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Abstract 

Objective Critical illness is hallmarked by low plasma ACTH in the face of high plasma cortisol. We 

hypothesized that frequently used drugs could play a role by affecting the hypothalamic-pituitary-adrenal 

axis. 

Design Observational association study. 

Patients 156 medical-surgical critically ill patients. 

Measurements Plasma concentrations of ACTH and total/free cortisol were quantified upon ICU 

admission and throughout the first 3 ICU-days. The independent associations between drugs 

administered 24h prior to ICU-admission and plasma ACTH and cortisol concentrations upon ICU-

admission were quantified with use of multivariable linear regression analyses.  

Results Upon ICU-admission, compared with healthy subjects, patients revealed low mean±SEM plasma 

ACTH concentrations (2.68±0.6 pmol/l vs. 9.0±1.6 pmol/l, P<0.0001) in the face of unaltered total plasma 

cortisol (336.7±30.4 nmol/l vs. 300.8±16.6 nmol/l, P=0.3) and elevated free plasma cortisol 

concentrations (41.4±5.5 nmol/l vs. 5.5±0.8 nmol/l, P=0.04). Plasma ACTH concentrations remained low 

(P<0.001) until day 3 whereas plasma (free)cortisol concentrations steeply increased and remained high 

(P<0.001). No independent correlations with plasma ACTH were found. In contrast, the total admission 

plasma cortisol concentration was independently and negatively associated with the cumulative opioid 

(P=0.001) and propofol (P=0.02) dose, the use of etomidate (P=0.03), and positively with the cumulative 

dobutamine dose (P=0.0007). 

Conclusions Besides the known suppressive effect of etomidate, also opioids and propofol may suppress 

and dobutamine increase plasma cortisol in a dose-dependent manner. The observed independent 

associations suggest drug effects not mediated centrally via ACTH, but rather peripherally by a direct or 

indirect action on the adrenal cortex. 
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Introduction 

Critical illnesses necessitating intensive care are considered to represent conditions of severe physical 

stress. The traditional concept of the stress response comprises hypothalamic release of corticotropin-

releasing hormone (CRH) that activates pituitary adrenocorticotropic hormone (ACTH), which drives 

adrenocortical cortisol synthesis and secretion. Cortisol controls the activation status of the hypothalamic-

pituitary-adrenal (HPA) axis via negative feedback inhibition at the level of the hypothalamus and the 

pituitary. The stress response further comprises an activation of the sympathetic nervous system and 

catecholamine release by the chromaffin cells of the adrenal medulla.  

Although elevated plasma ACTH concentrations are considered to be the main driver of increased cortisol 

availability in response to stress, this does not appear to be applicable for the critically ill. Critical illness 

is hallmarked by an ‘ACTH-cortisol dissociation’, i.e. low plasma ACTH already during the first days of 

intensive care in the face of high plasma cortisol.1, 2 It was recently shown that suppressed cortisol 

breakdown, together with a mildly increased cortisol production, predominantly determines the level of 

hypercortisolemia in Intensive Care Unit (ICU) patients.2 In this context, low plasma ACTH concentrations 

could be explained by negative feedback inhibition exerted by high amounts of circulating cortisol that is 

not metabolized.  

Prior to admission to ICU, surgical as well as medical patients often received drugs that can theoretically 

affect the HPA axis, either directly at the hypothalamus-pituitary or adrenocortical level or indirectly via a 

modulation of the sympathetic nervous system3-5 and some are continued during the acute phase of 

critical illness. Previous studies have shown that anesthetic drugs, more specifically the hypnotic 

etomidate, can suppress adrenocortical synthesis of cortisol.6, 7 However, many other drugs may have 

HPA suppressive properties as suggested by small interventional studies in surgical8-10 and ICU 

patients11, by observational studies of surgical patients12, 13, and by animal experiments14-16. Based on the 

available evidence, we hypothesized that the pharmacological effects of drugs used during surgery or the 
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acute phase of critical illness prior to ICU admission may explain the acute ‘ACTH-cortisol dissociation’, 

as observed already upon admission to the ICU. To test this hypothesis, we used a multivariable linear 

regression analysis to investigate any independent associations between these drugs and the 

concentrations of ACTH and cortisol in plasma collected upon ICU admission from a mixed set of surgical 

and medical ICU patients.17 

 

Methods 

Patients and documentation of the administered drugs prior to ICU admission 

This study used plasma samples, previously collected - in the context of another study - from 174 adult 

