
 
 

Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in 

peroxisomal multifunctional protein-2 deficiency 

 

Stephanie De Munter1, Simon Verheijden2, Esther Vanderstuyft1, Ana Rita Malheiro3, Pedro 

Brites3, David Gall4, Serge N. Schiffmann4, and Myriam Baes1 

 

1KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Cell 

Metabolism, B-3000 Leuven, Belgium; 2KU Leuven – University of Leuven, Department of Clinical and 

Experimental Medicine, TARGID, B-3000 Leuven, Belgium; 3 Instituto de Biologia Molecular e Celular 

– IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Nerve Regeneration 

group, 4200-135 Porto, Portugal. 4ULB - Faculté de Médecine – Campus Erasme - Laboratory of 

Neurophysiology, ULB-Neuroscience Institute, B-1070 Brussels, Belgium. 

 

 

 

e-mail addresses: 

Stephanie.Demunter@pharm.kuleuven.be 

Simon.Verheijden@med.kuleuven.be 

Esther.Vanderstuyft@gmail.com 

Ana.malheiro@ibmc.up.pt 

Dgall@ulb.ac.be 

Sschiffm@ulb.ac.be 

Pedro.Brites@ibmc.up.pt 

Myriam.Baes@pharm.kuleuven.be 

 

 

 

 

 

 

 

 

Corresponding author: 

Myriam Baes, PhD 

Laboratory for Cell Metabolism 

Faculty of Pharmaceutical and Pharmacological Sciences 

Campus Gasthuisberg O/N2 

Herestraat 49  

B 3000 Leuven 

Tel + 32 16 330853 

Fax + 32 16 330856  

mailto:Stephanie.Demunter@pharm.kuleuven.be
mailto:Simon.Verheijden@med.kuleuven.be
mailto:Dgall@ulb.ac.be
mailto:Sschiffm@ulb.ac.be


 
 

ABSTRACT 

The cerebellar pathologies in peroxisomal diseases underscore that these organelles are required for the 

normal development and maintenance of the cerebellum, but the mechanisms have not been resolved.  

Here we investigated the origins of the early-onset coordination impairment in a mouse model with 

neural selective deficiency of multifunctional protein-2, the central enzyme of peroxisomal β-oxidation. 

At the age of 4 weeks, Nestin-Mfp2-/- mice showed impaired motor learning on the accelerating rotarod 

and underperformed on the balance beam test. The gross morphology of the cerebellum and Purkinje 

cell arborization were normal. However, electrophysiology revealed a reduced Purkinje cell firing rate, 

a decreased excitability and an increased membrane capacitance. The distribution of climbing and 

parallel fiber synapses on Purkinje cells was immature and was accompanied by an increased spine 

length. Despite normal myelination, Purkinje cell axon degeneration was evident from the occurrence 

of axonal swellings containing accumulated organelles. In conclusion, the electrical activity, axonal 

integrity and wiring of Purkinje cells are exquisitely dependent on intact peroxisomal β-oxidation in 

neural cells. 
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ABBREVIATIONS 

APP: anti-Alzheimer precursor protein; BOS: base of support; CF: climbing fiber; DAPI: 4',6-

diamidino-2-phenylindole; ECL: enhanced chemiluminescence; EGL: external granule cell layer; 

GABA: gamma-aminobutyric acid; GluRδ2: glutamate receptor δ2 subunit; H&E: haematoxylin and 

eosin; HRP: horseradish peroxidase; HSD17B4: 17β-hydroxysteroid dehydrogenase type 4; IGL: 

internal granule cell layer; LF: left front; LH: left hind; MFP2: multifunctional protein-2; ML: molecular 

layer; P: postnatal day; PBD: peroxisomal biogenesis disorders; PBS: phosphate buffered saline; PC: 

Purkinje cell; PF: parallel fiber; PFA: paraformaldehyde; PPD: p-phenylenediamine; PUFA: poly-

unsaturated fatty acids; RF: right front; RH: right hind; SED: single enzyme deficiencies; SMI31/ 

SMI32: Sternberger monoclonal incorporated antibody 31/ 32; VGaT: vesicular GABA transporter; 

VGluT: vesicular glutamate transporter; VLCFA: very long-chain fatty acids; WT: wild type. 



 
 

INTRODUCTION 

Adequate cerebellar functioning depends largely on the Purkinje cells (PCs), the sole output neurons of 

the cerebellar cortex. PC dysfunction gives rise to ‘cerebellar ataxia’, a term generally used for a range 

of neurological disorders that affect balance, coordination and speech. Currently, more than 60 different 

types of cerebellar-based ataxias have been identified of which Friedreich’s and spinocerebellar ataxias 

are the most common. Less well-known is that cerebellar defects are also prominent features in many 

peroxisomal disorders, a group of heterogeneous and rare diseases caused by dysfunction of peroxisomal 

proteins. Both in peroxisome biogenesis disorders (PBD) and in single enzyme deficiencies (SED), 

developmental or degenerative cerebellar pathologies manifest as part of a multi-organ disease (recently 

reviewed in De Munter et al. (De Munter et al., 2015). 

More remarkable is that several patients who present with cerebellar ataxia and atrophy as the primary 

pathology were recently found to have mutations in the gene 17β-hydroxysteroid dehydrogenase type 4 

(HSD17B4), encoding the central enzyme of the peroxisomal β-oxidation pathway, known as D-

bifunctional protein or multifunctional protein-2 (further denoted as MFP2). MFP2 is indispensable for 

the breakdown of several substrates, including very long-chain fatty acids (VLCFA), branched-chain 

fatty acids, bile acid intermediates, and for both the degradation and synthesis of poly-unsaturated fatty 

acids (PUFAs). When the enzyme is completely inactive, this results in a severe neurodevelopmental 

disease characterized by hypotonia and brain malformations, frequently involving the cerebellum and 

brainstem (Ferdinandusse et al., 2006). Diagnosing the mildly affected MFP2 patients with ataxia was 

notoriously difficult as the metabolites that accumulate in plasma of the severe variants of the disease, 

such as VLCFA and branched-chain fatty acids, occurred in (near) normal levels. It is thanks to the 

application of next generation sequencing that the genetic defect could be defined (Lieber et al., 2014; 

Lines et al., 2014; McMillan et al., 2012). In the absence of relevant metabolite deregulation in plasma, 

the mechanisms underlying the cerebellar pathology are fully obscure.  

