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Today's most commonly applied bonding effectiveness tests are criticized for their high

variability and low reliability, the latter in particular with regard to measuring the actual

strength of the adhesive interface. Objectives: in continuation of previous research

conducted at dentin, we hereby aimed to validate the novel mini-interfacial fracture

toughness (mini-iFT) test on its applicability to assess bonding effectiveness of contem-

porary adhesives when bonded to enamel. Methods: The 3-step etch&rinse (E&R) adhesive

OptiBond FL (Kerr), the 2-step self-etch (SE) adhesive Clearfil SE Bond (Kuraray Noritake)

and the two multi-mode adhesives Clearfil S3 Bond Plus (Kuraray Noritake) and Scotchbond

Universal (3M ESPE), both used following a 2-step E&R and 1-step SE mode, were applied to

clinically relevant, flattened enamel surfaces. A composite (Filtek Z100; 3M ESPE) build-up

was made in layers. After 1-week water storage at 37 1C, all specimens were sectioned

perpendicular to the interface to obtain rectangular sticks. A mini-iFT notch was prepared

at the adhesive-enamel interface using a thin diamond blade under water cooling. Finally,

the specimens were loaded in a 4-point bending test until failure. Results: the mini-iFT

onto human enamel was significantly higher for the adhesives applied in E&R mode versus

those applied in SE mode. The lowest mini-iFT was found for the adhesives applied

following a 1-step SE approach. SEM fracture analysis revealed that all fractures originated

at the adhesive-enamel interface and that the induced crack propagated preferentially

along this interface. Conclusion: mini-iFT appeared a valid alternative method to assess

the mechanical properties of adhesive-enamel interfaces.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Assessing bonding effectiveness of adhesives to enamel is com-
monly done using either macro-shear (Braga et al., 2010), micro-
shear (mSBS) (Walter et al., 2011; Meharry et al., 2013; Tedesco
et al., 2014; McLean et al., 2015) or micro-tensile bond-strength
(mTBS) testing (Hanabusa et al., 2012; De Munck et al., 2013; de
Goes et al., 2014; Yaman et al., 2014). Such bond-strength data
generally vary widely, mainly because of non-uniform stress
distribution and/or stress that not always is concentrated at the
actual adhesive-enamel interface. Hence, a strong demand exists
for a fracture mechanics approach (Scherrer et al., 2010;
Soderholm, 2010), so to measure interfacial fracture toughness
(iFT) that better reflects the interfacial properties. However, speci-
men preparation for iFT testing is commonly regarded as more
laborious, time consuming and technique sensitive.

iFT testing can be done in various ways, this using a short
rod chevron notch (Tam and Pilliar, 1993; Armstrong et al., 1998),
a notchless triangular prism (Far and Ruse, 2003) or a chevron
notch beam (CNB) (De Munck et al., 2013, 2015). In 2013, we
designed a CNB iFT test; a significant (p¼0.011) correlation of
92% was found between the CNB iFT data and the data obtained
with the today most popular mTBS test (De Munck et al., 2013).
However, a major disadvantage of this conventional iFT test
method is that it requires a relatively large interfacial area.
Therefore, a new mini-iFT test was recently developed and
validated on its potential to assess bonding effectiveness to
dentin (Pongprueksa et al., 2016); specimen preparation was
found to be easier, entailing a much smaller interfacial area.
Moreover, a significant (po0.001) correlation of 80% was found
between the mini-iFT data obtained at dentin and the corre-
sponding mTBS data; the method revealed a higher discrimina-
tive power and appeared to generate more reliable data
associated with failure at the actual interface. Hence, this
mini-iFT test appeared also promising to assess bonding effec-
tiveness to enamel, in particular since the interfacial area is four
times smaller than that of the conventional iFT test.