ICU patients who did not have predisposing risks for HPA axis dysfunction, which includes chronic 

treatment with glucocorticoids, steroids or anti-steroid chemotherapy within the last 3 months, or other 

drugs predisposing to adrenal insufficiency (phenytoin, rifampicin, glitazones, imipramin, phenothiazine, 

phenobarbital).This study showed that the use of parenteral nutrition (PN) did not explain the ‘ACTH-

cortisol dissociation’ present from the first day in ICU onward.17 Written informed consent was obtained 

from all patients or their next-of-kin. The study protocol and consent forms were approved by the 

Institutional Ethical Review Board (ML4190). For the current study, the electronic medical records of these 

174 patients were re-analyzed and all drugs and cumulative drug doses administered 24h prior to ICU 

admission in the operating room, emergency room, post-anesthesia care unit, and/or on the ward were 

documented. This data search revealed that 18 patients had received corticosteroids within 24h prior to 

ICU admission and were therefore excluded for further analysis. Characteristics of the 156 remaining 

patients are described in Table 1.  

All documented intravenous, subcutaneous or inhaled drugs were grouped into 5 relevant drug categories, 

of which a potential impact on the HPA axis has been suggested in the literature. Drugs that were given 

to fewer than 5 patients were not taken into account to exclude findings by chance (Table 2). Equipotent 
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drug doses were calculated for opioids and for volatile anesthetics, taking into account the relative potency 

of each individual drug (Table 2). For dobutamine, cumulative doses were expressed as folds of 4200 µg, 

corresponding to an infusion rate of 1 µg kg-1 min-1 for a 70 kg individual during 1 hour. 

As healthy references, morning ACTH and cortisol plasma concentrations were available from 20 

overnight-fasted healthy volunteers with comparable demographics as the patient population (Table 1).17 

 

Quantification of plasma ACTH and (free) cortisol concentrations 

Admission (IQR 14:14PM – 19:29PM) and daily morning (6:00AM) blood samples were collected in pre-

chilled ethylenediaminetetraacetic acid (EDTA) tubes and immediately placed on ice, centrifuged at 4°C 

and then stored at -80°C until assay. Total plasma cortisol concentrations (Immunotech, Prague, Czech 

Republic) and plasma cortisol-binding-globulin (CBG) concentrations (Riazen, Louvain-La-Neuve, 

Belgium) were quantified with use of radioimmunoassay. Plasma ACTH concentrations were measured 

with a double-monoclonal immunoradiometric assay (Brahms Diagnostics, Berlin, Germany). Plasma 

albumin was quantified by the bromocresol green method with a Colorimetric assay (BioAssay Systems, 

Hayvard, CA). Plasma free cortisol was calculated with use of the previously validated Coolens’ formula 

adapted for individual albumin and CBG concentrations.18 

 

Statistical analyses 

Wilcoxon rank sum test was used to compare data that did not have a normal distribution and unpaired 

Student’s t-tests was used for comparison of normally distributed data. The Wilcoxon matched pairs 

signed rank test for repeated measurements was used to compare plasma concentrations within patients 

on the admission day with those on the consecutive days. 

The primary study aim was to assess, in a multivariable linear regression analysis, the presence of an 

independent association between the cumulative doses of the drugs given during the 24h prior to ICU 

https://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid
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admission and the plasma ACTH or total cortisol concentrations upon ICU admission and to determine 

the effect size hereof. The multivariable linear regression model was adjusted for the following baseline 

risk factors: gender, BMI, presence of diabetes, presence of malignancy, presence of pre-admission 

dialysis, presence of sepsis upon admission (according to the criteria of the American College of Chest 

Physicians-Society of Critical Care Medicine),19 APACHE II score on admission, nutritional risk score 

(NRS) score, eGFR (estimated glomerular filtration rate), plasma total bilirubin, emergency or elective 

admission, randomization to early PN or late PN, diagnostic category, free plasma cortisol concentration 

(for investigating the association with plasma ACTH), and plasma ACTH concentration (for investigating 

the association with total plasma cortisol). The presence of multicollinearity among the regressor variables 

and baseline risk factors was assessed using the tolerance, variance inflation factor (Vif), condition 

indices, and variance proportions.20 The analyses were repeated after excluding such variables from the 

model. To assess the presence of a (log)linear relationship between the continuous independent 

regressor variables and the dependent variables (plasma ACTH or plasma total cortisol concentration), 

the cumulative doses of each drug were automatically binned by the statistical software, to visualize the 

pattern of the association with the outcome of interest. Drugs that were either not given or given in a same 

fixed dose were dichotomized, drugs displaying a J-shaped relationship were categorized in 3 groups, all 

other drugs were added as continuous variables.  

