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The ability to store urine in the bladder and to void at an appropriate time depends on several complex mecha-
nisms in the lower urinary tract (LUT) and its neural control. Normal LUT function requires coordination of the
urinary bladder, urethra, pelvic floor, efferent and afferent neurons and specific spinal cord and brain areas.
These structures can be visualised using different imaging modalities, such as ultrasound, X-ray and magnetic
resonance imaging. The supraspinal neural control of the LUT can be studied using functional brain imaging.
During the last two decades, the many technological improvements of these imaging techniques have increased
our knowledge of voiding dysfunction.
Here, we review the different imaging modalities of the LUT and its neural control and discuss their importance
for diagnosing and understanding voiding dysfunction.
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1. Introduction

The lower urinary tract (LUT) requires coordination of the urinary
bladder, urethra, prostate, pelvic floor and specific spinal cord and
brain areas. Different imaging modalities can be used to visualize
these structures and are used to diagnose voiding dysfunction and
study its pathophysiology.

Imaging modalities such as ultrasound (US), cystourethrography,
computed tomography (CT) and magnetic resonance (MR) imaging
are used to visualize the different structures of the LUT. In daily practice,
US and cystourethrography are commonly used techniques to assess
LUT dysfunction (LUTd). Although the use of MR imaging for voiding
dysfunction remains limited, several clinical studies have already
proven its potential in the diagnosis of stress urinary incontinence
and benign prostatic hyperplasia (BPH). Imaging modalities of the LUT
(i.e. bladder and urethra), prostate and pelvic floor and their application
for diagnosing and understanding LUTd are discussed in the first part of
this review (Table 1).

The LUT is also subjected to a complex neural control mechanism. In
the last two decades it has become possible to study this supraspinal
control of the LUT by means of positron emission tomography (PET)
and functional magnetic resonance imaging (fMRI) of the brain.
Although the number of studies investigating brain control of the LUT
remains limited, they have already provided new insights into LUTd.
Specific supraspinal changes are seen in women with detrusor overac-
tivity, raising the question if this is more a dysfunction of the brain
than of the bladder. Imaging of the supraspinal control mechanisms of
the LUT and its importance for voiding dysfunction are reviewed in
the second part of this article.
2. Imaging of the lower urinary tract to assess lower urinary
tract dysfunction

2.1. Lower urinary tract

Although they are anatomically distinct structures, the bladder and
urethra are functionally closely interrelated. Imaging of the bladder is
often necessary to confirm clinical examination. Transabdominal US is
an easy and cheap modality to assess structural abnormalities of the
Table 1
Overview of imaging modalities used to assess the different structures of the lower urinary tra

Imaging modality

Imaging of

Bladder Urethra

Cystourethrography Bladder capacity, vesico-ureteral
reflux, contour, emptying
capability, detrusor sphincter
dyssynergia, tumor, calculi

Detrusor sphincter dyssy
stricture, fistula, trauma

Cystocolpodefaecography Cystocele –

Ultrasound PVR, bladder wall thickness,
detrusor strain, bladder weight

Diverticulum, neoplasm,
hypermobility

MR imaging Congenital abnormality, tumor Diverticulum, neoplasm,
hypermobility, urethral m
volume, bladder neck fun
vesico-urethral angle

CT imaging Tumor –
NIRS Oxygenation level of detrusor –
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bladder, post-void residual urine (PVR), stone disease of the bladder
or vesico-ureteral junction, inflammatory conditions and neoplasms.
Retrograde and voiding cystography provide useful information to
assess urogenital traumata and neurogenic bladder dysfunction. In the
last two decades CT andMR imaging have proven their usefulness to as-
sess voiding dysfunction, although their application in daily life practice
for LUTd remains limited.

Clinical assessment of urethral symptoms is difficult and often re-
quires further evaluation with imaging. Several urethral imaging modali-
ties are currently available. Retrograde and voiding (cysto)urethrography
provide information about luminal abnormalities of the urethra and are
the most commonly used imaging modalities for patients with urethral
abnormalities such as trauma, inflammation and strictures (Kim et al.,
2007). In the last decade, cross-sectional imaging techniques such as US
and MR have also shown their potential to study voiding dysfunction,
congenital abnormalities, urethral diverticula, urethral carcinomas and
periurethral cysts. Also endovaginal MR imaging of the female urethra
offers reliable high resolution diagnostic imaging of these urethral
abnormalities (Elsayes et al., 2006).
2.1.1. Ultrasound
In daily practice, US is frequently used to accurately measure the

PVR that indicates how completely a patient empties his bladder.
Elevated PVR occurs in patients with bladder outlet obstruction (BOO)
and/or detrusor underactivity (Abrams and Griffiths, 1979). However,
it is important to realize that elevated PVR is a poor predictor of
urodynamically diagnosed BOO (Kranse and van Mastrigt, 2003).

Bladder wall thickness (BWT), measured by transabdominal US,
might also be used as a diagnostic tool for BOO. It is important to note
that BWT is dependent on bladder filling. BWT rapidly decreases during
the first 250 ml of bladder filling but, thereafter, remains more or less
stable (Oelke et al., 2006). At a filling volume of 150 ml, a cut-off value
of 5 mm appeared to be characteristic for the presence of obstruction
(Manieri et al., 1998). Other studies showed similar results, although
with other threshold values (Kessler et al., 2006). Another study by
Blatt et al. could not demonstrate any differences in BWT in patients
with BOO (Blatt et al., 2008). Detrusor wall thickness (DWT, bladder
wall without the mucosal and subserosal layer) might be a more
accurate measure for BOO. A DWT N 2 mm was reported in 94% of
ct and the possible diagnostic findings in patients with LUTd.