Our previous studies have demonstrated that cerebellar pathology also manifests in Mfp2-/- mice. We 

have demonstrated a mild delay in cerebellar foliation with impaired granule cell migration and an 

increased number of apoptotic cells in Mfp2-/- mice, indicating a role of peroxisomal β-oxidation in 

cerebellar development (Krysko et al., 2007). Moreover, starting at 4 weeks of age, they display poor 



 
 

rotarod performance and an uncoordinated locomotion with abnormal paw placement. Their motor 

phenotype is progressive and culminates in severe ataxia accompanied by PC degeneration and 

cerebellar atrophy (Verheijden et al., 2013).  

In order to decipher the pathomechanisms of cerebellar degeneration in MFP2 deficiency, we recently 

generated Nestin-Mfp2-/- mice with neural selective MFP2 deletion. These mice also displayed 

coordination defects upon rotarod testing from the age of 4 weeks, proving that the cerebellar phenotype 

is not caused by peripheral MFP2 deficiency, as for example bile acid abnormalities (Verheijden et al., 

2013). Here we investigated cerebellar structure and function in early symptomatic Nestin-Mfp2-/- mice. 

Through in-depth behavioral, histological and electrophysiological studies, we revealed a complex 

cerebellar phenotype.  

 

MATERIALS AND METHODS 

Mouse breeding 

The generation of Mfp2-/- and Nestin-Mfp2-/- mice has been described elsewhere (Baes et al., 2000; 

Verheijden et al., 2013).  Mice were bred in the animal housing facility of the KU Leuven, had ad libitum 

access to water and standard rodent food and were kept on a 12 hour light and dark cycle. Genotyping 

was performed on tail DNA. All animal experiments were performed in accordance with the "Guidelines 

for Care and Use of Experimental Animals" and fully approved by the Institutional Animal Ethical 

Committee of the KU Leuven (#177/2012 and #122/2015).  

 

Motor coordination assessment 

Rotarod 

An accelerating rotarod (Med Associates) was used to test motor skill learning in 4-week-old Nestin-

Mfp2-/- mice and their respective controls. The rotarod test included a short adaptation session in which 

the mice were trained to stay on a steady rod for at least 30s. Trials were performed on 5 consecutive 

days and included 4 tests with an acceleration of 4 – 40 rpm in 300s. Mice were allowed to rest for 1 

hour in between each trial. Falling of the rod or reaching 300s were considered as the trial ending. A 

cohort of 6 male mice per genotype was used.  



 
 

Noldus CatWalk  

The CatWalk system (Noldus Information Technology) was used to assess locomotor gait dynamics in 

4-week-old Nestin-Mfp2-/- mice and wild type (WT) littermates as described previously (Vandeputte et 

al., 2010). Briefly, mice were given 3 trials in which they were allowed to cross the pressure-sensitive 

plate of the CatWalk system in an unforced manner. Uninterrupted tracks with at least 4 cycles of 

complete steps were considered successful. Speed variation was less than 25% between both genotypes. 

The animal’s paw prints were given a label (right-fore (RF), right-hind (RH), left-fore (LF), left-hind 

(LH)) and subsequently analyzed using the CatWalk software. Stride length and base of support (BOS) 

were recorded and averaged over the 3 trials. A cohort of 4 male mice per genotype was used. 

 

Balance beam test 

The balance beam was used to assess fine motor coordination and the ability to maintain balance while 

traversing a narrow beam to a safe platform. The apparatus consisted of square beams with a flat surface 

and one meter in length, positioned 50 cm above the table top. Beams had a cross section of 30 mm or 

5 mm. Mice were trained 4 times a day for 3 consecutive days on the 30 mm beam until they were able 

to cross within 30s without hesitation. On the testing day, the time needed to cross the 5 mm beam and 

the number of paw slips were recorded. A cohort of 6 male mice per genotype was used.  

 

Histology and Immunohistochemistry  

Animals were deeply anesthetized with a mix of Dormitor (1mg/kg) and Nimatek (75 mg/kg) and 

perfused transcardially with phosphate buffered saline (PBS, pH 7.4), followed by 4% 

paraformaldehyde (PFA). Brains were isolated, post-fixed overnight in 4% PFA and cryopreserved in 

20% (wt/vol) sucrose. Brains were embedded in a sagittal orientation in TissueTek (Thermo Scientific), 

rapidly frozen and stored at -20°C. Free floating sections (40 µm) were cut on a cryostat and stored in 

cryoprotectant until further processing. Double stainings of calbindin with either vesicular glutamate 

transporter 1 (VGluT1), - VGluT2 or - vesicular gamma-aminobutyric acid (GABA) transporter (VGaT) 

were performed as described, with slight modifications (Ramer et al., 2010). Sections of the cerebellar 

vermis were blocked for 30 mins in 10% normal goat serum (Vector Laboratories), 0.1% Triton X-100  



 
 

in PBS and incubated overnight at 4°C with the primary antibodies in block (mouse calbindin (Sigma; 

1:200), rabbit VGLuT1 (Synaptic Systems; 1:1000), rabbit VGluT2 (Synaptic Systems; 1:1000) or 

rabbit VGaT (Synaptic Systems; 1:1000)). After extensive washing with PBS, sections were incubated 

with the appropriate secondary antibodies in block for 2 hours at room temperature (goat-anti-mouse 

Alexa-Fluor-568 (Invitrogen, 1:200) or goat-anti-rabbit Alexa-Fluor-488 (Invitrogen, 1:200)). Floating 

sections were transferred to Superfrost Plus (Thermo Scientific) slides and coverslipped with 

Vectashield mounting medium containing 4',6-diamidino-2-phenylindole (DAPI) (Vector Laboratories). 

