
POSTER: Identifying Dynamic Data Structures in Malware

Thomas Rupprecht
University of Bamberg,

Germany
thomas.rupprecht@swt-

bamberg.de

Xi Chen
Vrije Universiteit Amsterdam,

The Netherlands
x.chen@vu.nl

David H. White
University of Bamberg,

Germany
david.white@swt-

bamberg.de

Jan Tobias Mühlberg
iMinds-DistriNet, KU Leuven,

Belgium
jantobias.muehlberg@cs.

kuleuven.be

Herbert Bos
Vrije Universiteit Amsterdam,

The Netherlands
herbertb@cs.vu.nl

Gerald Lüttgen
University of Bamberg,

Germany
gerald.luettgen@swt-

bamberg.de

ABSTRACT
As the complexity of malware grows, so does the necessity of
employing program structuring mechanisms during develop-
ment. While control flow structuring is often obfuscated, the
dynamic data structures employed by the program are typi-
cally untouched. We report on work in progress that exploits
this weakness to identify dynamic data structures present in
malware samples for the purposes of aiding reverse engi-
neering and constructing malware signatures, which may be
employed for malware classification.

Using a prototype implementation, which combines the
type recovery tool Howard and the identification tool Data
Structure Investigator (DSI), we analyze data structures in
Carberp and AgoBot malware. Identifying their data struc-
tures illustrates a challenging problem. To tackle this, we
propose a new type recovery for binaries based on machine
learning, which uses Howard’s types to guide the search and
DSI’s memory abstraction for hypothesis evaluation.

Keywords
Data structure identification, malware, reverse engineering,
program signatures

1. INTRODUCTION
As the scope and applicability of malware increases, so

does its complexity and, in turn, the time necessary to un-
derstand a malware sample via reverse engineering. This is
due to the fact that such samples are often heavily obfus-
cated. However, the increased size and complexity that com-
plicates reverse engineering also mandates the proper prac-
tices of code and data organization during development, e.g.,
by employing functions and data structures. As noted in [5],
while the leakage of information due to the organization of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2989041

code is often mitigated by common obfuscation techniques,
the information leakage from data structures is typically not
considered. In this paper we describe work in progress on
an analysis that exploits this weakness to identify the dy-
namic data structures present in malware, for the purposes
of aiding reverse engineering and constructing malware sig-
natures, which may be employed for malware classification.
Approach. Our prototype is based on Data Struc-

ture Investigator (DSI) [15], which is a dynamic analysis
tool capable of identifying (cyclic) singly/doubly linked lists
(SLL/DLLs), trees, skip lists and combinations thereof such
as nested lists. DSI’s original use case was as a program com-
prehension tool for C programs and, thus, its trace recording
C front-end employs the readily available type information
present in C code. However, source code will not be avail-
able in typical malware use cases, and therefore, we utilize
the type recovery tool Howard [14] to obtain the necessary
type information. The result is a new binary front-end for
DSI that allows for the analysis of x86 stripped binaries, i.e.,
those with all symbols not required for execution removed.

Novelty & Related Work. DSI provides two desir-
able features that will help us to advance the state-of-the-
art in identifying dynamic data structures from malware.
The first is DSI’s rich heap abstraction that, in contrast to
ARTISTE [3], DDT [7], HeapDbg [11], and MemPick [6],
permits the identification of many complex data structure
implementation techniques. These range from the generic
list implementations employed by the Linux kernel, to highly
optimized data structures, and to those created via cus-
tom memory allocators. Secondly, DSI identifies data struc-
tures by accumulating evidence, a process which is resilient
against the transient corrupted shapes that arise due to ma-
nipulation operations, which we term degenerate shapes. In
contrast, other approaches [6, 7] try to exclude degenerate
shapes from the analysis, which may be difficult if well-
structured interfaces are required [7] and these are obfus-
cated. Additionally, there is typically limited support for
nested data structures, whereas DSI’s key features enable
the robust identification of arbitrarily deep nesting.

