–55. Anomalous resistivity acts as the ”normal”

resistivity produced by particle-particle collisions but is generated by non-collisional pro-

cesses such as wave-particle interactions15,56. Another possible scenario relating the LHDI

and magnetic reconnection has also received attention. The LHDI alters the thickness of the

reconnection current sheet and results in anisotropic electron heating. This enhances the

collisionless tearing mode and a more rapid onset of magnetic reconnection may ensue48,57.

The LHDI has also a relevant impact in the evolution of the reconnection jet fronts58 and

may contribute to the heating and acceleration of particles in the solar corona59.

Fluctuations of LHDI origin (”LHDI turbulence”) have been observed in reconnecting cur-

rent sheets in both astrophysical (e.g., Shinohara et al. 60 , Øieroset et al. 61 , Cattell et al. 62 ,

Zhou et al. 63 , in the terrestrial magnetotail; Cattell et al. 64 , Bale, Mozer, and Phan 65 ,

Vaivads et al. 66 , in the terrestrial magnetopause) and laboratory67 plasmas. Norgren et al. 1

has observed that LHDI waves couple electric and magnetic field fluctuations in the terres-

trial magnetotail. This process will be investigated at depth in this paper.

The paper is organized as follows. The Multi Level Multi Domain method is briefly described

in Section II. In Section III, MLMD simulations of the LHDI instability are validated (Sec-

tion III A). ”Mixed grid” power spectra, obtained by seamlessly joining coarse and refined

grid data, are analyzed in Section III B. The increase in time of the slopes of the electric

and magnetic field spectra is observed, a consequence of the development of electromagnetic

LHDI branch and of electromagnetic kinking instabilities. The coupling between the fluctu-

ations of the perpendicular electric field E⊥ and of the magnetic field B observed by Norgren

et al. 1 for LHDI waves in the terrestrial magnetotail is observed since the beginning of the

simulation in the high wavenumber range at which the electrostatic LHDI branch develops.

At lower wavenumbers, k⊥di < 30, where di is the ion skin depth, the coupling is observed

only after the development of the electromagnetic LHDI and kinking instabilities. This in-

troduces a break in the magnetic field fluctuation spectra at k⊥di ∼ 30 at times Ωcit < 6,

where Ωci is the ion cyclotron frequency. In Section III C, it is elaborated further on the

role of the electron perpendicular current in coupling the electric and magnetic field fluc-

tuations. The different spatial scales of the fluctuations in the electron and ion current are
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shown. Section IV then provides evidence of coupling between electric and magnetic field

fluctuations over a large wavenumber range in a Cluster68 magnetotail crossing. Conclusions

are drawn in Section V.

Additionally, in Appendix A, single level simulations of LHDI are discussed to remark on

an issue that, to our current understanding, affects PIC simulations: the presence of a cut-

off wavenumber, dependent on the spatial resolution, above which numerical artefacts are

introduced in the field spectra. Franci et al. 69 is referred for a study of the influence of

the number of particles and of the spatial resolution in hybrid turbulence simulations. The

presence of such cut-off wavenumber constitutes a further incentive towards the use of the

MLMD method in turbulence simulations.

II. THE MULTI LEVEL MULTI DOMAIN METHOD AND ITS

APPLICATION TO TURBULENCE SIMULATIONS

The Multi-Level Multi-Domain (MLMD) method is a way of reducing the computational

cost of fully kinetic PIC simulations by simulating at increasingly higher spatial and temporal

resolutions increasingly smaller fractions of the domain. In this regards, it is similar in

concept to Adaptive Mesh Refinement methods for PIC codes70,71. The computational cost

becomes the main limiting factor to what simulations can achieve in cases, such as Innocenti

et al. 72 , where the aim is to study kinetic processes at large temporal (hundreds of inverse

ion cyclotron fequency) and spatial (hundreds of ion skin depth) scales. Figure 1 illustrates

a two-level MLMD system, similar to the ones used in Section III of the present study. The

entire domain is simulated with a coarse grid (CG) where low resolution, usually of the order

of fractions of the ion skin depth di, is used. A smaller part of the total domain is then

simulated with a refined grid (RG), where the resolution is higher, usually of the order of

fractions of the electron skin depth de. Different time steps are used on the different levels

to fit the temporal evolution of the processes of interest and also to satisfy the stability

requirements of the Implicit Moment Method (IMM)73 algorithm used, which relates the

spatial (dx) and temporal (dt) resolution as in

σ < vth,edt/dx < 1. (1)

vth,e is the average electron thermal velocity and σ ∼ 0.01.

The jumps in spatial and temporal resolution between the levels are indicated as Refinement
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FIG. 1. Sketch of a two-level MLMD system. The Coarse Grid (CG) sends to the Refined Grid

(RG) boundary conditions for fields (1- red arrow) and particles (2- yellow arrow). The higher

resolution electric field is then projected to the Coarse Grid (3- blue arrow).

Factor, RF = ∆x/δx, and Time Ratio, TR = ∆t/δt, where ∆ and δ label the resolution on

the coarse and refined grid. Refinement Factors and Time Ratios as high as RF = 14 and

TR = 10 have been used in Innocenti et al. 35 . The refined grid in a two level MLMD system

has a spatial extension Lx/RF ×Ly/RF , with Lx and Ly the dimensions of the coarse grid.

The same number of cells is currently used at all grid levels. This limitation will be removed

in next versions of the code.

To maintain consistency between the different levels simulated, information regarding both

fields and particles is regularly exchanged between the coarse and the refined grid: field (red

arrow in Figure 1) and particle (yellow arrow) boundary conditions are exchanged from the

coarse to the refined grid. The electric field calculated on the refined grid is then used in the

generation of the coarse grid electric field solution for better level interlocking (blue arrow).

Straightforward applications of the method are cases where it is possible, at least as a first

approximation, to identify a relatively small area where processes happen at smaller tem-

poral and spatial scales, like the Electron Diffusion Region (EDR) in magnetic reconnection

simulations74. The MLMD method is demonstrated for magnetic reconnection applications

in Beck et al. 34 and Innocenti et al. 35 . In both cases, electron scale features (the inversion

layer in the Hall field75 and the electron jets moving out of the EDR at electron Alfvén

speed76–78 respectively) are captured by the RG only at a computational cost dramatically
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lower than the one of a comparable single level simulation. Figure 10 in Innocenti et al. 35

shows that a magnetic reconnection simulation done with the MLMD method and a jump

in spatial resolution RF = 14 costs approximatively 70 times less than a comparable ”tra-

ditional” PIC simulation. The salient features of the simulation are retained by the MLMD

system at a cost which is almost two order of magnitude lower than that of a standard

simulation.

A second field of applicability for the MLMD method is demonstrated in this paper. It is

constituted by problems where multiple scales coexist over a domain which needs to be sim-

ulated at large scales to provide realistic injection conditions or to simulate low wavenumber

fluctuations also. A small, representative portion of the domain is then simulated at higher

resolution to capture the high frequency, high wavenumber dynamics.

III. ANALYSIS OF MLMD SIMULATIONS OF TURBULENCE

GENERATED BY THE LOWER HYBRID DRIFT INSTABILITY

In this Section, MLMD simulations of turbulence generated by the Lower Hybrid Drift

Instability are investigated.

All the simulations in this paper share the same physical initial conditions, a double Harris

equilibrium42. The use of this configuration as initial condition is supported by observations

of an Harris-like profile in the magnetopause in correspondence of observations of LHDI fluc-

tuations65. A realistic mass ratio between the ions (i) and electrons (e), mr = mi/me = 1836,

is used, the half width of the Harris current sheet is LH/di = 0.53, the electron thermal veloc-

ity is vth,e/c = 0.045, where c is the speed of light, and the ratio between the ion and electron

temperature is Ti/Te = 20. The thermal velocity vth,s of the generic particle species s is

related to the temperature Ts as vth,s =
√
kBTs/ms, with kB the Boltzmann constant. With

this initial parameters, the ion gyroradius is ri/di = 0.69, the Alfvén speed is VA/c = 0.0068,

with c the speed of light, and the ion and electron betas are βi = 0.95 and βe = 0.048 re-

spectively. The asymptotic magnetic field value and the density at the centre of the current

sheet have been used in the calculations of the betas. No guide field is added. The initial

density of the drifting electron (species 0) and ion (species 1) populations is indicated as n0.

