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Myopic Optimization Models for Simulation of
Investment Decisions in the Electric Power Sector

Kris Poncelet, Erik Delarue, Daan Six, William D’haeseleer

Abstract—Generation expansion planning models optimize in-
vestment and operational decisions over a time horizon of multi-
ple decades, thereby typically assuming perfect foresight (PF).
Recently, myopic optimization models, in which the foresight
is restricted to a certain period, have been suggested to more
realistically simulate the short-sightedness of investment decision
makers. The literature has shown that the modeled level of
foresight can have a significant impact on the results obtained.
However, the literature does not contain an in-depth analysis of
the investment decision making process in myopic optimization
models. As a result, the implications of using myopic optimization
models to simulate the decision making of private agents in
liberalized electricity markets are unclear. This paper provides
fundamental methodological insights into the decision making in
both PF and myopic optimization models. The projections, at the
time the investment decision is made, of the short-run profits that
can be obtained by investing in a generation asset are analyzed
in this regard. This analysis reveals a major limitation of the
decision making process in myopic optimization models, i.e., the
approach does not extrapolate trends, in terms of changes in the
projected SR profits, expected within the window of foresight
to later periods. This leads to decision making which cannot be
considered to reflect reality.

Index Terms—Power system planning, liberalized electricity
markets, investments under uncertainty, myopic foresight

NOMENCLATURE

A. Abbreviations

CCGT combined cycle gas turbine
CCS carbon capture and sequestration
CGES computable general equilibrium
GHG greenhouse gas
MF myopic foresight
OCGT open cycle gas turbine
O&M operations and maintenance
PC post combustion capture
PF perfect foresight
PV photovoltaic
PWR pressurized water reactor
SC super critical
SR short run
V OM variable operations and maintenance

B. Sets

G (index g) Set of generation technologies
GD ⊂ G Set of dispatchable generation technologies
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I (index i) Set of representative days
T (index t) Set of time steps within one day
V (index v) Set of vintage years
Y (index y) Set of milestone years

C. Parameters

∆t Duration of the time interval [h]
CFOM fixed operations and maintenance cost

[EUR/(MW.a)]
CGEN generation cost [EUR/MWh]
CINV overnight investment cost [EUR/MW ]
d discount rate [−]
DEM electricity demand [MW ]
DEMPEAK peak electricity demand [MW ]
Ex last year of period containing year x [a]
EOH last year of considered time horizon [a]
MULT cost mark-up factor to account for the lead

time [−]
P capacity of a single unit [MW ]
Sx first year of period containing year x [a]
TL technical lifetime [a]
Wi number of time representative day i is re-

peated within one year [−]
y reference year for cost discounting [a]

D. Variables

α dual variable of the market clearing con-
straint [EUR]

β dual variable of the demand for dispatchable
capacity constraint [EUR]

cfom fixed operations and maintenance cost
[EUR]

cgen generation cost [EUR]
cinv investment cost [EUR]
csalv salvage value [EUR]
capnew newly installed capacity [MW ]
capnew,av available newly installed capacity [MW ]
gen generation [MW ]
non number of online units [−]
P dc price of dispatchable capacity [EUR/MW ]
P el price of electricity [EUR/MWh]

I. INTRODUCTION

PARTIAL equilibrium generation capacity expansion plan-
ning models are used frequently to analyze scenarios

for the evolution of the electricity system. Typically, invest-
ment and operational decisions over a time horizon spanning
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multiple decades are optimized in a single run assuming
perfect foresight (PF), see e.g., [1]. Given the highly uncertain
character of certain model inputs, such as future fossil fuel
prices, demand or policy interactions, the investment decision
making in PF models might not be reflective of reality. As
stated in [2], decision makers do not have full information
regarding future costs, prices and constraints.

Multiple authors have recently proposed using so-called my-
opic optimization models to account for the limited foresight
and the short-term focus of investment decision makers, which
should lead to more realistic results [2]–[4]. In such myopic
models, perfect information is assumed for a limited number of
years, the so-called window of foresight, while no information
is assumed to be available outside this period. This leads to
a sequential decision making process with a moving window
of foresight, meaning that an investment planning is made for
the window of foresight which is revised and extended as new
information becomes available. However, the investments that
have been made by this point can no longer be reversed.