A new trend in dental adhesive technology is ‘universal’,
enabling the dentist to use one and the same adhesive for direct
and indirect restorative procedures, but also to opt for either an
‘etch-and-rinse’ (E&R) or ‘self-etch’ (SE) approach (Chen et al.,
2015). Predating the latter universal trend, the extension of a
one-step self-etch adhesive into a multi-step adhesive revealed
a slightly improved bonding effectiveness when a hydrophobic
bonding agent was additionally used; adding a preceding etch-
ing step was beneficial for enamel but should be avoided for
dentin as it decreased bond strength and even jeopardized bond
durability for the particular adhesive that was tested (Van
Landuyt et al., 2006a, 2006b). Laboratory and clinical evidence
today favors a full three-step E&R approach or an alternative
three-step protocol consisting of selective enamel etching fol-
lowed by a mild two-step SE approach (Van Meerbeek et al.,
2003, 2010, 2011; Peumans et al., 2005a, 2005b, 2010, 2014; Van
Meerbeek and Yoshihara, 2014). Essential with regard to the
latter ‘mild’ SE bonding approach to dentin is the use of an
adhesive that contains a functional monomer with a high
chemical affinity to hydroxyapatite (Yoshihara et al., 2010,
2011). Among different monomers investigated, 10-MDP (10-
methacryloyloxidecyl dihydrogen phosphate) appeared most
effective, but is still regarded as being sensitive to hydrolysis
(Salz et al., 2005; Van Landuyt et al., 2008). Very striking is that
most of the today commercially available ‘universal’ adhesives
contain 10-MDP as functional monomer (Chen et al., 2015;
Munoz et al., 2015; Rosa et al., 2015). While 10-MDP has
principally been regarded of importance with regard to bond
durability thanks to its intense chemical interaction with HAp,
recent NMR spectroscopy also revealed a relatively stable inter-
action of 10-MDP with dentinal collagen (Hiraishi et al., 2013).
Hence, the 10-MDP-containing universal adhesives appear also
to benefit from 10-MDP-collagen complexation when applied
following the optional E&R bonding protocol.

In literature, to our knowledge only one study applied iFT
onto enamel (Tam and Pilliar, 1993); they used bovine teeth,
on which a much larger enamel area is available than in case
of human teeth. In light of the recently developed mini-iFT
test (Pongprueksa et al., 2016), we aimed with this study to
determine the mini-iFT of adhesive-enamel interfaces pre-
pared using dental adhesives representing the different
adhesive classes, in a similar way as in our previous study.
The hypothesis advanced was that no difference in mini-iFT
at enamel exists for the different adhesives tested.
2. Materials and methods

2.1. Mini-iFT

Thirty non-carious human premolars (collected following
informed consent approved by the Commission for Medical
Ethics of KU Leuven under the file number S57622) were stored
in 0.5% chloramine T/water at 41C and used within 3 months
after extraction. Each crown was divided into amesial and distal
part, after which the root of the tooth was removed at the
dentin–enamel junction with a slow-speed diamond saw (Iso-
met 1000; Buehler, Lake Bluff, IL, USA). The flat enamel surface
was wet-sanded with 320-grit SiC paper (Buehler-Met II; Buehler)
to produce a standard smear layer with a surface topography
resembling that of bur-cut enamel (Pashley et al., 1988). All
prepared enamel surfaces were carefully inspected using a
stereo-microscope (Stemi 2000 CS; Carl Zeiss, Jena, Germany).
A three-step E&R adhesive (3-E&Ra: OptiBond FL; Kerr, Orange,
CA, USA), a two-step SE adhesive (2-SEa: Clearfil SE Bond;
Kuraray Noritake, Tokyo, Japan), and two ‘universal’ adhesives
(Clearfil S3 Bond Plus; Kuraray Noritake; Scotchbond Universal;
3M ESPE, Seefeld, Germany), applied either following a 2-step
E&R (2-E&Ru) or 1-step SE (1-SEu) mode (Table 1), were selected;
they were applied following the respective manufacturer's
instruction and light-cured using a polywave LED light-curing
unit (Bluephase 20i; Ivoclar Vivadent, Schaan, Liechtenstein)
with an output of around 1100mW/cm2, as measured by a
MARC Patient Simulator (BlueLight Analytics, Halifax, NS,
Canada). A composite (Filtek Z100; 3M ESPE: shade A2, lot
N459523) build-up was made in layers using a polytetrafluor-
oethylene (Teflon) mold (6�8�6mm); a similar composite
build-up was built at the pulpal side using the SE adhesive
Clearfil SE Bond. After 1-week water storage at 371C, the speci-
mens were sectioned perpendicular to the interface using a
semi-automated diamond saw (Accutom-50; Struers, Ballerup,
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Denmark) to obtain one or two rectangular sticks (1.5�2.0 mm