Prostate Pelvic floor

nergia, – –

– Enterocele, rectocele, pelvic
floor descent

urethral Size, structure, resistive index of
capsular artery, presumed circle area
ratio, prostatic urethral angle,
intravesical prostatic protrusion

Urethral hypermobility,
pelvic organ prolapse,
post-surgical evaluation

urethral
uscle
neling,

BPH, prostate cancer, prostate cyst Pelvic organ prolapse,
disruption of urethral support
ligaments, asymmetric
pubococcygeus muscle

– –
– –
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menwith signs of BOO on urodynamics (Oelke et al., 2007). Ultrasound
measurement of BWT or DWT can also be used to investigate the
response to medical or surgical treatment of BOO. Reduced BWT is
observed after transvesical prostatectomy (Tubaro et al., 2001) and
treatment with α-1 receptor blockers (Egilmez et al., 2006). Azab
et al. studied the correlation between BWT, international prostate
symptoms score (IPSS) and voiding symptoms in patients with benign
prostate hyperplasia (BPH) receiving α-1 receptor blocker treatment
(Salah Azab and Elsheikh, 2014). The authors observed a positive corre-
lation between US findings and the scoring systems, which showed less
BWT in patients receiving treatment. Although these results seemhope-
ful for a none-invasive diagnostic test for BOO, their use in clinical
practice remains limited and methodological standardisation is needed
(Parsons et al., 2011).

Assessment of BWT or DWT has also been extensively studied in
paediatric voiding dysfunction. In 139 children a significant difference
in DWT was found between children with normal urodynamics and
childrenwith non-neuropathic bladder/sphincter dysfunction, although
it was difficult to establish a good cut-off value due to overlap of the
measured values (Cvitkovic-Kuzmic et al., 2002). Therefore its use in
daily practice for patient selection and differential diagnosis remains
limited.

US can also be applied to estimate bladder weight. It is calculated
from the thickness of the bladder wall and the intravesical volume as-
suming a spherical bladder. The sensitivity for BOO at a cut-off value
of 35 gwas 86% in a group of 65men (Kojima et al., 1997). Other studies
were not able to demonstrate a correlation between bladderweight and
BOO (Almeida et al., 2011; Bright et al., 2011).

Idzenga et al. have shown the benefit of US tomonitor the deforma-
tion in the detrusor muscle that may provide insight into the detrusor
muscle's structural and dynamic properties related to bladder pressure
(Idzenga et al., 2013). The authors demonstrated that US could be
used to estimate strain in thedetrusormuscle,whichwas positively cor-
related with the detrusor pressure. This result suggested that US could
possibly be used tomonitor detrusormuscle activity in a real timeman-
ner. This finding is important, since up to date pressure flow studies are
the standard diagnostic urodynamic tests for lower urinary tract symp-
toms (LUTS) while US imaging could be used as a non-invasive tool op-
tion to replace this current method.

US imaging of the urethra allows imaging of different structural
abnormalities such as urethral diverticulae and urethral neoplasms.
The classic symptoms of urethral diverticula are post-voiding dribbling,
urethral pain and dyspareunia (Romanzi et al., 2000). Multiplanar US
allows imaging of the location, size, configuration and content of the di-
verticulum. Also the position of the diverticulum neck can be evaluated,
whichmay be important for surgical planning. The presence of calculi in
the sac can be evaluated with US (echogenic foci and acoustic shadow).
All of these features are impossible to assess with conventional
urethrography.

Urethral neoplasms are rare but can be the cause of otherwise unex-
plained voiding LUTs and haematuria. Leiomyoma and nephrogenic ad-
enoma are benign tumours, whereas malignant tumours of the urethra
include squamous cell carcinoma, transitional cell carcinoma and
adenosarcoma. This differentiation can only be established with histo-
pathological examination although US can reveal different characteris-
tics of the different types of urethral neoplasms. Leiomyomas appear
as well-defined, homogenous tumours with increased vascularity
whereas, in general, carcinomas of the urethra appear as more hetero-
geneous lobulated, exophytic or deeply infiltrating lesions (Prasad
et al., 2005).

In an experimental setting US might be used to assess the urethral
vascularity in continent women using colour Doppler high frequency
endovaginal ultrasonography (EVUS) in both transverse and sagittal
planes (Lone et al., 2014). The authors demonstrated in 61 continent
women that multiparous women had a significant reduction in the
vascularity parameters compared to nulliparous women. This result
Please cite this article as: Deruyver, Y., et al., The use of imaging technique
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can be used to inspire further study on urethral vascularity, to elucidate
whether the results can be used to predict the event of urinary inconti-
nence in women following vaginal delivery or multiparity.

The use of US imaging of the urethra in the preclinical setting has
also been studied, but the applications for LUTd research are scarce.
The use of high-frequency micro ultrasound (μUS) as a novel method
to assess urethral function in female rats has been introduced (Hakim
et al., 2014). The authors showed that μUS can be used to quantitatively
measure the external urethral sphincter (EUS) opening and closing se-
ries (bursting pattern) in uninjured nulliparous and vaginal distension
rat models, using predetermined parameters of intercontraction inter-
val and total length of contraction. The authors concluded that μUS
could be beneficial to assess urethral function in translational studies,
compared to the leak point pressure and EUS EMG that are currently
being used.