Keppo and Strubegger [2] have shown, using a myopic
version of the global energy-system model MESSAGE, that
the reduced foresight causes postponement of investments in
new technologies leading to higher investment needs in the
future and a higher reliance on fossil fuels in the near term.
A similar analysis is performed for a computable general
equilibrium (CGE) model in [4].

Myopic models can be a valuable complement for PF opti-
mization models. Where PF models can be used to identify op-
timal transition pathways, myopic model versions could serve
to provide more realistic projections of likely scenarios for the
evolution of the electricity system (given certain expectations
and policies) [5]. Moreover, using both approaches in parallel
could facilitate assessing both the effectiveness and efficiency
of certain policy instruments. An important advantage is that
the ideal and likely scenarios can be generated within a single
framework as using a myopic model version requires only
minor changes to the model. In contrast, other types of models,
such as agent-based models (e.g., [6]) or system-dynamics
models (e.g., [7]) can only be employed for generating likely
scenarios for the evolution of the electricity system.

Another welcome advantage of myopic model versions is
that the shorter time horizon reduces the computational cost.
This allows increasing the level of temporal, geographical
and/or technical detail, which is shown to be crucial for cap-
turing the challenges related to the integration of intermittent
renewables [8], [9], [10]. In this regard, Babrowski et al. [3]
propose to use myopic models merely as a means to reduce
computational cost.

Despite these apparent opportunities, the literature regarding
methodological aspects of using myopic optimization models
is scarce and contains a number of gaps. While there is some
literature discussing the impact of using a limited window of
foresight on the outcome of models, this literature is restricted
to global models comprising all energy sectors (e.g., [2],
[3]). As such, the term ’decision maker’ remains abstract and
the underlying implicit assumptions of the decision making
process have not been discussed in detail. As a result, the
implications of using myopic optimization models to simulate

decision-making of private agents in liberalized energy mar-
kets are unclear.

The aim of this paper is to provide methodological insights
into the opportunities and limitations of myopic optimization
models for simulating investment decisions in liberalized and
competitive energy markets.

The remainder of this paper is organized as follows. Section
II discusses the methodology employed and presents a descrip-
tion of the model used. Subsequently, the data and assumptions
are discussed in Section III. Next, the results are discussed in
Section IV and finally a conclusion is presented in Section V.

II. METHODOLOGY

To analyze the impact of the level of foresight on the invest-
ment decisions, and hence on the evolution of the electricity
generation mix, the results of a model using perfect foresight
(PF) are compared to the results of a model using a myopic
window of foresight of 10 years (MF10). Both models will
be used to generate a single scenario for the evolution of an
electricity system inspired by the Belgian case.

In the perfect foresight scenario, investments and operations
are optimized in a single optimization covering the time hori-
zon 2020-2075. This time horizon is subdivided into periods of
five years. In the MF10 scenario, the foresight is restricted to
the next 10 years, again being divided into periods of 5 years.
Similar to [2], a moving horizon approach is used to simulate
sequential decision making. Every 5 years, a new investment
planning is made, allowing previously planned investments to
be revised if construction has not yet started. A schematic of
both scenarios is presented in Fig. 1.

Fig. 1: Schematic of the PF and MF10 scenarios.

The results of PF scenario and the MF10 scenarios are
compared in terms of the capacity mix, the generation mix,
and the emissions of greenhouse gasses.

To analyze the investment decision making in both sce-
narios, we take a deeper look into the projected revenues,
operational costs and resulting short-run profits of different
investments. Assuming little uncertainty on the fixed costs, it
is these projections of short-run profits which will be the driver
for deciding whether or not to invest.



3

A. Model description

The investment-planning version of the model LUSYM
(Leuven University SYstem Model) is used in this paper. This
is a linear bottom-up partial equilibrium model of the electric
power sector. The objective function is to minimize the total
discounted cost related to both investments and operation of
generation assets over a time horizon that can be determined
freely by the user. Similar to the TIMES model, the time
horizon can be divided flexibly into periods of multiple years
[11]. Each period is represented by its middle year y ∈ Y ,
the so-called milestone year. Discounting of costs occurs to a
specific reference year y using a discount rate d. The symbols
used are defined in the Nomenclature section on the first page
of this paper.

