
Post-print version of paper published in https://doi.org/10.1016/j.ijfoodmicro.2016.06.011. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

 

 

 

This document contains the post-print pdf-version of the referred paper: 

 

“Introducing a novel interaction model structure for the combined effect of 

temperature and pH on the microbial growth rate” 

 

by Simen Akkermans, Estefanía Noriega Fernandez, Filip Logist,  

Jan F. Van Impe 
 

which has been archived on the university repository Lirias of the KU Leuven 

(https://lirias.kuleuven.be/).  

 

The content is identical to the content of the published paper, but without the final 

typesetting by the publisher. 

 

When referring to this work, please cite the full bibliographic info: 

 

Akkermans, S., Noriega Fernandez, E., Logist, F., Van Impe, J.F., 2018. Introducing a 

novel interaction model structure for the combined effect of temperature and pH on 

the microbial growth rate. International Journal of Food Microbiology 240: 85-96. 

 

The journal and the original published paper can be found at: 

https://doi.org/10.1016/j.ijfoodmicro.2016.06.011 

 

The corresponding author can be contacted for additional info. 

 

Conditions for open access are available at: http://www.sherpa.ac.uk/romeo/ 

  

https://doi.org/10.1016/j.ijfoodmicro.2016.06.011
https://lirias.kuleuven.be/
https://doi.org/10.1016/j.ijfoodmicro.2016.06.011


Post-print version of paper published in https://doi.org/10.1016/j.ijfoodmicro.2016.06.011. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

2 

 



Introducing a novel interaction model structure for the 

combined effect of temperature and pH on the microbial 

growth rate 

 

Simen Akkermans, Estefanía Noriega Fernandez, Filip Logist, Jan F. Van Impe 

BioTeC, Chemical and Biochemical Process Technology and Control, 

Department of Chemical Engineering, KU Leuven, Ghent, Belgium, 

OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium, 

CPMF2
, Flemish Cluster Predictive Microbiology in Foods - www.cpmf2.be 

 

[simen.akkermans, jan.vanimpe] @cit.kuleuven.be 

 

 

 

Correspondence to: 

Prof. J. F. Van Impe 

Chemical and Biochemical Process Technology and Control (BioTeC) 

Department of Chemical Engineering, KU Leuven 

Gebroeders de Smetstraat 1, B-9000 Ghent (Belgium) 

jan.vanimpe@cit.kuleuven.be 

Tel: +32-16-32.14.66 

Fax: +32-9-265.86.24 

https://doi.org/10.1016/j.ijfoodmicro.2016.06.011


Post-print version of paper published in https://doi.org/10.1016/j.ijfoodmicro.2016.06.011. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

1 ABSTRACT 1 

Efficient modelling of the microbial growth rate can be performed by combining the 2 

effects of individual conditions in a multiplicative way, known as the gamma concept. 3 

However, several studies have illustrated that interactions between different effects 4 

should be taken into account at stressing environmental conditions to achieve a more 5 

accurate description of the growth rate. 6 

In this research, a novel approach for modeling the interactions between the effects of 7 

environmental conditions on the microbial growth rate is introduced. As a case study, 8 

the effect of temperature and pH on the growth rate of Escherichia coli K12 is modeled, 9 

based on a set of computer controlled bioreactor experiments performed under static 10 

environmental conditions. The models compared in this case study are the gamma 11 

model, the model of Augustin and Carlier (2000), the model of Le Marc et al. (2002) 12 

and the novel multiplicative interaction model developed in this paper. This novel 13 

model enables the separate identification of interactions between the effects of two (or 14 

more) environmental conditions. The comparison of these models focuses on the 15 

accuracy, interpretability and compatibility with efficient modeling approaches. 16 

Moreover, for the separate effects of temperature and pH, new cardinal parameter 17 

model structures are proposed.  18 

The novel interaction model contributes to a generic modeling approach, resulting in 19 

predictive models that are (i) accurate, (ii) easily identifiable with a limited work load, 20 

(iii) modular, and (iv) biologically interpretable. 21 

 22 

Keywords: Microbial growth rate; cardinal parameter model; environmental 23 

conditions; predictive microbiology. 24 

25 
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1 INTRODUCTION  26 

Combining different preservation factors to ensure microbial food safety and stability 27 

is a strategy that facilitates the production of foods with high sensory and nutritional 28 

quality (Leistner, 2000). However, building predictive models that accurately predict 29 

the growth rate at such stressing conditions has been found to be difficult. Membré and 30 

Lambert (2008) demonstrated that large deviations exist between predictions of the 31 

growth of Listeria monocytogenes obtained with different simulation packages when 32 

combining a stressing temperature, pH and water activity.  33 

One of the most widely adopted methods to model the combined effect of 34 

environmental conditions (such as temperature T and pH) on the microbial specific 35 

growth rate relies on the gamma hypothesis (McMeekin et al. 1987; Zwietering et al. 36 

1993). This hypothesis assumes that each of the environmental conditions has an 37 

independent effect on the reduction of the growth rate. Models built according to this 38 

hypothesis are composed of a multiplication of factors, each of which represents the 39 

influence of one of the environmental conditions on the growth rate. If this hypothesis 40 

is valid, models for the combined effect of environmental conditions on the growth rate 41 

can be built by only studying the separate effects of the environmental conditions.  42 

This makes the gamma hypothesis very attractive because the experimental load 43 

required to study the individual effects is much less than the experimental load required 44 

to study the combined effect. Many studies also reported a good prediction quality when 45 

using the gamma concept (te Giffel, 1999; Pinon et al., 2004; Lambert and Biblas, 2007; 46 

Biblas and Lambert 2008; Leroi et al., 2012; Wijtzes et al., 2001). Additionally, the 47 

gamma models are compatible with the cardinal parameter models (Rosso et al., 1995; 48 

Ross and McMeekin, 2003), which contain biologically interpretable parameters, 49 

making them easy to use. 50 

https://doi.org/10.1016/j.ijfoodmicro.2016.06.011


Post-print version of paper published in https://doi.org/10.1016/j.ijfoodmicro.2016.06.011. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

5 

However, studies focusing on (combinations of) stressing environmental conditions 51 

revealed deviations from the gamma hypothesis. Publications in the domain of 52 

predictive microbiology often refer to these deviations as interactions. It should be 53 

noted that the gamma models, by construction, already contain interactions in the 54 

conventional sense of additive interactions. Indeed, when multiplying out the factors 55 

of a gamma model, terms (like T ∙ pH) will be found reflecting the combined effects of 56 

environmental conditions on the growth rate. The definition used for interactions in this 57 

paper is therefore one of so-called multiplicative interactions, i.e., those effects that 58 

cannot be found by only studying the separate effects of environmental conditions.  59 