2.1.2. Cystography and videourodynamics
Indications for simple cystography include assessment of ana-

tomical integrity of the urethra and bladder, visualisation and pre-
operative planning for urethral strictures, postoperative control
after urethral re-anastomosis in (cysto-) prostatectomy, after blad-
der augmentation or after repair of bladder rupture and many
more. Voiding cystography is often performed in children with uri-
nary tract infections and voiding abnormalities and should include
assessment of masses, opaque calculi, bladder capacity, bladder con-
tour, emptying capability and presence of reflux (Fernbach et al.,
2000). Detrusor sphincter dyssynergia (DSD) in neurological pa-
tients can be diagnosed by cystourethrography showing a closed
bladder neck during filling and subsequent dilated posterior urethra
and bladder neck to the level of the external urethral sphincter dur-
ing micturition (Bacsu et al., 2012). It is important to remark that the
diagnosis of DSD in males by voiding cystography might be impaired
due to anatomical BOO by the prostate.

However, cystography is probably used themost in combinationwith
urodynamic evaluation of bladder function allowing both anatomic and
functional assessment of the LUT. Especially patients with neurologic
symptoms, a history of neurologic disease or congenital genitourinary
anomalies benefit from videourodynamics (VUDS) (Marks and
Goldman, 2014). Guidelines recommend the use of VUDS in the eval-
uation of patients with neurogenic LUTd (NLUTd) to assess vesico-
ureteral reflux or DSD. Also in younger patients without evident
causes of obstructive voiding, VUDS can be used to study the function
of the bladder neck, external sphincter and pelvic floor.

2.1.3. Near infrared spectroscopy of the bladder
Near infrared spectroscopy (NIRS) measures the level of

oxyhaemoglobin and deoxyhaemoglobin in tissues. In BOO the work-
load of the detrusor muscle is increased, leading to a reduction in
oxyhaemoglobin levels. An algorithm consisting of Qmax, PVR and
NIRS was able to diagnose 86% correctly as obstructed (Macnab and
Stothers, 2008). Several other studies have shown comparable results
(Macnab et al., 2013; Yurt et al., 2012) but more recently Chung et al.
showed a poor correlation between NIRS and urodynamics and another
study has shown poor sensitivity and specificity for diagnosing detrusor
overactivity (Chung et al., 2010; Mastoroudes et al., 2012). Several con-
founding factors can influence to results of NIRS including abdominal
straining, motion artefacts, obesity and concomitant disease states
such as vascular disease and renal failure.

2.1.4. CT and MR imaging
Cross-sectional imaging of the LUT allows further morphological

and/or functional evaluation. CT imaging is often used in the staging of
bladder cancer but its use for the assessment of LUTd remains limited.
MR imaging, including functional MR urography can be used as a
secondary imaging modality, especially for voiding dysfunction in
s in understanding lower urinary tract (dys)function, Auton. Neurosci.

http://dx.doi.org/10.1016/j.autneu.2016.05.008


4 Y. Deruyver et al. / Autonomic Neuroscience: Basic and Clinical xxx (2016) xxx–xxx
paediatric urology (Darge et al., 2013). Primary conditions for MR imag-
ing of the LUT are congenital abnormalities and bladder tumours.

In addition to US imaging, MR can be used to allow imaging of the
position, size and content of urethral diverticulae. MR imaging can
also reveal different characteristics of the different types of urethral
neoplasms. As already mentioned, leiomyomas appear as well-
defined, homogenous tumours with increased vascularity. At MR imag-
ing these are iso- or hypointensive in T1-images and hyperintensive on
T2-weighted images (Ikeda et al., 2001). In general carcinomas of the
urethra appear as more heterogeneous lobulated, exophytic or deeply
infiltrating lesions (Prasad et al., 2005).

Urethral hypermobility can be detected on MR (and also US) imag-
ing and is associated with stress urinary incontinence in women. This
urethral hypermobility is the result from weakening of supporting
structures leading to downward displacement and rotation of the
urethra (Macura et al., 2006). Urethral hypermobility is defined as a
translation of 30° or more from its initial axis during maximal straining
and dynamic pelvic MR imaging is very helpful in establishing this
diagnosis (Surabhi et al., 2013). In continent women the normal posi-
tion of the urethra has been shown to be entirely retropubic whereas
in stress-incontinent patients the lower segment of the urethra lies
below the pubis (deSouza et al., 2002). Besides this hypermobility,
other morphological abnormalities can be detected in women with
stress urinary incontinence, which are discussed in the paragraph on
the pelvic floor.

2.2. Prostate

The prostate is traditionally imaged by transrectal US (TRUS),mainly
giving information about the size and structure of the prostate. Several
new imaging parameters of the prostate like resistive index of the
capsular artery, presumed circle area ratio, prostatic urethral angle
and intravesical prostatic protrusion might be used to diagnose BOO;
many studies have tried to find new non-invasive techniques to
diagnose BOO because of the invasive aspect of pressure flow studies
(Abdi et al., 2013).