1) Costs: The costs to be minimized include investment
costs, fixed operations and maintenance (O&M) costs and
generation costs (comprising fuel costs, costs related to the
emission of greenhouse gasses and variable O&M costs) as
specified in Equation 1. All costs are transformed into an
equivalent cost to be paid in the milestone year, which are
in turn discounted to the year y (Equation 1).

minObj =
∑
y

1

(1 + d)(y−y)
∗
(∑

g,y

(
cinvg,y + cfomg,y

− csalvg,y

)
+
∑
g,v,y

cgeng,v,y

) (1)

cinvg,y =
∑
v:v=y

capnewg,v ∗ CINV
g,v ∗MULT

g,v ∗ (1 + d)(y−Sv)
(2)

csalvg,y = cinvg,y ∗
∑
v:v=y

∗max

{
1−(1+d)Sv+TLg,v−EOH−1

1−(1+d)TLg,v

0
(3)

cfomg,y =
∑
v:v=y

min(Sv+TLg,v−1,EOH)∑
y′=Sv

1

(1 + d)(y′−y)
∗

capnewg,v ∗ CFOM
g,v

(4)

cgeng,v,y =

Ey∑
y′=Sy

( 1

(1 + d)(y′−y)
∗
∑
i

(
Wi∗∑

t

(geng,v,y,i,t ∗∆t ∗ CGEN
g,v,y )

)) (5)

The techno-economic characteristics of the different assets
are dependent on the period when the asset becomes opera-
tional, i.e., the so-called vintage year v. The cost related to
investment in an asset of technology g that becomes available
at the start of the period containing milestone year y (i.e., the
asset has vintage year v = y) is specified in Equation 2. In
this equation, MULT

g,v is a cost markup with respect to the
overnight investment cost CINV

g,v to account for interests to
be paid during the lead time of the construction. In addition,
the last factor in Equation 2 accounts for the fact that the
resulting lump-sum investment cost occurs at the start of the
period rather than in the milestone year. Assets that have not

reached the end of their assumed technical lifetime at the end
of the model horizon (EOH) are valorized, i.e., a negative
term enters in the objective function. Valorizing remaining
assets is crucial for every dynamic investment model to avoid
penalizing capital intensive assets towards the end of the model
horizon [12]. For myopic models, in which the modeled time
horizon, being equal to the window of foresight, is typically
shorter than the life time of certain generation assets, this
valorization of capacity after the end of the model horizon
becomes even more important. Quantification of the so-called
salvage value of generation assets is typically based on two
assumptions: (i) the total discounted value of an asset is equal
to its total discounted investment cost, and (ii) the value of an
asset is distributed homogenously over its assumed technical
lifetime. Under these assumptions, the salvage value of a
remaining asset is as presented in Equation 3. Note that the
fraction of the investment cost that is recovered at the end of
the optimization horizon is known prior to the optimization
and can therefore be entered into the model directly, without
requiring using the non-convex max function.

Besides investment costs, fixed O&M costs need to be paid
during every year of the modeled horizon during which the
asset is available (Equation 4).

Operations, and hence generation costs, are assumed to be
equal in all years within a period. Intra-annual variations in
demand and supply are represented using 8 representative
historical days i ∈ I, which are selected following the
methodology presented in [13]. Each representative day is
repeated a number of times Wi, the operational costs during
each day are scaled accordingly (Equation 5). Moreover, every
representative day is disaggregated further into hourly time
intervals t ∈ T .

2) System constraints: The most important system con-
straint is that supply and demand of electricity must be in
balance in every time step (Equation 6). In addition, there
is a demand for dispatchable capacity exceeding the yearly
peak load by 5% (Equation 7). The duals αy,i,t and βy of
these system constraints will be used to determine the obtained
revenues for each asset. This is discussed in detail in Section
II-B. ∑

g,v

geng,v,y,i,t = DEMy,i,t ⊥ αy,i,t (6)

∑
g∈GD,v

capnew,av
g,v,y ≥ 1.05 ∗DEMPEAK

y ⊥ βy (7)