A background electron (species 2) and ion (species 3) population is also added, with initial

density nb/n0 = 0.1. These parameters are compatible with the plasma conditions in the
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magnetotail.

2D3V simulations are performed. Only the xy plane is simulated, but all the velocity and

field components are retained. The x direction is aligned with the Harris current and the

gradients of the Harris equilibrium are in the y direction.

Periodic boundary conditions are used for both fields and particles on the Coarse Grids.

MLMD simulations with Refinement Factors RF = 4, RF = 6 and RF = 8 are shown.

Table I shows the simulation parameters. Lengths and cell numbers are the same in the x

and y direction. The maximum wave number simulated is kmax = π
dx

. ksup = kmax/4 is the

wavenumber at which grid effects start affecting the power spectra of the different quantities,

as discussed in Appendix A. For this reasons, all the spectra shown in this paper will be

represented with dotted lines at wavenumber larger than ksup, to signify that that part of

the spectra is affected by numerical artefacts and cannot be used for physical investigation.

All coarse grids, CG, are simulated in all three cases with domain sizes Lx,CG/di×Ly,CG/di =

60 × 60. nx,CG = ny,CG = 768 cells are used per direction, with a spatial resolution of

∆xCG = ∆yCG = 0.079 di = 3.35 de, with de the electron skin depth. The time step is

ωpi∆tCG = 0.1, with ωpi the ion plasma frequency. 196 particles per species per cell are

used. The same number of cells and of particles per cell is used on the Refined Grids, RGs.

Hence, the number of refined grid particles sitting in the area corresponding to a coarse grid

cell is 196 × RF 2 per species, with RF = 4, 6, 8. The refined grids of the three different

MLMD simulations all share the same time step, δt = 0.05, with TR = 2 with respect to

the coarse grids. The refined grids are simulated in correspondence of the upper of the two

current sheets initialized and have center at x/di = 30, y/di = 45 in CG coordinates.

Table II shows the duration (second column) and the number of cores used (third column)

for the MLMD simulations with different RFs. In the last row, the duration of a single grid

(SG) simulation with the same parameters as the MLMD coarse grid is shown. These simu-

lations were run on the SuperMUC machine, based in Germany at Leibniz Supercomputing

Centre. The website of the Centre79 is referred for further information on the cluster.

The duration of the MLMD simulations does not change significantly with the refinement

factor, since the initial number of particles is the same in all simulations, notwithstanding

the RF. The single grid simulation has approximately the same duration as the MLMD

ones, but 512 rather than 2048 cores are used, making it four time cheaper. The reason is

that half the number of particles and half the number of cycles are used in the single grid
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Lx (di) dx (di) kmax (d−1i ) ksup (d−1i )

CG 60 0.0781 40.2124 10.0531

RG, RF = 4 15 0.0195 160.8495 40.2124

RG, RF = 6 10 0.0130 241.2743 60.3186

RG, RF = 8 7.5 0.0098 321.6991 80.4248

TABLE I. Domain size (Lx), spatial resolution (dx), nominal higher wavenumber kmax and upper

wavenumber limit ksup for the coarse (CG) and for the refined (RG) grids of the MLMD simulations.

Lengths and resolutions are the same in the x and y direction.

duration (hrs) # of cores ωpidt

MLMD, RF = 4 11.6 2048 0.05

MLMD, RF = 6 12.3 2046 0.05

MLMD, RF = 8 12.9 2048 0.05

SG, CG equivalent 11.8 512 0.1

TABLE II. Duration in hours (second column), number of cores used (third), time step normalised

to the ion plasma frequency ωpi (fourth) of the MLMD simulations with RF = 4, RF = 6 and

RF = 8 analysed in the paper and of a single grid (SG) simulation with parameters corresponding

to the MLMD coarse grid.

case with respect to the MLMD simulations. This single grid case aims at reproducing the

Coarse Grid results alone (hence, half the number of particles than in the MLMD cases),

where the time step is double with respect to the MLMD refined grids.

A. Validation of the Multi-Level Multi-Domain simulations

This paper heavily relies on previous validation efforts: a) previous validation of the

MLMD method for the simulation of kinetic instabilities and b) validation of the Implicit

Moment Method (IMM) and of its capability of correctly simulating the development of the

Lower Hybrid Drift Instability.

Validation against theory of the growth rate of some kinetic instabilities in a MLMD system

is shown in Innocenti et al. 33 . In Innocenti et al. 35 the speed of electron jets in the Re-
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fined Grid of the MLMD system is validated against theoretical expectations. In Innocenti

et al. 80 , momentum conservation in the MLMD system is examined.

The Implicit Moment Method has been used to simulate the evolution of the Lower Hybrid

Drift Instability in a large number of published works, among which Lapenta and Brack-

bill 48 , Ricci et al. 81,82 . In Ricci et al. 81,82 IMM simulations of LHDI are validated against

the explicit PIC code NPIC and against theory. Lapenta and Brackbill 48 proves a very im-

portant point that pushes towards the use of the MLMD method for instabilities developing

over a large range of wavenumbers. It shows that a small IMM simulation with appropri-

ate resolution correctly captures the evolution of the small-wavelength LHDI branch. In

particular, the wavenumber which is expected to dominate form theory has growth rate

which satisfactorily matches the theoretical expectation. Long wavelengths oscillations do

not develop due to the reduced size of the box. The same paper then shows that a large box

simulated with reduced resolution cannot resolve the small wavelengths so accurately but

can instead represent long wavelength modes. We can then expect that grids simulated with

dimensions and resolution comparable to those of MLMD Refined and Coarse Grids but

independently (meaning, not part of a MLMD system and hence not subject to inter-grid

communication operations) will correctly simulate the small and large wavelength LHDI

ranges respectively. We still need to prove in this paper that the Refined Grid is correctly

driven by the Coarse Grid in its low wavenumber range and that no artefacts are introduced

as a result of grid coupling.

As a preliminary check on the outcome of the simulations, Figure 2 shows the energy evo-

lution as a function of time on the Refined Grids. Panel (a) and (d), (b) and (e), (c) and (f)

refer to the RF = 4, RF = 6 and RF = 8 cases. In panels (a) to (c), the energy values are

normalised with respect to the initial total energy εTOT,0. In panels (d) to (f), the normal-

isation is done with respect to the initial value of each energy component. The red line is

the total energy, the green, blue and black lines are the energy stored in the magnetic field,

in particles and in the electric field respectively. The kinetic energy is then broken into the

contribution of the four particle populations: electrons (cyan) and ions (magenta), streaming

(solid line) or background (dashed line). Panel (a) to (c) show that, the higher the Refine-

ment Factor, the lower the weight of the magnetic field energy is on the total energy budget,

since the refined grid is more ”focused” on the current sheet than in the cases with lower RF.

All three panels show that the energy is remarkably well conserved (εTOT/εTOT,0 = 0.9957
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FIG. 2. Temporal evolution of the energy normalized to the initial total energy εTOT,0 (panel a to

c) and to the initial energy of each component (panel d to f) for the refined grids of the MLMD

simulations and RF = 4 (left panels), RF = 6 (centre panels) and RF = 8 (right panels). The red

line is the total energy, εTOT , the green, blue and black lines are the energy stored in the magnetic

field, εB, in particles , εK , and in the electric field, εE . The cyan lines are the electron energies,

εK0 and εK2, the magenta lines the ion energies, εK1 and εK3. Solid and shaded lines are used for

streaming (species 0 and 1) and background (species 2 and 3) particles respectively.

for RF = 4, εTOT/εTOT,0 = 0.9986 for RF = 6 and εTOT/εTOT,0 = 0.9985 for RF = 8

at Ωcit = 13.6) in all the three refined grids. This is because, contrarily for example to

the magnetic reconnection example shown in Figure 6(b) in Innocenti et al. 35 , particles are

flowing in and out of the refined grids at an approximately constant rate. Panels (d) to (f)

show the variation with time of each energy component. The increase in time of the energy

stored in the electric field dwarfs all other variations: the electric field is initialised to zero

in the entire domain, but the electric field component of the LHDI starts growing very soon

once the simulation is started. The energy gained by the electric field is provided by the

drifting ions, which lose energy with time.

