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Abstract

This paper presents a technique for offline time synchronization of data acquisition systems. The
technique can be applied when real-time synchronization of data acquisition systems is impossible
or not sufficiently accurate. It allows for accurate synchronization based on the acquired dynamic
response of the structure only, without requiring a common response or the use of a trigger signal.
The synchronization is performed using the results obtained from system identification, and as-
sumes linear dynamic behavior of the structure and proportional damping of the structural modes.
A demonstration for a laboratory experiment on a cantilever steel beam shows that the proposed
methodology can be used for accurate time synchronization, resulting in a significant improvement
of the accuracy of the identified mode shapes.
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1. Introduction

Continuous health monitoring of civil engineering structures becomes more and more important.
Assessing the health of a structure based on its dynamic response generally requires synchronous
response measurements. The use of multiple data acquisition systems is often necessary, due to
the large number of acquired channels, the large distance between sensors, or the need for hetero-
geneous sensor data [1]. In this case, the different data acquisition systems must be synchronized.
Several techniques for real-time synchronization of measurement systems have been proposed so
far. Amongst these techniques are time stamping through GPS [2], and synchronization through
fiber optical cables or radio communication. Currently, monitoring systems consisting of multiple
wireless sensors are being developed [3, 4, 5, 6, 7]. Two main challenges for wireless monitoring sys-
tems consist of increasing the battery life time and securing proper (wireless) time synchronization.
Several time synchronization protocols for wireless sensor networks have been developed [8, 9, 10],
each of them characterized by different accuracy, efficiency in power usage, and efficiency in required
memory.
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When direct time synchronization of data acquisition systems is impossible, or when the accu-
racy of the synchronization is insufficient, offline synchronization of acquired vibration data might
be required. When the same response quantity can be measured by multiple data acquisition
systems, offline synchronization can be easily performed by applying correlation techniques [11]
or by calculating the transfer function that relates both measured signals [12]. The simultaneous
acquisition of a common response quantity is not always possible, for example when a network of
multiple wireless sensors at different locations on the structure is used.

This paper presents a technique that allows for time synchronization of data acquisition sys-
tems based on the results obtained from system identification. The technique assumes linear
time-invariant dynamic behavior of the structure over the measurement duration and proportional
damping of the structural modes. The time synchronization is based on a phase shift of the iden-
tified mode shapes, which results from the synchronization time lag. The technique allows for
accurate synchronization. The main advantage of the proposed synchronization technique is that
it does not require capturing a common response by the different acquisition systems, which is an
important benefit when dealing with wireless sensor networks.

The paper is outlined as follows. Section 2 shows that a synchronization time lag results in
a phase shift of the identified mode shapes, whereas the identified natural frequencies and modal
damping ratios are unchanged. Next, Section 3 demonstrates how the findings in Section 2 can be
applied for offline synchronization of data acquisition systems. The data used in the demonstration
consist of measured accelerations and strains obtained from a laboratory experiment on a cantilever
steel beam. Finally, in Section 4, the work is concluded.

2. Mathematical background

Consider two response signals d1(t) and d2(t) obtained from sensors installed at arbitrary loca-
tions on the structure. The signals may correspond to different response quantities, e.g. acceleration
or strain. Under the assumption of linear system behavior, the Laplace transform of the response
signals, d1(s) ∈ C and d2(s) ∈ C, are related through the transmissibility function T (s) ∈ C as
follows [13]:

d1(s) = T (s)d2(s) (1)

where s ∈ C is the Laplace variable [14]. Furthermore, the Laplace transform of the response
signals d1(s) and d2(s) is related to the Laplace transform of the load vector p(s) ∈ C

np through
the transfer function matrices H1(s) ∈ C

1×np and H2(s) ∈ C
1×np , respectively, as given by the

following equation:

d1(s) = H1(s)p(s) (2)

d2(s) = H2(s)p(s) (3)

It assumed here that np loads are acting on the structure. The number of loads and their location is
not important for the derivation following next, however. Under the assumption that the response
of the structure within a certain frequency range of interest is well approximated by a limited
number of structural modes (nm modes), and assuming in addition proportional damping, the
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transfer function matrices H1(s) and H2(s) are given by:

H1(s) =

nm
∑

m=1

sq1φd1m

s2 + 2ξmωms+ ω2
m

φpm =

nm
∑

m=1

sq1φd1mH′

m(s) (4)

H2(s) =

nm
∑

m=1

sq2φd2m

s2 + 2ξmωms+ ω2
m

φpm =

nm
∑

m=1

sq2φd2mH′

m(s) (5)

where H′

m(s) = φpm/(s2 + 2ξmωms+ ω2
m), with φpm ∈ R

1×np the vector of mode shape compo-
nents corresponding to mode m at the np force locations. ωm and ξm are the undamped natural
frequency and the modal damping ratio of mode m, respectively. φd1m and φd2m are obtained by
selecting the component of the mode shape vector corresponding to mode m at the sensor locations
of d1 and d2, respectively. The integers q1 and q2 equal 0 for displacement or strain measurements,
1 for velocity measurements, and 2 for acceleration measurements.

