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The effect of head-related filtering and ear-specific decoding

bias on auditory attention detection

Neetha Das†?, Wouter Biesmans†, Alexander Bertrand†, Tom Francart?

Abstract

Objective. We consider the problem of auditory attention detection (AAD), where the goal is to detect which

speaker a person is attending to, in a multi-speaker environment, based on neural activity. This work aims to analyze

the influence of head-related filtering and ear-specific decoding on the performance of an AAD algorithm. Approach.

We recorded high-density EEG of 16 normal-hearing subjects as they listened to two speech streams while tasked

to attend to the speaker in either their left or right ear. The attended ear was switched between trials. The speech

stimuli were administered either dichotically, or after filtering using head-related transfer functions (HRTFs). A spatio-

temporal decoder was trained and used to reconstruct the attended stimulus envelope, and the correlations between the

reconstructed and the original stimulus envelopes were used to perform AAD, and arrive at a percentage correct score

over all trials. Main results. We found that the HRTF condition resulted in significantly higher AAD performance

than the dichotic condition. However, speech intelligibility, measured under the same set of conditions, was lower

for the HRTF filtered stimuli. We also found that decoders trained and tested for a specific attended ear performed

better, compared to decoders trained and tested for both left and right attended ear simultaneously. In the context of

the decoders supporting hearing prostheses, the former approach is less realistic, and studies in which each subject

always had to attend to the same ear may find over-optimistic results. Significance. This work shows the importance

of using realistic binaural listening conditions and training on a balanced set of experimental conditions to obtain

results that are more representative for the true AAD performance in practical applications.

Index Terms

Auditory attention detection, EEG processing, neuro-steered auditory prostheses, brain-computer interface, cocktail

party, speech stimuli, stimulus reconstruction, acoustic conditions.

I. INTRODUCTION

In a multi-speaker environment, a normal-hearing person can focus his attention towards one of the speakers,

while ignoring other speakers. The corresponding neural mechanism is an important topic of research, not only

due to the fact that it will bring us one step closer to understanding the human brain, but also because of the

potential it holds in the realization of neural feedback to support auditory prostheses. More specifically, the task
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of detecting which speaker a person is attending to is termed auditory attention detection (AAD). It has been

successfully demonstrated based on electroencephalography (EEG) and magnetoencephalography (MEG) in a two-

speaker scenario [1]–[4]. The technology to decode auditory attention unobtrusively could pave the way towards

neuro-steered hearing devices, where AAD information can be used to steer a noise suppression algorithm towards

the attended speaker [5]. Beginning with scientifically establishing the crucial role that the envelope of speech plays

in speech recognition [6], [7], and later studies [8]–[11] showing that cortical oscillations phase-lock to the speech

envelope, research has progressed significantly in deciphering the auditory attention problem. Recent developments

have addressed the cocktail party scenario, where cortical responses are seen to track the attended speech envelope

better than the unattended speech envelope [3], [12], [13].

AAD can be performed by extracting relevant features from the EEG recordings and using them to solve a

classification problem [14]. Another approach is to use trained spatio-temporal linear decoders to reconstruct the

envelopes of the attended speech stream from the EEG recordings. The reconstructed stimulus is then correlated

with the actual stimulus speech envelope. The ‘attended to’ speaker is chosen as the one corresponding to the

speech envelope with the higher correlation with the reconstructed envelope. The decoders are trained using EEG

recordings as well as the stimulus envelopes based on a least-squares (LS) regression [2], or by maximizing a cross

correlation ratio [3].

Although many research groups actively study AAD, there is little uniformity in experimental protocols and

acoustic conditions under which the EEG recordings are obtained. In some studies, the stimuli are presented

dichotically, i.e., one separate speech stream to each ear [2], [15], or are mixed into a single acoustic stream which

is played at both ears [3]. In some other studies they are administered through loudspeakers placed at specific

positions in the room [14], or interaural level differences are applied to the stimuli to mimic those of sound sources

at specific positions with respect to the speaker [4]. Kerlin et al. [12] used stimuli filtered using head-related

transfer functions (HRTFs) to simulate sources at different positions in the room. In addition to these differences

in the presentation of the stimuli, different research groups use different protocols to instruct the subject to which

speaker they should attend. Some studies use neural recordings during which a subject had to focus on only one

ear/speaker throughout the experiment [2], [4], [15], while in other studies, the subject had to switch focus between

ears/speakers [12], [14]. So far, it is unclear whether, and how much, the type of stimulus presentation and/or the

use of only a single attended ear in experimental protocols has an impact on the AAD performance, or whether

they introduce bias in the results. In this paper, we aim to investigate whether such bias appears, and, if so, quantify

the significance.