To account for such deviations from the gamma hypothesis, Augustin and Carlier 60 

(2000) integrated the calculation of the growth boundaries into a gamma model for 61 

L. monocytogenes and observed that this improved the prediction quality. Later, Le 62 

Marc et al. (2002) developed a factor to describe interactions between the effects of 63 

temperature, pH and organic acids on the growth rate of L. monocytogenes. This 64 

interaction factor was also inspired by the growth/no growth boundaries. Recently, 65 

Baka et al. (2013) demonstrated that the gamma concept is inadequate when describing 66 

the effect of temperature and pH on the growth rate of E. coli K12. This conclusion was 67 

drawn by illustrating that the parameters of the secondary model for temperature were 68 

dependent on pH. However, no adaptation of the gamma model concept was proposed 69 

in their research yet.  70 

The initial objective of the current research is to demonstrate the need for secondary 71 

models that include multiplicative interactions for the effect of temperature and pH on 72 

the maximum specific growth rate. For this purpose, a dedicated experimental design 73 

is applied to bioreactor experiments with E. coli K12. The second objective, is to 74 

compare different model structures in their ability to describe the combined effect of 75 
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temperature and pH on the growth rate. The considered models are: the gamma model 76 

without interactions, the model of Augustin and Carlier (2000), the model of Le Marc 77 

et al. (2002) and a novel multiplicative interaction model. In addition, to describe the 78 

individual effects of temperature and pH in these models, a set of new cardinal 79 

parameter models is developed. 80 

 81 

  82 
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2 MODEL DEVELOPMENT 83 

This section discusses the models that were obtained from literature and the new models 84 

that were developed. Growth curves were described using the primary model of Baranyi 85 

and Roberts (1994). The individual effects of environmental conditions on the 86 

maximum specific growth rate were modeled using cardinal parameter models. The 87 

advantage of this type of models compared to the square-root-type models (e.g., 88 

Ratkowsky et al., 1983) is that these only use biologically interpretable parameters. The 89 

parameters of these models represent the growth limits and the optimal conditions as 90 

parameters. It should be stressed that these parameters are in fact the theoretical growth 91 

limits and optimal conditions (McMeekin et al., 2013), which are only equal to the real 92 

values if the model describes the exact relationship between the environmental 93 

condition and the growth rate.  94 

 95 

2.1 Primary model 96 

To describe the evolution of the cell density N [CFU/mL] with time t [h], the widely 97 

used primary model of Baranyi and Roberts (1994) was implemented:  98 

dN(t)

dt
=

Q(t)

1+Q(t)
∙ μmax(T, pH) ∙ (1 −

N(t)

Nmax(T,pH)
) ∙ N(t)  (1) 99 

dQ(t)

dt
= μmax(T, pH) ∙ Q(t)  100 

with μmax(T, pH) [h−1] the maximum specific growth rate and Nmax(T, pH) [CFU/mL] 101 

the maximum cell density for a specific temperature (T [°C]) and pH [-]. Q(t) [−] is a 102 

measure for the physiological state of the cells and serves to describe the lag phase of 103 

the growth curve. For computational purposes, N(t) and Q(t) are replaced with their 104 

natural logarithms n(t) [ln(CFU/mL)] and q(t) [−], resulting in (Baranyi and Roberts, 105 

1994): 106 
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dn(t)

dt
=

1

1+exp(−q(t)) 
∙ μmax(T, pH) ∙ [1 − exp(n(t) − nmax(T, pH))]  (2) 107 

dq(t)

dt
= μmax(T, pH)  108 

The initial values of n(t) and q(t) are respectively n0 and q0. 109 

 110 

2.2 Secondary models for independent effects 111 

2.2.1 Temperature effect 112 

CTMI. The individual effect of temperature on the maximum specific growth rate is 113 

often described with the Cardinal Temperature Model with Inflection (CTMI, 114 

 115 

Fig. 1; Rosso et al., 1993). The advantage of this model is that it uses four interpretable 116 

parameters. The minimum temperature Tmin [°C] and the maximum temperature 117 

Tmax [°C] define the range of environmental conditions where growth is possible. The 118 

optimum temperature Topt [°C] is the temperature at which the optimum growth rate 119 

μopt [h−1] is reached. These parameters are combined in the following model structure: 120 

μmax(T) = μopt ∙ γT(T)  (3) 121 

γT(T) =
(T−Tmin)2∙(T−Tmax)

(Topt−Tmin)∙[(Topt−Tmin)∙(T−Topt)−(Topt−Tmax)∙(Topt+Tmin−2T)]
   122 
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with γT(T) the reduction of the growth rate with respect to μopt, due to a non-optimal 123 

temperature.  124 

aCTMI. Le Marc et al. (2002) proposed an adaptation of the CTMI for Listeria strains 125 

(aCTMI,  126 

Fig. 1. This adaptation involves the use of two additional parameters. Above and below 127 

the change temperature Tc [°C] a different mathematical expression is used. T1 [°C] is 128 

the temperature where the equation for temperatures above Tc becomes equal to zero in 129 

the region below Topt. The aCTMI is defined as follows: 130 

μmax(T) = μopt ∙ γT(T)  (4) 131 

T ≥ Tc;  γT(T) =
(T−T1)2∙(T−Tmax)

(Topt−T1)∙[(Topt−T1)∙(T−Topt)−(Topt−Tmax)∙(Topt+T1−2T)]
   132 

T < Tc;  γT(T) =
(Tc−T1)2∙(Tc−Tmax)

(Topt−T1)∙[(Topt−T1)∙(Tc−Topt)−(Topt−Tmax)∙(Topt+T1−2Tc)]
∙ (

T−Tmin

Tc−Tmin
)

2

  133 

Both in the CTMI and in the aCTMI the growth rate is equal to zero for temperatures 134 

below Tmin and above Tmax. 135 

bCTMI. Literature suggests that an alternative to the CTMI (Eq. 3) is needed to 136 

describe the relationship between temperature and the maximum specific growth rate 137 

of E. coli K12 at suboptimal temperatures. Based on a large dataset, Van Derlinden and 138 
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Van Impe (2012) demonstrated that a more accurate description of the μmax(T)-139 

relationship is provided by the aCTMI (Eq. 4). This is due to the ability of the aCTMI 140 

to predict higher growth rates at lower temperatures compared to the CTMI when they 141 

predict the same growth rates closer to the optimal temperature. These findings were 142 

further investigated by Stamati et al. (submitted) who implemented advanced optimal 143 

experimental design techniques to discriminate between the CTMI and aCTMI. These 144 

authors concluded that the improvement of the accuracy by using aCTMI was small 145 

compared to the added complexity. The aCTMI does not only contain two additional 146 

parameters but is also a piecewise smooth function with a change point in the 147 

suboptimal range. This makes that the aCTMI is not continuously differentiable and 148 

can therefore cause errors during numerical computations (e.g., solving a differential 149 

equation for microbial growth at dynamic temperatures).  150 

Due to these observations, a new cardinal parameter model is proposed in this 151 

paper to model the μmax(T)-relationship (bCTMI, 152 

 153 

Fig. 1): 154 

μmax(T) = μopt ∙ γT(T)  (5) 155 
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γT(T) =
(T−Tmin)3∙(T−Tmax)2