An enlarged transitional zone of the prostate compresses the
surgical capsule and hence will increase vascular resistance in the cap-
sular artery. This can be measured with Doppler. This resistance index
(=(peak systolic velocity-end diastolic velocity)/peak systolic velocity)
with a cut-off value of N0,75 seems to be a more reliable predictor
of BOO than international prostate symptom score (IPSS) and PVR
(Shinbo and Kurita, 2011; Shinbo et al., 2010). However, this technique
still needs to be further validated in the light of concomitant vascular
disease, diabetes mellitus, effect of heart rate and the effect of patient
positioning.

If the prostate enlarges, it will become more circle-shaped be-
cause of the limited elastic capacity of the prostatic capsule. The pre-
sumed circle area ratio is calculated where the horizontal section of
the prostate in TRUS shows the biggest surface. The ratio of this sur-
face to the presumed circle with the same circumference will then be
calculated. A presumed circle area ratio N0,9 correlates with symp-
toms scores after adjusting for age and prostate volume (St Sauver
et al., 2009).

Some studies have emphasized the role of the prostatic angle in
LUTS (Cho et al., 2008). Theprostatic urethral angle is the angle between
the prostatic andmembranous urethra in TRUS. Studies have stated that
a higher prostatic urethral angle is related with LUTS (Park et al., 2012)
and higher BOO index (Ku et al., 2010). Before this parameter can be
used in daily practice it should be further validated in well designed,
control matched prospective studies.

Another parameter that can be assessed with US is intravesical pros-
tatic protrusion (IPP). Enlargement of the median lobe of the prostate
can increase bladder outlet resistance. IPP aims to measure the distance
between the tip of the prostate median lobe and the bladder neck using
tansabdominal ultrasound. The bladder should be filled in between
Please cite this article as: Deruyver, Y., et al., The use of imaging technique
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150 and 250 ml, because IPP is known to decrease with increasing
bladder volume (Yuen et al., 2002). IPP distance can be divided into
three grades: 0–4,9 mm (grade I), 5–10 mm (grade II) and N10 mm
(grade III). According to different studies IPP grade III correctly identifies
71–94% of obstructed patients (Chia et al., 2003; Lim et al., 2006). IPP
can also be used to predict recurrence after acute urinary retention
and medical treatment; 75% of the patients with IPP grade I and II
were free of recurrence comparedwith only 13% of grade III IPP patients
(Mariappan et al., 2007).

3D-Transrectal US of the prostate provides excellent resolution of
the prostate gland anatomy and is able to differentiate between the cen-
tral and transitional zone of the prostate, which is not possiblewith con-
ventional TRUS. Nodular balance and type (stromal vs. glandular) were
correlated with symptom severity in 113 patients before transurethral
resection of the prostate (Elwagdy et al., 2008).

MR imaging of the prostate is increasingly used in the diagnosis and
staging of prostate cancer but its use for LUTD remains limited. Kershaw
et al. have evaluated microvascular and relaxation parameters of the
prostate in 13 patients with BPH. They concluded that they could mea-
sure these specific parameters for BPH precisely and that they were
highly reproducible (Kershaw et al., 2009). Another study compared
diffusion-weighted imaging of the normal prostate, prostate cysts,
BPH nodules and prostate cancer en found significant differences, useful
for differential diagnosis (Ren et al., 2008). The use of MR imaging in
BPH patients in daily practice is limited by its high cost and limited
availability.

2.3. Pelvic floor

Variousmodalities allow imaging of the structures of the pelvicfloor.
Imaging of the pelvic floor is becoming more important as our under-
standing of pelvic floor dysfunction and treatment options increase.
Common symptoms due to pelvic floor dysfunction are faecal inconti-
nence, pelvic organ prolapse and urinary incontinence. Imaging
techniques that are currently used to study pelvic floor dysfunction in-
clude US imaging, MR imaging and cystocolpodefaecography (CCD).

Ultrasound can beused to image the different structures of thepelvic
floor, pathological features, aswell asmeshes, slings and other implants
(Dietz and Wilson, 2004). US of the pelvic floor has a wide range of
indications including recurrent urinary tract infections, stress inconti-
nence, prolapse, faecal incontinence and post-surgical evaluation of
transvaginal tapes and sacral colposuspension (Ahmad et al., 2015). As
already reviewed above urethral hypermobility is a common finding
in the assessment of stress urinary incontinence (Prasad et al., 2005).
US is an excellent imaging modality to asses bladder neck descent to
measure urethral mobility (Wieczorek et al., 2011). 3D US assessment
gives information about the urethral position in the different planes,
giving more complete diagnostic information (Santoro et al., 2009). US
imaging of the middle and posterior compartment is able to visualize
uterine prolapse, rectocele, rectal intussusception and enterocele
(Dietz, 2010).