Figure 3 and Figure 4 show the Bz field component (panel a and b) and the electron

density ρe (panel c and d), normalized to code units, at times Ωcit = 5.44 and Ωcit = 13.6.

Panel a and c shows a zoom of the coarse grid field at 25.25 < x/di < 34.75, 42 < y/di < 48.
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FIG. 3. Bz (panel a and b) and electron density ρe (panel c and d) for the MLMD simulation

with RF = 8 and at time Ωcit = 5.44. In panel a and c, the coarse grid solution in the region

25.25 < x/di < 34.75, 42 < y/di < 48 is shown. In panel b and d, the refined grid fields are

superimposed at 26.36 < x/di < 33.75, 41.25 < y/di < 48.75.

In the second column, the refined grid solution is superimposed at 26.36 < x/di < 33.75,

41.25 < y/di < 48.75. In both Figure 3 and Figure 4, the simulation with RF = 8 is shown.

The fastest mostly electrostatic LHDI branch has growth rate γ ≤ ΩLH . The asymptotic

field from the Harris equilibrium is B0 = 0.0068, i.e. ΩLH/ωpi = 0.29 or, equivalently,

ΩLH/Ωci =
√
mr ∼

√
1836. Therefore, the expected time scale for the development of the

fast LHDI branch is of the order of TΩci ≥ 0.1466. The electromagnetic LHDI branch, with

γ ∼ Ωci, develops at time scales TΩci ∼ 6. Kinking modes, whose growth rate is a fraction

of Ωci, are slower. These order of magnitude expectations are confirmed in the simulations.

The coarse and refined grid solution connect, almost seamlessly, in all cases. A visual

inspection reveals that the refined grid is driven by the coarse grid in the simulation of the

lower wavelengths: when the coarse grid kinks macroscopically, as in Figure 4, the refined

grid follows. The refined grid solution diverges instead from the coarse grid at smaller scales,
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FIG. 4. Bz (panel a and b) and electron density ρe (panel c and d)for the MLMD simulation

with RF = 8 and at time Ωcit = 13.6. In panel a and c, the coarse grid solution in the region

25.25 < x/di < 34.75, 42 < y/di < 48 is shown. In panel b and d, the refined grid fields are

superimposed at 26.36 < x/di < 33.75, 41.25 < y/di < 48.75.

since the refined grid captures high wavelength fluctuations that the other grid averages out,

due to the reduced spatial resolution. In the case of the electron density in the coarse grid

at time Ωcit = 5.44, Figure 3, a central high density spine seems to be sided by high den-

sity branches. In Figure 4, first column, second row, the side branches are so elongated to

seem able to support a bifurcated current, a process often associated to the late stages of

the LHDI. However, inspection of the electron current plots in the coarse and refined grid

does not show evidence of current bifurcation. In fact, the thickness of the current sheet

simulated is rather low, LH/di = 0.53, while current bifurcation is usually associated with

thicker current sheets57,82. The electron density refined grid plots show that the coarse grid

side branches are broken, at higher resolution, in smaller scale fluctuations, while the higher

density central spine remains.

Kinking of the current sheet is visible in Figure 4. Long wavenumber (kCDLH ∼ 0.5 → 2)
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kinking of an LHDI unstable current sheet is routinely observed. It has been attributed

to a multitude of modes: drift kink instability, due to the relative drift between ions and

electrons (Ozaki et al. 43 , Horiuchi and Sato 47 , with kCDLH ∼ 2, Pritchett, Coroniti, and

Decyk 44 , with kCDLH ∼ 1), Kelvin Helmholtz instability, driven by the ion velocity shear

produced by the LHDI (Lapenta and Brackbill 48 , with kCDLH ∼ 0.5), ion-ion kink insta-

bility, where the drifts is between two ion species (i.e., drifting ion and background), rather

than through electrons and ions (Karimabadi et al. 49,50 kCDLH ∼ 1). CD stands here for

”current direction”, x in the simulations. The identification of the instability causing the

kink in our current sheet is not a priority of this paper, which focuses instead on how the

Refined Grid is driven to these long wavelengths by the Coarse Grid.

Lapenta and Brackbill 48 shows that, in semi-implicit simulations of the LHDI, a large do-

main simulation with low resolution correctly reproduces the evolution of the low wavenum-

ber modes. Higher wavenumber modes are approximated within the resolution used. Con-

versely, increasingly smaller but better resolved simulations lose the ability of resolving kink

modes. While commenting Figure 4, it is claimed that, in a MLMD system, the CG can

drive the RG in simulating large scale modes that the RG would not be able to simulate

independently. This claim is corroborated by Figure 5, which compares the power spectra

of δBz (upper cluster of lines) and Ex (lower) at time Ωcit = 2.72 (panel a and c) and

Ωcit = 8.16 (panel b and d) for different simulations. The variations in the out of plane

magnetic field, δBz, are obtained as δBz = Bz−Bz,init, where Bz,init is the field at the initial

time step. Contrarily to Innocenti and Lapenta 55 , but following, for example, Daughton 36 ,

the kinking of the neutral line has not been taken into account in the calculation. The

spectra shown are cuts at an angle θ = 45◦ of the 2D spectra in the kxdi vs. kydi plane. As

such, they are shown as function of a ”perpendicular wavenumber” k⊥.

In Figure 5, panel a and b, the Coarse Grid solutions of the MLMD simulations with

RF = 4 (red line), RF = 6 (black) and RF = 8 (green) are contrasted with a standard

PIC simulation done with the same parameters as the CGs, the ”Sm 5” simulations from

Appendix A. In panel c and d, the Refined Grids of the MLMD simulations with RF = 4

(red line), RF = 6 (black) and RF = 8 (green) are contrasted with a standard PIC sim-

ulation (”RG comp”, blue line) done with the same parameters of the RG of the RF = 4

case. The focus at the moment is on the low wavenumber range, defined here as k⊥di < 2.

Remind that, as previously remarked, the part of the spectra plotted with dotted lines is
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affected by numerical artefacts and should not be considered for analysis. The power at low

wavenumber tends to increase with time, as a result of the development of high wavelength

modes (see also the Appendix). This is visible comparing panel a and c with b and d,

especially for the δBz field. In panel a, one sees that the CG solutions and the CG compar-

ison simulation overlap very well at Ωcit = 2.72. In panel c, instead, again at Ωcit = 2.72,

the ”RG comp” simulation reaches significant lower power levels than the Refined Grids in

the low wavenumber range. This behaviour is constant in time. In panel d, for example,

where Ωcit = 8.16, the RG results superimpose among themselves at power levels which

are evidently driven by the CG solution (compare panel d and c; more on CG/RG result

superposition will follow in the next Section). The comparison simulation (blue line, ”RG

comp”) is evidently not able to simulate large wavelength mode and rests at lower power

level in the lower wavenumber range. This proves that CG/RG coupling drives the RGs into

the simulation of low wavenumber modes that the single grids alone would not be able to

reproduce, a major result for the CG/RG coupled system.

After showing the driving effect of the Coarse Grids on the Refined Grids, it is now possible

to focus on the coupled CG/RG system.

Figure 6 shows, in each panel, the δBz and Ex power spectra for the coarse (red and

green lines) and refined (blue and black lines) grids at time Ωcit = 2.72.

The three panels refer to the MLMD simulations with RF = 4 (panel a), RF = 6 (panel b)

and RF = 8 (panel c). The upper limit of the horizontal axis is the highest wavenumber

simulated by the refined grid in the RF = 8 case, k⊥di = 321.7.

The horizontal axes of Figure 6 allow to appreciate at a glance the strength of the MLMD

approach. The simulation with RF = 8 extends of a factor eight the available range of wave

numbers with respect to the coarse grids, at a minimum computing cost with respect to the

simulation of the CG alone (see Table II). To reach the same upper wavenumber with a

single level 2D simulation, an increase of computing cost of a factor RF 2 = 64 has to be

expected.