wide; 14–16mm long).
A single mini-iFT notch tip was prepared under a stereo-

microscope (Leica M715; Wetzlar, Germany) at the adhesive-

enamel interface using a water-cooled diamond saw mounted

with an ultra-thin 150 mm diamond blade (M1DO8; Struers) and

set at a feed speed of 0.015mm/s and wheel speed of 1,000 rpm.

The notch width was less than 0.3mm and incorporated the

adhesive-enamel interface. The mini-iFT notch tip angle was 45

degrees. The tip of the single-notch mini-iFT was located on the

long surface at 0.24–0.48mm from the bottom left corner (Fig. 1).

The opposite part of the mini-iFT notch did end at less than

0.2mm from the top back side. The specimen was immediately

transferred to the universal testing machine (5848 Micro Tester;

Instron, Norwood, MA, USA), placing the specimen with the notch

tip down in the test fixture. The specimen was tested in a 4-point

bending test setup with a crosshead speed of 0.05mm/min; the

outer and inner span were 10 and 5mm, respectively. After

testing, all fractured surfaces were processed for SEM (JSM-

6610LV; JEOL, Tokyo, Japan) using common specimen processing,

including fixation, dehydration and gold-sputter coating, this to

determine the fracture location, the crack propagation and

possible specimen imperfections. Finally, the exact dimensions

of the mini-iFT notch were measured using a measuring optical

microscope (400-NRC; Leitz, Wetzlar, Germany) at 250� magni-

fication, after which KIc was calculated in MPam1/2, as described

in detail in the previous study (Pongprueksa et al., 2016).
2.2. Finite element analysis (FEA)

A finite element model of the mini-iFT specimen was created

in Abaqus 6.11 (Simulia, Providence, RI, USA). The adhesive

layer was assumed to be 30 mm thick (Pongprueksa et al.,

2008). The element size in the adhesive layer was 15 mm, as

well as in the adjacent enamel and composite, and gradually

increased to 285 mm at both ends of the specimen, this to

limit computational cost. The total number of quadratic

hexahedral elements (C3D20 element in Abaqus) and nodes

of the model was 7186 elements and 39,985 nodes. The

contact interfaces between each part of the model (dentin–

enamel-adhesive-composite interface) were assumed to be

fully bonded to each other; as such, no sliding was allowed.
Boundary conditions were set according to the mechanical

testing conditions. At the bottom of the specimen, all nodes

located at 5 mm from the adhesive-enamel interface were

assumed to be fully constrained to mimic the support span of

10 mm. The total compression force of 30 N was applied

perpendicular to the specimen at 2.5 mm from the

adhesive-enamel interface to form the loading span of

5 mm. The material properties of dentin, enamel, composite

and adhesive were, respectively, 25.1, 46.8, 24.4 and 8.4 GPa

for modulus of elasticity and, respectively, 0.31, 0.3, 0.25 and

0.35 for Poisson's ratio, these as according to previous studies

(Wright and Yettram, 1979; Pongprueksa et al., 2008;

Soderholm et al., 2012). The maximum principal stress in

tensile, compression and shear, as imposed to the adhesive

layer at the adhesive-enamel interface, was analyzed.