(Topt−Tmin)∙[(Topt−Tmin)∙(T−Topt)−(Topt−Tmax)∙(Topt+Tmin−2T)]∙[(T−Tmin)∙(T−Tmax)−(T−Topt)
2

]
  156 

Similar to the CTMI, the bCTMI only contains 3 cardinal temperatures as parameters. 157 

For the same parameters, the bCTMI predicts lower growth rates than the CTMI. Hence, 158 

for the same predicted growth rates at near-optimal conditions, the bCTMI predicts 159 

higher growth rates than the CTMI at stressing conditions. Contrary to the aCTMI, the 160 

bCTMI is continuously differentiable. 161 

 162 

2.2.2 pH effect 163 

CPM. Similar to the CTMI for the effect of temperature, Rosso et al. (1995) proposed 164 

a Cardinal pH Model (CPM, Fig. 2) to describe the effect of pH on the microbial growth 165 

rate. Here, the minimum pH, pHmin[−], and the maximum pH, pHmax[−], are the 166 

growth boundaries. pHopt [−] is the pH at which the optimum growth rate μopt [h−1] 167 

is achieved. The CPM is formulated as: 168 

μmax(pH) = μopt ∙ γpH(pH) (6) 169 

γpH(pH) =
(pH−pHmin)∙(pH−pHmax)

(pH−pHmin)∙(pH−pHmax)−(pH−pHopt)
2   170 

In the CPM, the growth rate is equal to zero for pH values below pHmin or above 171 

pHmax. This model structure contains a distinct optimum and has the mirror model 172 

structure for the suboptimal and superoptimal pH range. However, it has been reported 173 

that E. coli species are very sensitive to changes in internal pH in an alkaline 174 

environment and have a good ability to maintain pH homeostasis in the external pH 175 

range of 4.5 to 7.9 (Booth, 1985). This ability translates into a so-called plateau, where 176 

there is little or no change in the growth rate when the external pH changes. This 177 

observed plateau was previously accounted for in the model of Presser et al. (1997) for 178 

E. coli M23, though only in the suboptimal range.   179 
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srCPM. The CPM is easily adapted to obtain a flattened optimum by raising it to the 180 

power 1/κ, with κ larger than or equal to 1: 181 

μmax(pH) = μopt ∙ γpH(pH)  (7) 182 

γpH(pH) = (
(pH−pHmin)∙(pH−pHmax)

(pH−pHmin)∙(pH−pHmax)−(pH−pHopt)
2)

1/κ

  183 

The effect of κ on the model output is illustrated by Fig. 3. In this paper, the value for 184 

κ was set equal to 2 based on the shape of the µmax(pH)-relationship that was found 185 

from the experimental results of Section 4.2, to avoid additional parameters. As such, 186 

this new cardinal pH model is calculated as the square root of the CPM (srCPM, Fig. 187 

2).  188 

aCPM. Another cardinal parameter model is suggested for situations where the 189 

response to a change in pH is structurally different in the suboptimal and superoptimal 190 

pH range. This model structure is obtained by raising the factors for the suboptimal 191 

range to the power η in numerator and denominator: 192 

μmax(pH) = μopt ∙ γpH(pH)  (8) 193 

γpH(pH) = (
(pH−pHmin)η∙(pH−pHmax)

(pH−pHmin)η∙(pH−pHmax)−(pH−pHopt)
2)

1/κ

  194 

Fig. 4 shows the effect of η on the model output. In this research, η and κ were equated 195 

respectively to 2 and 3 to obtain the aCPM (Fig. 2). 196 

 197 

2.3 Secondary models for a combined effect 198 

2.3.1 Existing models 199 

Gamma model. When adopting the hypothesis that the reduction of the growth rate 200 

caused by one environmental condition γEi
(Ei) is independent of the rest of the set of 201 

considered environmental conditions e, the combined effect can be described by a 202 

gamma model (Zwietering et al., 1993): 203 
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μmax(e) = μopt ∙ γE1
(E1) ∙ γE2

(E2) ∙ γE3
(E3) ∙ …  (9) 204 

Applying the gamma hypothesis to the case study of temperature and pH results in the 205 

following expression: 206 

μmax(T, pH) = μopt ∙ γT(T) ∙ γpH(pH)  (10) 207 

 208 

Model of Augustin and Carlier (2000). Augustin and Carlier (2000) included the 209 

influence of environmental conditions on the growth limits into the gamma model by 210 

describing the effect of these conditions on the minimum cardinal parameters. 211 

According to this model, the growth limits with respect to temperature and pH are 212 

interrelated as follows: 213 

[
Topt−Tmin(pH)

Topt−Tmin
]

β

+ [
pHopt−pHmin(T)

pHopt−pHmin
]

β 

= 1  (11) 214 

where pHmin(T) is the minimum growth pH at a specific temperature and Tmin(pH) is 215 

the minimum growth temperature at a specific pH. β is a shape parameter related to the 216 

extent of the interactions and should be larger than or equal to 1. Very large positive 217 

values of β represent a situation of limited interactions and values close to 1 indicate 218 

extensive interactions. The effect of the parameter β on the growth limits in the 219 

suboptimal range of temperature and pH is illustrated by Fig. 5. Augustin and Carlier 220 

(2000) rather arbitrarily set the value of β equal to 3, based on a set of published 221 

growth/no growth data. In this research, β was estimated to obtain the best possible fit 222 

of growth data at combinations of stressing temperatures and pH values. 223 

In this model, the gamma factors describing the effects of temperature and pH become 224 

also dependent on pH and temperature: 225 

μmax(T, pH) = μopt ∙ γT(T, pH) ∙ γpH(pH, T)  (12) 226 

 227 
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Model of Le Marc et al. (2002). The model of Le Marc et al. (2002) was built using 228 

only kinetic data and aimed to predict the interactions at the growth boundaries. This is 229 

in contrast with the approach of Augustin and Carlier (2000), which aimed at improving 230 

the prediction of the growth rate by including information on the growth boundaries. 231 