We follow the approach of stimulus reconstruction based on least-squares error minimization [2]. For the

experiment, stimuli are administered to the subject under two conditions: dichotic - where the two unfiltered speech

streams are administered separately to each ear, and HRTF-filtered, where the stimuli are filtered using a head-related

transfer function to simulate the position of speakers at 90 degrees to the left and right of the subject. Each subject

is instructed to alternately focus towards his/her left or right side, for each of the presentations in the experiment.

We analyze the performance of AAD, when decoders are trained and tested using cortical EEG recordings. The
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analysis is done on subject-specific (SS) decoders as well as on the more general subject-independent/ generic

decoders.

The paper is organized as follows. In Section II, we describe the experimental details, how the acquired data is

processed, decoder design and the different tested conditions. In Section III, we provide the AAD performance based

on differences in stimuli, and ear-specific decoding. The implications of these findings are discussed in Section IV.

Finally, we summarize and draw conclusions in Section V.

II. METHODS

A. Participants

Eight male and eight female normal-hearing volunteers, between 17 and 30 years of age, participated in the

experiment. All subjects had to fill out a modified version of a questionnaire [16] to assess their handedness and

ear preference. The responses to the questionnaire showed that all subjects were right-handed. While three subjects

showed ambilateral ear preference, and one subject showed a left ear preference, all other subjects showed a right

ear preference. Normal hearing for all subjects was verified by pure-tone audiometry. Every subject signed an

informed consent form approved by the local ethical committee.

B. Data Acquisition

EEG recordings were made in a soundproof, electromagnetically shielded room. The BioSemi ActiveTwo system

was used to record 64-channel EEG signals at 8196 Hz sample rate. The audio signals, low pass filtered at 4 kHz,

were administered to each subject at 60 dBA through a pair of insert phones (Etymotic ER3A). The experiments

were conducted using the APEX 3 program developed at ExpORL [17].

C. Stimuli and Procedures

Four Dutch short stories [18], narrated by different male speakers, were used as stimuli. All silences longer than

500 ms in the audio files were truncated to 500 ms. Each story was divided into two parts of approximately 6 minutes

each. During a presentation, the subjects were presented with the six-minutes part of two (out of four) stories played

simultaneously. There were two stimulus conditions, i.e., ‘HRTF’ or ‘dichotic’ (see below). An experiment here

is defined as a sequence of 4 presentations, 2 for each stimulus condition and ear of stimulation, with questions

asked to the subject after each presentation. All subjects sat through three experiments within a single recording

session. An example for the design of an experiment is shown in Table I. The first two experiments included

four presentations each. During a presentation, the subjects were instructed to listen to the story in one ear, while

ignoring the story in the other ear. After each presentation, the subjects were presented with a set of multiple-choice

questions about the story they were listening to in order to help them stay motivated to focus on the task. In the

next presentation, the subjects were presented with the next part of the two stories. This time they were instructed

to attend to their other ear. In this manner, one experiment involved four presentations in which the subjects listened

to a total of two stories, switching attended ear between presentations. The second experiment had the same design
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but with two other stories. Note that the Table I was different for each subject or recording session, i.e., each of the

elements in this table were permuted between different recording sessions to ensure that the different conditions

(stimulus condition and the attended ear) were equally distributed over the four presentations. Finally, the third

experiment included a set of presentations where the first two minutes of the story parts from the first experiment,

i.e. a total of four shorter presentations, were repeated three times, to build a set of recordings of repetitions. Thus, a

total of 72 minutes of EEG was recorded per subject. Please note that these repetitions were included for a specific

purpose in a related study. In this work, these data were not treated as repetitions, and all analysis was carried out

on a single-trial basis even though a subset of stimuli appear multiple times in the dataset.