Fig. 1 – Schematic explaining the specimen-preparation methodology and test setup for measuring the mini-iFT to enamel.
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2.3. Statistical analysis

The mini-iFT data were statistically analyzed by Weibull
analysis (Quinn and Quinn, 2010); pivotal confidence bounds
were calculated using Monte Carlo simulation (Symynck and
De Bal, 2011). The different groups were compared at the 10%
unreliability level and at the characteristic strength (63.2%
unreliability). All tests were performed at a significance level
of α¼0.05 using a software package (R3.01 and abrem pack-
age, R Foundation for Statistical Computing, Vienna, Austria).

3. Results

The mini-iFT data are summarized in Table 2 and graphically
presented in Fig. 2. The mini-iFT at the Weibull characteristic
strength (63.2% unreliability) revealed a significantly higher value
for the adhesives applied in E&R mode than in SE mode. The
mini-iFT of the 3-E&Ra (Optibond FL) was similar to that of the
2-E&Ru adhesives (Clearfil S3 Bond Plus in E&Rmode, Scotchbond
Universal in E&R mode). The mini-iFT of the 2-SEa (Clearfil SE
Bond) was higher than that of the 1-SEu adhesives (Clearfil S3

Bond Plus in SE mode, Scotchbond Universal in SE mode). The
Weibull modulus was excessively high (16.14) for Clearfil S3 Bond
Plus when applied in SEmode, despite theWeibull modulus of all
other adhesives varied between 6.32 and 8.75.

SEM failure analysis of representative mini-iFT specimens
are presented in Figs. 3 and 4. Overall, failure analysis
disclosed that the mini-iFT test resulted in failures at the
actual adhesive-enamel interface. More specifically, the
notch tip of all mini-iFT specimens failed at the adhesive-
enamel interface; enamel prisms could be observed at higher

magnification (Figs. 3,3b and 4,4b: hand pointer). For the SEa/
u, the crack propagated along the adhesive-enamel interface;
near the end of the notch, however, the crack often deviated
towards the adhesive layer. This fracture profile differed from
that recorded for the E&Ra/u, which also presented with a
higher mini-iFT; then, failure began at the adhesive-enamel
interface, but the crack propagated through the adhesive and

composite layer from about the middle of the notch.
The FEA results are presented in Fig. 5. The distribution of

principal stress disclosed that high tensile stress was concen-
trated at the notch tip, while compressive stress was imposed
towards the end of the notch. Themaximum tensile stress within
the specimen was considerably higher than the maximum
compressive stress. Overall, the amount of shear stress was
minimal (not shown). At the same location along the notch tip,

the tensile stress at the interface was higher at the adhesive-
enamel interface than at the adhesive-composite interface.
4. Discussion

Bonding effectiveness of adhesives to human enamel was
assessed using a new mini-iFT test; the test results confirmed



Table 2 – Mini-interfacial fracture toughness (mini-iFT) at enamel.

ADHESIVE1 Mean (KIc) mini_iFT2 SD Β3(m) η4 b105 Characteristic strength6 ptf/n

OptiBond FL (3-E&Ra) 2.15 0.38 6.32 2.30 1.61(1.23–1.91)a,b 2.30(2.10–2.53)a 0/15
Clearfil S3 Bond Plus (2-E&Ru) 2.29 0.43 6.73 2.44 1.75(1.26–2.08)a 2.44(2.20–2.71)a 0/11
Scotchbond Universal (2-E&Ru) 1.95 0.29 7.79 2.07 1.55(1.12–1.82)a,b 2.07(1.87–2.30)a 0/9
Clearfil SE Bond (2-SEa) 1.63 0.23 8.75 1.72 1.33(1.09–1.50)a,b 1.72(1.61–1.84)b 0/15
Clearfil S3 Bond Plus (1-SEu) 1.19 0.09 16.14 1.23 1.07(0.95–1.14)b,c 1.23(1.19–1.28)c 0/14
Scotchbond Universal (1-SEu) 1.16 0.22 6.90 1.24 0.89(0.70–1.04)c 1.24(1.14–1.35)c 0/15

1 E&Ra¼etch&rinse adhesive; SEa¼self-etch adhesive; E&Ru¼E&R universal; SEu¼SE universal.
2 Mini-interfacial fracture toughness KIc in MPam1/2.