However, DSI’s usefulness is significantly reduced when
high quality type information is absent, as is the case in
stripped binaries. Thus, in contrast to [8, 10], Howard’s
ability to identify the types of nested structs empowers DSI,



as many complex data structure implementation techniques
rely on this programming construct.

While the binary analyses mentioned so far consider re-
verse engineering in general, Laika [5] is designed specifically
for the construction of malware signatures based on the data
structures in a memory dump, which are found via machine
learning. However, no high-level identification is performed
beyond the discovery of recursive pointers, which prevents,
e.g., distinguishing a binary tree from a DLL.

Lastly, we note that, although uncommon, there exist ap-
proaches targeting the obfuscation of data structures [2, 9].
However, even with obfuscation applied, our rich heap ab-
straction may help to return useful information, as would be
the case with the obfuscation of [9]. Of course, obfuscations
that target pointers directly [2] remain out of scope.

Applications. DSI’s output can benefit the reverse en-
gineering of a malware sample in two ways. Firstly, we may
use DSI’s rich heap abstraction to guide the visualization of
program memory. In contrast to the generic graph layout
methods used by [1, 11], our DSI-guided layout is more in-
tuitive and includes the ability to view heap manipulations
with animation. Secondly, the notion of degenerate shape
gives rise to a simple identification of data structure oper-
ations. By noting the transitions of shape from correct to
degenerate and back to correct, we can tag regions of binary
code that are responsible for manipulating a specific data
structure. In contrast to the operation detection of DDT,
this does not require well-structured interface functions, and
thus is applicable to malware.

Dynamic data structures in malware are typically found
in reusable components, such as a VNC server or a TCP/IP
stack. Thus, in addition to constructing signatures that
characterize the malware as a whole, which could be used for
malware classification in the style of Laika, we may also con-
struct signatures that characterize the components. Since
the components seem to reoccur across different malware, we
expect the signatures will offer a reverse engineer a number
of short-cuts when analyzing a new sample. Lastly, we hope
to enhance the quality of signatures by including details of
any operations used to manipulate the data structures.

Although our primary motivation is malware analysis, DSI
in combination with the new binary front-end will have ap-
plications in a number of domains, including: informing
formal verification [12], where the verification process can
be aided by automatically generating program annotations
for data structure behavior; and profiling/optimization [13],
where the granularity can be set for a specific data structure.

Contributions. In the following we take a look at the
characteristics of a number of malware samples appearing in
the real-world and consider their usage of data structures.
We then report preliminary results obtained by applying our
prototype implementation to examples extracted from Car-
berp and AgoBot malware. Through an analysis of these
results, we find that, while the combination of Howard and
DSI is very promising, the types recovered by Howard re-
quire further refinement to fully enable DSI’s rich heap ab-
straction. We propose a solution based on machine learning
to tackle this problem.

2. PRELIMINARY RESULTS
We first describe some malware samples that serve to re-

inforce our theme of reusable components, and then proceed
to describe our preliminary results. To determine the ground

truth for data structure usage, we employ the source code
(in C/C++) available at https://github.com/ytisf/theZoo.

Malware Samples. Carberp is designed to target
bank accounts and employs the component HVNC to con-
struct a hidden desktop to which one may connect via VNC.
The VNC server uses a complex data structure consisting of
nested lists. In addition, Carberp employs the component
LwIP to construct a hidden TCP/IP stack to hide communi-
cation, which makes use of multiple independent lists. LwIP
also forms a component of the scareware malware Rovnix.

MyDoom is a worm designed to enable remote control
by opening a backdoor. It uses an SLL that implements a
priority queue to store mail addresses and an SLL of child
SLLs to cache DNS MX records. Identical functionality is
also present in HellBot. Additionally, in the spam botnet
Grum, we have found partial reuse of the DNS cache.

AgoBot is a modular IRC bot with an IRC proxy compo-
nent to obfuscate connections, which employs STL lists.