Presentation Left Stimulus Right Stimulus Attended Ear Stimulus Condition

1 Story1, part1 Story2, part1 Left Dichotic

2 Story2, part2 Story1, part2 Right HRTF

3 Story2, part1 Story1, part1 Left Dichotic

4 Story1, part2 Story2, part2 Right HRTF

TABLE I: An example of the design of experiments 1 and 2

Throughout the experiments, the attended ear of the subject was switched between presentations to obtain equal

amounts of data for both left and right attended ear per subject. Thus, approximately 36 minutes of EEG recording

per attended ear were obtained for each subject. Each presentation also had its unique stimulus condition. These

will be referred to as ‘dichotic’ and ‘HRTF’ conditions. The ‘dichotic’ condition is where the audio streams were

administered, at equal intensities, to separate channels of the insert phones without any filtering. The ‘HRTF’

condition is where the two audio streams were filtered by head-related transfer functions, simulating an auditory

environment where each speaker was perceived to be located 90 degrees to the left and right of the subject. This

is a more realistic scenario, where stimuli to each ear contain both audio streams. The HRTFs, used to filter the

stimuli, were measured on a dummy head in an anechoic room using in the ear (ITE) microphones. These stimulus

conditions were also balanced over different sessions. The order of conditions, and attended stories were randomized

across subjects. All stimuli were normalized to have the same root-mean-square value.

D. Data Preprocessing

The EEG signal was filtered with an equiripple bandpass filter with passband attenuation of 0.5 dB and stopband

attenuation of 20 and 15 dB. The filter’s passband was between 1 and 9 Hz, which is the frequency range of most

interest for cortical tracking of speech stimuli [1], [11], [19]. It is noted that several earlier studies on EEG-based

AAD excluded the 1-2 Hz band in the analysis [2], [4], [20], [21]. However, we observed that including the 1-

2 Hz band indeed significantly improved the AAD performance in this study, and found the best performance for a
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passband between 1-9 Hz. After bandpass filtering, the signal was downsampled to 20 Hz. To extract envelopes from

the speech stimuli, we relied on an auditory filterbank with power law compression, as proposed in [20], [21]. To

this end, the speech signal was first fed to a gammatone filterbank [22], [23] after which a power law compression

with exponent 0.6 was applied on the output signal of each subband. For the output signal xk(t) of subband k at

time t, this means we computed |xk(t)|0.6. Each subband was then bandpass filtered with the same filter as used in

the EEG recordings, and downsampled to 20 Hz. The resulting subband envelopes were then summed to construct

a single envelope [21].

The recorded data set was divided into 30 second trials. Thus we analyzed 152 trials per subject, balanced over

the two stimulus conditions, and attended ears, as explained in section II-C.

E. Stimulus Reconstruction and Decoder Design

1) Stimulus Reconstruction: The basic framework for stimulus reconstruction is similar to the algorithm described

in [2]. The envelopes extracted from the attended and unattended speech streams are denoted by sa(t) and su(t)

respectively. We attempt to reconstruct the attended speech stream using a linear spatio-temporal decoder applied

to the EEG data. If D(n, c) denotes the decoder weight for channel c at time lag index n, and M(t, c) denotes the

EEG recording from channel c at time index t, the attended speech envelope is reconstructed from Nl time lags

and C channels of EEG data as:

s̃a(t) =

Nl−1∑
n=0

C∑
c=1

D(n, c)M(t+ n, c). (1)

The time lag represents the difference between the actual time of administering the speech stimulus, and the time

when the cortical activity reflects the dynamics of the speech stimulus. Here, time lags of up to 250 ms are used

for an effective reconstruction of the speech envelope [2].

2) Decoder Design: The decoder is designed in such a way as to minimize the mean squared error between the

original and reconstructed attended speech envelopes over a training set, consisting of a subset of the trials. This

leads to the analytical solution of the standard minimum mean squared error problem:

D = R−1
MMrMS , (2)

where RMM is the spatio-temporal correlation matrix of the EEG data over all channels and time lags, and RMS

is the cross-correlation vector between the attended speech envelope and the EEG data, over all channels and time

lags.