As a secondary aim, the time courses of plasma ACTH and total and free cortisol concentrations during 

the first 3 consecutive days in ICU were plotted for those drugs that were identified, in the multivariable 

linear regression analysis, as independently associated with admission plasma ACTH or cortisol 

concentrations. For this, the cumulative doses of the drugs given 24h prior to ICU admission were divided 

in the identified categories as explained above, or, for those drugs with a (log)linear association with the 

outcomes, in two groups, at or below versus above the median cumulative dose. The presence of any 

potential subsequent rebound effect on plasma cortisol or ACTH concentrations was investigated in these 

time series with use of repeated measures ANOVA. For those drugs that were identified as independently 
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associated with admission plasma ACTH or cortisol concentrations, patient files were screened to assess 

whether or not and in which dose range this drug administration was continued. 

Statistical analyses were performed with use of JMP® version 11.0.0 (SAS Institute, Inc, Cary, NC) and 

SPSS software, version 22 (IBM, Armonk, NY). Two-sided P-values of 0.05 or less were considered to 

indicate statistical significance. No corrections for multiple comparisons were done. 

 

Results 

Plasma concentrations of ACTH, total cortisol, and free cortisol from ICU admission up to day 3 in ICU 

All 156 patients remained in the ICU for at least 3 days. Upon admission to the ICU, patients had much 

lower mean±SEM plasma ACTH concentrations than healthy subjects with comparable demographics 

(2.68±0.6 pmol/l vs. 9.0±1.6 pmol/l, P<0.0001) and plasma ACTH concentrations remained below normal 

throughout the 3 first days in ICU (P<0.001) (Fig. 1, panel A). Upon ICU admission, mean±SEM total 

plasma cortisol concentrations in patients were not different from those in healthy subjects (336.7±30.4 

nmol/l vs. 300.8±16.6 nmol/l, P=0.3) but plasma mean±SEM free cortisol concentrations were 7-fold 

elevated (41.4±5.5 nmol/l vs. 5.5±0.8 nmol/l, P=0.04) (Fig. 1, panel B-C). The latter can be explained by 

a decrease in mean±SEM plasma CBG and albumin levels compared to healthy controls (621.4±11.5 

nmol/l vs. 801.7±36.4 nmol/l (P=0.001) and 35.9±0.8 g/l vs. 47.3±1.3 g/l (P<0.0001), respectively) from 

ICU admission onwards. From the morning after ICU admission, total and free cortisol plasma 

concentrations were significantly higher than those upon ICU admission (total cortisol: 502.3±22.1 nmol/l 

vs. 336.7±30.4 nmol/l, P<0.0001; free cortisol: 58.0±5.5 nmol/l vs. 41.4±5.5 nmol/l, P<0.0001) and 

remained high until day 3 in ICU (P<0.001). 
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Independent association of the cumulative drug doses with ICU admission plasma ACTH and cortisol 

concentrations adjusted for baseline risk factors 

Based on the visualisation of the association between plasma ACTH concentrations and the cumulative 

doses of each drug, the cumulative doses of propofol, midazolam, opioids, volatile anesthetics, 

dobutamine and heparin were entered into the multivariable linear regression model as continuous 

variables (Fig. S1, Supporting Information). The cumulative doses of etomidate, paracetamol, enoximone, 

enoxaparin, desmopressin and vasopressin, were dichotomized as “given” versus “not given” for the 

entering into the multivariable model. The cumulative dose of norepinephrine displayed a J-shaped 

relationship with admission plasma ACTH concentration and was therefore added to the model 

categorized into 3 groups.  

In the multivariable linear regression analysis, adjusted for baseline risk factors and plasma free cortisol 

concentrations, none of the drugs administered within 24h prior to ICU admission were significantly 

associated with plasma ACTH concentrations upon admission (total model R²=0.12, P=0.94) (Table 3).  

For the multivariable linear regression analysis, with admission plasma total cortisol concentrations as the 

dependent variable, the cumulative doses of propofol, opioids, volatile anesthetics, dobutamine and 

heparin were added as continuous variables to the multivariable linear regression model (Fig. S2, 

Supporting Information). The cumulative doses of etomidate, paracetamol, enoximone, enoxaparin, 

desmopressin and vasopressin were again added dichotomized, as either “given” versus “not given”. The 

cumulative doses of midazolam and norepinephrine displayed a J-shaped relationship with admission 

plasma cortisol concentrations and were therefore added to the model categorized into 3 groups.  