Images were acquired with a Zeiss AxioCam camera connected to a Zeiss confocal laser scanning 

microscope 510 with a 63x oil immersion objective. The pinhole was set at 1 arbitrary unit. Confocal 

image acquisition consisted of images in the z-direction with a step size of 2µm.  

Stainings on paraffin and cryosections were performed as described (Hulshagen et al., 2008; Verheijden 

et al., 2013) and imaged on a motorized inverted IX-81 microscope connected to a CCD-FV2T digital 

camera (Olympus). A cohort of 4 mice per genotype was used. 

 

Quantitative Measurements  

The external granule cell layer (EGL) and molecular layer (ML) thickness were determined using 20X 

images from haematoxylin and eosin (H&E) stained cerebellar sections. The thickness of the ML was 

calculated as the distance between the base of the PC soma and the external border of the ML. EGL 

thickness was determined relative to the ML. Measurements were performed in duplicate on 10 pictures, 

1 for each cerebellar lobule, resulting in 20 measurements per animal. VGluT1 density was measured 

within a fixed rectangle positioned in the distal part of the PC dendritic tree. The number of VGluT2 

and VGaT immunoreactive boutons was analyzed in the ML and corrected for the area selected. 

Analyses were performed on 3 pictures per cerebellar lobule and on 3 consecutive images of the z-stack, 

resulting in 90 measurements per animal. Results were averaged per lobule, resulting in 40 

measurements per genotype. Climbing fiber (CF) extension was measured from the base of the PC soma 

to the tip of the CF arbor relative to the ML thickness in 30 pictures per genotype. All measurements 

were performed using the FiJi software. A cohort of 4 mice per genotype was used.  

 



 
 

Immunoblotting 

Western blotting experiments were conducted as described (Baes et al., 2000). A calbindin antibody 

(Sigma) was used at a concentration of 1/1000. The β-actin antibody (Abcam) was used at a 

concentration of 1/5000. Secondary antibodies were horseradish peroxidase (HRP) labeled and detection 

was performed using the Enhanced Chemiluminescence (ECL) plus detection kit (Amersham). 

 

Electrophysiology 

The preparation of acute cerebellar slices was performed as previously described (Petrinovic et al., 

2013), with slight modifications. Briefly, postnatal day (P) 21 – P28 mice were anesthetized with 

halothane, decapitated and cerebella were quickly dissected. Sagittal slices of the cerebellar vermis (200 

µm) were cut on a vibratome (Leica) and collected in ice-cold, oxygenated extracellular solution 

containing the following (mM): 140 Choline Chloride, 26 NaHCO3, 14 glucose, 7 MgCl2, 2.5 KCl, 1.25 

NaH2PO4*H2O and 0.5 CaCl2. Slices were transferred to oxygenated extracellular solution and kept at 

34°C for at least 30 mins before being transferred to the recording chamber which was continuously 

provided with fresh oxygenated extracellular solution at room temperature. PCs were visualized using 

an upright microscope (Zeiss; Axioskop 2). All recordings have been made using the whole cell 

configuration of the patch clamp technique. Patch pipettes were made of borosilicate glass (Hilgenberg) 

with resistances of 2-6 MΏ when filled with the patch pipette solution containing the following (mM): 

120 NaCl, 26 NaHCO3, 11 glucose, 2 KCl, 2 CaCl2, 1.19 MgSO4*7H2O and 1.18 KH2PO4. Recordings 

were performed for both current- and voltage-clamp modes using an EPC 10 amplifier (HEKA). 

Stimulus generation and data acquisition were made with PatchMaster software (HEKA). Spontaneous 

and depolarization-evoked potential signals were filtered at 4 kHz and digitally sampled at 20 kHz. 

Spontaneous action potential firing frequency was analyzed from current clamp recordings with a 0 pA 

injected current. Intrinsic excitability was investigated by setting membrane potential at -80 mV and 

injecting 1 second steps of depolarizing current (from 0 to 2.5 nA in 50 pA increment). When injected 

with a sufficient depolarizing current, PCs generated repetitive spikes. Action potential frequency was 

measured for each injected current intensity. The average frequency over the time of current injection 

was measured by dividing the number of interspike intervals by the time interval between the first and 



 
 

the last spike. These values were used to construct current-frequency plots. Passive cellular parameters 

were extracted from voltage clamp traces by analyzing current relaxation induced by a 10 mV step 

change from a holding potential of -70 mV. For the estimation of the cell capacitance, only the slow 

component of the capacitive currents, corresponding to the dendritic compartment, was taken into 

account as the fast somatic component only contributes to about 2% of the total capacitive charge (Llano 

et al., 1991). Recordings and data analysis were conducted as described on 8 WT and 9 Nestin-Mfp2-/- 

PCs.  

 

Biocytin labeling and PC morphological analysis 

Cerebellar sections used for electrophysiological recordings were simultaneously used for PC 

morphological reconstruction by means of Biocytin injection (0.5%, Sigma-Aldrich). Slices were 

immersion fixed overnight in 4% fresh PFA and Biocytin was revealed by means of cytochemistry using 

a streptavidin-488 secondary antibody (Jackson Immunoresearch, 1/200 in PBS-T). Images were 

acquired using a Zeiss confocal laser scanning microscope 510 with a 63x oil immersion objective in 

the z-direction with a step size of 1µm. Neuronstudio (version 9.92) was used to accurately reconstruct 

the PC dendritic tree and to determine PC Strahler orders as described previously (Chen et al., 2013), 

with slight modifications. The FiJi program was used for Sholl analysis by applying the Simple Neurite 

Tracer plugin (Chen et al., 2013). For each genotype, 5 PCs were reconstructed and analyzed.  