3 Beta, shape, slope or modulus of Weibull parameter.
4 Eta, characteristic life or scale of Weibull parameter.
5 Estimation and 95% confidence interval at 10% probability of failure; groups with the same superscript letter are statistically not different.
6 95% confidence interval at characteristic strength (¼63.2% unreliability); groups with the same superscript letter are statistically not
different.

Fig. 2 – Weibull plot of the mini-interfacial fracture toughness (mini-iFT) data. The dotted lines represent the 95% confidence
bounds as calculated from Monte-Carlo simulation.
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that in terms of bonding effectiveness enamel is best etched

with phosphoric acid following an E&R bonding protocol: a

significantly higher mini-iFT was recorded than for a (mild)

SE bonding protocol. Following an E&R mode, no difference in

mini-iFT was found between a 3- and a 2-step E&R approach,

while 2-SEa presented with a significantly higher mini-iFT at

enamel than 1-SEu.
The new mini-iFT test was before validated to assess

bonding effectiveness to dentin (Pongprueksa et al., 2016);

this study now proved that the mini-iFT test can also

differentiate among different adhesive approaches on their
bonding effectiveness to enamel. The finding that an E&R

approach is more effective at enamel than a SE bonding

protocol correlates well with previous enamel bonding-

effectiveness studies (El Zohairy et al., 2010; Juloski et al.,

2012; Schlueter et al., 2013; de Goes et al., 2014). Other studies

that employed mSBS or mTBS test protocols were however not

always able to distinguish between both approaches (El

Zohairy et al., 2010; Walter et al., 2011; Meharry et al., 2013;

Tedesco et al., 2014; Yaman et al., 2014). This study also

demonstrated that multi-mode or universal adhesives, which

up to the dentist's choice can be applied following either an



Fig. 3 – SEM fracture-surface analysis of representative mini-iFT specimens prepared following an etch&rinse (E&R) approach
applied onto enamel. Ar: Adhesive resin; C: Composite; E: Enamel; I: Interface. (1a) Overview photomicrograph of the fractured
surface of a specimen prepared using the 3-step E&R adhesive (OptiBond FL, Kerr). Despite the notch tip was positioned and
initiated at the interface (I), the crack deviated away from the adhesive-enamel interface (I) through the adhesive resin (Ar).
(1b) High-magnification photomicrograph of the notch tip from an oblique angle at 45 degrees, showing the notch
configuration in detail and that the fracture was initiated exactly at the tip. (2a) Overview photomicrograph of the fractured
surface of a specimen prepared using a multi-mode adhesive applied as a 2-step E&R adhesive (Clearfil S3 Bond Plus, Kuraray
Noritake). The entire specimen was covered with the adhesive resin (Ar). (2b) High-magnification photomicrograph of the
notch tip; the fracture initiated exactly at the adhesive-enamel interface. Subsequent failure occurred within the thin
adhesive resin (Ar), but very close to the interface with enamel. (3a) Overview photomicrograph of the fractured surface of a
specimen prepared using the universal adhesive applied as a 2-step E&R adhesive (Scotchbond Universal, 3M ESPE). The crack
initiated at the interface (I) and then deviated through the adhesive resin (Ar) and composite (C). (3b) High-magnification
photomicrograph of the notch tip using backscatter electron imaging from an oblique angle at 45 degrees, confirming the
presence of exposed enamel (E).
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E&R or SE mode, benefit most from phosphoric-acid etching
of enamel; to effectively bond to enamel, universal adhesives
are best applied following an E&R mode.