Every 30-second trial results in one RMM and rMS pair. These matrices are averaged over all the trials that are

used for training the decoder. It is finally the averaged correlation matrices and the average cross-correlation vectors

that are used in equation (2) to compute the decoder. This is different from the standard approach [2] where equation

(2) is computed for every trial independently, after which the decoders from all trials are averaged. The current

approach leads to a correlation matrix that is better conditioned than the per-trial correlation matrices. Furthermore,
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if sufficient training data is available, this eliminates the need to apply regularization and hence the tuning of a

regularization parameter [21]. Averaging the correlation matrices corresponds to optimizing a single decoder to

minimize the mean square error over the entire training data set, rather than averaging trial-specific decoders that

minimize the mean square error per trial [21]. We build decoders based on two approaches - ‘subject specific’ where

a decoder is trained based on all the trials from the same subject, except for the single trial under test (leave-one-trial-

out); and ‘generic’ where the decoder is trained on every other trial from every other subject (leave-one-subject-out).

Pearson’s correlation coefficients are then computed for the test trial between the reconstructed envelope s̃a and,

sa and su. If the attended stimulus envelope has a higher correlation with the reconstructed envelope, compared to

the unattended stimulus envelope, the decoding is assumed to be a success. Decoding accuracy is the percentage

of correctly decoded trials across all the trials for each subject.

III. RESULTS

We trained decoders and tested the performance of AAD under five different analysis conditions listed below.

Decoders were tested on 30 second trials, with a total of 36 minutes of data per subject per condition.

1) ‘Dichotic’ condition: Only trials with dichotic stimuli are used for training and testing, irrespective of the

attended ear, i.e., decoders are trained over both right-attended and left-attended trials.

2) ‘HRTF’ condition: The same as above, but now, only trials with HRTF-filtered stimuli are used.

3) ‘Same ear’ condition: Only trials in which the subject attended to the same ear as the test trial were used for

training. No distinction is made between dichotic or HRTF conditions, i.e., trials from both conditions are

used for training.

4) ‘Both ears’ condition: The training set contains trials from all conditions (left attended, right attended, dichotic

and HRTF).

5) ‘Other ear’ condition: Only trials in which the subject attended to the other/opposite ear as the test trial were

used for training. Therefore, decoders trained on left-attended trials are tested on right-attended trials, and

vise versa. No distinction is made between dichotic or HRTF conditions, i.e., trials from both conditions are

used for training.

A. Effect of attended ear conditions

According to the Wilcoxon signed rank test, the ‘same ear’ trained decoders performed significantly better than

‘both ears’ trained decoders for both generic (p < 0.001) and subject specific (p < 0.001) approaches. As can be

seen in Fig. 1, the ‘same ear’ condition resulted in an increase in median decoding accuracy of 6.9% for generic

and 2.3% for subject specific decoders, in comparison to the ‘both ears’ condition. Also, the ‘same ear’ decoders

trained and tested on right ear trials performed better than those based on left ear trials (p = 0.006 by Wilcoxon’s

signed rank test) by 5.2% for the generic decoding approach. No significant difference between the left and right

ear decoders was found when using subject-specific decoders. Furthermore, we observed no statistical differences

between the AAD performance when decoding right ear trials using left ear decoders, and decoding left ear trials
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Fig. 1: Decoding accuracies of 16 subjects under different attended ear conditions: ‘Left Ear’ or ‘Right Ear’ - decoders trained

and tested on trials where, per subject, attended ear is left only or right only, respectively; ‘Same Ear’ - results averaged over

both ‘Left Ear’ and ‘Right Ear’ conditions; ‘Both Ears’ - decoders trained and tested for all trials; ‘Other Ear’ - decoder trained

on trials attending to the opposite ear, from the test trial.
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Fig. 2: Decoding accuracies of 16 subjects under dichotic and HRTF stimulus conditions, using generic and subject specific

decoders.

using right ear decoders. We therefore combined these two results in the ‘other ear’ condition. In comparison to

the ‘both ears’ condition, the ‘other ear’ condition resulted in 10.2% poorer performance for the generic decoding

(p < 0.001) approach, and 11.2% poorer performance for the subject specific (p < 0.001) approach.

B. Effect of different stimulus conditions

The performance of the different stimulus conditions (dichotic vs. HRTF) can be seen in Fig. 2. According to the

Wilcoxon signed rank test, significantly better performance was achieved for the HRTF condition for both generic (p

< 0.001) and subject specific (p = 0.002) approaches. With subject specific decoders, the HRTF condition resulted in
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an increase in median accuracy of 7.2%, with respect to the dichotic condition. With generic decoders, the increase

was 12.5%. Thus, in both approaches, AAD under the HRTF condition showed nearly 10% better performance

compared to the dichotic condition.