 

Golgi staining  

The Golgi impregnation method was applied with the Rapid Golgi stain kit (FD 

Neurotechnologies). Briefly, 4-week-old WT and Nestin-Mfp2-/- mice were anesthetized and cerebella 

were quickly dissected, cut in the sagittal plane and handled according to the manufacturer's protocol. 

Cerebellar halves were embedded in 4% agarose and 100 µm sections were cut on a vibratome, stained 

and transferred on Superfrost Plus slides. Z-stack images were taken on a motorized inverted IX-81 

microscope connected to a CCD-FV2T digital camera (Olympus). PC soma size was determined as 

described previously (Tavazoie et al., 2005). Spine density and length were averaged for 3 terminal 

dendrites for each PC. Spine number was counted and corrected for dendrite length. Spine length was 



 
 

averaged for 6 spines per dendrite and calculated as the distance between the base of de dendrite and the 

outmost distal point of the spine head. Analyses were performed on 15 PCs per genotype, from 3 WT 

and 3 Nestin-Mfp2-/- mice, using the FiJi software.  

 

Electron microscopic analysis  

Animals were deeply anesthetized with a mix of Dormitor (1mg/kg) and Nimatek (75mg/kg) and 

perfused transcardially with PBS (pH 7.4), followed by a solution containing 2% PFA and 2% 

glutaraldehyde in 0.1M sodium cacodylate (pH 7.4). Cerebella from 2 WT and 2 Nestin-Mfp2-/-mice 

were isolated, sectioned sagitally and post-fixed overnight by immersion in 4% glutaraldehyde in 0.1M 

sodium cacodylate buffer (pH 7.4) for 1 day and then at 4°C for 2 days.  Following previously described 

methods and protocols (da Silva et al., 2014), samples were processed for light and electron microscopy. 

Semi-thin sections of cerebella were stained with p-phenylenediamine (PPD) to allow the visualization 

of axon swellings in myelinated axons, and determination of regions to be analyzed by electron 

microscopy. Ultrathin sections (approximately 60 nm thick) encompassing the granular, PC and 

molecular layers of lobe V at the cerebellar vermis were used in all ultrastructural analyses. The degree 

of myelination was determined by analyzing the g-ratio in the cerebellar white matter of WT (n=297 

axons) and Nestin-Mfp2-/- (n=232 axons) mice as described (da Silva et al., 2014). 

 

Statistical analysis 

All data were analyzed with GraphPad Prism software (version 5.0). Statistical analyses were performed 

using the unpaired, two-sided Student's t-test or with one-way ANOVA repeated measures or two-way 

ANOVA repeated measures followed by the Bonferroni post hoc test. Data are shown as the mean ± 

SEM and statistical significance was set at P < 0,05.  

 

RESULTS 

Nestin-Mfp2-/- mice show cerebellar ataxia and mild disturbances in motor learning  

We previously reported that Nestin-Mfp2-/- mice underperform on the rotarod at the age of 4 weeks 

(Verheijden et al., 2013). To distinguish whether this is due to the inability to learn complex motor skills 



 
 

(Bergeron et al., 2014; Bureau et al., 2010) or due to pure cerebellar ataxia, 4-week-old mice were 

trained 4 times per day on an accelerating rotarod during 5 consecutive days. WT mice rapidly enhanced 

their performance, reaching the maximal latency of 5 minutes during the final trial of the first training 

day (Supplementary Figure 1), which remained constant in all subsequent tests. In contrast, Nestin-Mfp2-

/- mice showed a slight delay in learning the new motor task as they still improved their scores during 

the second and third training days (Figure 1A). Interestingly, there was a clear tendency that Nestin-

Mfp2-/- mice performed worse in the last as compared to the first test of the day (Supplementary Figure 

1).  

To gain more evidence for ataxic behavior we performed CatWalk analysis, an automated gait analysis 

system, and used a balancing beam test which is more sensitive in revealing subtle coordination defects 

related to cerebellar dysfunction (Brooks and Dunnett, 2009; Herson et al., 2003). Gait analysis revealed 

significant decreases in stride length and base of support (BOS) of the hind paws in Nestin-Mfp2-/- mice 

(Figure 1B, C). Moreover, Nestin-Mfp2-/- mice made more slips and needed more time to cross the 

balancing beam as compared to controls (Figure 1D, E). The mild impairment in motor learning of 

Nestin-Mfp2-/- mice and their coordination problems on the CatWalk, rotarod and balance beam are 

suggestive of a cerebellar defect at this young age.  

 

Cerebellar development and gross architecture are unaltered in Nestin-Mfp2-/- mice 

The early-onset coordination problems of Nestin-Mfp2-/- mice were suggestive of impaired cerebellar 

development, which occurs postnatally over a three-week period in mice. Deficits in cerebellar 

maturation are often accompanied with a delay in the formation of the characteristic folia and 

impairment in granule cell migration. During its development, the cerebellar cortex consists of an extra 

outermost layer called the EGL, which gradually becomes thinner as the granule cells migrate along the 

Bergman glia fibers to form the internal granule cell layer (IGL).  

We compared the gross morphology of WT and Nestin-Mfp2-/- cerebella on sagittal sections at different 

postnatal ages. At P8, a mature foliation pattern with well-defined fissures of similar depth separating 

the characteristic folia was observed in WT and Nestin-Mfp2-/- cerebella (Figure 2A). Furthermore, the 

thickness of the IGL and the ratio EGL/ ML were unaltered in Nestin-Mfp2-/- mice, indicating normal 



 
 

granule cell migration (Figure 2C, G, H). PC outgrowth was examined after calbindin staining. This did 

not reveal obvious abnormalities in PC alignment and morphology with the majority of the cells 

presenting with a primary dendrite branching to a similar extent in the parasagittal plane (Figure 2E). 