The system has 2nm poles, occurring in complex conjugate pairs, λm1 and λm2 (m = 1, . . . , nm),
given by the following expression [15]:

λm1,2 = −ωmξm ± iωm

√

1− ξ2m (6)

where i =
√
−1. The poles λm1 and λm2 correspond to the natural frequency ωm and modal damp-

ing ratio ξm of mode m. When the transfer function matrices in Eqs. (4) and (5) are evaluated at a
system pole, i.e. s = λm1, only the corresponding mode m contributes to the system response [16],
and the following expressions are obtained:

H1(λm1) = λq1
m1φd1mH′

m(λm1) (7)

H2(λm1) = λq2
m1φd2mH′

m(λm1) (8)

Combination of Eqs. (7) and (8) directly yields:

H1(λm1) =
λq1
m1φd1m

λq2
m1φd2m

H2(λm1) (9)

Evaluation of Eqs. (2) and (3) at the system pole s = λm1, and taking into account Eq. (9) yields:

d1(λm1) =
λq1
m1φd1m

λq2
m1φd2m

d2(λm1) (10)

such that

T (λm1) =
λq1
m1φd1m

λq2
m1φd2m

(11)

Next, consider the response signal d′2(t), that is obtained by applying a time delay δt to the response
signal d2(t), i.e. d

′

2(t) = d2(t− δt). The Laplace transforms of the response signals d1(t) and d′2(t)
are related through the transmissibility function T ′(s), i.e. d1(s) = T ′(s)d′2(s). The transmissibility
function T ′(s) is related to the transmissibility function T (s) as follows [14]:

T ′(s) = T (s)esδt (12)
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Evaluation of the transmissibility function T ′(s) at the system pole s = λm1 yields:

T ′(λm1) =
λq1
m1φd1m

λq2
m1φ

′

d2m

=
λq1
m1φd1m

λq2
m1φd2me−λm1δt

(13)

Comparison of Eqs. (11) and (13) shows that processing the time delayed data d′2(t) together with
other non-delayed data results in a (complex) mode shape component φ′

d2m
, that is obtained from

the mode shape component φd2m by multiplication with e−λm1δt. This corresponds to a phase shift
θm (in radians) and a rescaling of the mode shape by the factor Am, defined as

θm = −δt ωm

√

1− ξ2m (14)

Am = eωmξmδt (15)

The poles of the system and, therefore, the natural frequencies and modal damping ratios, are not
affected by the time delay.

For linear structures with proportional damping, the (complex) mode shape vectors φm ∈ C
nd ,

containing the components φdjm, can be rescaled such that real vectors are obtained. This is
illustrated in Fig. 1, where a mode shape vector φm is schematically represented in the complex
plane, after rescaling such that the largest mode shape component becomes 1 (a.k.a. rescaling to
unit modal displacement). The figure also shows the mode shape component φ′

d2m
as obtained

from the time delayed response signal d′2(t) and using the same scaling factor. The phase angle
between the mode shape components φd2m and φ′

d2m
is θm, and is introduced by the multiplication

of φd2m with e−λm1δt. The rescaling of the mode shape amplitude by Am is also shown in the
figure.

The phase shift of the mode shape components, introduced by the time delay δt, can be used
for offline synchronization of data acquisition systems, as illustrated in Section 3.

Re(φdjm)

Im
(φ

d
j
m
)

φd1mφd2mRe(φ′

d2m
)

Im(φ′

d2m
)

0

0
θm

Figure 1: Representation of the mode shape components φd1m and φd2m (blue circles), and φ′

d2m
(red diamond) in

the complex plane. The mode shape vector is normalized to unit modal displacement.