IV. DISCUSSION

With a median decoding accuracy of 76.0% using generic decoders, and 87.2% using subject specific decoders, the

auditory attention detection system developed based on the experiments described in Section II achieved performance

comparable to the literature [2]–[4]. We compared the performance of the algorithm under different attended ear

and stimulus conditions.

A. Effect of attended ear and ear-specific decoding

It is seen that decoders trained and tested under the ‘same ear’ condition perform better than those under ‘both

ear’ condition. Working towards the aim of decoders that may one day support noise suppression in hearing devices,

a trained decoder must be able to effectively decode attention irrespective of which speaker the subject is focusing

on. In studies that use only one attended ear per subject during their data collection phase, the subject specific

decoders are trained only under the ‘same ear’ condition, rather than the required ‘both ear’ condition. Thus, these

decoders can lead to over-optimistic results. Such a decoder, when faced with the EEG recordings of the subject

attending to the ear that it is not trained to recognize (‘other ear’ condition), will tend to perform worse than a

decoder that is trained on both ears. On the other hand, ‘both ear’ decoders are more generic as they are trained

on both left-ear and right-ear attended trials, and therefore give a more realistic estimate of the performance. Many

studies rely on experiments where half the subjects are instructed to listen to the right speaker, and half to the left

speaker. Our study demonstrates that the algorithms designed on such data may be expected to have a ear-specific

decoding bias, resulting in a subject-specific decoding performance that is higher than reality.

It is also observed that decoders trained and tested on right-ear attended trials resulted in better AAD performance

compared to those trained and tested on left-ear attended trials. It could be due to a well-known phenomenon termed

the right ear advantage [24], which can be observed in dichotic listening tests. It can be observed when different

speech stimuli are presented to the two ears of a subject, and more words arriving at the right ear are correctly

reported than those arriving at the left ear. It is often associated with the crossed pathways of the ear to the auditory

cortex dominating the uncrossed, and the left hemisphere being critical for speech recognition [25].

In order to investigate the laterality of neural responses correlated to the attended stimulus, we analyzed the

temporal response functions (TRFs) (obtained using the AESPA technique in [10]) at different channels trained

under different conditions. The TRF coefficients for EEG channel k are obtained from a linear least-squares fit

between multiple time-lagged versions of the stimulus on the one hand, and the recorded EEG signal at channel k

on the other hand. We computed TRFs for every 6.5 minutes of continuous recording, and averaged the coefficients

over all subjects (within conditions) . The TRF coefficients at each lag and each channel can be visualized using

multiple topoplots, i.e., one for each time lag. As can be seen in Fig. 3, during lags 160-200 ms, which are also
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Fig. 3: TRF coefficients at different lags.

the lags at which attention detection performance peaks, we observed activity spread over the two hemispheres in

the ‘attended left’ case, whereas the activity was more concentrated towards the left hemisphere in the ‘attended

right’ case, similar to what can be seen in [15]. We believe this could also be attributed to the left hemisphere’s

dominance in speech processing [26], together with contralateral auditory pathways yielding larger responses than

ipsilateral auditory pathways.

B. Effect of head-related filtering

AAD accuracy is found to be higher when the stimuli are HRTF-filtered, compared to the dichotic condition.

HRTF filtering allows to present the audio in a more realistic way by incorporating the interaural time difference

and level difference for a source at a particular location. It can also make the task more difficult because the

signal-to-noise ratio in each ear under the HRTF condition is much lower than in the dichotic condition where each

ear observes a source with quasi-infinite SNR. Since HRTF-filtered stimuli help bring the experiment conditions

closer to the real auditory environment conditions, the observation that there is a significant performance difference

between the ‘dichotic’ and the more realistic ‘HRTF’ condition is of interest. It is observed that the (more realistic)

HRTF condition results in a higher accuracy, which is good news, in particular when targeting the use of AAD in

real applications such as, e.g., hearing devices [5].