Figure 6 provides empirical proof that the spectra changes at k⊥ > ksup (where spectra

are plotted with dotted lines) are not of physical origin, but numerical artefacts related to

the local spatial resolution. In all the cases, the same pattern is present in all the grids: a

variation in the slope of the spectra of δBz is accompanied by the appearance of a plateaux

in the spectra of Ex. These very similar structures are pushed at different wavenumbers,
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FIG. 5. Numerical power spectra of the fluctuations of the Bz (δBz, upper four upper lines) and

of the Ex (four lower lines) field components as a function of k⊥ at time Ωcit = 2.72 (panel a and

c) and Ωcit = 8.16 (panel b and d). In panel a and b, the Coarse Grids of the MLMD simulations

with RF = 4 (red), RF = 6 (black), RF = 8 (green) are contrasted with a single level simulation

with the same parameters as the CGs (blue, ”SG, Sm5”). In panel c and d, the Refined Grids of

the MLMD simulations with RF = 4 (red), RF = 6 (black), RF = 8 (green) are contrasted with

a single level simulation with the same parameters as the RG in the RF = 4 simulation (blue,

”RG comp”). The dotted lines mark the wavenumber ranges, k⊥ > kmax/4, which are deemed

unreliable for physical investigations.

according to the local resolution, on the Coarse and Refined Grids. The fact that, discarding

the red and green dotted lines, the coarse and refined grid spectra connect seamlessly, for

both δBz and Ex, at all the RF represented, constitutes further proof in the same direction.

Since approximately the last quarter of the entire wavenumber range simulated by a grid
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FIG. 6. Numerical power spectra of the fluctuations of the Bz (δBz) and of the Ex field components

as a function of k⊥ at time Ωcit = 2.72 for the MLMD simulations with RF = 4 (panel a), RF = 6

(panel b) and RF = 8 (panel c). The red and green lines identify the coarse grid Bz and Ex power

spectra, the blue and black lines the refined grid δBz and Ex power spectra. The dotted lines mark

the wavenumber ranges, k⊥ > kmax/4, which are deemed unreliable for physical investigations.

The slopes calculated from the mixed grid spectra for the Bz (Ex) fields are shown above (below)

the spectra in the three panels in blue (RF = 4), red (RF = 6) and green (RF = 8) respectively.

The dashed black lines superimposing the δBz and Ex mixed grid spectra in each panel are the fit

calculated for that particular RF. The blue vertical line marks k⊥di = 30.

is unavailable for physical investigation, it is even more important to have cheap methods,

such as the MLMD method, to extend the range of ”reliable” wavenumbers of a system.

The MLMD system permits to build a ”mixed level” spectrum, composed by coarse grid

points at the ”reliable” CG wavenumbers, k⊥di < ksup,CG, and by refined grid points beyond
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FIG. 7. Numerical power spectra of the Ex field component in the kxdi vs kydi plane at time

Ωcit = 0.27 (panel a) and Ωcit = 2.72 (panel b). The spectra are calculated on the Refined Grid of

the MLMD simulation with RF = 8.

that threshold, at ksup,CG ≤ k < ksup,RG. This dataset will be used for further analysis in

the next Sections.

Before proceeding to that, however, it is necessary to comment on the representation of

spectra as cuts at an angle θ = 45◦ of the 2D spectra in the kxdi vs. kydi plane. Undeniably,

comparisons between spectra calculated in different cases (e.g., Figure 5 and 6) are done

more easily if lines, rather than 2D plots, are compared. However, the choice of cuts at an

angle θ = 45◦ in the kxdi vs kydi plane may seem unusual for a current aligned instability

like the LHDI. Figure 7 helps justifying this choice. The power spectra of Ex in the kxdi

vs kydi plane is represented at time Ωcit = 0.27 (panel a) and Ωcit = 2.72 (panel b). Data

from the RG of the MLMD simulation with RF = 8 are shown. In panel a, Ωcit = 0.27,

one may notice that, as expected, power is stored preferentially in the wavenumber in the

current aligned direction, x. Already in panel b, Ωcit = 2.72 (the same time as Figure 6), the

spectra has evolved in the direction of higher isotropy, thus better justifying our isotropic

1D representation.

B. Analysis of the mixed grid spectra

The mixed grid spectra of Figure 6 show a steepening in the slope of the δBz power

spectra, for all the three MLMD simulations, at k⊥di ∼ 30 (blue vertical line), which falls in

the RG range of the mixed spectra. The fact that the steepening in the δBz power spectra

is observed at the same wavenumber for all the three simulations shows that it is a physical
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process, rather than a numerical artefact. One can convince oneself of that by observing how

the wavenumber marking the beginning of the Ex plateau (a resolution dependent artefact)

shifts with the RF in Figure 6. This is not the case with the k⊥di slope change(a physical

slope change).

The electric field power spectra, instead, do not experience any break at k⊥di = 30.

The values of the slopes of the δBz and Ex power spectra are calculated for the pre-break

wavenumber range, at 1 < k⊥di < 30, for the three mixed grid datasets. Different times,

Ωcit = 2.72, Ωcit = 5.44, Ωci = 8.16, Ωcit = 10.88 and Ωcit = 13.6, are examined. MATLAB’s

polyfit function for least square polynomial fit is used with the data in log-log representation

and with maximum degree of the polynomials n = 1 to find the slope of the spectra.

The goodness of the fit is evaluated through the coefficient of determination R2, which is

calculated as

R2 = 1− SSres
SStot

. (2)

SSres is the sum of the squared residuals from the regression and SStot is the sum of the

squared differences from the mean of the dependent variable. R2 = 1 is a ”perfect” fit.

The values of the slopes and of the R2 are listed in Table III and Table IV for the δBz

and the Ex field. One can notice a stark difference between the δBz R
2 and the Ex R

2

values. While the R2 in Table III are very good (if not excellent, especially at higher times)

poorer performances are registered in Table IV. This may be partially due to the lower

value (hence, lower variance) of the Ex spectra in presence of roughly comparable levels of

oscillations around the fits of the δBz and Ex fields.

At a given time, the three MLMD systems show remarkable good agreement. This can

be noticed also in Figure 6, Figure 8 and Figure 9. The last two are analogues to Figure 6,

but depict subsequent times, Ωcit = 5.44 and Ωcit = 10.88. k⊥di = 30 is indicated as a

blue vertical line in Figure 8 and 9 also. In all panels of all the three Figures, the Ex (δBz)

slopes calculated for RF = 4 (blue line), RF = 6 (red) and RF = 8 (green) are depicted

together below (above) the spectra and in correspondence of the wave numbers used for

the slope calculations. Notice that the three slopes are almost not distinguishable. The

slope differences, at a fixed time, in Table III and Table IV can be explained because, in

the different systems, a different number of data points is used for the slope calculations:

86 + 23, 86 + 31 and 86 + 47 data points for RF8, RF6 and RF4 respectively. Of those, 86
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RF4 RF6 RF8

slope R2 slope R2 slope R2

Ωcit = 2.72 -1.1021 0.6253 -0.8348 0.5206 -0.8458 0.5442

Ωcit = 5.44 -1.3065 0.7364 -1.1196 0.6424 -1.1578 0.6457

Ωcit = 8.16 -1.8201 0.8805 -1.7499 0.6901 -1.8731 0.8311

Ωcit = 10.88 -2.3694 0.9239 -2.4230 0.9057 -2.1936 0.8586

Ωcit = 13.60 -2.4764 0.9214 -2.4814 0.9039 -2.7002 0.8973

TABLE III. Slope and coefficient of determination R2 of the δBz power spectra calculated at

1 < k⊥di < 30 from the mixed coarse grid/ refined grid datasets for the MLMD simulations with

RF = 4, RF = 6 and RF = 8 at times Ωcit = 2.72, Ωcit = 5.44, Ωci = 8.16, Ωcit = 10.88 and

Ωcit = 13.6.

RF4 RF6 RF8

slope R2 slope R2 slope R2

Ωcit = 2.72 -0.85427 0.4720 -0.86188 0.4791 -0.80658 0.4768

Ωcit = 5.44 -0.51463 0.2244 0.60658 0.3504 -0.60783 0.3474

Ωcit = 8.16 -0.62035 0.3585 -0.5516 0.4010 -0.69801 0.3418

Ωcit = 10.88 -0.828 0.5272 -0.90982 0.5823 -0.95695 0.5158

Ωcit = 13.60 -1.2114 0.6924 -1.3051 0.6150 -1.3467 0.7258

TABLE IV. Slope and coefficient of determination R2 of the Ex power spectra calculated at 1 <

k⊥di < 30 form the mixed coarse grid/ refined grid datasets for the MLMD simulations with

RF = 4, RF = 6 and RF = 8 at times Ωcit = 2.72, Ωcit = 5.44, Ωci = 8.16, Ωcit = 10.88 and

Ωcit = 13.6.

are contributed from the coarse grid, the others from the refined grids.