3) Technological constraints: The generation of each asset
is restricted by a number of operational constraints. First and
foremost, the generation is restricted to its installed capacity
(Equation 9-10). To this end, the available capacity in a period
y of an asset of technology g that has become available in
the period containing v needs to be determined (Equation 8).
Note again that the fraction of the initial installed capacity
that is available in every period can be determined prior to
the optimization. To approximate detailed techno-economic
constraints, such as ramping-rate restrictions, minimum up and
down times and start-up costs, a linearized clustered unit-
commitment formulation is used similar as in [14]. A full
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description of these techno-economic constraints can be found
in [15]. Crucial in this formulation is that there is a distinction
between the number of units online nong,v,y,i,t and the actual
generation level geng,v,y,i,t.

capnew,av
g,v,y = capnewg,v ∗


0, if y < v.
1, if Sv + TLg,v ≥ Ey .
Sv+TLg,v−Sy

Ey−Sy+1 , else.
(8)

nong,v,y,i,t ≤
capnew,av

g,v,y

Pg,v

(9)

geng,v,y,i,t ≤ nong,v,y,i,t ∗ Pg,v (10)

B. Determining short-run profits

To gain insights into the investment-decision-making pro-
cess in both the perfect foresight and the myopic model, the
projected short-run (SR) profits of different assets will be
analyzed at the time of the decision making. SR profits are
defined here as the revenues subtracted by the operational costs
(Equation 11), i.e., the infra-marginal rent. These SR profits
can be considered as the value of having an asset available in
a certain year. In order for the investment to be profitable, the
present value of the short-run profits should be higher than
the present value of the annualized fixed costs (including both
investment and fixed O&M costs). Therefore, the investment
decision making can be analyzed by comparing the projected
SR profits to the annualized fixed costs.

To determine the revenues, the price for electricity and
dispatchable capacity is derived from the marginal values of
the market clearing constraint (Equation 6) and the demand for
dispatchable capacity (Equation 7) respectively (see Equations
12-13). In these equations, the factor (1 + d)(y−y) is applied
to convert prices to the year in which they occur. Moreover,
the factor

∑Ey

y′=Sy

1
(1+d)(y′−y) is used to account for the fact

that multi-year periods are used, whereas we are interested in
the prices in a single year.

SR Profitsg,v,y = capnew,av
g,v,y ∗ P dc

y

+
∑
i,t

(
(P el

y,i,t − CGEN
g,v,y ) ∗ geng,v,y,i,t ∗Wi ∗∆t

) (11)

P el
y,i,t =

αy,i,t ∗ (1 + d)y−y∑Ey

y′=Sy

1
(1+d)(y′−y) ∗Wi ∗∆t

(12)

P dc
y =

βy ∗ (1 + d)y−y∑Ey

y′=Sy

1
(1+d)(y′−y)

(13)

III. DATA AND ASSUMPTIONS

The existing capacity in Belgium is used as a starting point
of the optimization. Data on the current capacity is made
available by the Belgian TSO Elia [16]. The planned nuclear
phase-out is implemented following current legislation leading

to a gradual phase-out between 2022 and 20261. In addition,
the lifetime of existing fossil-fueled plants and renewable
generation assets is taken into account for determining the
retirement of existing capacity. Data regarding the economic
and and technical characteristics of different technologies are
taken from [17] and [18] respectively. The data used here are
presented in Tables I-II in Appendix A.

The Belgian electricity demand profile from the year 2014,
as provided by the Belgian TSO [16], is used as a starting
point. An annual growth of this demand with 1% per year is
assumed throughout the modeled time horizon. Onshore wind
and solar PV feed-in profiles are also taken from the Belgian
TSO [16].

The carbon price is assumed to increase linearly from 10
EUR/ton in 2020 to 40 EUR/ton in 2030. Afterwards, a linear
increase of 20 EUR/ton per decade is assumed.

In the simplified case study, Belgium is assumed to be an
island, and grid-related constraints within the country are not
considered.

IV. RESULTS

A. Impact on model results

The evolution of installed capacities in the PF and MF10
scenario are presented in Figures 2a and 3a respectively.
Around 2020-2025, there is a strong need for additional
capacity as existing nuclear plants reach the end of their legally
imposed exploitation period. Significant differences between
the PF and MF10 scenarios can be observed with respect to
how this nuclear capacity is replaced. In the PF scenario,
the replacement occurs predominantly by an expansion of
the CCGT and OCGT capacity. In contrast, in the MF10
scenario, there is a massive development of new supercritical
coal-fired generation capacity. Also, towards the end of the
considered time horizon, interesting differences occur in terms
of investments in carbon capture and sequestration (CCS)
technologies. While in both the PF and MF10 scenario, there
are investments in coal-fired as well as gas-fired CCS plants,
there are differences in both the amount of capacity invested
in and the timing of the investments. In the PF scenario,
CCS investments start with and are dominated by post-
combustion (PC) capture CCGTs. In contrast, in the MF10
scenario, mainly PC supercritical (SC) coal-fired power plants
are invested in.