A question that then arises is why the HRTF condition results in a higher AAD accuracy, despite the fact that

the per-ear SNR is lower than in the dichotic condition. This could be because the HRTF condition makes the task

easier, e.g., because it is closer to realistic scenarios in which our auditory system usually operates, whereas the

dichotic condition, being less realistic, could have a poorer cortical representation. On the other hand, it could also

be the result of the task being more difficult in the HRTF condition, requiring additional effort from the subject,

and hence resulting in larger cortical responses. To investigate which condition is more difficult, we conducted an

additional behavioral experiment under the same set of stimulus conditions, the details of which are as follows.

Speech Recognition Threshold (SRT) experiment: An SRT experiment was conducted to investigate the effect of

the different stimulus conditions used in the AAD experiment on speech recognition. Four subjects who were also

part of the AAD experiment, participated in the SRT experiment. The experiment was essentially a ‘speech in noise’

test where the goal was to find the signal-to-noise ratio (SNR) at which the subject can repeat 50% of the words
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Fig. 4: Speech recognition thresholds per subject per condition. The SRT experiment uses sentences from the VU sentence

database [27]. A short story from the AAD experiment is the masker.

in a sentence spoken in the presence of noise, which is referred to as the SRT. In this SRT experiment, the VU

sentence database [27] was used to generate the target speech (this is a standardized database for SRT experiments).

The noise in this case consisted of a competing speaker which was one of the stories presented during the AAD

experiment. The subjects were asked to listen to and repeat the sentences presented in one ear, while ignoring the

story being played in the other ear. The stimuli were administered in both ‘dichotic’ as well as ‘HRTF’ conditions,

and the resulting SRTs were noted down. We adopted an adaptive procedure for measuring SRT, where the SNR

was varied in steps of 2 dB from one trial to the next. If the subject repeated the sentence correctly during a trial,

the SNR was lowered by 2 dB in the next trial. Similarly, if the subject couldn’t repeat the sentence correctly, SNR

was increased by 2 dB for the next trial. A total of 13 sentences were presented, and the SRT was calculated as

the mean SNR from the last 6 trials. The subjects had to listen to their left and right ear alternately, and a total of

4 SRTs (one for each attended ear and each stimulus condition) were noted. Fig. 4 shows the average SRTs per

subject. There was a clear indication that speech recognition was much easier under the dichotic condition, with

15-20 dB difference in SRT between the two conditions, consistently over all subjects. Thus, in our experiments,

while both conditions were easy, the HRTF condition might have required a higher listening effort to focus attention

to a speech stream in comparison to the less realistic dichotic condition.

From the results of the SRT experiment, and the AAD experiment, we hypothesized that, possibly, the ‘dichotic’

being an easier condition for speech recognition, might have a shorter processing time in the brain. To test our

theory, we looked at the performance of AAD using different single-lag decoders with EEG signals shifted by

25 ms, 50 ms, and so on, until 250 ms. Here, single-lag decoders correspond to equation (1) with Nl = 1, after first

shifting the EEG recordings back in time over a predefined time shift. If our hypothesis was true, over the range of

these shifts, the AAD performance for the dichotic condition should have a peak/optimal performance for a shift

smaller than that of the HRTF condition, indicating faster speech processing in the dichotic condition. However, as
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can be seen from Fig. 5, contrary to our hypothesis, AAD performance for the two conditions, followed the same

trend from a shift of 25 ms to 250 ms.

The AAD experiment showed that the HRTF condition results in better performance, while the SRT experiment

revealed that HRTF-filtering, leads to poorer speech recognition. The results lead us to hypothesize that the better

AAD performance in the HRTF condition could be attributed to a higher listening effort on the part of the subject

leading to a better representation of the attended speech stream in the EEG recording, when faced with a challenging

auditory environment for speech recognition. In order to get a clearer picture of how the two competing speech

streams are cortically represented, we trained attended and unattended decoders to reconstruct the envelopes of

the attended and unattended streams, for both conditions. Unattended decoders were designed the same way as

the attended decoders except that they reconstructed the unattended speech envelopes, and thus in this case, rMS

in equation (2) represented the cross-correlation between the unattended envelope and the EEG data. We used

single-lag decoders to look at the cortical representations at different time lags, and considered the correlation of

the reconstructed envelope with the original speech envelope, for dichotic and HRTF condition.