MR is also an excellent imaging modality for the pelvic floor, al-
though its clinical use is often limited due to its limited availability
and high costs. To characterize pelvic organ prolapse MR imaging can
be used, although the lack of standardisation and the high number of
different reference lines is a problem (Ahmad et al., 2015). From a set
reference point organ prolapse during straining in the three compart-
ments can be visualised and staged. An advantage of dynamicMR imag-
ing is that movement of pelvic organs can be visualised during straining
and contraction. MR imaging in women with stress urinary inconti-
nence can detect different abnormalitieswhich either are related to ure-
thral sphincter deficiency or related to defects of the urethral support
ligaments and urethral hypermobility (Macura et al., 2006). The volume
of the urethral muscle can be determined on MR imaging and thinning
of the striatedmuscle has been reported in patients with stress inconti-
nence (Athanasiou et al., 1999). Also funneling of the urethra (widening
s in understanding lower urinary tract (dys)function, Auton. Neurosci.
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of the urethra at the proximal neck) and disruption of the urethral sup-
port ligaments are frequently visualised abnormalities in patients with
stress incontinence (Macura et al., 2006). Furthermore lateral deviation
of the pubococcygeus muscle in combination with thinning has been
shown in patients with stress incontinence (Kirschner-Hermanns
et al., 1993). An increased versicourethral angle, which is the angle be-
tween the axis of the urethra and the posterior bladder base, is also re-
ported to be more frequent in patients with stress urinary incontinence
(Kim et al., 2003).

Cystocolpodefaecography (CCD), in which bladder, urethra, vagi-
na, rectum and bowel are imaged with barium contrast, is the cur-
rent gold standard for diagnosis of prolapse of the posterior
compartment (Steensma et al., 2010). CCD is commonly used to de-
tect pelvic floor changes caused by excessive straining such as
rectocele, enterocele, pelvic floor descent and intussusception
(Maglinte et al., 2011).

3. Imaging of the neural control of the lower urinary tract

3.1. What the brain can teach us about the bladder

The LUT is regulated by a complex neural control mechanism. The
direction of this communication is not only in a one-way (efferent) di-
rection from central nervous system (CNS) to the LUT, but afferent sig-
nalling pathways, originating in the urothelium and small afferent
nerves in the bladder wall, are also continuously giving input into the
central nervous system. Growing evidence suggests that these afferent
signals and their central processing play an important role in normal
Fig. 1. Summary ofmost common activated brain structures during themicturition cycle and th
(PAG) fromwhere signals are relayed via the thalamus (and hypothalamus) towards the insula
and, when the bladder is getting full, motivation to void originates. The prefrontal cortex exerts
environmental circumstances are right, the prefrontal cortex relaxes its inhibition on the PAGwh
sacral spinal cord and initiate voiding.
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LUT function and in the pathogenesis of functional LUT diseases, such
as overactive bladder (OAB) (Kanai and Andersson, 2010).

In the last two decades it has become possible to study this
supraspinal control of the LUT directly bymeans of positron emission
tomography (PET) and functional magnetic resonance imaging
(fMRI) of the brain. PET requires the injection of a radioactive isotope
that will accumulate in a metabolically active brain region while
fMRI measures the changing proportion of oxygenated and deoxy-
genated haemoglobin in activated brain areas. Bothmethods provide
complementary functional information about the brain. PET is not
able to detect rapid changes in brain metabolism but is very sensitive
for small changes in neural activity while fMRI has an excellent spa-
tial and temporal resolution but requires multiple runs of the same
event to increase signal-to-noise ratio (Catana et al., 2012; Mier
and Mier, 2015). Near Infrared Spectroscopy (NIRS) is another tech-
nique that is sporadically used to study supraspinal control of the
bladder. It takes advantage of the changing concentrations of
haemoglobin in the cerebral cortex, but its main disadvantage is
the very limited resolution for deeper brain structures since it can
only accurately measure to a depth of 1 cm beneath the skull
(Matsumoto et al., 2009).

In the last two decades these different brain imaging techniques
have been widely spread and optimized, providing a vast amount of lit-
erature about nearly every human cortical function (Fig. 1). Unfortu-
nately, the number of studies that have looked into brain control of
bladder function is until now still relatively small, but nevertheless
these studies have provided us with valuable new insights into LUT
(patho)physiology. It must be remarked that most of these studies use
eir presumed function in this process. Bladder afferents synapse in the periaqueductal gray
and anterior cingulate cortex (ACC), where respectively bladder sensations are perceived
a tonic inhibition on the voiding reflex during the storage phase, but, when the social and
ich in turn excites thepontinemicturition center (PMC) to sendmotor output towards the
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Table 2
Summary of functional brain imaging studies applied to neural control of the lower urinary tract.

Study Modality Detection of brain metabolism during Patients

Fukuyama et al. (1996) SPECT Voiding Normal men
Blok et al. (1997) PET Voiding Normal men (n = 17)
Blok et al. (1998) PET Voiding Normal women (n = 18)
Nour et al. (2000) PET Voiding and bladder filling Normal men (n = 12)
Athwal et al. (2001) PET Bladder filling Normal men (n = 11)
Matsuura et al. (2002) PET Bladder filling and intravesical ice water Normal men (n = 17)
Dasgupta et al. (2005) PET During bladder filling after sacral neuromodulation Patients with Fowler's syndrome (n = 8) and healthy controls (n = 8)
Zhang et al. (2005) fMRI Bladder filling and pelvic floor contraction Normal men (n = 12)
Griffiths et al. (2005) fMRI Bladder filling Patients with OAB (n = 6) and healthy controls (n = 6)
Kuhtz-Buschbeck et al. (2005) fMRI Bladder filling and pelvic floor contraction Normal women (n = 22)
Seseke et al. (2006) fMRI Bladder filling and pelvic floor contraction Normal women (n = 11)
Kitta et al. (2006) PET Detrusor overactivity Patients with Parkinson's disease (n = 9)
Yin et al. (2006) SPECT Bladder filling Normal men (n = 15)
Herzog et al. (2006)
Herzog et al. (2008)