In general, adhesion to enamel is regarded as less challen-
ging than to dentin and mainly relies on micro-mechanical
interlocking of resin within enamel micro-retentions (Van
Meerbeek et al., 1996). Modern SE adhesives were documen-
ted to benefit also from additional chemical interaction of the
functional monomer with hydroxyapatite. Despite the proven
chemical interaction potential of the functional monomer
MDP with HAp (Yoshida et al., 2004; Yoshihara et al., 2010,
2011, 2013; Zhang et al., 2013), the SE bonding protocol
appeared insufficient to reach a mini-iFT at enamel in line
with that achieved with an E&R bonding protocol. The three
most plausible reasons are: (1) the enamel bond depends
largely on micro-mechanical interlocking in deep etch pits
created by phosphoric-acid etching, while the etching capa-
city of functional monomers like MDP is insufficient to
achieve adequate micro-retention at enamel; (2) MDP appears
less capable of reaching/interacting with Ca within enamel
HAp that has a higher crystallinity and is less crisscross
oriented than dentinal HAp; at enamel, despite its higher
mineral content, less MDP-Ca salt is produced than at dentin
(Yoshihara et al., 2011; Yokota and Nishiyama, 2015); (3) the
mild self-etch bonding is compromised by the enamel-smear
complex, the latter being effectively removed by phosphoric-
acid etching and thus not interfering with bonding in case the
more surface-aggressive E&R approach is applied (Mine et al.,
2010). Bond-strength testing comparing MDP-free with MDP-
containing adhesives showed nevertheless that chemical
interaction of MDP with HAp, while perhaps less relevant at
short time, is crucial in maintaining interfacial stability over
time. Very recent research confirmed this even in case an
E&R approach is employed (Tsuchiya et al., 2016).

Comparing the multi-step SE with the single-step SE
approach, this study showed that the simplified one-step
application procedure coincides with a significant decrease in
enamel mini-iFT. This is in agreement with previous studies
that assessed the mechanical properties of adhesive-enamel
interfaces (Beloica et al., 2010; Walter et al., 2011; Hanabusa
et al., 2012; Goracci et al., 2013; Meharry et al., 2013; de Goes
et al., 2014; McLean et al., 2015), although some conventional
bond-strength studies reported similar values for 2-SEa and
1-SEa (Reis et al., 2013; de Goes et al., 2014).

Studies correlatively using mSBS and mTBS to assess bonding
effectiveness to enamel concluded that mSBS is more accurate to
differentiate adhesives on their bonding potential to enamel than
mTBS (Ishikawa et al., 2007; Beloica et al., 2010; El Zohairy et al.,