One can notice that the slope of the spectra of δBz increases with time, slightly between

Ωcit = 2.72 and Ωcit = 5.44 and then more robustly from Ωcit = 5.44 onwards. The slope

of Ex decreases in absolute value between Ωcit = 2.72 and Ωcit = 5.44 and then increases.

From Ωcit = 8.16 onwards, the δBz power spectra drop with k⊥ at least twice faster than

the Ex spectra. An explanation for this will be provided at the end of the Section. The
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FIG. 8. Numerical power spectra of the fluctuations of the Bz (δBz) and of the Ex field components

as a function of k⊥ at time Ωcit = 5.44 for the MLMD simulations with RF = 4 (panel a), RF = 6

(panel b) and RF = 8 (panel c). The caption of Figure 6 is referred for further information.

slope increase with time is attributed to the development of slower electromagnetic branches,

LHDI and kink. The break in the δBz slope at wavenumber k⊥di = 30 appears at the earliest

times, together with the development of the fastest LHDI branches (it is already visible at

Ωcit = 0.27, not shown here). It becomes less visible at later times, as one can appreciate in

Figure 8, time Ωcit = 5.44. At time Ωcit = 10.88, Figure 9, the break in the power spectra

of δBz has effectively disappeared.

An explanation for this behavior can be found recalling Norgren et al. 1 .

There, LHDI fluctuations with ω/ΩLH ∼ 1 and k⊥re ∼ 1, as expected from the fast LHDI

branch, are identified in Cluster data. The electrostatic potential ΦδE⊥ associated with the
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FIG. 9. Numerical power spectra of the fluctuations of the Bz (δBz) and of the Ex field components

as a function of k⊥ at time Ωcit = 10.88 for the MLMD simulations with RF = 4 (panel a), RF = 6

(panel b) and RF = 8 (panel c). The caption of Figure 6 is referred for further information.

waves is defined as:

ΦδE⊥ =

∫
δE⊥dt · vph, (3)

where vph is the wave phase velocity. A potential associated to parallel magnetic field

variations, ΦδB‖ , is defined based on assumptions associated to the nature of LHDI waves.

First, perpendicular propagation, k⊥ >> k‖, is assumed; hence,

∇× δB ∼ k⊥δB‖, (4)

where, as already in the simulations, δB labels the variations of the total magnetic field

with respect to an ”equilibrium” configuration where the LHDI has not developed. The

corresponding variation in the perpendicular current is assumed to be carried by the electrons

through E×B drift in the perturbed fields. In Norgren et al. 1 , where an LHDI wave packet
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with k⊥ ∼ 1/re is analysed (hence, B‖ ∼ B0), the perpendicular current variation has the

form

δJ⊥ ∼ eρeδE⊥/B0, (5)

where ρe is the electron density and e the electron charge. In the regions where the longer

wavelength modes can be expected, i.e. where the ”equilibrium” magnetic field is closer to

zero, a dependence of the form:

δJ⊥ ∼ eρeδE⊥/δB‖ (6)

instead holds. The linear relation between the perturbed perpendicular current and the

perpendicular electric field (central to the investigations described in the rest of the Section)

is preserved. Combining Eq. 4 and 5, the potential associated to δB‖ perturbations can be

written as:

ΦδB‖ =
B0

ρeeµ0

δB‖, (7)

where µ0 the permeability of free space. If a wavenumber k and a phase velocity vph can be

found such that

ΦδB‖ ∼ ΦδE⊥ , (8)

those are taken as the wavenumber and the phase velocity of a wave package where a) prop-

agation is mostly perpendicular (Eq. 4), b) a linear relation exists between the perturbations

in the perpendicular electron current and the perpendicular electric field (Eq. 6) and c) most

of the parallel magnetic field perturbations are due to electric field variations (Eq. 8). These

conditions apply to both the fast and the slow LHDI branches, even if, as it will be explored

in the next Section, the mechanism of oscillation coupling through the perpendicular cur-

rent varies for the shorter and longer wavelengths. These considerations on coupling of

electric and magnetic field fluctuations, with the perpendicular current as the mediator, can

be exported to the MLMD simulations previously discussed. In the simulations, δB‖ = δBz,

the perpendicular plane is the simulation plane xy and B0 is the Harris field value. One can

then write the following relation between the electric and magnetic field spectra:

Ẽx =
B0

ρeeµ0

k⊥ ˜δBz, (9)

where the tilde indicates the spectra, rather than the power spectra as used up to now. Since

no electric field is present at the beginning of the simulation, δE⊥ = E⊥.

Figure 10 to Figure 12 intend to verify Equation 9 at different times, Ωcit = 0.27 (Figure 10),
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FIG. 10. Numerical spectra of Ex (blue line) and of δBz multiplied by
(

B0
ρeeµ0

k⊥

)
as a function of

k⊥, oriented at θ = 45◦ in the kx vs. ky plane, at time Ωcit = 0.27 for the Refined Grids of the

MLMD simulations with RF = 4 (panel a), RF = 6 (panel b) and RF = 8 (panel c). The blue

vertical line is k⊥di = 30. The dotted lines mark the wavenumber ranges, k⊥ > kmax/4, which are

deemed unreliable for physical investigations.

Ωcit = 5.44 (Figure 11) and Ωcit = 10.88 (Figure 12). Refined Grid data only are used.

The blue lines in the Figures are the spectra of Ex, the blue lines the spectra of the magnetic

field fluctuations multiplied by k⊥, B0 = 0.0068 and ρe = 1. Both the B0 and the ρe values

used are the respective peak values from in the Harris equilibrium configuration used as

initial condition. e = 1 and µ0 = 1 in the normalisation used by the code.

In Figure 10, Ωcit = 0.27, the B0

ρeeµ0
k⊥ ˜δBz (black) and the Ẽx (blue) lines are well super-

imposed in the k⊥di > 30 interval for all the RF cases. The black lines are instead depressed

with respect to the blues lines at lower wavenumbers. Increasingly better superposition,

proceeding from the high towards the low wavenumber, is achieved at time Ωcit = 5.44 (Fig-
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FIG. 11. Numerical spectra of Ex (blue line) and of δBz multiplied by
(

B0
ρeeµ0

k⊥

)
as a function of

k⊥, oriented at θ = 45◦ in the kx vs. ky plane, at time Ωcit = 5.44 for the Refined Grids of the

MLMD simulations with RF = 4 (panel a), RF = 6 (panel b) and RF = 8 (panel c). The blue

vertical line is k⊥di = 30. The dotted lines mark the wavenumber ranges, k⊥ > kmax/4, which are

deemed unreliable for physical investigations.

ure 11) and Ωcit = 10.88 (Figure 12). The dotted part of the spectra, i.e. the one affected

by numerical artefacts, should again not be taken in considerations for these analysis.

C. Spatial structure of current fluctuations

To understand why the black and blue lines in Figures 10 to 12 superimpose (or not)

at different times, it is convenient to remind oneself of the origin of the coupling between

electric and magnetic field fluctuations. In the derivation just recalled, it is mediated by

perpendicular electron current due to electron E×B drift into the ”modified” fields.
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FIG. 12. Numerical spectra of Ex (blue line) and of δBz multiplied by
(

B0
ρeeµ0

k⊥

)
as a function of

k⊥, oriented at θ = 45◦ in the kx vs. ky plane, at time Ωcit = 10.88 for the Refined Grids of the

MLMD simulations with RF = 4 (panel a), RF = 6 (panel b) and RF = 8 (panel c). The blue

vertical line is k⊥di = 30. The dotted lines mark the wavenumber ranges, k⊥ > kmax/4, which are

deemed unreliable for physical investigations.

It can be verified that, already at time Ωcit = 0.27, the electron current in both perpendicular

directions is indeed given by E×B drift (the electron contribution to the equilibrium current

is quite weak with respect to the ions with the current set of Harris equilibrium parameters).