To this end, the model of Le Marc et al. (2002) used an interaction factor. This model 232 

included the effect of temperature, pH and organic acid concentrations on the growth 233 

kinetics of Listeria. For the present research, the model was simplified since only the 234 

effects of temperature and pH were assessed: 235 

μmax(T, pH) = μopt ∙ γ(T, pH) = μopt ∙ γT(T) ∙ γpH(pH) ∙ γi(T, pH) (13) 236 

{

γi(T, pH) = 1,                                  if   ξ(T, pH) ≤  δ

γi(T, pH) = 2 ∙ (1 − ξ(T, pH)),   if   ξ(T, pH) <  1

γi(T, pH) = 0,                                  if   ξ(T, pH) ≥  1

  237 

ξ(T, pH) =
1

2
∙ (

φT(T)

1−φpH(pH)
 + 

φpH(pH)

1−φT(T)
)  238 

φT(T) = (1 − √γT(T))
2

  239 

φpH(pH) = (1 − γpH(pH))
2

  240 

In this model γi(T, pH) is an interaction factor. The parameter δ was set equal to 1/2 241 

based on theoretical assumptions in the original publication. Fig. 6 illustrates the 242 

calculation of the gamma factor γ(T, pH) in the model of Le Marc et al. (2002).  Both 243 

Eq. 13 and Fig. 6 demonstrate that the model distinguishes between three regions of 244 

environmental conditions: (i) the growth rate can be derived from the independent 245 

effects, (ii) the growth rate is smaller than predicted from the independent effects, and 246 

(iii) the combination of stressing conditions prevents growth altogether.  247 

 248 
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2.3.2 Modeling interactions 249 

Before attempting to develop a new model structure that is capable of describing the 250 

combined effect of temperature and pH on the growth rate of E. coli, the requirements 251 

of such a model should be decided upon. A sound model structure is more likely to be 252 

applicable to other microorganisms and/or environmental conditions.  253 

First of all, the model should be structured in such a way that it can be applied in a 254 

sequential modeling approach, i.e., an approach that allows separate identification of 255 

the individual effects and possible interactions. This property of the model structure can 256 

be referred to as modularity. Modularity is very important to obtain a model that is easy 257 

to understand and to enable the use of efficient experimental methods for gathering data 258 

and dedicated numerical methods for the identification of the model parameters. In the 259 

simplest case, the gamma approach results in such a model. This approach allows to 260 

independently determine the effects of temperature and pH and to build a model for the 261 

combined effect afterwards. The models of Augustin and Carlier (2000) and Le Marc 262 

et al. (2002) also satisfy this criterion, since interaction effects are included in such a 263 

way that these models reduce to the gamma model when only one environmental 264 

condition is not optimal. On the other hand, the more general polynomial models, which 265 

are often constructed based on traditional factorial designs, are not compliant with this 266 

criterion.  267 

Secondly, the model structure should be applicable to various situations where the 268 

interactions may be more or less pronounced. The model of Augustin and Carlier (2000) 269 

allows for different extents of interactions by changing the shape parameter of the 270 

growth/no growth interface. The shape parameters can, however, only be linked to the 271 

environmental conditions themselves and not to the effects of a combination of 272 

environmental conditions. The model of Le Marc et al. (2002) contains no parameters 273 
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to change the extent of interactions, but computes these interactions based on the values 274 

of the gamma factors, in a fixed manner.  275 

Thirdly, the model should be parsimonious (Ratkowsky, 1993). This is closely related 276 

to the previous requirement since additional model parameters are needed to make the 277 

interaction model applicable in various situations. The model of Augustin and Carlier 278 

(2000) only requires one additional parameter to specify the extent of the interactions 279 

linked to a certain environmental conditions. The model of Le Marc et al. (2002) 280 

requires no additional parameters with respect to a gamma model, but this is of course 281 

at the expense of the flexibility of the model.  282 

Lastly, it is preferred that the description of the interactions is (biologically) 283 

interpretable. Both the models of Augustin and Carlier (2000) and Le Marc et al. (2002) 284 

link the interactions to the growth/no growth boundary. The description of the model 285 

structure seems less arbitrarily defined in the model structure of Augustin and Carlier 286 

(2000), which is based on the interpretation of the cardinal parameters. The shape 287 

parameter used in this model is not biologically interpretable but should be interpreted 288 

as the extent of the interactions linked to a certain environmental condition. 289 

 290 

2.3.3 Novel interaction model 291 

Based on the requirements of Section 2.3.2, the following general model structure is 292 

proposed: 293 

μmax(e) = μopt ∙ γ(e) = μopt ∙ [∏ γj(Ej)Ej∈e ] ∙ γi(e)  (14) 294 

γi(e) = [1 − (1 − γ1(E1)) ∙ (1 − γ2(E2))]
β1,2

  295 

 ∙ [1 − (1 − γ1(E1)) ∙ (1 − γ3(E3))]β1,3  296 

 ∙ [1 − (1 − γ2(E2)) ∙ (1 − γ3(E3))]
β2,3

∙ …   297 
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 ∙ [1 − (1 − γ1(E1)) ∙ (1 − γ2(E2)) ∙ (1 − γ3(E3))]β1,2,3 ∙ … 298 

with e the set of environmental conditions considered and β1,2 the shape parameter that 299 

expresses the extent of the interactions between the effects of the environmental 300 

conditions E1 and E2. If β is equal to zero, no interactions are present between the 301 

corresponding environmental conditions. Large positive values of β coincide with 302 

strong interactions. Eq. 14 also demonstrates that interactions between the effects of 303 

more than two environmental conditions can easily be described. For the case study 304 

with temperature and pH, the model is written as: 305 

μmax(T, pH) = μopt ∙ γ(T, pH) = μopt ∙ γT(T) ∙ γpH(pH) ∙ γi(T, pH)  (15) 306 

γi(T, pH) = [1 − (1 − γT(T)) ∙ (1 − γpH(pH))]
β
  307 

The proposed model structure, which is illustrated in Fig. 7, is applicable in a sequential 308 

modeling approach. It is possible to study the effect of temperature independently from 309 

the pH effect by working at an optimal pH, since both γpH(pH) and γi(T, pH) would 310 

be equal to 1, and vice versa. The model is also reduces to a model without interactions 311 

if the parameter β is found to be equal to 0. After identifying the independent effects of 312 

temperature and pH, β is estimated in order to obtain an accurate estimate of the 313 

combined effect.  314 

The general model structure (Eq. 14) allows the modeler to define different interactions 315 

between specific sets of conditions by using different shape parameters. This is in 316 

contrast with the gamma model, the model of Le Marc et al. (2002) and even the model 317 

of Augustin and Carlier (2000). The shape parameters lack biological interpretation but 318 

can be interpreted as a measure for the extent of interactions between the effects of a 319 

specific set of environmental conditions.  320 

  321 
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3 MATERIALS AND METHODS 322 