3. Synchronization approach

It is demonstrated in this section how system identification techniques can be used for offline
synchronization of data acquisition systems, based on the findings of Section 2. The test setup
considered in the demonstration consists of a cantilever steel beam (Fig. 2a), that has been equipped
with 2 uniaxial accelerometers and 22 optical fiber strain gauges (Fig. 2b). The beam has a free
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length of 855 mm and a rectangular cross section of 30 mm by 10 mm. The beam is clamped between
two metallic plates of 200 mm by 300 mm by 20 mm each, that are bolted to a concrete support
by five bolts (see Fig. 2a). The beam is clamped over a length of 120 mm. The structure is excited
vertically by an inertial shaker, that has been installed underneath the beam (Fig. 2c). A load cell
has been installed between the shaker and the beam to measure the applied (external) force. In
addition, a small instrumented impact hammer is used for excitation. The sensor configuration is
shown in Fig. 3.

(a) (b) (c)

Figure 2: Overview (a) cantilever beam, (b) uniaxial accelerometer and optical fiber strain gauges, and (c) shaker
and load cell.

ǫ1 ǫ2 ǫ3 ǫ4 ǫ5 ǫ6 ǫ7 ǫ8 ǫ9 ǫ10 ǫ11 ǫ12 ǫ13 ǫ14 ǫ15 ǫ16 ǫ17 ǫ18 ǫ19 ǫ20 ǫ21 ǫ22

a1

a2shaker
hammer

Figure 3: Sensor configuration of the laboratory experiment (ai: accelerometer i, ǫi: strain gauge i).

Two data acquisition systems are used in the setup. A National Instruments (NI) data acqui-
sition system (NI USB-6229) is used to record the data from the uniaxial accelerometers (PCB
333B32), the impact hammer (PCB 302A07) and the load cell (PCB 208B02). An FBG-Scan 700
measurement device (FBGS) has been used to record the data from the optical fiber strain gauges.
A sampling frequency fs of 1000 Hz has been used for both systems. The synchronization of the
data acquisition systems is performed as follows: a trigger pulse is sent by the NI system to the
FBGS system at every sampling time step. The FBGS system records a sample of the strain sig-
nals on receipt of this pulse. During the data processing, a lack of synchronization between both
systems was observed. The synchronization time lag, which is in this case due to processing within
the FBGS system, is determined in the following.

3.1. System identification

The modal parameters of the cantilever beam have been experimentally identified by means of
an input-output system identification. The measurements for system identification were performed
with vertical swept sine excitation, applied by the inertial shaker. The excitation frequency varies
from 0 Hz to 500 Hz in 10 s. Fifteen sweep cycles of 10 s are considered, yielding a total measurement
duration of 150 s.

The output signals used in the system identification consist of the two acceleration signals
(units: m/s2), obtained from the NI system, and the 22 strain signals (units: µm/m), obtained
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from the FBGS system. For all acceleration signals, the (physically meaningless) DC component
is removed. As an example, the measured vertical acceleration a1 and strain ǫ1 for the first sweep
cycle of 10 s are shown in Fig. 4. The input signal consists of the shaker force signal, obtained
from the NI system. The measured shaker force for the first sweep cycle of 10 s is shown in Fig. 5.
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Figure 4: Time history (left) and narrow band frequency spectrum (right) of acceleration a1 ((a) and (b)) and strain
ǫ1 ((c) and (d)). The figures correspond to the first sweep cycle of 10 s of the experiment considered for system
identification.
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Figure 5: (a) Time history and (b) narrow band frequency spectrum of the shaker force applied to the cantilever
beam. The figures correspond to the first sweep cycle of 10 s of the experiment considered for system identification.

The output and input signals are processed using the reference-based data-driven combined
deterministic-stochastic subspace identification (CSI-data/ref) algorithm [17]. The entire record
of 150 s is processed at once. No averaging or windowing is applied. The input-output modal test
allows to obtain the natural frequencies, modal damping ratios, and mode shapes corresponding
to the first four vertical bending modes of the cantilever beam. Table 1 presents for each of the
identified modes the undamped natural frequency, the modal damping ratio, and the mode type.
Fig. 6 represents the identified mode shapes in the complex plane. The amplitude of the strain
mode shape components has been modified for plotting, in order to obtain displacement and strain
mode shapes with similar amplitude. After rescaling, both the displacement and strain mode
shapes have a maximum amplitude of 1. The displacement mode shapes, as obtained from the
acceleration data, are out of phase with the strain mode shapes. This is emphasized by plotting a
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line fit for the displacement and strain mode shapes separately. The angle between the fitted line
and the real axis is also known as the mean phase (MP) of the mode shape, and is calculated by
solving the following total least squares problem [18, 19]:

MP(φm) = arg min
α∈R

||Im(φm)− tan(α)Re(φm)||22
1 + tan(α)

(16)

The solution is obtained as [20]:

MP(φm) = arctan

(−V12

V22

)

(17)

where V12 and V22 are the elements (1,2) and (2,2) of the matrix of right singular vectors V ∈ R
2×2,

obtained from the singular value decomposition USVT = [Re(φm) Im(φm)], with U ∈ R
nd×2 and

S ∈ R
2×2. Note that the calculation of the MP in Eq. (17) is more accurate than the classical

expression for the MP provided in [16]. The latter fails when the mode shape components have an
imaginary part that becomes large compared to the real part (see also [18]).