Ex, Jel,y and Bz are then related as in:

Jel = eρel
E×B

B2
. (10)

Figure 13 shows a zoom of Ex (panel a), contrasted with the corresponding electron current

component, Jy,el (panel b), at time Ωcit = 0.27. The refined grid of the simulation with

RF = 8 is shown. One immediately notices the correspondence between the traces at the
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FIG. 13. Signature of the development of the high-wavenumber, mostly electrostatic LHDI branch,

mode ”A”, in Ex (panel a) and Jy,el (panel b) at time Ωcit = 0.27 and 28 < x/di < 32, 43 < y/di <

47 in the Refined Grid of the MLMD simulation with RF = 8.

edges of the current sheet in the two plots. The electric field traces are the characteristic

signatures of the fast LHDI branch, indicated as mode ”A” in the introduction. Electrons

respond immediately to that and corresponding traces in the electron current ensue. These

fluctuations in the in-plane current couple the high wavenumber fluctuations in Ex and δBz

in Figure 10. No larger scale fluctutations are observed in the current plots, thus explaining

the lack of coupling in the lower wavenumber range.

Better coupling at larger wavelength in Figure 11, at time Ωcit = 5.44, corresponds to

electron current fluctuations located at the centre of the current sheet, y/di ∼ 45, in Figure

14, panel a. Figure 14 shows the development at the center of the current sheet of the mostly

electromagnetic LHDI branch characterised in Daughton 36 , mode ”B” in the introduction.

The current fluctuation at the center of the current sheet in panel (a) are visibly larger

than the fluctuations at the edges of the current sheet already seen in Figure 13 and still

visible here. A first analysis of Ex at time Ωcit = 5.44 reveals fluctuations at the edges of

the current sheet, but no evident correspondence for the larger current structures. This is

because the Ex fluctuations resulting in Jy,el structures at y/di ∼ 45 are weaker than the

fast LHDI signatures, but are also located in an area where Bz → 0 and experiences the kink

visible in Figure 14, panel b. The kinking of the neutral line explains the pattern of the Jy,el

structures at y/di ∼ 45 and is in turn due to the development of the slower, electromagnetic

branch of the LHDI, as it can be verified by comparing Figure 14, panel (b) and (c). Panel
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(c) depicts the electromagnetic (EM) component of Ey, calculated as in Lapenta et al. 83 :

EES = ∇
[
∇−2 (∇ · E)

]
; EEM = E− EES, (11)

where ES is the electrostatic component. The length of the Ey,EM/ Jel,y traces is of the order

of `/di ∼ 0.15− 0.3, which corresponds to k⊥di ∼ 20− 40, in good agreement both with the

expected prevalent wavelength of the electromagnetic LHDI mode, k⊥ ∼ 1/
√
rire ∼ 20di,

and with the position of the δBz spectral break at low simulated time, k⊥di ∼ 30. Fig-

ure 14 thus accounts for the closer coupling between black and blue lines at intermediate

wavenumbers in Figure 11. Conversely, it explains the poorer coupling at earlier times and,

as a consequence, the presence of a break in the power spectra of δBz at times when the EM

LHDI component has not fully developed yet (see Section III B). Figure 15 highlights the

ion response to electromagnetic electric field fluctuations at a later time, Ωcit = 10.88. Panel

(a) and (b) are Ex,EM and the drift velocity of the background ion, Vy,ion,BG. At this time,

large kink fluctuations have formed in both Ex,EM and Ey,EM . The electromagnetic LHDI

fluctuations are still visible in correspondence of the kinked neutral layer as dents embedded

in the larger structures. The electron current (not shown here) reacts very similarly to

Figure 14, showing a response to both the electromagnetic and electrostatic LHDI fields.

It does not react to the electromagnetic fluctuation generated by the kinking instability.

Instead, Vy,ion,BG = (EEM × B)/|B|. The fact that only the background ions respond to

the electromagnetic oscillations hints to a ion-ion drift instability (IIDI) rather than to an

(electron-ion) drift kink instability49,50. The kxdi vs kydi spectrum of the total ion current

in the y direction, Jy,ion, is examined. The CG (the refined grid k resolution is too low for

wavelengths this long) 2D spectrum of Jy,ion at time Ωcit = 10.88 shows increased power

in a wavenumber range ending with kxdi ∼ 2. The expected wavenumber for the IIDI is

kxLH ∼ 1, which corresponds to kxdi ∼ 1.9 here, where LH/di = 0.53.

Figure 10 and 13 confirm the observations of Norgren et al. 1 regarding magnetic and

electric field fluctuation coupling through the perpendicular electron current in correspon-

dence of the fast, high wavenumber branch of the LHDI instability. Figure 11, 12, 14 and 15

hint at the possibility of extending the coupling to the wavenumbers corresponding to the

slower LHDI branch. The mediator for the coupling is in both cases the in plane electron

current. In the next Section, this possibility of E⊥/δBz coupling at lower wavenumber is
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FIG. 14. Signature of the development of the low-wavenumber, mostly electromagnetic LHDI

branch, mode ”B”, in Jy,el (panel a), Bz (panel b) and EEM,y (panel c) at time Ωcit = 5.44 and

27.5 < x/di < 29.5, 43 < y/di < 47 in the Refined Grid of the MLMD simulation with RF = 8.

The traces in EEM,y correspond to k⊥di ∼ 20 − 40, with k⊥ ∼ 1/
√
rire ∼ 20di the wavenumber

expected from Daughton 36 for the mostly electromagnetic LHDI branch developing at the center

of the current sheet.

verified though Cluster observations.
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FIG. 15. Signature of the development of an electromagnetic kinking mode, mode ”C”, in Ex,EM

(panel a) and in the drift velocity of the background ions, Vy,ion,BG, (panel b) at time Ωcit = 10.88

and 27.5 < x/di < 29.5, 43 < y/di < 47 in the RG of the MLMD simulation with RF = 8. The

ion current spectrum shows a peak at kxdi ≤ 2. The expected wavenumber for the IIDI from

Karimabadi et al. 49 is kxLH ∼ 1, which corresponds to kxdi ∼ 1.9 here, where LH/di = 0.53.

IV. CLUSTER SPACECRAFT OBSERVATIONS

In Norgren et al. 1 , coupling between electric and magnetic field oscillations is demon-

strated at the small wavelengths associated with the mostly electrostatic LHDI branch. In

this Section, the same methodology illustrated in Norgren et al. 1 is used on different data

intervals. We demonstrate here coupling between electric and magnetic field oscillations

at both the high wavenumbers associated with the mostly electrostatic LHDI branch (as

already done in Norgren et al. 1) and at the lower wavenumbers associated with the mostly

electromagnetic LHDI branch. The latter part is shown here for the first time and confirms

the simulation results: when both LHDI branches are present, as in Figure 12, the coupling

between magnetic and electric field oscillations already demonstrated in Cluster data at

high wavenumbers is present over the entire LHDI unstable spectrum.

Data from September 2, 2007, are presented, when Cluster 3 was located in the magne-

totail at [−10 − 3 3] Earth radii in geocentric solar magnetospheric (GSM) coordinates

and encountered the plasma sheet boundary layer and an earthward going ion jet (Figure

16, panel a, b and c). Here and in all the following occurrences, three values enclosed in

square brackets indicate the three spatial components in the GSM coordinate system. At

the time investigated here, both the magnetic field (Figure 16, panel a) and the electric
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field (Figure 16, panel c) show wave activity around ΩLH . The waves observed during the

interval marked with a thick yellow line in Figures 16, panel a, b and c, are investigated in

detail. During this time interval, ρ = 0.45 cm−3, B0 = 32 nT, Te = 1.8 keV and Ti = 5.8

keV. The associated physical lengths are di = 142 km, ri = 242 km, and re = 3.4 km. As

already in Norgren et al. 1 , which is referenced for further details on the methodology, the

phase velocities perpendicular to B and subsequent length scales are obtained by finding

the best match between ΦδE⊥ (Equation 3) and ΦδB|| (Equation 7). Recalling the derivation

in Section III B, one can notice that the best match is subject to the choice of a particu-

lar perpendicular wave vector: at the end of the matching procedure, we will obtain the

wavenumber at which electric and magnetic field oscillations match best for oscillations

at a particular frequency. To investigate different time and length scales, E and B are

highpass-filtered at two different frequencies.