PET Bladder filling during subthalamic stimulation Patients with Parkinson's disease (n = 11)

Griffiths et al. (2007)
Tadic et al. (2008)

fMRI Bladder filling Women with urge incontinence (n = 11) and healthy controls (n = 10)

Mehnert et al. (2008) fMRI Bladder filling and clitoral nerve stimulation Normal women (n = 8)
Seseke et al. (2008) fMRI Bladder filling and pelvic floor contraction Normal men (n = 12)
Kuhtz-Buschbeck et al. (2009) fMRI Different bladder sensations Normal men (n = 16) and women (n = 17)
Griffiths et al. (2009) fMRI Bladder filling Normal women (n = 10)
Tai et al. (2009) fMRI Bladder filling and isovolumetric contraction in rats Animal study: rats
Zempleni et al. (2010) fMRI Bladder filling and pudendal nerve stimulation Patients with incomplete spinal cord injury (n = 8)
Kavia et al. (2010) fMRI Bladder filling after sacral neuromodulation Patients with Fowler's syndrome (n = 6)
Tadic et al. (2010a,b) fMRI Bladder filling Female patients N60 years with urge incontinence (n = 25)
Mehnert et al. (2011) fMRI Bladder filling and bladder cold sensation Normal women (n = 14)
Komesu et al. (2011) fMRI Bladder filling Patients with OAB (n = 5) and healthy controls (n = 5)
Tadic et al. (2012) fMRI Bladder filling Older women with OAB (n = 30)
Krhut et al. (2013) fMRI Bladder filling and pelvic floor contraction Normal women (n = 23)
Nardos et al. (2013) Rs-fcMRI Bladder filling Normal women (n = 20)
Tadic et al. (2013) fMRI Bladder filling Women N65 years (n = 11)
Shy et al. (2014) fMRI Bladder filling Normal women (n = 13)
Wong et al. (2014) fMRI Bladder filling and isovolumetric contraction in rats Animal study: spinal cord transected rats

6 Y. Deruyver et al. / Autonomic Neuroscience: Basic and Clinical xxx (2016) xxx–xxx
different study designs and paradigms, which can be confusing and
makes it harder to draw strong conclusions about the brain control of
the lower urinary tract. For the sake of brevity, not all of these studies
and their specific paradigms will be discussed in detail in this review
but an overview of the studies and their specific study designs is provid-
ed in Table 2. (See Table 2.)

3.2. Brain imaging and normal LUT function

3.2.1. The brain stem
The first functional brain imaging study in men, which examined

neural mechanisms of micturition using SPECT, revealed activation of
the upper pons region (Fukuyama et al., 1996). Activation of the pontine
tegmentum during voiding was soon afterwards confirmed by Blok
et al., using PET imaging of the brain in healthy male volunteers (Blok
et al., 1997). Already decades before these studies, lesion and electro-
physiological experiments in the cat and rat (Barrington, 1925; Loewy
et al., 1979) had shown that a group of neurons in the dorsomedial
pons was associated with micturition but brain imaging studies provid-
ed the first strong evidence that such neurons also existed in the human
pons. This region is generally referred to as pontine micturition centre
(PMC) or Barrington's nucleus (named after the surgeon who already
described its importance in voiding in 1925) (Barrington, 1925). Activa-
tion of the PMC results in the initiation of bladder detrusor contraction
and relaxation of the urethral sphincter, while it is actively inhibited
during the storage of urine (Griffiths and Tadic, 2008). Evidence that
this structure is indeed important for voiding has later on been con-
firmed by several brain imaging studies, both in human (Athwal et al.,
2001; Dasgupta et al., 2005; Griffiths et al., 2005, 2007; Kitta et al.,
2006; Kuhtz-Buschbeck et al., 2005; Matsuura et al., 2002; Seseke
et al., 2006; Shy et al., 2014) and rodents (Tai et al., 2009).

The peri-aqueductal gray (PAG) has been found activated in nearly
every PET (Athwal et al., 2001; Blok et al., 1998; Dasgupta et al., 2005;
Matsuura et al., 2002) or fMRI study (Griffiths et al., 2005, 2007;
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Kuhtz-Buschbeck et al., 2005; Seseke et al., 2006; Zhang et al., 2005). Re-
cently two groups have even reported PAG activation during bladder
filling detected by fMRI in rats (Tai et al., 2009; Wong et al., 2014).
The PAG is traditionally described as a relay station where autonomous
afferents from the bladder and other pelvic organs, ascending via the spi-
nal cord, synaps and signals are further conveyed towards higher brain
structures: ascending PAG outputs include amygdala, hypothalamus and
thalamus (Craig, 2003). Furthermore the PAG also receives input from
forebrain regions including the insula, anterior cingulate cortex (ACG),
amygdala and several prefrontal cortical regions (Mantyh, 1983). The
PAG also has an important efferent function, transmitting signals via the
PMC towards the sacral spinal cord (Blok and Holstege, 1994).

The involvement of the L-region or pontine storage centre (lateral
pontine tegmentum) inmicturition control is controversial. The theoret-
ical basis for the L-region comes from an experimental animal study in
which one cat was incontinent after damaging this region (Griffiths,
2002). Later on some brain imaging studies in human have reported ac-
tivity in this area in subjects that were unable to void in the scanner
(Blok et al., 1997; Kuhtz-Buschbeck et al., 2007; Seseke et al., 2006).