Results. We have applied our prototype to a DLL of
child DLLs extracted from HVNC in Carberp (∼800 LOC)
and the C++ STL lists present in the IRC proxy of AgoBot
(∼100 LOC). The implementations of both data structures
are challenging, and DSI’s rich heap abstraction is required
to provide a correct interpretation.

We first consider the DLLs of HVNC, where, on creation,
a single memory chunk is allocated to hold both the head
and tail nodes of the list. Thus, while the structs of the other
list nodes are used normally, those for the head and tail are
nested into an enclosing struct. Howard correctly identifies
the nested tail struct, but fails to discover the nested head
struct. This is because Howard recognizes nested structs by
observing patterns in the offsets applied to base addresses;
however, as the nested head struct resides at the beginning
address of the enclosing outer struct, it is never accessed
by a unique base address and is not distinguished from the
enclosing outer struct. Furthermore, Howard is not able
to determine that the middle nodes of the DLL and the tail
node are of the same type. Hence, DSI only recognizes DLLs
comprised of the middle nodes, since the head effectively
does not exist and the tail node is of a different type. This
in turn prevents detection of the nesting relationship.

The C++ STL lists employed by AgoBot are cyclic DLLs.
The implementation inherits from a base struct providing
the DLL linkage to produce a specialized list node encapsu-
lating the list payload. However, the head node of the list
remains of the base struct type and, thus, it is essential to
identify the base struct that runs through all nodes. Un-
fortunately, since the base struct resides at the start of the
specialized list type, Howard does not find it. As such, DSI
detects the DLL without its head node, which prevents the
cyclic property from being identified.

In both cases, with correct type information DSI could
perform a correct identification. Therefore, the analysis pre-
cision is lacking only in the binary front-end.

3. TYPE INFERENCE
The problems reported above are two-fold: firstly, Howard

misses nested structs that start at the same address as their
enclosing struct, and secondly, some struct types that it in-
fers should be grouped into a single type. The second issue
is that of type merging, which is a well known problem with a
variety of solutions surveyed in [4]. As an example, Howard
types a memory chunk by its allocation site and then re-



fines this by grouping types that are all touched by a shared
sequence of instructions, as is typical during list traversal.
However, no approach is able to handle the correct grouping
of types when they appear both in isolation and within an
enclosing struct, as seen in HVNC.

Our solution to both problems will be to include DSI’s
rich heap abstraction in the type inference process. DSI
functions by first discovering the atomic building blocks of
data structures and then identifying the relationships formed
between combinations of them. The building blocks essen-
tially correspond to SLLs, which we term strands, and a
strand consists of a sequence of cells, which are subregions
of memory chunks. It is this understanding of data struc-
ture nodes in terms of subregions of memory chunks, rather
than as whole memory chunks, that allows DSI to handle the
tricky implementations observed in Carberp and AgoBot.

To begin with, we will obtain memory chunk sizes from
monitoring allocations, and memory locations holding point-
ers from Howard. Furthermore, we are only interested in
discovering the types and locations of cells, i.e., the build-
ing blocks of strands. Essentially, we wish to frame type
inference as a machine learning problem, where a hypoth-
esis is an assignment of types to memory chunks and our
evaluation measure is based off DSI’s heap abstraction. For
example, one measure could be to look for hypotheses that
maximize the length of discovered strands, with the intu-
ition being that the best type assignment is the one that
allows the discovery of the largest data structures.

However, if we would allow arbitrary assignments of types
to memory chunks, then the search space would explode.
To make the proposed approach feasible, we will employ
Howard’s type information to guide the search, where type
assignments compatible with Howard’s output are preferred,
but not enforced. In addition, we will enforce hard require-
ments for cells, e.g., a memory chunk subregion may be a cell
only if it has an incoming pointer to the cell start address
and an outgoing pointer originating within the cell (with ex-
ceptions made for the first and last cells in a strand). We will
also exploit requirements over combinations of cells, since it
is not interesting to discover strands of length one.