Figure 16, panel d, shows the potentials ΦδE⊥ (red) and ΦδB‖ (orange) obtained for

ω > 0.1ΩLH . The potentials show excellent agreement at the phase speed vph = 430 ×

[0.61 − 0.41 − 0.68]GSM km/s. The wavelength of best match is about 150 km (see axis

on top of panel), corresponding to 5.5
√
reri, which is in good agreement with the expected

length scales of the more slowly growing modes of the LHDI. The ratio between the maximum

electric and magnetic fields is δEmax/δBmax = 0.06c: the mode is mostly electromagnetic.

In short: we have filtered the signal at frequencies corresponding to those of the slow, elec-

tromagnetic LHDI branch. We have found excellent coupling between electric and magnetic

field oscillations at a wavenumber which corresponds to the expected wavenumber of the

electromagnetic LHDI branch. The δEmax/δBmax ratio shows that the mode is electro-

magnetic in nature. Hence, we have verified electric and magnetic field oscillation coupling

of the electromagnetic LHDI mode. Now, we search for evidence of the coupling for the

electrostatic branch as well. To do that, the filtering is done at the appropriate, higher fre-

quency of ω > 0.5ΩLH . Figure 16, panel e, shows the electrostatic potentials obtained after

the filtering. It shows excellent agreement for most part of the time interval at a slightly

lower phase speed vph = 320× [0.63 − 0.48 − 0.61]GSM km/s. The wavelength is about 24

km, corresponding to 7re. This wavelength is in good agreement with the expected length

scales for the more rapidly growing modes of the LHDI. For these shorter wavelengths the

magnetic field is relatively weaker, δEmax/δBmax = 0.29c, than for the long wavelengths.

In this case, with the filtering done at the higher frequencies associated to the electrostatic
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LHDI branch, the wavelength of best match is found to be indeed the one expected for the

fast LHDI branch. Also, the δEmax/δBmax ratio confirms that the oscillations are electro-

static in nature: we have verified that, in the Cluster data interval of interest, both the

electrostatic and the electromagnetic LHDI oscillations are present and that, in both cases,

the coupling between electric and magnetic field oscillation, at the respective wavenumbers,

is remarkable.

Figure 17 further demonstrates oscillation coupling over a large wavenumber range .

Panel a shows the power spectra of ΦB‖ and ΦE⊥ , as a function of the normalised per-

pendicular wavenumber k⊥di, obtained during the time interval in between the sharpest

gradients in the magnetic field: 15 : 47 : 05 − 15 : 48 : 10. To calculate the spectra of ΦB‖ ,

local values for the density and ambient magnetic field are used. To calculate the spectra of

ΦE⊥ , the electric field is integrated in Fourier space: E ·vph/ω, using a single phase velocity

vph = 430× [0.61 − 0.41 − 0.68]GSM km/s (as in Figure 16, fourth d). Variations in vph in

time, or between different length and time scales (as seen between panel d and e of Figure

16) may introduce some errors in the spectra of ΦE⊥ which are not taken into account here.

The spectra of ΦB‖ and ΦE⊥ show good correlation along the major range of wavenumbers

depicted, from kri ∼ 1 (green line) through k
√
reri ∼ 1 (purple line) and beyond kre ∼ 1

(blue line), indicating that the phase velocity used can at least be considered representative

for the major part of the wavenumber interval.

From the present set of observational data, it is not possible to determine if and at what

high wavenumber the coupling between ΦE⊥ and ΦB‖ breaks down. The higher end of the

spectra is limited due to the sampling frequency, fs = 450 Hz, of E and B and the noise

level of the magnetic field instrument.

The good correlation between the spectra of ΦE⊥ and ΦB‖ over this wavenumber range is

expected from the investigation in Section III B in presence of both LHDI branches.

Figure 17, panel b, shows the power spectra of the parallel magnetic field (orange line, left

axis) and of the perpendicular electric field (red line, right axis) below and above k⊥re ∼ 1,

when the slopes change. No slope change is observed at k⊥
√
rire ∼ 1, confirming that both

fast and slow LHDI branches are present. Consistently, the slope values pre-breaks, -0.63

and -2.63 for the electric and magnetic field respectively, are compatible (albeit loosely) with

times, in Table III and IV, when the slow LHDI branch has already developed.
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V. CONCLUSIONS

Fluctuations in the electric and magnetic fields in the terrestrial magnetotail due to the

Lower Hybrid Drift Instability are studied with realistic mass ratio fully kinetic simulations

performed with the semi-implicit adaptive Multi-Level Multi-Domain method. The MLMD

method (recapped in Section II) is used as a way to reduce the cost of PIC simulations

without compromising on resolution, domain size or value of the physical parameters. Also,

it is used as a cheap tool for convergence studies. It is particularly needed in cases, such as

turbulence studies, where spectra are a key investigation method: the PIC approach in fact

introduces numerical artefact in the high wavenumber part of the spectrum.

In Section III, realistic mass ratio MLMD simulations of LHDI instability are shown. Differ-

ent jumps in the spatial resolution between the coarse and refined MLMD grids (Refinement

Factor, RF ) are used. Simulations with different RF s are compared for validation purposes:

physical processes are independent of the grid resolution. In Section III A, a critical result

for the applicability of the MLMD method to turbulence simulations is shown. RG spectra

are compared with those of a single grid simulation with comparable parameters. It is shown

that the MLMD CG drives the RG spectra in the wavenumber range of overlap to values

similar to CG values. Single grid simulations are instead not able to develop those low k

modes independently.

In Section III B a”mixed grid spectrum” is used for the computation of the slope of the

power spectra of Ex and δBz. The mixed grid spectra depicted in Figure 6, 8 and 9 in

Section III B offer the possibility of commenting more extensively on the use of the MLMD

method for turbulence simulations. Three areas can be identified in Figure 6, 8 and 9: a

k⊥ region simulated only by the coarse grid (region 1), one simulated by both the coarse

and the refined grid (region 2), one simulated only by the refined grid (region 3). The k

interval affected by numerical artefacts is neglected in the present discussion. A “successful”

simulation of turbulence with the MLMD method should be able to correctly simulate the

energy transfer between a driver located in region 1 in k space and a sink located in region

3. Region 2, simulated both by the coarse and the refined grid, is essential to achieve this

result. The high wavenumber part of RG spectra in region 2 is not directly forced by the

CG, but develops naturally as a result of RG evolution. Having the CG and RG spectra

superimpose there (as it happens in Figure 6, 8 and 9) means that the boundary condition
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forcing from the CG to the RG is sufficient to initiate the energy cascade in the RG, which

is now simulating it independently and consistently with the CG solution. If CG and RG

spectra superimpose at the end of region 2 (meaning, just before the “invalid” CG area), it

is reasonable to expect that the energy cascade will continue without major method-induced

problems in the region simulated only by the CG.

A break at k⊥di ∼ 30 in the slope of the power spectra of δBz is observed in the mixed grid

spectra at times when the slower electromagnetic branch of the LHDI has not developed

yet. The relation between the fluctuations of the perpendicular electric field and those of the

magnetic field observed by Norgren et al. 1 in LHDI waves in the terrestrial magnetotail is

applied to the simulation data. It is concluded that the spectral break is related to the lack

of coupling between electric field and magnetic field fluctuations, at early simulated times

(Ωcit < 5.44), in the intermediate and low wavenumber range. High, intermediate and low

wavenumber ranges are defined as the ranges where the electrostatic LHDI, electromagnetic

LHDI and kink instability are respectively dominant. Since Norgren et al. 1 identifies in the

perpendicular current the coupling agent between electric and magnetic field fluctuations,

the spatial structure of the y component of the current is studied in Section III C. It is

indeed verified that coupling is achieved, at certain wavenumbers, when the in-plane current

responds to the electric field fluctuations at that scale. Coupling in the high wavenumber

(electrostatic LHDI) range is observed immediately because the electron current immedi-

ately responds to the short wavelength LHDI fluctuations. Intermediate range coupling

is obtained when the electron current fluctuates at the scales dictated by the electromag-

netic LHDI traces which are visible in the centre of the current sheet from approximately

Ωcit > 5.44 onwards. Cluster observations confirm the coupling of electric and magnetic field

oscillations over the entire LHDI wavenumber range, in cases when both the electrostatic

and the electromagnetic LHDI branches have developed.