3.2.2. Subcortical structures
Theposterior hypothalamus is, togetherwith the PAG, the only brain

structure that has direct afferent access to the PMC (Kuipers et al.,
2006). Although other brain structures can influence the control of the
LUT, these signals are thus obligatory to pass via the hypothalamus or
PAG to reach the PMC for initiation of voiding. Hence, the hypothalamus
may permit the forebrain to influence the voiding reflex. The hypothal-
amus plays a role inmany homeostatic processes such as sleep and fluid
balance. Some brain imaging studies have shown this hypothalamic in-
volvement during bladder filling and voiding (Athwal et al., 2001;
Griffiths et al., 2005; Tai et al., 2009).

The thalamus gates information of almost every sensory pathway,
including afferent signals from the LUT (Yingling and Skinner, 1976).
Consistent with this concept activation of the thalamus was detected
s in understanding lower urinary tract (dys)function, Auton. Neurosci.
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in several studies during storage of urine (Griffiths et al., 2005, 2007;
Matsuura et al., 2002; Shy et al., 2014). The thalamus consists of differ-
ent nuclei that have direct connections with different cortical regions,
including the prefrontal cortex, and the PAG (Mantyh, 1983; Vertes,
2001), making this structure important in relaying information from
the bladder to the “decision-making” cortex and back again.

The nuclei that form the basal ganglia also seem to be involved in
controlling micturition. The basal ganglia comprise the striatum
(caudate and putamen), globus pallidus, substantia nigra and the sub-
thalamic nucleus. These structures aremostly associatedwith voluntary
control of motion and dopamine depletion in the striatum leads to
Parkinson's disease (PD), which is not only characterized by motor
symptoms but also by bothersome urinary complaints such as urinary
urgency and incontinence (Winge and Fowler, 2006). Howbrain control
of the bladder is affected in patients with PD is reviewed further on in
this article. Electrophysiological studies have also shown a correlation
between firing in the striatum and bladder relaxation and contraction
(Yamamoto et al., 2009). Different imaging studies have detected acti-
vation in the basal ganglia (mostly the striatum) during the storage of
urine (Matsuura et al., 2002; Nardos et al., 2013; Tadic et al., 2010b;
Tai et al., 2009;Wong et al., 2014), but the exact role of these structures
in the neural control of the LUT remains elusive.

Traditionally the limbic system is perceived as the area involved in
regulating emotions, memory and sexual arousal, although brain imag-
ing studies have demonstrated that certain nuclei also participate in
controlling the LUT. The limbic system consists of diverse structures
including the amygdala, the hippocampus and the cingulate and
parahippocampal gyrus (Griffiths and Fowler, 2013). A single paper
reports activation of the left amygdala/parahippocampal gyrus in re-
sponse to fluid infusion at low bladder volumes (Griffiths and Tadic,
2008), although this was not confirmed by other studies. Hippocampal
activation was detected during bladder contractions by fMRI in rats
(Tai et al., 2009;Wong et al., 2014) while in womenwith OAB deactiva-
tion of the parahippocampal gyrus was seen during bladder filling
(Tadic et al., 2010b). These data indicate that the amygdala and
hippocampus play a role in bladder control but elucidation of their
exact function awaits further research.

3.2.3. The cortex
The insula or insular cortex, and island of cortex in between the fron-

tal and the temporal lobe, is perceived as the cortical representation of
homeostatic afferent activity representing the physiological condition
of all tissues in the body (Craig, 2003). It is the endpoint of the “intero-
ceptive system” which guides autonomic motor control and triggers
feelings such as hunger, thirst and visceral sensations, including the
feeling of bladder fullness. Afferents enter via the PAG and hypothala-
mus, relay in the thalamus and finally converge in the insula. Insular ac-
tivation becomes strongerwith increasing bladder filling (Griffiths et al.,
2007) and activation of the insula during bladder filling has been
detected in many PET (Kitta et al., 2006; Matsuura et al., 2002) and
fMRI studies (Griffiths et al., 2005, 2007; Komesu et al., 2011;
Kuhtz-Buschbeck et al., 2005; Tadic et al., 2013), confirming that this
area is indeed involved in themapping of afferent signals from the LUT.

Often insular activation is reported together with activation of the
anterior cingulate cortex (ACC). Activation of the ACC is associated
with the generation of motivation; “homeostatic emotions” such as
hunger, thirst or the feeling of bladder fullness drive certain behavioural
patterns like eating, drinking or voiding (Craig, 2003). Hence, the ACC is
considered important for the emotional and motivational aspects of
micturition. Although the exact location of activation varies in the dif-
ferent studies, almost every functional brain imaging study has detected
some part of the cingulate cortex to be activated during bladder filling
(Athwal et al., 2001; Griffiths et al., 2007; Matsuura et al., 2002;
Nardos et al., 2013; Shy et al., 2014; Tadic et al., 2010a).