The annual electricity generation by different technologies
in both the PF and MF10 scenario are presented in Figures
2b and 3b. Following the differences in installed capacity,
main differences in terms of electric energy generation can
be observed in the amount of coal-fired generation in the first
half of the considered time horizon as well as the type of CCS
generation more towards the end of the considered time hori-
zon. The implications of this in terms of annual greenhouse
gas (GHG) emissions in both scenarios are presented in Figure

1The operating license of the units Doel 3 and Tihange 2 respectively
expires at the end of 2022 and early 2023. Early 2025, the operating license
of Doel 1 expires, while at the end of 2025, the license of Doel 2 expires.
Finally, throughout 2026, the licenses of Doel 4, Tihange 1 and Tihange 3
expire.
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Fig. 2: Installed capacity and annual electric energy generation
in the PF scenario.

4. Over the considered time horizon, GHG emissions in the
MF10 scenario are almost 35% higher than in the PF scenario.

At this point, it is important to stress that the aim of this
paper is not to generate detailed scenarios for the evolution
of the Belgian electricity system. Nor is it to quantify the
impact of the level of foresight. Rather, the aim is to provide
methodological insights into the implicit investment-decision-
making process in perfect foresight models and their myopic
counterpart. In this regard, the case presented here is merely
used as a means to highlight the investment decision making
in both approaches.

B. Investment decision making

In this section, the investment decision making in both
models is analyzed in more detail. As discussed in Section
II-B, we do so by comparing the projected short-run profits to
the annualized fixed costs of the assets.

1) Perfect foresight: Figure 5 displays the evolution of the
SR profits of all CCGT assets as a function of time and
the year the asset has become operational. In addition, the
annualized fixed costs are displayed. As is illustrated in this

MF10
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Fig. 3: Installed capacity and annual electric energy generation
in the MF10 scenario.
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Fig. 4: Evolution of annual GHG emissions in the PF and
MF10 scenarios.

figure, the amount of short-run profit that can be obtained with
an asset can vary strongly over its lifetime.

In some cases, the trend can be explained relatively easily.
One such example is the continuously decreasing value of
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Fig. 5: Evolution of the value of all CCGT assets as a function
of the time (horizontal axis) and the year the asset becomes
operational (different curves) in the PF scenario.

CCGTs becoming operational in 2020. Due to the gradual
retirement of older CCGT plants, which are replaced by new,
more efficient ones, the CCGTs that became operational in
2020 are gradually being pushed up the merit order. This
leads to a strong reduction of the number of operating hours.
More importantly, the retirement of older CCGTs reduces
the number of operating hours during which these older
CCGTs with higher generation costs set the price, i.e., the new
CCGTs can obtain a profit. On the other hand, the increasing
natural gas and carbon prices increases the spread between the
marginal generation cost of older and new plants, and hence
the SR profit that can be obtained in these particular hours.
However, the first effect is dominant.

The sudden increase in the value of all operational CCGT
assets in the period 2045-2050 in the PF scenario is more
difficult to comprehend. As can be seen on Fig. 2a, the
capacity mix changes considerably in this period: there is a
strong reduction in the capacity of non-CCS CCGTs, while
new OCGTs become operational. This rersults in a strong
increase in the number of hours where the OCGTs are the
marginal generators setting the price, hence increasing the SR
profits for all CCGT assets. The fact that the OCGT capacity
increases so suddenly is related to the ever increasing amount
of intermittent renewale energy sources in the system and
the opportunity created by the retirement of the considerable
amount of CCGT assets that have become operational in 2020.