Also, at 4 weeks of age, cerebellar weight and size (data not shown) were comparable between Nestin-

Mfp2-/- and WT mice with a normal appearance of the cortical layers and an equal thickness of the ML 

(Figure 2B, D, F, I). Calbindin immunoreactivity by histological staining and western blot was unaltered 

in Nestin-Mfp2-/- mice, demonstrating the absence of generalized PC loss at an age of 4 weeks (Figure 

2F, J, K). These results indicate that the early-onset motor impairment in Nestin-Mfp2-/- mice cannot be 

associated with gross alterations in cerebellar morphology. 

 

Axonal transport is compromised in 4-week-old Nestin-Mfp2-/- mice 

Interestingly, calbindin staining showed numerous focal spheroids present on PC axons of 4-week-old 

Nestin-Mfp2-/- mice, some of them being 5 to 10 times wider compared to the uniform PC axons in WT 

littermates (Figure 3C, D). These axonal abnormalities were also observed, although to a lesser extent 

in 2-week-old Nestin-Mfp2-/- cerebella (Figure 3A, B), indicating progressive alterations of axon 

structure in Nestin-Mfp2-/- mice. On semi-thin sections, axonal swellings were clearly detected on 

myelinated axons of Nestin-Mfp2-/- PC (Figure 4A). Myelination assessment by determination of the g-

ratio revealed normal myelin levels in cerebellar white matter of Nestin-Mfp2-/- mice (Figure 4B). 

Ultrastructural analysis revealed the presence of normal-appearing PC axons in Nestin-Mfp2-/- mice 

(Figure 4C). However, numerous axonal swellings could be easily visualized in the granular layer of 

Nestin-Mfp2-/- mice (Figure 4D). The swellings were 2 - 3 times the width of axons, and were 

characterized by the accumulation of subcellular organelles. The accumulation of mitochondria and 

membrane stacks was prominent (Figure 4D), and are suggestive of impaired axonal transport in PC 

axons of Nestin-Mfp2-/- mice.  

These findings prompted us to examine the axonal status in other white matter tracts. Staining of a series 

of coronal sections through the corpus callosum of 4-weeks-old Nestin-Mfp2-/- and WT littermates with 

the Sternberger monoclonal incorporated antibody 31 (SMI31) showed a normal neurofilament pattern 

in healthy looking axons in both genotypes. In agreement, SMI32 staining, a marker for non-



 
 

phosphorylated neurofilament and indicative of axonal damage, was undetectable. Furthermore, the 

absence of anti-Alzheimer precursor protein (APP) accumulation in axons of 4-weeks-old Nestin-Mfp2-

/- mice proved that axonal transport is uninterrupted in the corpus callosum (Supplementary Figure 2). 

Based on these findings, we conclude that axonal abnormalities in juvenile Nestin-Mfp2-/- mice are 

restricted to cerebellar PCs.  

 

PC firing frequency and excitability is reduced in early-symptomatic Nestin-Mfp2-/- mice 

An ataxic phenotype at a young age can be caused by physiological dysfunction of cerebellar PCs 

(Hourez et al., 2011; Milnerwood et al., 2010). We aimed at investigating whether the uncoordinated 

phenotype in young Nestin-Mfp2-/- mice correlated with PC electrophysiological dysfunction. Therefore, 

the functional properties of 3 to 4-week-old WT and Nestin-Mfp2-/- PCs were studied in slices of the 

cerebellar vermis.  

Supplementary Table 1 shows the parameters from the patch clamp recordings. MFP2 deletion did not 

alter the membrane resistance (GOhm) nor the resting membrane potential (mV). However, membrane 

capacitance (pF) of MFP2 deficient PCs was significantly increased (Figure 5A). 

In the absence of excitatory synaptic inputs, healthy PCs exhibit a spontaneous firing pattern 

characterized by the presence of rapid and highly regular action potentials. Whole cell configuration 

recordings showed a significant reduction in PC spontaneous activity in the absence of MFP2 (Figure 

5B). To further test PC excitability, current-frequency plots were made. For this, membrane potential 

was initially held at -80 mV and stepwise depolarized with 50 pA injections. Our data showed a 

significant decrease in Nestin-Mfp2-/- PC excitability with less action potentials generated for each 

current injected (Figure 5C). To summarize, we show that impaired peroxisomal β-oxidation results in 

early-onset PC dysfunction with significant decreases in firing frequency and intrinsic excitability and 

an increased membrane capacitance.  

 

Subtle alterations in PC morphology in 4-week-old Nestin-Mfp2-/- mice 

Because the membrane capacitance is primarily determined by the cell surface area, we checked whether 

the observed increase in capacitance in MFP2 deficient PCs was related to alterations in PC morphology. 



 
 

After visualization of the biocytin injected in PCs during intracellular recordings (Figure 6A, D), 

neuronal morphology was accurately reconstructed in NeuronStudio and the density of branching points 

at different distances from the cell PC soma was assessed by means of Sholl analysis. As already 

suggested by the equal thickness of the ML in 4-week-old Nestin-Mfp2-/- mice (Figure 2I), the 

complexity of the PC dendritic tree was unaffected by impaired peroxisomal β-oxidation (Figure 6C). 

In agreement, Strahler orders of the dendritic branches were equal in WT and Nestin-Mfp2-/- mice 

(Figure 6B, E, F).  

The Golgi impregnation method was used to study PC dendritic spines and soma size (Figure 7A, B).  

While no difference was observed in the PC soma size (Figure 7E), Golgi staining revealed significant 

increases in spine length and density in 4-week-old Nestin-Mfp2-/- mice (Figures 7C, D). The increased 

dendritic spine length of Nestin-Mfp2-/- PC was confirmed by ultrastructural analysis. (Figure 7F – H). 

Together, our results indicate that the general morphology of the Nestin-Mfp2-/- PC soma and dendritic 

trees appears unaffected by the absence of MFP2 but changes are present at the level of the spines.  