The prefrontal cortex (PFC) is the area responsible for cognition and
planning of complex behaviour and is therefore involved in the
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conscious and social control of the LUT (Wood and Grafman, 2003). It
is well known from patients with frontal lobe lesions that the PFC is im-
portant for normal LUT control (Nathan and Andrew, 1964). Activation
of various areas in the PFC, mostly the medial and orbitofrontal cortex,
has been detected during both voiding (Blok et al., 1997; Nour et al.,
2000) and filling of the bladder (Matsuura et al., 2002; Shy et al.,
2014; Tadic et al., 2008). NIRS has found similar regions to be activated
during bladder filling (Farag et al., 2011; Matsumoto et al., 2009, 2011;
Sakakibara et al., 2010). As already remarked above, the PFC has multi-
ple connections with other regions involved in the bladder control, in-
cluding the ACG, hypothalamus and PAG. It is the site of convergence
of information about the external environment and (social) cognition.
Exactly how this area is involved in LUT control is not fully understood,
but its importance is hard to underestimate. Probably, the role of the PFC
is dual: suppression of excitatory signals towards the PMC during blad-
der filling and, depending on the social context, decisionmaking to void
by initiation of the micturition reflex.

3.2.4. The cerebellum
Activation of regions in the cerebellum during the micturition cycle

has been reported by several studies but their exact meaning has not
been thoroughly studied (Griffiths et al., 2005; Matsuura et al., 2002;
Nour et al., 2000; Zhang et al., 2005). Like the basal ganglia, the cerebel-
lum is traditionally perceived as a brain structure important for the
coordination of voluntary movement and is therefore also involved in
the relaxation and contraction of the pelvic floor muscles (Seseke
et al., 2006).

3.3. Brain imaging and LUT dysfunction

3.3.1. Overactive bladder
Mainly the Pittsburgh group has studied brain responses to repeti-

tive bladder infusion in a cohort of older urge incontinent women. In
subjects with known detrusor overactivity a full bladder provoked
exaggerated responses in many of the areas discussed above, including
insula and ACC, but responses in the orbitofrontal cortex were abnor-
mally weak (Griffiths et al., 2005). In another study disproportionate
activation of the ACC during bladder filling seemed very characteristic
for people with urge incontinence (Griffiths et al., 2007). This increased
activation of the ACC in OAB patients was afterwards confirmed in a
fMRI study from another group (Komesu et al., 2011). These findings
suggest that in OAB patients some degree of aberrant processing of af-
ferent signals from the LUT occurs, which is characterized by an abnor-
mal weak response of the orbitofrontal cortex and an exaggerated
activation in other brain regions, including insula and ACC, which
could explain the abnormal sensation of urgency (Griffiths and Tadic,
2008). Also several NIRS studies have evaluated cortical function in pa-
tients with OAB. Faraq et al. concluded that sensitivity and specificity of
deoxyhemoglobin curves measured by NIRS for detrusor overactivity
were both around 80% and, thus, that NIRS has the potential to be a
non-invasive diagnostic method for detrusor overactivity (Farag et al.,
2011). Also, NIRS detected increased activation in the PFC of OAB
patients treated with the antimuscarinic agents Imidafenacin and
Tolterodine, probably representing a secondary phenomenon since the
drugs barely penetrate the blood-brain barrier (Sakakibara et al., 2013,
2014). Changes in the supraspinal control of the LUT are thus associated
with OAB but whether these differences in brain metabolic activity can
be causative for the symptoms or are secondary to the LUTd remains to
be established.

3.3.2. Fowler's syndrome
Two studies explored brain control of the LUT in women with uri-

nary retention due to sphincter overactivity (Fowler's syndrome) and
the influence of sacral neuromodulation (SNM) on this pathology.
Dasgupta et al. showed that brainstem activity was absent and limbic
cortical activity was enhanced during bladder fullness in patients with
s in understanding lower urinary tract (dys)function, Auton. Neurosci.
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Fowler's syndrome. Following SNM however, a normal pattern of brain
activity, including PAG activation, and normal bladder sensations were
restored (Dasgupta et al., 2005). A more recent study, using fMRI,
showed widespread deactivations during the filling phase, a finding
which also partially normalised after SNM (Kavia et al., 2010). These
studies support the hypothesis that SNM blocks the inhibition of
afferent signalling from the LUT, which occurs in patients suffering
from Fowler's syndrome, and thus gives rise to normal bladder sensa-
tions and restores normal voiding.

3.3.3. Parkinson's disease
Patients with Parkinson's disease (PD) often suffer urinary urgency

and frequency, induced by detrusor overactivity (Winge and Fowler,
2006). Brain activation in PD patients during bladder filling seems not
to differ strongly from results in healthy volunteers (Kitta et al., 2006),
although no activation of the PMCwas detected. Another study showed
that deep brain stimulation of the subthalamic nucleus modulates neu-
ral activity in the posterior thalamus and insula of these patients and
consequently improves bladder dysfunction (Herzog et al., 2008).
Deep brain stimulation possibly could improve the sensory gating
process in PD patients and thus regulate afferent signal processing in
the insula and ACC.

4. Conclusions

Imaging techniques can contribute greatly to our current under-
standing of lower urinary tract dysfunction. A variety of imagingmodal-
ities is available to visualize the bladder, urethra, prostate and pelvic
floor. These techniques can be used to confirm clinical diagnosis, as an
alternative diagnostic method to replace invasive urodynamic studies
or to enhance our current knowledge of LUT pathophysiology. Imaging
of the supraspinal neural control of the LUT is currently used in an
experimental setting but has to potential to reveal important new
insights into the pathophysiology of voiding dysfunction.
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