In order to analyze the contribution of different frequency bands we investigated the correlations when decoders

were trained on information from different frequency bands. We observed interesting effects within the 1-2 Hz

and 2-4 Hz frequency bands. Wilcoxon’s signed rank tests with Holm-Bonferroni (HB) correction were used to

compare the differences in the correlation values between the reconstructed and original speech envelopes in the

two conditions. The red stars in Fig. 6 indicate significant differences between the correlation values between the

2 conditions. We observed that during the early lags, the correlations of both attended and unattended streams are

higher for the dichotic condition compared to the HRTF condition. Additionally, we also observed that in the later

lags, where the overall attention detection performance also is seen to peak (see Fig. 5), the correlations of the
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attended stream under the HRTF condition were significantly higher than that of the dichotic condition in both the

1-2 Hz and the 2-4 Hz frequency bands. For the unattended streams, during the later lags in the two frequency

bands, and particularly in the 2-4 Hz band, the HRTF trials’ correlations were significantly lower than those of

dichotic trials. This showed that, at these lags, there was a poorer reconstruction of the unattended stream under the

HRTF condition than under the dichotic condition. This leads us to believe that, during the later lags, in comparison

to the dichotic condition, the cortical response to the unattended stream was suppressed to a greater extent, and the

cortical response to the attended stream was strengthened, under the HRTF condition.

Thus, under the HRTF condition, we observed an increase of the attended stream as well as a suppression

of the unattended stream at certain lags, which can both have an advantageous effect on the AAD performance.

These findings could indicate differences in the way the human auditory system handles different acoustic situations.

During the early lags, speech segregation is yet to happen. In the dichotic case, each ear has either only the attended

or the unattended speech present at its periphery. If the earlier responses are thus mainly a peripheral representation

of the sound, in dichotic condition, correlations could be expected to be higher for both the attended and the

unattended streams during the early lags, since the peripheral streams in this case are ‘clean’. If we consider the

HRTF scenario, during the early lags, the sound at each ear is a mixture of the attended as well as the unattended

streams. In this case, the periphery of each ear contains both streams and hence we would expect to see lower

correlations with the individual streams, in comparison to the dichotic case. In Fig. 6, this effect can be seen in the

early lags of both the attended and the unattended streams, where correlations values are significantly higher for

the dichotic case than for the HRTF case. Furthermore, the dichotic condition, being a simpler listening scenario,

possibly results in segregation of the two streams into auditory objects quite easily, and hence not producing a

strong suppression of the unattended stream or a strong increase of the attended stream in the cortical activity. We

believe that, in comparison to the dichotic condition, the better performance of the comparatively harder HRTF

condition could be due to a combination of two effects: increase of its attended stream as well as suppression of

its unattended stream during the later lags.

V. CONCLUSION

Auditory attention detection is an emerging research field that has the potential to support the signal processing

in future hearing prostheses and possibly other BCIs. The focus of this paper is to understand the influence of

head-related filtering and ear-specific decoding bias on the performance of an AAD algorithm, to better equip

researchers to design their AAD experiments robustly and obtain reliable and representative performance estimates.

The AAD experiments we have so far seen in the literature are different in their stimulus conditions and hence

make it challenging to make comparisons between different studies.

We compared the performance of an AAD algorithm under two acoustic conditions, and found that the more

realistic HRTF filtered stimuli result in better auditory attention detection compared to the simpler dichotic stimuli.

A follow-up speech recognition threshold experiment under the same set of stimulus conditions revealed that the

HRTF condition is a more difficult listening scenario for speech recognition. We have shown that, the attended
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stream is easier and the unattended stream is more difficult to decode from the EEG recordings in the HRTF

condition, which indicates that the cortical response to the attended speaker is higher and to the unattended speaker

is more suppressed under this condition.

Another interesting observation in this study was the better AAD performance while using generic decoders

trained on right-ear attended trials only, in comparison to those trained on left-ear attended trials. We believe what

we observe here may be related to the right ear advantage. We also see that decoders that are trained on a single

attended ear result in a higher AAD accuracy. This bias indicates that a balanced set of experiment conditions

where the decoder is trained on both left ear trials and right ear trials per subject, is important to draw conclusions

that are representative for real applications. Realistic experimental conditions are crucial to bringing this research

one step closer to realizing real-time neurofeedback that supports hearing prostheses.
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