 

MFP2 is indispensable for adequate cerebellar wiring 

Proper cerebellar functioning also depends largely on adequate wiring of the PCs. CF and mossy fibers 

(MF), originating from the inferior olivary nucleus and the spinal cord respectively, are the main 

afferents innervating these cells. During cerebellar development, CF innervation switches from a state 

of multiple innervation to PC monoinnervation through the elimination of supernumerary CFs, thereby 

making direct contacts to the proximal dendritic part of a single PC.  In contrast, MF innervation occurs 

indirectly by making synaptic contacts onto granule cells, which in turn send parallel fibers (PF) 

contacting the distal part of the dendritic tree of multiple PCs. To examine whether the defective PC 

morphology is accompanied by a difference in synaptogenesis, immunohistochemical analysis was 

performed to visualize PC excitatory and inhibitory input.  

Immunofluorescence double staining using calbindin and VGluT1 or VGluT2, marking PF and CF 

terminals respectively, was used in order to study differences in PC glutamatergic input (Figure 8A, B, 

D, E). In the cerebellar ML, both VGluT1 and VGluT2 immunoreactivities were significantly decreased 

in 4-week-old Nestin-Mfp2-/- mice (Figure 8G, J). Moreover, VGluT2 positive CF terminals were 



 
 

observed in a restricted area of the ML and on PC somata, indicating inadequate maturation of PC 

innervation (Figure 8H, I). Inhibitory synaptic contacts on the PC dendritic tree were unaffected, as 

shown by the equal number of VGaT in the cerebellar ML (Figure 8C, F, K). 

 

DISCUSSION 

We here show that intact peroxisomal β-oxidation is crucial for PC function in the juvenile mouse 

cerebellum. We find that mice lacking the key β-oxidation enzyme, MFP2, exhibit impaired motor 

learning and ataxia. This was associated with altered electrophysiological properties of PCs, PC axonal 

degeneration, and CF and PF wiring abnormalities in the absence of overt morphological alterations. 

Our data provide new functional insights with regard to the importance of peroxisomes in the central 

nervous system.  

It is well established that full ablation of peroxisomal function both in man and in mice, through PEX 

gene mutations, causes dysgenesis of the cerebellum with granule cell and PC migration defects and 

severe PC malformation (Barkovich and Peck, 1997; Faust, 2003; Muller et al., 2011). In addition, in 

recent years, adolescent and adult patients with mild PBD were identified in which cerebellar ataxia is 

a primary and recurrent feature (Gootjes et al., 2004; Mignarri et al., 2012; Raas-Rothschild et al., 2002; 

Regal et al., 2010; Sevin et al., 2011). The fact that several patients with a similar pathology were found 

to have mutations in the peroxisomal β-oxidation gene HSD17B4 (Lieber et al., 2014; Lines et al., 2014; 

McMillan et al., 2012; Pierce et al., 2010) indicated that this pathway is essential to maintain cerebellar 

integrity. However, given that no important metabolic changes were detected in the plasma of these 

patients, it remains fully obscure how a defect in peroxisomal β-oxidation can cause cerebellar 

degeneration. In order to obtain mechanistic insights, we phenotyped mice with neural selective deletion 

of MFP2, circumventing influences of peripheral enzyme deficiency. It must be underlined that the 

Nestin promotor driving Cre expression is also active in other progenitor cells besides those giving rise 

to neurons, oligodendrocytes and astrocytes (Harno et al., 2013). Nevertheless, it is interesting to note 

that, in contrast to constitutive Mfp2-/- mice, gross cerebellar development including foliation, granule 

cell migration and PC maturation is unaffected in Nestin-Mfp2-/- mice. The difference may stem from 

normal MFP2 function in the liver, where it is essential for several chain shortening processes of 



 
 

carboxylates including the formation of mature bile acids. This is in agreement with studies on Pex2-/- 

mice in which improvement of the bile acid profile by bile acid feeding partially corrected the cerebellar 

developmental defects (Faust et al., 2005).  

PC axonal swellings are the earliest pathological events detected in Nestin-Mfp2-/- mice, occurring as 

early as 2 weeks after birth and progressively increasing in number thereafter. Such axon dilations are a 

typical sign of axonal dystrophy. Of interest, PC axons seem extremely vulnerable to metabolic changes 

as spheroids were absent from the corpus callosum of Nestin-Mfp2-/- mice of the same age, although it 

cannot be excluded that they arise there at a later age. This could be related to the relative abundance of 

MFP2 in PCs as compared to other brain regions shown in men, mice and porcine (Itoh et al., 2000; Itoh 

et al., 1999; Moller et al., 1999) but also to the fact that PC seem to be more vulnerable to metabolic 

dysfunction as also shown for lysosomal diseases. 

As in other axonal degeneration pathologies, the PC spheroids contained mitochondria and endoplasmic 

reticulum membrane stacks consistent with a block in axonal transport. It is however unclear how 

peroxisomal β-oxidation dysfunction causes axonal transport defects. As myelination of Nestin-Mfp2-/- 

PC axons appeared normal, it is unlikely that the swellings were related to myelin anomalies as seen in 

several other examples of axonal demise (Redondo et al., 2015; Teigler et al., 2009). This is also in 

accordance with our previous findings that PC axons were not affected in oligodendrocyte selective 

Mfp2-/- mice (Verheijden et al., 2013). Axonal spheroids on PC were also reported in several murine 

models with lysosomal or autophagy dysfunction (Ko et al., 2005; Komatsu et al., 2007; Wang et al., 

2006). As the swellings did not contain undigested lysosomal debris, the origin of these axonal lesions 

remained obscure. In these models the axonal dystrophy correlated with disease progression. Moreover, 

the axonal dilations clearly preceded and were believed to cause PC degeneration (Walkley et al., 2010). 

It is therefore possible that the PC degeneration and loss that occurs from the age of 6 months in Nestin-

Mfp2-/- mice (Verheijden et al., 2013) (and unpublished observations) is a consequence of axonal 

transport dysfunction from an early age. An impaired energy state is an alternate cause of axonal demise. 