The mathematical models described in the experimental and computational methods 323 

that were applied in this research.  324 

 325 

3.1 Experimental methods 326 

3.1.1 Microorganisms and inoculum preparation 327 

E. coli K12 MG1655 (CGSC#6300) was obtained from the E. coli Genetic Stock Center 328 

at Yale University. A stock culture was stored at -80°C in Brain Hearth Infusion broth 329 

(BHI, Oxoid), supplemented with 20% (w/v) glycerol (Acros Organics). The inoculum 330 

was prepared in a three step procedure: (i) a loopful of stock culture was spread onto a 331 

BHI agar plate (BHIA, BHI supplemented with 14 g/L technical agar nr. 3, Oxoid) and 332 

incubated overnight at 37°C. (ii) Then, a single colony was transferred into a 50 mL 333 

Erlenmeyer containing 20 mL BHI and stored at 37°C for 9 h. (iii) Finally, 20 µL of 334 

the stationary phase culture was inoculated into 20 mL fresh BHI and incubated at 37°C 335 

for 15 h before inoculation. 336 

 337 

3.1.2 Bioreactor experiments 338 

Experiments were performed in a set of bioreactors (BioStat B, Sartorius Stedim 339 

GmbH). The reactor vessels were filled with 3.5 L of BHI. Temperature was measured 340 

with a PT100 resistance temperature detector. A circulation chiller enabled temperature 341 

control below room temperature. pH measurement was performed with a gel-filled pH 342 

electrode (Hamilton Company) and the measurement was corrected for temperature. 343 

pH was controlled by addition of acid (1 N H2SO4, Sigma-Aldrich) or base (1 N KOH, 344 

Thermo Fisher Scientific) by a PID controller. The bioreactor was aerated at 0.2 345 

L/min after autoclaving and the oxygen concentration was controlled at the stabilized 346 
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oxygen level during the experiment. The reactor content was stirred at 75 rpm with 347 

Rushton impellers. To avoid foaming, 500 µL of an antifoaming agent (Y-30 emulsion, 348 

Sigma-Aldrich) was added prior to every experiment. 349 

 350 

3.1.3 Sampling and microbiological analysis 351 

Depending on the specific experimental conditions, a sample was taken from the 352 

bioreactor every hour or every two hours during daytime. The appropriate dilutions 353 

were made in BHI and 49.2 µL of sample was plated onto BHIA plates, in triplicate, 354 

using a spiral plater (Eddy Jet, IUL Instruments s.a.). These plates were incubated at 355 

37°C for about 15 h and then colonies were counted to obtain viable cell numbers 356 

(CFU/mL). The average over the three plates was used as the measured cell density of 357 

a sample. Experiments lasted between 12 and 200 h, depending on the growth rate.  358 

 359 

3.2 Experimental design 360 

The experimental design is represented in Fig. 8. Firstly, the effects of temperature and 361 

pH on the maximum specific growth rate were investigated separately. In these 362 

experiments, all but one environmental condition were kept close to optimal. The effect 363 

of temperature was studied at a pH of 7.50 (Dataset 1, 12 experiments) and the effect 364 

of pH at a temperature of 37.0°C (Dataset 2, 17 experiments). Secondly, experiments 365 

were performed at conditions that were suboptimal for both temperature and pH 366 

(Dataset 3, 8 experiments). Experiments focused on suboptimal conditions because 367 

these are more relevant to the food industry than superoptimal conditions. Lastly, a set 368 

of four validation experiments was performed (Dataset 4, 4 experiments). Fig. 8 also 369 

shows the environmental conditions where replicates were performed.  370 

 371 
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3.3 Parameter estimation and confidence intervals 372 

Parameter estimations of the secondary models were performed in a one-step parameter 373 

estimation, i.e., directly on the measured growth curves by including the secondary 374 

models into the primary model. This is in contrast with the two-step method often used 375 

in predictive microbiology in which the parameters of the secondary model are 376 

estimated on the (computed) growth rates (Versyck et al., 1999). To aid in the 377 

comparison of the secondary models, growth rates were also calculated and plotted 378 

against the model prediction. However, the objective function of the parameter 379 

estimation was not the minimization of the difference between these measured and 380 

predicted growth rates.  381 

The optimal combinations of parameters were calculated using the lsqnonlin routine of 382 

the Optimization Toolbox of Matlab version 7.14 (The Mathworks Inc.). This routine 383 

was always combined with a multi-start method that generated multiple sets of 384 

uniformly distributed random initial values of the parameters to be optimized.  The 385 

objective function of the parameter estimation was the minimization of the sum of 386 

squared errors (SSE) for Nm measurements: 387 

SSE =  ∑ (nm,i(ti) − n p,i(ti, p))
2

Nm
i=1  (16) 388 

with nm,i(ti) the logarithm of the measured cell density and n p,i(ti, p) the logarithm of 389 

the predicted cell density for a set of parameter p at time ti. The 95% confidence interval 390 

of every parameter pi was calculated based on the Student’s t-distribution (Van Impe 391 

et al., 2001): 392 

[pi ± t0.975,Nm−Np
∙ √spi

2 ]  (17) 393 

where Np is the number of parameters and consequently  Nm − Np is the number of 394 

degrees of freedom. spi

2  is the variance on the parameter pi and is found on the main 395 
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diagonal of the variance covariance matrix V, which is approximated as the inverse of 396 

the Fisher Information Matrix F (Walter and Pronzato, 1997): 397 

sp,i
2 = V(i, i) (18) 398 

V =  F−1  (19) 399 

 F =
1

MSE
∙ JT ∙ J     with     MSE =  

SSE

Nm−Np
 (20) 400 

with J the Jacobian matrix and MSE the mean sum of squared errors. The MSE is used 401 

in this research as a measure for the quality of fit. Low MSE values represent a good 402 

quality of fit. 403 

The accuracy factor Af and bias factor Bf were calculated for the validation study 404 

(Baranyi et al., 1999): 405 

Af = exp (√∑ (ln(µ p,i(,p))−ln(µm,i))
2Nm

i=1

Nm
)  (21) 406 

Bf = exp (
∑ (ln(µ p,i(,p))−ln(µm,i))