In this case, a distinction is made between the MP of the displacement mode shapes φam

and of the strain mode shapes φ′

ǫm, in order to distinguish between both measurement systems.
Given that the displacement and strain mode shapes are both collinear (Fig. 6), it can be assumed
that the studied system is proportionally damped, and that the difference in MP between the
displacement and strain mode shapes mainly originates from the synchronization error. The time
delay δt between both data acquisition systems is determined in the following section.

No. fid [Hz] ξid [%] Type

1 10.86 2.39 1st vertical bending mode
2 67.67 0.29 2nd vertical bending mode
3 189.37 0.28 3rd vertical bending mode
4 375.45 0.11 4th vertical bending mode

Table 1: Identified modal characteristics (fid: undamped natural frequency, ξid: modal damping ratio).
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Figure 6: Representation of (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4, in the complex plane. The
displacement mode shape components obtained from the acceleration measurements are indicated by blue diamonds.
The strain mode shape components are indicated by red circles. A line fit for the displacement and strain mode
shape is shown by a blue and red dashed line, respectively.
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3.2. Synchronization

The time delay δt is estimated by minimization of the objective function f(δt), that gives the
average difference between the MP of the displacement and the strain mode shapes over all modes.
In the calculation of the objective function, the strain mode shapes φ′

ǫm are multiplied by eλm1δt

in order to account for a time delay δt. The displacement mode shapes φam are not rescaled.

δt⋆ = arg min
δt∈R

f(δt) = arg min
δt∈R

1

nm

nm
∑

m=1

∣

∣

∣
MP(φ′

ǫmeλm1δt)−MP(φam)
∣

∣

∣
(18)

Equal weight is given to the contribution of all modes in the objective function. For modes
with a higher natural frequency, however, the phase shift θm introduced by a time delay δt becomes
larger than for modes with a low natural frequency, as seen from Eq. (14). Modes with a higher
natural frequency are therefore more sensitive to a time delay. Finally, note that the difference of
MP values occurring in Eq. (18) is limited to π rad or 180◦. The phase shift θm, on the other hand,
can take any value, depending on the time shift, the natural frequency, and the modal damping
ratio of the corresponding mode.

Fig. 7 shows the objective function f(δt) as a function the time delay δt. The objective function
is calculated for a time delay δt going from 0 to 10 ms in steps of 1 µs. In order to allow for accurate
synchronization, the step size must be small compared to the smallest natural period accounted
for in the estimation, which in this case equals 1/(375.45 Hz) = 2.7 ms. The objective function
piecewise linear and shows multiple local minima. The global minimum is in this case obtained at
δt⋆ = 3.62 ms. The use of multiple modes is essential when estimating the time delay. If a single
mode is used in the estimation, the objective function in Eq. (18) shows multiple (local) minima at
δt⋆±π/(ωm

√

1− ξ2m). By including more modes, the number of minima is reduced. Since multiple
optima remain, an initial guess of the time delay is in any case required, however. This initial guess
can for example be obtained by applying conventional correlation techniques. Even in cases where
no common response signal is captured by the different acquisition systems, correlation techniques
can be used to obtained a rough estimate of the time delay. The cross-correlation between different
signals is then used to match specific events occurring in all channels, such as large peak amplitudes
due to wind gusts or the passage of vehicles on a bridge. Note that the initial guess obtained from
correlation techniques equals an integer number of time steps ∆t (= 1 ms) used in the data
acquisition, whereas the time delay δt obtained by applying synchronization based on system
identification can take any real number. This generally allows for more accurate synchronization.