Ultimately, by allowing cells at arbitrary locations, and
then promoting useful type groupings via combinations of
cells, we expect the discovery of the common linkage ele-
ments that proved so problematic in the above examples to
be possible. Furthermore, we would be able to group types
over any combination of stack and heap memory, a challenge
noted in [4] which currently has no solution. This is neces-
sary in practice to group a stack-allocated head node with
the remainder of the heap-allocated list.

4. CONCLUSIONS
We described our vision to identify dynamic data struc-

tures in malware, which is based on the already proven tech-
niques of DSI and Howard. As a first step, we employed
Howard to perform the type recovery integral to DSI’s rich
heap abstraction; however, as evidenced by the complex data
structure implementations of the Carberp and AgoBot mal-
ware, often the types require further refinement. To remedy
this, we proposed a new type inference approach framed
as a machine learning problem, which will employ Howard’s
types to guide the search and DSI’s heap abstraction to eval-
uate hypotheses. The resulting identified data structures

will aid reverse engineering and improve malware classifica-
tion by, e.g., enhancing the signatures of [5].

5. ACKNOWLEDGMENTS
This work is supported in part by DFG grant LU 1748/4-1

and the Research Fund KU Leuven.

6. REFERENCES
[1] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci,

S. L. Su, and S. Z. Guyer. Heapviz: Interactive Heap
Visualization for Program Understanding and
Debugging. In SOFTVIS 2010, pages 53–62. ACM,
2010.

[2] S. Bhatkar and R. Sekar. Data Space Randomization.
In DIMVA 2008, volume 5137 of LNCS, pages 1–22.
Springer, 2008.

[3] J. Caballero, G. Grieco, M. Marron, Z. Lin, and
D. Urbina. ARTISTE: Automatic Generation of
Hybrid Data Structure Signatures from Binary Code
Executions. Technical Report
TR-IMDEA-SW-2012-001, IMDEA, Spain, 2012.

[4] J. Caballero and Z. Lin. Type Inference on
Executables. ACM Comput. Surv., 48(4):65:1–65, May
2016.

[5] A. Cozzie, F. Stratton, H. Xue, and S. King. Digging
for Data Structures. In OSDI 2008, pages 255–266.
USENIX Association, 2008.

[6] I. Haller, A. Slowinska, and H. Bos. Scalable Data
Structure Detection and Classification for C/C++
Binaries. Empirical Softw. Eng., pages 1–33, 2015.

[7] C. Jung and N. Clark. DDT: Design and Evaluation of
a Dynamic Program Analysis for Optimizing Data
Structure Usage. In MICRO 2009, pages 56–66. IEEE,
2009.

[8] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled
Reverse Engineering of Types in Binary Programs. In
NDSS 2011. The Internet Society, 2011.

[9] Z. Lin, R. D. Riley, and D. Xu. Polymorphing
Software by Randomizing Data Structure Layout. In
DIMVA 2009, volume 5587 of LNCS, pages 107–126.
Springer, 2009.

[10] Z. Lin, X. Zhang, and D. Xu. Automatic Reverse
Engineering of Data Structures from Binary
Execution. In NDSS 2010. The Internet Society, 2010.

[11] M. Marron, C. Sanchez, Z. Su, and M. Fähndrich.
Abstracting Runtime Heaps for Program
Understanding. IEEE Trans. Softw. Eng.,
39(6):774–786, 2013.

[12] J. T. Mühlberg, D. H. White, M. Dodds, G. Lüttgen,
and F. Piessens. Learning Assertions to Verify
Linked-List Programs. In SEFM 2015, volume 9276 of
LNCS, pages 37–52. Springer, 2015.

[13] E. Raman and D. August. Recursive Data Structure
Profiling. In MSP 2005, pages 5–14. ACM, 2005.

[14] A. Slowinska, T. Stancescu, and H. Bos. Howard: A
Dynamic Excavator for Reverse Engineering Data
Structures. In NDSS 2011. The Internet Society, 2011.

[15] D. H. White, T. Rupprecht, and G. Lüttgen. DSI: An
Evidence-based Approach to Identify Dynamic Data
Structures in C Programs. In ISSTA 2016, pages
259–269. ACM, 2016.