Nm
i=1

Nm
) (22) 407 

with μm,i the growth rate estimated with Eq. 2 and μ p,i(p) the predicted growth rate for 408 

a set of parameter p. Models with smaller Af values yield more accurate predictions. 409 

Overestimations of the growth rate result in a positive Bf and underestimations in a 410 

negative Bf.  411 

 412 

  413 
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4 RESULTS AND DISCUSSION 414 

The four models compared in this section to describe the combined effect of 415 

temperature and pH should comply with a sequential modeling approach. Therefore, 416 

this study starts by selecting the most suitable model structures to describe the 417 

individual effects of temperature and pH in Sections 4.1 and 4.2. These models are 418 

implemented in Section 4.3 to model the combined effect of temperature and pH. If 419 

present, the shape parameter is estimated. The models with known parameter estimates 420 

are assessed using validation data in Section 4.4. 421 

 422 

4.1 Modeling the effect of temperature 423 

A set of 12 experiments was performed to model the effect of temperature on the 424 

maximum specific growth rate of E. coli (Dataset 1, Fig. 8). All these experiments were 425 

conducted at a pH of 7.50. Studied temperatures ranged from 13.0 to 44.0°C. The CTMI 426 

(Eq. 3), aCTMI (Eq. 4) and bCTMI (Eq. 5) were all fitted to the measurements in a one-427 

step parameter estimation. The resulting parameter estimates and their 95% confidence 428 

intervals are listed in  429 

 CTMI aCTMI bCTMI 

Tmin [°C] 7.3 ± 0.2 5.6 ± 0.6 2.3 ± 0.4 

T1 [°C] / 8.9 ± 0.5 / 

Tc [°C] / 16.1 ± 0.8 / 

Topt [°C] 42.0 ± 1.1 41.0 ± 0.7 40.6 ± 0.4 

Tmax [°C] 44.4 ± 0.5 44.9 ± 0.5 45.5 ± 0.6 

µopt [h-1] 2.47 ± 0.29 2.46 ± 0.16 2.49 ± 0.15 

MSE 0.130 0.080 0.084 

 430 

Table 1, along with the MSE values as a measure of the quality of fit. The model fits 431 

are compared with the experimental growth rates in Fig. 9. From visual comparison, it 432 
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is clear that the CTMI is less capable of providing a good fit at both suboptimal and 433 

near-optimal conditions than the aCTMI or bCTMI. There is little difference between 434 

the approximations of the μmax(T)-relationship by the aCTMI and bCTMI. The same 435 

comparison can be made based on the MSE values, which are lower for the aCTMI and 436 

bCTMI than for CTMI. As explained in Section 2.2, the aCTMI has two disadvantages 437 

in comparison with the bCTMI: the model has two additional parameters and is 438 

described by a piecewise function. Since the MSE of the aCTMI is only slightly lower 439 

than the one of the bCTMI, the latter model is preferred. Therefore, the bCTMI was 440 

used to describe the combined effect of temperature and pH on the growth rate in 441 

Section 4.3.  442 

A difference of several degrees Celsius is found between the estimated values of the 443 

parameter 𝑇𝑚𝑖𝑛 for the different secondary models. However, care should be taken with 444 

the interpretation of these values (McMeekin et al., 2013). The parameter 𝑇𝑚𝑖𝑛 is an 445 

extrapolation of the observations, since there is no information available in this study 446 

to indicate how well the model fits the effect of temperature on the growth rate for 447 

values below the lowest experimental temperature. Reported values for the minimum 448 

growth temperature of E. coli are generally based on a similar extrapolation of 449 

experimental data and therefore no comparison of these values was made with 450 

experimentally determined minimum temperatures.  451 

 452 

4.2 Modeling the effect of pH 453 

To model the effect of pH on the maximum specific growth rate, 17 experiments were 454 

available in Dataset 2 (Fig. 8).  All these experiments were performed at a 455 

temperature of 37.0°C. Three model structures were available to model this effect: the 456 

CPM (Eq. 6), srCPM (Eq. 7) and aCPM (Eq. 8). The model fits are illustrated in Fig. 457 

10, along with the experimental growth rates. Parameter estimates and MSE values are 458 

gathered in   459 
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 CPM srCPM aCPM 

pHmin [-] 4.38  ± 0.05 4.48  ± 0.01 4.46  ± 0.02 

pHopt [-] 6.89  ± 0.10 7.30  ± 0.09 7.10  ± 0.13 

pHmax [-] 10.001 ± 0.27 9.40  ± 0.14 9.02  ± 0.01 

µopt [h-1] 2.49 ± 0.09 2.32  ± 0.05 2.19  ± 0.03 

MSE 0.132 0.058 0.041 
1 This parameter reached the upper bound of the parameter value during the parameter 460 

estimation. 461 

 462 

Table 2. As expected, based on the qualitative description in literature of the response 463 

of E. coli species to an external pH (Booth, 1985), the model structure of the CPM is 464 

not suitable to describe the effect of pH on the growth rate of E. coli. The MSE of the 465 

srCPM is only 44% of that of the CPM. This illustrates that the quality of fit is greatly 466 

improved by the simple adaptation of the srCPM. A further improvement in the quality 467 

of fit is made by the aCPM. This is due to the different response of E. coli in the sub- 468 

and superoptimal pH range. Since the aCPM provides the best fit of all three models, it 469 

was selected to describe the combined effect of temperature and pH on the growth rate 470 

in Section 4.3. 471 

 472 

4.3 Modeling the combined effect of temperature and pH 473 

First, a parameter estimation of the gamma model on the data at optimal temperature 474 

and the data at optimal pH was performed (Dataset 1 and 2, Fig. 8). This parameter 475 

estimation only differs from the separate parameter estimations of Section 4.1 and 4.2 476 

in the sense that the model equations of the bCTMI and aCPM need to intersect in the 477 

point where T = 37.0°C and pH = 7.50, since these models are combined in the 478 

gamma model (Eq. 10). Consequently, the estimates of the cardinal parameters were 479 

almost equal to those of the bCTMI in  480 
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 CTMI aCTMI bCTMI 