The above examples reveal the complexity and the informa-
tion required to make a detailed projection of the evolution of
the value of an asset. Relevant information comprises:
• the evolution of fossil fuel prices;
• the evolution of carbon prices;
• the retirement dates of existing capacity;
• the type, timing and amount of newly built capacity;
• the technological progress of different generation tech-

nologies;
• the evolution of the electricity demand;
• future policy interactions (e.g., subsidy schemes, accep-

tance of CCS).
In optimization models using perfect foresight, all this

information is known in advance. In reality however, this
information is not readily available at the time of the decision
making. Therefore, the decision making of planning models
using perfect foresight might not reflect the decision making
in reality. A good example of this is the investment in CCGT
assets becoming operational in 2030. As shown in Figure 5,
during the first years when the plant is operational, projected
profits are barely high enough to recover fixed costs. In
addition, the SR profits are expected to decrease gradually
during the first 10-15 operational years. For these reasons,
it can be considered highly unlikely that private companies
would have made this investment. In contrast, the model with
PF anticipates the sudden increase in value in the period 2045-
2050. It is this increase in value which is required to make
the investment profitable.

2) Myopic foresight: Myopic models, using a limited win-
dow of foresight, aim to simulate investment decision making
under uncertainty leading to an increasing focus on the short
term. As illustrated in Section IV-A, this can lead to a different
evolution of the capacity mix. To take a closer look at the
investment decision making in myopic models, the projections
of SR profits within the window of foresight are analyzed
for the first optimization, i.e., the optimization covering the
period 2020-2030. To more clearly illustrate the trends in the
projected SR profits within the window of foresight, the MF10
scenario is repeated using 10 periods of a single year each. The
resulting projected SR profits that can be obtained by investing
in SC coal-fired power plants and CCGTs are presented in
Figure 6. Recall that in the myopic model, the foresight and
hence the projections of SR profits are restricted to the window
of foresight. The SR profits that are obtained in the end are
also visualized in Fig. 6.

As can be observed, the projections of the SR profits
that can be obtained with SC coal-fired power plants are
expected to decrease strongly and systematically during the
first decade of operation. This is due to multiple reasons. First
and foremost, the strongly increasing carbon price within this
decade reduces the spread between the generation cost of the
coal-fired power plants and the marginal generator setting the
electricity price -being CCGTs in the vast majority of the time.
Second, this reduction of the spread is amplified by the gradual
replacement of old CCGTs by new, more efficient, ones. In the
PF scenario, the model anticipates a further decrease in SR
profits and decides not to invest in coal-fired non-CCS plants.
Regarding the value of CCGTs coming available in 2020, it is
mainly the replacement of old CCGTs by more efficient new
CCGTs that causes the slight decrease in projected SR profits.

Despite this clear trend of decreasing SR profits for coal-
fired generation, the model with myopic foresight decides to
invest in a significant amount of coal-fired generation. This is
due to the fact that, when calculating the value of an asset
outside the modeled time horizon (i.e., the salvage value), it
is assumed that the value of an asset is distributed equally
over each year of its assumed technical life time. Hence,
myopic models will invest in generating capacity as long as
the discounted short-run profits within the window of foresight

PONCELEK
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Fig. 6: Evolution of the value of supercritical coal plants and
CCGTs as a function of the time (horizontal axis) in the MF10
scenario. The full lines present the projections of the SR profits
within the window of foresight at the time the investment
decision is made. The dashed lines indicate the actual SR
profits after reconsidering investment decisions every 5 years.
The dotted lines present the annualized fixed costs.

are at least equal to the discounted annual payments for the
fixed costs within this window. Seen from a different per-
spective, this means that myopic models implicitly extrapolate
the discounted average SR profits within the period of the
optimization to all years outside the window of foresight,
rather than extrapolating the trend in SR profits observed
within the window of foresight. For this reason, the investment
decision making in myopic optimization models can also not
be considered to fully reflect reality.

In addition to this shortcoming, myopic models have some
other limitations. First, myopic models consider perfect in-
formation for all considered parameters within the window
of foresight, while no information is available outside this
window. In reality however, certain parameters, e.g., coal
prices, can be approximated with reasonable accuracy for a
long period, while others, e.g., natural gas prices, are more
uncertain. Furthermore, myopic models do not account for the
non-linear effects between the value of generating assets and
certain parameters (e.g., the non-linear relationship between
the value of coal-fired assets and the carbon price around
the fuel switching price [19]). Finally, the investment decision
making does not endogenously account for the risk related to
an investment.