Fig. 4 – SEM fracture-surface analysis of representative mini-iFT specimens prepared following a self-etch (SE) approach
applied onto enamel. Ar: Adhesive resin; C: Composite; E: Enamel; I: Interface. (4a) Overview photomicrograph of the fractured
surface of a specimen prepared using the 2-step SE adhesive (Clearfil SE Bond, Kuraray Noritake). Despite the specimen
initially fractured along the adhesive-enamel interface (I), the crack deviated towards the adhesive resin (Ar). Further on, the
crack however returned to the interface, which may be a sign of favorable stress distribution during the test. (4b) High-
magnification photomicrograph of the notch tip imaged from an oblique angle at 45 degrees; the fracture initiated exactly at
the adhesive-enamel interface and exposed enamel prisms (hand pointer). (5a) Overview photomicrograph of the fractured
surface of a specimen prepared using a multi-mode adhesive applied as a 1-step SE adhesive (Clearfil S3 Bond Plus, Kuraray
Noritake) using backscatter electron imaging. Although the entire specimen failed at the adhesive-enamel interface (I), the
crack deviated towards to the adhesive resin (Ar) near the end of the specimen. (5b) High-magnification photomicrograph of
the notch tip imaged from an oblique angle at 45 degrees, showing the sharp notch and that the specimen fractured exactly at
the adhesive-enamel interface (I) close to the enamel substrate (hand pointer). (6a) Overview photomicrograph of the fractured
surface of a specimen prepared using a universal adhesive applied as a 1-step SE adhesive (Scotchbond Universal, 3M ESPE).
Despite the entire specimen failed at the adhesive-enamel interface (I), the crack deviated towards the composite (C), and then
returned to the interface towards the end of the notch. (6b) High-magnification photomicrograph of the notch tip imaged from
an oblique angle at 45 degrees, illustrating that the fracture initiated at enamel (E) and the adhesive-enamel interface (I).
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2010). Reasons advanced are that, as compared to mSBS, a mTBS
approach often results in a large amount of pre-testing failures,
for instance varying in one study from 28–68.3% (Beloica et al.,
2010), and/or still a large number of specimens tend to fail
cohesively in enamel (El Zohairy et al., 2010). Both tendencies
should most probably be attributed to interfacial defects that are
incorporated within individual mTBS specimens (Ferrari et al.,
2002), this along with the high brittleness of enamel. In addition,
the relatively aggressive cutting method employed to prepare
mTBS specimens not necessarily imposes the same amount of
stress to each micro-specimen. On the other hand, several mTBS
studies revealed only a limited number of pre-testing failures;
most failures were reported to have occurred adhesively at the
interface or were ‘mixed’ adhesive-cohesive failures that always
included the interface (Poitevin et al., 2010; Hanabusa et al., 2012;
Yaman et al., 2014). This once again confirms the high variance in
mTBS data gathered at different research centers. A mTBS test is
rather technique sensitive. Specimen preparation for a mTBS test
should be done not only in a very accurate, but also in a controlled
and standardized way. Devices like a semi-automated and pro-
grammable diamond saw (e.g. Accutom 50, Struers; also used for
the preparation of mini-iFT specimens in this study) and a so-
called Micro-Specimen Former (University of Iowa, Iowa, IA, USA)
to prepare an interfacial constriction (to better concentrate tensile
stress at the actual interface) are hence preferred as they can
minimize differences in specimen preparation in contrast to
when the micro-specimens would be prepared by hand. A strong
argument against the alternative shear bond-strength approach,
including the mSBS protocol, is that stress imposed during shear
loading is commonly documented to concentratemore within the
base material, usually dentin, than at the actual adhesive inter-
face (Della Bona and van Noort, 1995; Versluis et al., 1997; Braga
et al., 2010; Jongsma et al., 2012). Therefore, a test that better
controls loading of the actual interface and thus assesses the
strength of the interface itself is highly desired; the innovative
fracture mechanics-based mini-iFT test introduced recently to
assess bonding effectiveness to dentin (Pongprueksa et al., 2016)
and with this study now also employed to assess bonding
effectiveness to enamel, appeared to meet this objective closely.
It should nevertheless be clear that this innovative mini-iFT test
method requires time and proper skills of the operator to prepare
the specimens in a very accurate manner.

Overall, SEM failure analysis of mini-iFT specimens
revealed defect-free and rather sharp notch tips that all



Fig. 5 – Finite element analysis (FEA) of the mini-interfacial fracture toughness (mini-iFT) notch geometry. Graphical
presentation of the FEAmodel and the mesh used can be found in Fig. 1. Only the adhesive resin part of the model is shown to
visualize the stress distribution along the adhesive-enamel boundary. (a) Principal stress analysis revealed mainly tensile
stress (red color) at the tip of the flaw, while minor compressive stress (green color) can be observed from about the middle of
the specimen and further on. (b) High magnification of the principal stress at the tip of the flaw showed a favorable stress
concentration at the adhesive-enamel interface, which was higher than at the adhesive-composite interface. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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seemed to have been prepared in a very consistent way. The
fracture of all mini-iFT specimens was initiated at the actual
interface near the notch tip. The track, along which the crack
propagated, was on the other hand found to vary and
appeared to be associated with the magnitude of the resul-
tant mini-iFT. For SEa, the crack typically propagated along
the adhesive-enamel interface and deviated towards the
adhesive layer near the end of the notch. A similar trend
was before observed when the mini-iFT of SEa at dentin was
measured; it was also supported by the FEA of stress dis-
tribution along the adhesive-dentin interface in the previous
study (Pongprueksa et al., 2016). This crack-propagation track
recorded for SEa differs from that recorded for E&Ra; regard-
ing the latter, the crack initiated at the adhesive-enamel
interface near the notch tip and propagated more through the
adhesive and composite layer; once about the middle of the
specimen was reached, the crack often deviated completely
inside the composite. This phenomenon was documented
before and termed as ‘compression curl’; it has been related
to the crack that propagated from the tensile loading side of
the specimen (bottom part) into the compression loading side
of the specimen (top part) during the 4-point bending (Quinn,
2007). The size and location of the compression curl appeared
again to be related to the magnitude of the mini-iFT; for
specimens that presented with a higher mini-iFT, the com-
pression curl tended to start closer to the notch tip.