Axonal transport is fueled both by glycolysis and by mitochondrial ATP production (Mahad et al., 2008; 

Mahad et al., 2009; Zala et al., 2013). Multiple links between primary peroxisomal dysfunction causing 

secondary mitochondrial deficits have been uncovered (Baarine et al., 2015; Dirkx et al., 2005; Kruska 



 
 

et al., 2015), but according to our EM observations the mitochondria in axonal spheroids of Nestin-

Mfp2-/- PC showed a normal structure. It can however not be excluded that more subtle functional 

mitochondrial impairments occur in MFP2 deficient PC axons. 

The altered electrophysiological properties of Nestin-Mp2-/- PCs are other intriguing observations. The 

most likely explanation for the clear-cut increase in membrane capacitance is an expansion of the cell 

surface (Petrinovic et al., 2013). Whereas the size of the PC soma and dendritic arborization were not 

altered, an increase in spine length and density was observed, possibly accounting for the increased 

capacitance. As an additional explanation, we hypothesize that impaired peroxisomal β-oxidation might 

affect the membrane capacitance through altering the lipid or protein composition of the membrane 

(Gentet et al., 2000). At present, the accumulation of VLCFA is the only known metabolic change in 

the brain of patients and mice with peroxisomal β-oxidation defects. According to previous data 

generated in our lab there is, however, no good correlation between the accumulation of VLCFA and an 

ataxic phenotype. In a mouse model with oligodendrocyte selective inactivation of MFP2, levels of 

C26:0 were indeed increased whereas cerebellar functioning was normal (Verheijden et al., 2013). 

Accumulating branched-chain fatty acids that require peroxisomal β-oxidation for their degradation are 

also suspected to affect cerebellar function (Ferdinandusse et al., 2008). However, the regular mouse 

chow contains only minute amounts of these fatty acids or their precursors making it unlikely that they 

are causative.   

The increase in membrane capacitance likely contributes to the reduced firing rate and excitability of 

the MFP2 deficient PCs, although we cannot exclude that additional mechanisms might play a role. 

Detailed analysis of the action potentials of Nestin-Mfp2-/- PCs could not reveal alterations in action 

potential amplitude and shape, suggesting that Na+, K+ or Ca++ channels operate properly. Certainly, this 

is the first demonstration that inactive peroxisomal β-oxidation affects the electrical activity of a neuron.  

Impaired wiring of CF and PF on PCs is a third consequence of MFP2 deficiency. The delayed relocation 

of CF synapses from the PC soma to the dendrites could originate from an impaired PF – CF interaction 

(Hashimoto and Kano, 2005), but could as well be due to the reduced PC electrical activity. Indeed, 

decreasing PC excitability by specifically expressing a chloride channel in PCs impaired the 

redistribution of CF synapses from PC somata to the proximal dendrites (Lorenzetto et al., 2009). We 



 
 

assume that the subtle changes in spine density and length at distal PC dendrites are a consequence of 

this altered interaction of PCs with their stimulatory input as was previously shown in a glutamate 

receptor δ2 subunit (GluRδ2) knockout mouse model (Kurihara et al., 1997). 

The behavioral analysis showed cerebellar ataxia with a delay in motor learning in 4-week-old Nestin-

Mfp2-/- mice. Except for the CF input to the cerebellar cortex, adequate PC functioning is a strong 

determinant in acquiring new motor skills (Nguyen-Vu et al., 2013). Based on our findings, we 

hypothesize a dual contribution of the impaired PC activity and an immature CF innervation pattern in 

causing the delay in motor learning. Although strongly indicative of pure cerebellar malfunctioning, 

motor learning and coordination deficits can also involve other brain areas and the peripheral nervous 

system. Closer investigations of these regions are highly desirable.   

In summary, by demonstrating that loss of the peroxisomal β-oxidation enzyme MFP2 impairs PC 

function and axonal integrity in a normally structured cerebellum, we uncovered novel aspects of the 

importance of peroxisomes for central nervous system functioning. It will be important to determine 

whether MFP2 has a cell autonomous function in PCs and which metabolic factors are involved. Our 

findings also raise the question whether other neurons than PC are affected by MFP2 deficiency in a 

similar way. Further elucidation of underlying mechanisms in this mouse model should shed light on 

the cerebellar pathologies in an increasing number of patients with mild peroxisomal disorders that 

present with near normal metabolite levels. 

 

  



 
 

FIGURES 

 

Figure 1: Altered motor behavior in 4-week-old Nestin-Mfp2-/- mice. (A) The performance during 

the first trial on the accelerating rod on 5 consecutive days is shown. Nestin-Mfp2-/- mice are slower in 

acquiring motor skills as they improve until day 4. CatWalk analysis of stride length (B) and BOS (C) 

and balance beam analyses (D, E) confirmed cerebellar ataxia. N = 6 mice per group. Results are 

displayed as mean ± SEM. * Compared to Nestin-Mfp2-/- on the same day, $ compared to the first trial 

of the same genotype on the first day. NS: not significant; *p<0.05; ***p<0.001, $ p<0.05, $$ p<0.001. 

 

  



 
 

 

Figure 2: The gross morphology of the cerebellum is intact in the Nestin-Mfp2-/- cerebellum. The 

cerebellar foliation pattern (A, B), thickness of cortical layers (C, D, G-I), and gross PC morphology (E, 

F) are similar in P8 and P28 WT and Nestin-Mfp2-/- mice. (J, K) Western blot analysis for calbindin 

shows equal levels in 4-week-old WT and Nestin-Mfp2-/- cerebella. N = 4 mice per group. Results are 

displayed as mean ± SEM. NS: not significant. Scale bars: A: 500 µm; B: 1 mm; C, D, E, F: 50 µm. 

 



 
 

 

Figure 3: Abnormal PC axons in Nestin-Mfp2-/- mice. (A-D) Calbindin staining revealed the presence 

of axonal swellings on PCs from Nestin-Mfp2-/- mice (B, D), which were more numerous at the age of 4 

weeks (D) as compared to 2 weeks (B).  N = 4 mice per group. Scale bars: 50 µm.  