V. SUMMARY AND CONCLUSIONS

This paper analyzes the investment decision making in new
generating assets in perfect foresight and myopic foresight op-
timization models. A simplified case study of the evolution of a
system inspired by the Belgian electricity system is performed
to highlight methodological differences between both models.
In this respect, two scenarios are used: one assuming perfect
foresight (PF) and a second (MF10) assuming that the window

of foresight is restricted to the following 10 years (leading to
a sequential decision making process).

The results of this case study show that the modeled
foresight can have a significant impact on the outcome of
the analysis. In the PF scenario, investments in dispatchable
capacity are dominated by CCGTs up to 2045 and later on
by CCGTs with post-combustion capture. In contrast, in the
MF10 scenario, there is a significant amount of supercritical
coal-fired power plants (both with and without carbon capture)
entering the mix.

While the myopic approach is suggested by some authors
to more realistically simulate the short-term focus of invest-
ment decision makers in an uncertain environment, a detailed
analysis of the decision making reveals some drawbacks of
this approach. Most importantly, these models do not account
for the trend observed in terms of profits obtained within
the window of foresight. As a result, the investment decision
making process in myopic models might also not be reflective
of reality.

Further research is required to further improve simulating
investment decisions using optimization models. In particular,
a combination of a stochastic modeling framework to account
for uncertainty with the short-term focus of myopic models
could result into an interesting approach.
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[13] K. Poncelet, H. Höschle, A. Virag, E. Delarue, and W. D’haeseleer, “Se-
lection of representative days for investment planning models,” kU Leu-
ven, TME Working Paper WP EN2015-10, https://www.mech.kuleuven.
be/en/tme/research/energy environment/Pdf/wpen2015-10b.pdf.

[14] B. Palmintier, “Flexibility in generation planning: Identifying key oper-
ating constraints,” in Power Systems Computation Conference (PSCC),
2014. IEEE, 2014, pp. 1–7.

[15] K. Poncelet, A. van Stiphout, E. Delarue, W. D’haeseleer, and G. De-
coninck, “A clustered unit commitment problem formulation for in-
tegration in investment planning models,” kU Leuven, TME Working
Paper WP EN2014-19, https://www.mech.kuleuven.be/en/tme/research/
energy environment/Pdf/wp-luc.pdf.

[16] ELIA, “Grid data - Elia,” Apr. 2015. [Online]. Available: http:
//www.elia.be/en/grid-data

[17] S. Simoes et al., “The JRC-EU-TIMES model - Assessing the long-term
role of the SET Plan Energy technologies,” JRC’s Institute for Energy
and Transport, Tech. Rep., 2013.
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APPENDIX A
TECHNOLOGICAL CHARACTERISTICS

VOM [EUR/MWh]
CINV [kEUR/kWe] CFOM [EUR/(kWe· year)] TL [y]

Technology 2010 2020 2030 2050 2010 2020 2030 2050 LT [y]
NUCLEAR GEN2 PWR - - - - 43 43 43 43 5 50 7
COAL SC PC CCS - 2.45 2.21 2.02 - 43 41 34 20 35 5
COAL SC 1.71 1.70 1.70 1.70 34 34 34 33 6 35 4
CCGT PC CCS - 1.24 1.16 1.09 - 44 41 39 10 25 3
CCGT 0.86 0.86 0.86 0.86 26 21 20 20 4 25 2
OCGT 0.57 0.57 0.57 0.568 17 17 17 17 4 15 2
Wind ON 1.60 1.38 1.27 1.19 36 29 27 25 - 25 1
PV ROOF 3.66 1.42 1.14 0.78 55 21 17 12 - 30 1

TABLE I: Economic characteristics of the considered technologies.

NUCLEAR GEN2 PWR COAL SC PC CCS COAL SC CCGT PC CCS CCGT OCGT

Efficiency [%]

2010 30 28 45 42 58 42
2020 30 31 46 44 60 45
2030 30 36 49 49 62 45
2050 30 40 49 53 64 45

Minimum stable operating point [%/Pnom] 80 50 50 50 50 20
Ramp rate [% Pnom/min] 0.25 0.83 0.83 0.83 0.83 10
Minimum up time [hours] 24 6 6 4 4 1
Minimum down time [hours] 48 4 4 1 1 1
Availability [%] 82 85 85 85 85 85
Capture rate [%] - 88 - 88 - -

TABLE II: Technical characteristics of the considered technologies.