Fig. 8 shows the displacement and strain mode shapes obtained after compensation for the time
delay δt⋆ in the complex plane. After minimization, some differences in MP remain (f(3.62 ms) =
2.60◦), such that the modes obtained are not purely real. This is also seen from Table 2, which
summarizes the results of the optimization procedure applied for the estimation of δt. For modes
2, 3, and 4, the difference in MP value between the displacement and strain mode shape is sig-
nificantly reduced. For mode 1, the difference in MP does not show a significant reduction after
the optimization. The remaining differences result from identification inaccuracies and violation of
the assumptions in the proposed method. For example, if the assumption of proportional damping
only approximately holds, this results in complex mode shapes, not accounted for in the method
(see also section 3.4). The estimated time delay δt is found to be accurate, however, resulting in
addition in reliable estimates of the displacement and strain mode shapes. This is illustrated in
the following section.
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When synchronization of more than two (nacq) acquisition systems is needed, a reference system
is chosen and the optimization procedure outlined in this section is repeated nacq − 1 times.
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Figure 7: Variation of the objective function f(δt) with the time delay δt. The marker (+) indicates the optimum.

mode 1 mode 2 mode 3 mode 4

MP(φ′

ǫm)−MP(φ
am) −7.64 −87.80 −63.29 50.70

MP(φ′

ǫmeλm1δt
⋆

)−MP(φam) 6.51 0.38 3.50 −0.01
θ⋆m −14.15 −88.18 −246.79 −489.29

(= −66.79− 180) (= 50.71− 540)

A⋆
m 0.99 1.00 0.99 0.99

Table 2: Summary of the results of the optimization procedure applied for the estimation of the time delay δt.
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Figure 8: Representation of the displacement and strain mode shapes obtained after compensation for the time delay
δt⋆ in the complex plane ((a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4). The displacement mode shape
components obtained from the acceleration measurements are indicated by blue diamonds. The strain mode shape
components are indicated by red circles. A line fit for the displacement and strain mode shape is shown by a blue
and red dashed line, respectively.

3.3. Verification

A verification experiment was performed. A vertical impact force was applied at the tip of
the beam using the instrumented hammer (Fig. 3). The response of the beam was measured in all
sensors. Fig. 9 shows a detail of the force time history, and the time history of the response obtained
from accelerometer a1 and strain gauge ǫ5, that physically coincide. The force and acceleration
signal have been acquired by the NI system, the strain signal by the FBGS system. A significant
increase of the acceleration level is observed right after the impact is applied (Fig. 9b). The strain
signal remains very small the first 4 ms after the impact, thereafter showing a significant decrease.
The observed delay of 4 ms± 0.5 ms is in line with the delay δt of 3.62 ms that has been identified
in Section 3.2.
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Fig. 10 finally shows the displacement and strain mode shapes along the beam after accounting
for the phase shift and amplitude modification introduced by the synchronization error. Only the
real part of the mode shapes is retained. Due to the limited number of accelerometers, a proper
distinction between the displacement mode shapes for different modes cannot be made. The strain
mode shapes have a regular shape. The apparent deviation of the mode shape at sensor ǫ3 is due
to the presence of a bolt that is welded at the lower side of the beam to connect the shaker (see
Fig. 2c). This results in (locally) lower strain levels.
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Figure 9: Time history of (a) the hammer impact and time history of the corresponding acceleration a1 (b) and
strain ǫ5 (c). The time step corresponding to the peak force is indicated by a dashed black line. The time delay δt

(=3.62 ms) is found as the horizontal distance between the dashed black line and the dashed red line.
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Figure 10: Displacement mode shapes (top, a – d) and strain mode shapes (bottom, e – h) along the axis of the
beam, for mode 1 (a and e), mode 2 (b and f), mode 3 (c and g), and mode 4 (d and h).

3.4. Proportional damping assumption

The proposed synchronization approach is based on the difference in MP between the mode
shape components obtained from different data acquisition systems. The underlying assumption of
proportional damping is important, as it leads to real normal modes, i.e. modes that are collinear
when plotted in the complex plane. Although the assumption of proportional damping is not
entirely met for civil engineering structures such as bridges and buildings, the damping is generally
attributed to a large number of energy dissipating elements distributed over the structure and real
normal modes are obtained. This is evidenced by case studies, e.g. [21, 18, 22], where the large
mode phase collinearity (MPC) of the identified mode shapes indicates real normal modes [23]. In
such cases, a line fit through the mode shapes based on Eq. (10) allows for time synchronization
of the data acquisition systems. Only in cases where local dampers are present, the mode shapes
are not collinear and the proposed approach for synchronization cannot be applied.
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4. Conclusions

For linear structures, a spurious time lag between measured response signals, resulting from
a lack of synchronization, leads to a phase shift of the corresponding mode shape components,
whereas the natural frequencies and damping characteristics are unchanged. This feature can
be used for (offline) synchronization of data acquisition systems, using the modal characteristics
obtained from a system identification. The time lag is obtained from the solution of an optimization
problem. A demonstration for a laboratory experiment on a cantilever steel beam has shown that
the proposed methodology can be used for accurate time synchronization, with significant reduction
of the phase shift in the identified mode shapes.
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