Tmin [°C] 7.3 ± 0.2 5.6 ± 0.6 2.3 ± 0.4 

T1 [°C] / 8.9 ± 0.5 / 

Tc [°C] / 16.1 ± 0.8 / 

Topt [°C] 42.0 ± 1.1 41.0 ± 0.7 40.6 ± 0.4 

Tmax [°C] 44.4 ± 0.5 44.9 ± 0.5 45.5 ± 0.6 

µopt [h-1] 2.47 ± 0.29 2.46 ± 0.16 2.49 ± 0.15 

MSE 0.130 0.080 0.084 

 481 

Table 1 and those of the aCPM in   482 
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 CPM srCPM aCPM 

pHmin [-] 4.38  ± 0.05 4.48  ± 0.01 4.46  ± 0.02 

pHopt [-] 6.89  ± 0.10 7.30  ± 0.09 7.10  ± 0.13 

pHmax [-] 10.001 ± 0.27 9.40  ± 0.14 9.02  ± 0.01 

µopt [h-1] 2.49 ± 0.09 2.32  ± 0.05 2.19  ± 0.03 

MSE 0.132 0.058 0.041 
1 This parameter reached the upper bound of the parameter value during the parameter 483 

estimation. 484 

 485 

Table 2. The value of μopt was equal to 2.48 h−1 and the MSE was 0.065.  486 

Note that the four competing models have the same model structure at these conditions 487 

since the three models with interactions (Eq. 12, 13 and 15) reduce to the gamma model 488 

(Eq. 10) when only one environmental condition is not optimal. This implies that the 489 

cardinal parameters of a gamma model, which were identified on the basis of these two 490 

datasets, can be used for all four models.  491 

Using these parameter estimates, the description of the combined effect of temperature 492 

and pH of each of the four models was evaluated, based on Dataset 3. In Fig. 11 (a) and 493 

(b), the models outputs are calculated for a set of linearly changing temperature and pH 494 

combinations, along with the experimental growth rates at these conditions. Two 495 

additional experimental conditions are depicted in Fig. 11 (c). The estimated shape 496 

parameters and their 95% confidence bounds are collected in Table 3 along with the 497 

MSE values. 498 

For the gamma model (Eq. 10), all model parameters needed to describe the combined 499 

effect of temperature and pH are already known. The calculated gamma model at 500 

stressing conditions in Fig. 11 (b), makes a large overestimation of the experimental 501 

growth rates. For the three most stressing conditions, the growth rates were 502 

overestimated between 52 and 79 %. This confirms the existence of multiplicative 503 
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interactions between the effects of temperature and pH, i.e., the inability to describe the 504 

combined effect by only studying the separate effects. Consequently, models that 505 

describe these interactions are needed. When employing the model of Augustin and 506 

Carlier (2000) (Eq. 12), the growth rate is reduced in the region of stressing conditions 507 

by optimizing the shape parameter. Compared with the gamma model without 508 

interactions, this results in a decrease of the MSE of 53%, which means that a large 509 

improvement in the model accuracy is obtained. In the model of Le Marc et al. (2002) 510 

(Eq. 13), no additional parameters can be chosen, meaning that the description of the 511 

interactions is entirely defined, based on the individual effects of the environmental 512 

conditions. Comparing the model in Fig. 11, clarifies that the output changes little with 513 

respect to the gamma model by implementing interactions as described by the model of 514 

Le Marc et al. (2002). As concluded from comparing the MSE values, the interactions 515 

of this model provide no improvement of the model fit for the considered environmental 516 

conditions. This is because the interaction factor in the model of Le Marc et al. (2002) 517 

is equal to 1 for most of the environmental conditions (Fig. 6). On the other hand, the 518 

shape parameter of the gamma-interaction model (Eq. 15) provides the possibility to 519 

decrease the predicted growth rate over a large range of environmental (Fig. 7). The 520 

effect of this interaction factor is clearly visible in Fig. 11 (b) and (c) and causes a 521 

decrease of the MSE with 75% compared to the gamma model without interactions. 522 

This confirms that the best approximation of Dataset 3 was obtained by the gamma-523 

interaction model. 524 

 525 

4.4 Validation 526 

Since all parameters of the four secondary models were determined in Section 4.3, the 527 

models can be validated with Dataset 4. The validation study is limited to experiments 528 
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in broth, since the aim is to assess the ability of the considered models to describe the 529 

combined effect of temperature and pH. The model complexity has to be increased 530 

before any of these models can be applied to real food products.  531 

Fig. 12 compares the experimental growth rates with the values predicted by the four 532 

secondary models. To obtain a measure for the agreement between the secondary 533 

models and the experimental data, parameter estimations were performed on the 534 

available growth curves using the calculated growth rates, meaning that only n0, q0 535 

and nmax were estimated (Eq. 2). Also the Af and Bf were calculated for each model 536 

based on the growth rates estimated with Eq. 2 and predicted with the secondary 537 

models.  The resulting MSE, Af and Bf values are summarized in Table 4. For the 538 

experiments performed at pH = 6.50 and T = 21.0°C and at pH = 7.00 and T =539 

25.0°C there is almost no difference between the predicted growth rates of the various 540 

models and the experimental growth rates were predicted very accurately. Since only 541 

temperature was not optimal during these experiments, an accurate approximation of 542 

the growth rate was achieved with the simple gamma model. The interactions are absent 543 

for the model of Le Marc et al. (2002) and negligible for the model of Augustin and 544 

Carlier (2000) and the gamma-interaction model. For the two other experiments, the 545 

gamma model and the model of Le Marc et al. (2002) provided the largest 546 

overestimation of the growth rate since these models do not consider any interactions. 547 

Both the model of Augustin and Carlier (2000) and the novel gamma-interaction model 548 

predict lower growth rates, but the latter provides a prediction error that is significantly 549 

lower than the former one. The MSE and Af are also lowest for the gamma-interaction 550 

factor, indicating the most accurate prediction. The Bf demonstrates that all models still 551 

overestimate the growth rate and are therefore fail safe. As a result, it is concluded that 552 
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also in the validation study the novel gamma-interaction model outperformed the 553 

competing models.  554 

 555 

  556 
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5 CONCLUSION 557 

A novel gamma-interaction model was proposed in this research for the description of 558 

the combined effect of multiple environmental conditions. This model was compared 559 

with the simple gamma model and the models of Augustin and Carlier (2000) and Le 560 

Marc et al. (2002). A case study was considered on the basis of 39 bioreactor 561 

experiments describing the effect of temperature and pH on the growth rate of E. coli 562 

K12. Firstly, two new cardinal parameter models were developed to capture the 563 

independent effects of temperature and pH on the growth rate. Secondly, the combined 564 

effect of temperature and pH was modeled with all four models based on a dataset at 565 

suboptimal conditions. The parameter estimation results confirmed that interactions 566 

should be accounted for and that the best approximation of the data was obtained by the 567 

new gamma-interaction model. Also when performing a validation on new data, the 568 

gamma-interaction model predicted the growth rates most accurately. Due to the very 569 

general model structure, it is expected that the gamma-interaction model will also 570 

accommodate the improvement of predictions when working with different micro-571 

organisms or different environmental conditions. The shape parameter used in this 572 

model has no biological interpretation but is interpretable in the sense that it expresses 573 

the extent of interactions between the effects of two environmental conditions. 574 