Appendix A GRID RELATED EFFECTS ON POWER SPECTRA: FIELD

SMOOTHING

It will be examined now how the spectral structures identified in Section III A in the ”non

reliable” wavenumber range, k⊥ > ksup, are related to the use of field smoothing.

Field smoothing is used to curb the numerical noise in PIC simulations and to contrast the
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development of numerical instabilities84–86. It removes energy from the higher frequencies

and wave numbers through what can be described, at the simplest level, as an averaging

routine: the value of a field at a grid point is obtained by averaging the pre-smoothing values

of its nearest neighbors. The averaging routine is applied, in the code used in this study, to

the variables (electric field at the previous time step, particle moments) used in the Right

Hand Side of the equation solved for the time-updated value of the electric field, Eq. 26

in Innocenti et al. 33 . Since smoothing affects the higher wavenumber range and is related

to the spatial resolution, it is a primary candidate to explain the origin of the numerical

artefacts observed in the k⊥ > ksup part of the numerical spectra.

Different levels of smoothing may be used in a simulation, i.e. the smoothing routine may

be applied a different number of times per cycle. In the simulations analyzed in the previous

Sections, a smoothing level of Sm = 5 is used. Now, the spectra of single level simulations

where different levels of smoothing are used will be compared. The single level simulations

have parameters corresponding to the Coarse Grids of the MLMD simulation examined in

Section III.

Figure A18 shows the numerical power spectra at different times of δBz and of Ex as a

function of the perpendicular wavenumber for a simulation with smoothing level Sm = 5.

The times represented are Ωcit = 0.272 (black line), Ωcit = 2.72 (cyan), Ωcit = 5.44 (red),

Ωcit = 8.16 (green), Ωcit = 10.88 (blue) and Ωcit = 13.6 (yellow). The black dash-dotted

line represents the spectra at a very early time, Ωcit = 0.01, before the development of

the instabilities. It can therefore be used as a proxy for the noise level in the simulations.

The increase in time of the power spectra of δBz and Ex in the reliable wavenumber range,

k⊥di < ksupdi = 10 (see Table I), is due the development of the low-wavenumber LHDI

branches and of ion ion kink modes49,50 not suppressed by the realistic mass ratio. Fig-

ure A19 shows a simulation performed with the same initial conditions of Figure A18, but

with a different level of smoothing, Sm = 3. The high wavenumber structure in the electric

field spectra is qualitatively very similar to the one observed in Figure A18, but it is pushed

to higher wavenumbers evidently by the use of a reduced level of smoothing. The location

of the knee in Ex, red vertical line, shifts from k⊥ di ∼ 16 with Sm = 5 to k⊥ di ∼ 19

with Sm = 3. The location of the plateau, green vertical line, moves from k⊥ di ∼ 23 with

Sm = 5 to k⊥ di ∼ 29 with Sm = 3. Also, as expected84,86, the value of the plateau is higher

when a reduced level of smoothing is used.
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In the simulation depicted in Figure A20, no smoothing is used. The most immediate con-

sequence is the increase in power of the electric field component of the spectra, Figure A20,

bottom panel. Secondarily, the structures in Ex have disappeared and can therefore be

rather confidently related to smoothing. However, even if the artefacts more directly related

to the electric field signatures (red and green vertical lines in Figure A18 and Figure A19)

have been levelled off, the change in slope in the spectra of δBz in correspondence of the

blue vertical line, k⊥di ∼ 10, has survived the absence of smoothing: it is evidently related

to grid effects other than smoothing. The relation of this structure to the spatial resolution

has been explored in Section III A.

The absence of smoothing has very negative impact on energy conservation. Cohen et al. 87

remarks on the importance of smoothing for energy conservation especially when the algo-

rithm is semi-implicit. For this reason, smoothing is retained notwithstanding its correlation

with the appearance of numerical artefacts in the Ex spectra.
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54J. Büchner and W. Daughton, “Role of current-aligned instabilities in reconnection,” in

Reconnection of Magnetic Fields: Magnetohydrodynamics, Collisionless Theory and Ob-

41



servations (Cambridge University Press, 2007) pp. 144–153.

55M. E. Innocenti and G. Lapenta, “Momentum creation by drift instabilities in space and

laboratory plasmas,” Plasma Physics and Controlled Fusion 49, B521 (2007).

56J. Büchner and N. Elkina, “Vlasov code simulation of anomalous resistivity,” Space science

reviews 121, 237–252 (2005).

57W. Daughton, G. Lapenta, and P. Ricci, “Nonlinear evolution of the lower-hybrid drift

instability in a current sheet,” Physical review letters 93, 105004 (2004).

58A. Divin, Y. V. Khotyaintsev, A. Vaivads, M. André, S. Markidis, and G. Lapenta, “Evo-
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FIG. 16. Lower hybrid waves observed by Cluster 3 in the plasma sheet boundary layer. (a)

Magnetic field. (b) Ion velocity. (c) Electric field. (d-e) The electrostatic potential obtained inde-

pendently from the electric field and the magnetic field, respectively. The magnetic field strength

is shown on the right hand axis. The fields are highpass filtered at (d) 0.1ΩLH (giving vph =

430×[0.61 − 0.41 − 0.68]GSM km/s) and (e) 0.5ΩLH (giving vph = 320×[0.63 − 0.48 − 0.61]GSM

km/s) in order to seperate different length scales, which are shown on top of respective panel. For

reference, di, ri,
√
reri, and re are depicted in either panel.
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FIG. 17. Power spectra of ΦB‖ (orange) and ΦE⊥ (red) (panel a) and of the B‖ (orange, left

axis) and E⊥ (red, right axis) (panel b) as a function of k⊥di, calculated for the time interval

15 : 47 : 05 − 15 : 48 : 10. The green, purple and light blue lines mark k⊥ri = 1, k⊥
√
reri = 1

k⊥re = 1, respectively. The calculated slopes for the spectra are superimposed in panel b.
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FIG. A18. Numerical power spectra of the fluctuations of the Bz (δBz, top panel) and of the Ex

(bottom panel) field components as a function of k⊥, oriented at θ = 45◦ in the kx vs. ky plane,

at the times Ωcit = 0.272 (black line), Ωcit = 2.72 (cyan), Ωcit = 5.44 (red), Ωcit = 8.16 (green),

Ωcit = 10.88 (blue) and Ωcit = 13.6 (yellow). A smoothing level Sm = 5 is used in this simulation.

The blue, red and green vertical lines at k⊥di = 10, k⊥di = 16 and k⊥di = 23 mark the occurrence

of structures in the δBz and Ex power spectra. The black dash-dotted lines are the spectral values

at a time, Ωcit = 0.01, prior to the development of the different instabilities i.e. they can be used

to assess noise levels.
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FIG. A19. Numerical power spectra of the fluctuations of the Bz (δBz, top panel) and of the Ex

(bottom panel) field components as a function of k⊥, oriented at θ = 45◦ in the kx vs. ky plane,

at the times Ωcit = 0.272 (black line), Ωcit = 2.72 (cyan), Ωcit = 5.44 (red), Ωcit = 8.16 (green),

Ωcit = 10.88 (blue) and Ωcit = 13.6 (yellow). A smoothing level Sm = 3 is used in this simulation.

The blue, red and green vertical lines at k⊥di = 10, k⊥di = 19 and k⊥di = 29 mark the occurrence

of structures in the δBz and Ex power spectra.

FIG. A20. Numerical power spectra of the fluctuations of the Bz (δBz, top panel) and of the Ex

(bottom panel) field components as a function of k⊥, oriented at θ = 45◦ in the kx vs. ky plane,

at the times Ωcit = 0.272 (black line), Ωcit = 2.72 (cyan), Ωcit = 5.44 (red), Ωcit = 8.16 (green),

Ωcit = 10.88 (blue) and Ωcit = 13.6 (yellow). No smoothing is used in this simulation. The blue

vertical lines at k⊥di = 10 marks the occurrence of a structure in the δBz power spectra.
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