 

  



 
 

 

Figure 4: Axonal structure and organelle transport are compromised in Nestin-Mfp2-/- mice. (A, 

B) Semi-thin cerebellar sections from WT and Nestin-Mfp2-/- mice stained with PPD revealed the 

presence of axonal swellings (white arrowheads) in myelinated PC axons of Nestin-Mfp2-/- mice. WM - 

white matter; GL - granular layer; PC – Purkinje cell layer. (C) Quantification of myelination by g-ratio 

determination in cerebellar WM. (D, E) Ultrastructure of normal appearing myelinated PC axons 

crossing the granular layer of WT and Nestin-Mfp2-/- mice. (F - I) Ultrastructure of axonal swellings in 

Nestin-Mfp2-/- mice, containing an accumulation of several organelles, including mitochondria and 

membranous stacks, which are thought to accumulate due to defects in axonal transport. Scale bar A, B: 

100µm; D - I: 1µm. 



 
 

 

Figure 5: Mfp2 deletion alters PC electrophysiological properties. (A) Increased membrane 

capacitance in Mfp2-/- PCs. (B) PC resting spiking frequency is significantly reduced in 4-week-old 

Nestin-Mfp2-/- mice. (C) Current-frequency plots and corresponding traces demonstrate a significant 

decrease in PC intrinsic neuronal excitability. N = 8 - 9 cells per group. Results are displayed as mean 

± SEM. *p<0.05, **p<0.01. 

 

 



 
 

 

Figure 6: Detailed morphology of Nestin-Mfp2-/- and WT PCs. (A, D) Visualization of PCs after 

immunological detection of injected biocytin. (B, E) Reconstructions of control and Nestin-Mfp2-/- 

dendritic trees allowing the analysis of Strahler orders, represented by the color codes. Depending on 

the branching complexity, branches closest to the cell soma are colored purple while PC terminal 

branches are depicted in red. Purple: order 1; blue: order 2; green: order 3; yellow: order 4; orange: order 

5 and red: order 6. (C, F) Sholl and Strahler order analyses showed no differences in the complexity of 

the PC dendritic tree in the Nestin-Mfp2-/- mice. N = 5 cells per group. Results are displayed as mean ± 

SEM. NS: not significant. Scale bars: 50 µm. 



 
 

 

Figure 7: Subtle morphological alterations in PCs of young Nestin-Mfp2-/- mice. (A – E) Golgi 

staining revealed alterations in spine morphology and density but not in the size of the PC soma in the 

absence of MFP2. N = 15 cells per group. (F - H) Ultrastructural analysis of PC dendritic spines from 

WT and Nestin-Mfp2-/- mice. Dendrites were pseudo-colored yellow and arrows point to the active zones 

and postsynaptic densities. Results are displayed as mean ± SEM. NS: not significant; *p<0.05; 

***p<0.001. Scale bars A – B: 5 µm, F – H: 0,4 m.   

 

  



 
 

 

Figure 8: MFP2 deficiency leads to aberrant PC afferent innervation. Representative double 

stainings of calbindin withVGluT2 (A, D), VGluT1 (B, E) and VGaT (C, F) in 4-week-old Nestin-Mfp2-

/- and WT mice. Significant decrease of CF (A, D, G) and PF (B, E, J) synapses in the ML of Nestin-

Mfp2-/- mice. (H) CF extension is significantly reduced in Nestin-Mfp2-/- mice while (I) more VGluT2 

positive synapses are present on the PC soma. (C, F, K) PC inhibitory innervation is unaltered. N = 4 

mice per group. Results are displayed as mean ± SEM. NS: not significant; *p<0.05; **p<0.01; 

***p<0.001. Scale bars: 50 µm. 

 

 

 



 
 

 

Supplementary figure 1: Motor learning in 4-week-old Nestin-Mfp2-/- and WT mice. (A, B) Rotarod 

performance on the first and last trials per day during 5 consecutive days. Nestin-Mfp2-/- mice perform 

less on the rotating rod during the last trial of the day. D1 – D5: day 1 – day 5; T1 – T4: trial 1 – trial 4. 

N = 6 mice per group. Results are displayed as mean ± SEM. NS: not significant; **p<0.01; ***p<0.001. 

  



 
 

 

Supplementary figure 2: Absence of axonal damage in the corpus callosum of 4-weeks-old Nestin-

Mfp2-/- mice.  (A, D) SMI31 staining shows heavily phosphorylated neurofilaments in axons in the 

corpus callosum of WT and Nestin-Mfp2-/- mice. The absence of SMI32 staining (B, E) and APP 

accumulation (C, F) points to uninterrupted axonal transport in both genotypes. Scale bars: 100 µm. 

  



 
 

Supplementary table 1: Electrophysiological parameters of WT and Nestin-Mfp2-/- PCs 

                                                                                           WT (N = 9)                                     NMfp2-/- (N = 8) 

Passive parameters Unit Mean SEM Mean SEM t-test  

Membrane capacitance pF 382.80 38.32 516.17 29.57 0.02 * 

Membrane input resistance Gohm 0.13 0.01 0.12 0.01 0.430 NS 

Resting membrane potential mV -54.56 2.88 -56.13 1.13 0.660 NS 

Action potential analysis Unit Mean SEM Mean SEM t-test  

Injected current = 0 pA 

Afterhyperpolarization mV -67.28 0.94 -69.04 0.87 0.866 NS 

Frequency Hz 61.22 9.94 27.34 6.02 0.013 * 

Half-width ms 0.31 0.02 0.33 0.04 0.963 NS 

Ascending slope mV/ms 203.66 27.60 217.18 24.44 0.720 NS 

Descending slope mV/ms -157.52 17.04 -161.98 15.21 0.850 NS 

Rheobase current pA 216.67 30.05 250.00 37.80 0.517 NS 

Accomodation threshold Hz 135.00 13.09 70.38 6.84 0.001 *** 
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