By basing the gamma-interaction model on the gamma model, it is still easily 575 

identifiable with a limited work load and straightforward to add new environmental 576 

conditions and interaction effects to an existing model. By including the new interaction 577 

factor with a shape parameter, the prediction quality at combinations of multiple 578 

stressing environmental conditions can be significantly improved. 579 

  580 
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FIGURE CAPTIONS 676 

 677 

Fig. 1. Comparison of the model structures for the effect of temperature on the maximum 678 

specific growth rate: CTMI (---), aCTMI (⋅-⋅) and bCTMI (—). The three models are 679 

calculated using the same parameter values for Tmin, Topt, Tmax and μ𝐨𝐩𝐭. 680 
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 682 

Fig. 2. Comparison of the model structures for the effect of pH on the maximum specific 683 

growth rate: CPM (---), srCPM (⋅-⋅) and aCPM (—). The three models are calculated using 684 

the same parameter values for pHmin, pHopt, pHmax and μ𝐨𝐩𝐭.  685 
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 687 

Fig. 3: The effect of the parameter 𝛋 on the output of the model represented by Eq. 7. 688 

The values of 𝛋 are1 (---), 2 (—), 3 (⋅-⋅) and 4 (⋅⋅⋅). 689 

  690 

https://doi.org/10.1016/j.ijfoodmicro.2016.06.011


Post-print version of paper published in https://doi.org/10.1016/j.ijfoodmicro.2016.06.011. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

39 

 691 

Fig. 4: The effect of the parameter η on the output of the model formulized in Eq. 8. The 692 

values of η are1 (---), 2 (—), 3 (⋅-⋅) and 4 (⋅⋅⋅). 693 
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 695 

Fig. 5. The growth boundaries (cardinal parameters) of temperature and pH in the 696 

suboptimal range (---) for different shape parameters β: 2 (⋅-⋅), 3 (—), 5 (---), 10 (⋅⋅⋅). 697 
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 699 

Fig. 6. Illustration of the interaction factor of the model of Le Marc et al. (2002). 700 
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 702 

Fig. 7. Illustration of the interaction factor of the gamma-interaction model.  703 
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 705 

Fig. 8. Environmental conditions applied in bioreactor experiments. Dataset 1: 706 

temperature effect (О). Dataset 2: pH effect (x). Dataset 3: interactions (Δ). Dataset 4: 707 

validation (+). In case duplicates were performed, this is indicated with (x2).   708 
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 709 

Fig. 9.  Secondary models for the effect of temperature on the maximum specific growth 710 

rate. Comparison of experimental growth rates with 95% confidence bounds (x) with 711 

the CTMI (---), aCTMI (⋅-⋅) and bCTMI (—).  712 
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 714 

Fig. 10. Secondary models for the effect of pH on the maximum specific growth rate. 715 

Comparison of experimental growth rates with 95% confidence bounds (x) with the 716 

CPM (---), srCPM (⋅-⋅) and aCPM (—).  717 
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 719 
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 721 

Fig. 11. Secondary models for the effect of temperature and pH on the maximum specific 722 

growth rate. Comparison between the maximum specific growth rates of Dataset 3 (x) and 723 

the four secondary models: the gamma model (---/О), the model of Le Marc et al. (2002) 724 

(⋅⋅⋅/+), the model of Augustin and Carlier (2000) (⋅−⋅/Δ) and the gamma-interaction 725 

model (−/●), (b) represents a close view at stressing conditions of (a). The two conditions 726 

of Dataset 3 not included in (a) are illustrated in (c). 727 
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 729 

Fig. 12. Validation. Comparison between experimental growth rates (x) and the growth 730 

rates calculated with the four secondary models: the gamma model (О), the model of Le 731 

Marc et al. (2002) (+), the model of Augustin and Carlier (2000) (Δ) and the gamma-732 

interaction model (●).  733 
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TABLE CAPTIONS 734 

 CTMI aCTMI bCTMI 

Tmin [°C] 7.3 ± 0.2 5.6 ± 0.6 2.3 ± 0.4 

T1 [°C] / 8.9 ± 0.5 / 

Tc [°C] / 16.1 ± 0.8 / 

Topt [°C] 42.0 ± 1.1 41.0 ± 0.7 40.6 ± 0.4 

Tmax [°C] 44.4 ± 0.5 44.9 ± 0.5 45.5 ± 0.6 

µopt [h-1] 2.47 ± 0.29 2.46 ± 0.16 2.49 ± 0.15 

MSE 0.130 0.080 0.084 

 735 

Table 1: Parameter estimates and 95% confidence intervals of the three cardinal 736 

temperature models estimated on Dataset 1. 737 

  738 

https://doi.org/10.1016/j.ijfoodmicro.2016.06.011


Post-print version of paper published in https://doi.org/10.1016/j.ijfoodmicro.2016.06.011. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

50 

 CPM srCPM aCPM 

pHmin [-] 4.38  ± 0.05 4.48  ± 0.01 4.46  ± 0.02 

pHopt [-] 6.89  ± 0.10 7.30  ± 0.09 7.10  ± 0.13 

pHmax [-] 10.001 ± 0.27 9.40  ± 0.14 9.02  ± 0.01 

µopt [h-1] 2.49 ± 0.09 2.32  ± 0.05 2.19  ± 0.03 

MSE 0.132 0.058 0.041 
1 This parameter reached the upper bound of the parameter value during the parameter 739 

estimation. 740 

 741 

Table 2: Parameter estimates and 95% confidence intervals of the three cardinal pH 742 

models estimated on Dataset 2. 743 
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 Gamma model 
Model of 
Augustin and 
Carlier (2000) 

Model of Le 
Marc et al. 
(2002) 

Gamma-
interaction 
model 

β [-] / 3.94  ± 0.22 / 1.68  ± 0.13 

MSE 0.882 0.415 0.900 0.217 

 745 
 746 

Table 3: Parameter estimation results and 95% confidence intervals of the four models 747 

for the combined effect of temperature and pH estimated on Dataset 3.  748 
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 Gamma model 
Model of 
Augustin and 
Carlier (2000) 

Model of Le 
Marc et al. 
(2002) 

Gamma-
interaction 
model 

MSE 1.522 0.576 1.522 0.319 

Af 1.703 1.327 1.703 1.203 

Bf 1.430 1.238 1.430 1.153 

 750 
 751 

Table 4: MSE, Af and Bf values of the four models for the combined effect of temperature 752 

and pH estimated on Dataset 4.  753 
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