FEA of the mini-iFT specimen design revealed stress to
concentrate between the adhesive and the enamel substrate at
the notch tip, similarly as was shown before for the interface with
dentin (Pongprueksa et al., 2016). A slight difference is that the
stress amount was equal at the adhesive-dentin and adhesive-
composite interface near the notch tip of the dentin mini-iFT
specimens; FEA of the enamel mini-iFT specimens in this study
revealed higher tensile stress at the adhesive-enamel than the
adhesive-composite interface. Moreover, following the same load-
ing conditions of 30 N, the maximum principal stress at the
adhesive-enamel interface (68.4 MPa in this study) was slightly
higher than at the adhesive-dentin interface (60.6 MPa; according
to Pongprueksa et al., 2016); this must probably be ascribed to the
higher elastic modulus of enamel as compared to that of dentin
and composite. This difference in maximum principal stress at
enamel versus dentin might explain to some extent the lower
mini-iFT values measured for the same adhesives at enamel than
at dentin. The measured difference in mini-iFT was, however, 20–
30% lower at enamel (Pongprueksa et al., 2016), suggesting a
clearly lower fracture toughness at enamel. The distribution of
stress, as revealed by FEA, also corroborated very well the SEM
fracture analysis data. Crack propagation was indeed found to
occur preferentially along the adhesive-enamel interface, which
should be considered a prerequisite to determine the strength of
the actual adhesive interface (Scherrer et al., 2010). In addition, it
is remarkable that areas along the inner edge of the notch, where
the tensile stress concentration is higher, failed more at the
enamel-adhesive interface than at the outer edge where FEA
disclosed clearly less stress concentration, as can be seen in
Figs. 3,1a and 3,3a.

The notch shape of the mini-iFT specimens used in this
study was based on that employed in the single gradient
notched beam (SGNB) fracture toughness setup (Wan et al.,
2009); this is considered a simplified version of the chevron
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notch beam (CNB) fracture toughness test specimen
(ISO24370, 2005). Furthermore, the mini-iFT test was shown
to correlate well with the popular mTBS test and appeared
even more discriminative in assessing bonding effectiveness
to dentin (Pongprueksa et al., 2016). Based on the present
favorable results, the mini-iFT now also turned out to be a
valid alternative test method to determine interfacial bond-
ing effectiveness to human enamel.

The new mini-iFT test is thought to discriminate adhe-
sives better in terms of bonding effectiveness than conven-
tional bond-strength tests, this with the ultimate goal to be
able to better predict clinical effectiveness in the laboratory.
5. Conclusion

An E&R application mode presented with a higher interfacial
fracture toughness to enamel than a SE approach. The
additional application of a separate adhesive resin did not
increase the interfacial fracture toughness to enamel for an
E&R application mode (3-step versus 2-step), but did so for a
SE application mode (2-step versus 1-step). FEA suggested a
favorable stress distribution along the adhesive-enamel
interface during loading, which was corroborated by the
SEM fracture analysis. It can therefore be concluded that
the mini-iFT test method appears a valid alternative to assess
the strength of the interface of an adhesive bonded to human
enamel.
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