The multivariable linear regression analysis, adjusted for baseline risk factors and admission plasma 

ACTH concentrations, revealed that the cumulative doses of several drugs, administered within 24h prior 

to ICU admission, were independent determinants for total plasma cortisol concentrations upon ICU 

admission (total model R²=0.56, P<0.0001) (Table 4). Indeed, total plasma cortisol concentration upon 

ICU admission was independently and negatively associated with the cumulative opioid dose [a decrease 
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of 8.6 (95% CI -13.6 to -3.6) nmol/l in total plasma cortisol for every 10 mg morphine-equivalent given; 

P=0.001], the cumulative propofol dose [a decrease of 7.2 (95% CI -.13.4 to -1.0) nmol/l in total plasma 

cortisol for every 100 mg of propofol given; P=0.02] and the use of etomidate [a decrease of 65.6 (95% 

CI .125.6 to -5.7) nmol/l in total plasma cortisol when given; P=0.03], and positively with the cumulative 

dobutamine dose [an increase of 18.7 (95% CI 8.2 to 29.2) nmol/l plasma cortisol for every 4200 µg given 

(equal to 1 µg kg-1 min-1 for a 70 kg individual for one hour); P=0.0007]. Similar independent associations 

between plasma free cortisol and the cumulative doses of opioids and dobutamine were found (data not 

shown).   

Using an additional forward-backward stepwise regression sensitivity analysis, with a probability to enter 

the model (F-to-enter) of 0.05 and a probability to leave the model (F-to-remove) of 0.05,  the independent 

associations of etomidate, opioids, propofol and dobutamine with total plasma cortisol concentrations 

were confirmed (data not shown). The assessment of multicollinearity had identified potential collinearity 

for enoxaparin and age. Repeating the multivariable linear regression analyses after taking enoxaparin 

and age out of the model did not affect any of the results. In the subset of surgical ICU patients, adjusted 

for the same baseline risk factors and admission plasma ACTH concentrations, the independent 

associations of etomidate, opioids, propofol and dobutamine with total plasma cortisol concentrations 

were confirmed (data not shown). 

 

Univariate time course of total/free cortisol plasma concentrations for those drugs that were identified by 

multivariable analysis as independently associated with cortisol  

Of all patients, 142 received at least 1 of the 4 drugs that were associated with admission total cortisol 

levels. 21 patients received all 4 drugs. Patients who had received etomidate in the 24h prior to ICU 

admission, revealed significantly lower total and free plasma cortisol concentrations upon ICU admission 

than did patients who had not received etomidate, but equally low plasma ACTH concentrations. On the 
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following 3 days in the ICU, the plasma cortisol levels of patients who had received etomidate prior to ICU 

admission showed a rebound rise reaching levels that were higher than those of patients not having 

received etomidate, while in this latter group plasma ACTH levels declined more quickly (Figure 2A). On 

the following 3 days in ICU, patients of both groups did not receive etomidate. A similar rebound rise in 

plasma cortisol levels was apparent for patients who had received a cumulative opioid dose higher than 

the median (180 mg morphine equivalent dose) in the 24h prior to ICU admission as compared with 

patients who had received less opioids (Figure 2B). On the following 3 days in ICU, the majority of patients 

of both groups (83% of patients on day 1, 83% on day 2, and 63% on day 3) still received opioids, in a 

dose that was much lower than the cumulative median dose upon admission of 180 mg (median dose of 

26.1 mg on day 1, 17.9 mg on day 2, and 6.5 mg on day 3). In patients receiving more than the median 

opioid dose, plasma ACTH concentrations were lower upon ICU admission and further decreased more 

slowly in comparison with patients receiving opioids in a lower dose. Patients who had received a 

cumulative dose of propofol higher than the median of 227.5 mg in the 24h prior to ICU admission 

displayed lower ICU admission total and free plasma cortisol concentrations than patients who had 

received propofol at a lower dose, after which the two groups became comparable (Figure 2C). Propofol 

administration increased during the first day in ICU, after which it declined (81% of patients on day 1, 47% 

on day 2, and 27% on day 3) with a median dose of  1248 mg on day 1, 0 mg on day 2, and 0 mg on day 

3). No rebound rise in plasma cortisol levels was apparent. Plasma ACTH concentrations were equally 

low in both groups.  In contrast, the stimulatory effect of dobutamine, shown by the results of the 

multivariable analysis, could not be illustrated in the univariate plots, and also no effect on plasma ACTH 

concentrations was observed (Figure 2D). On the following 3 days in ICU, dobutamine administration 

declined (29% of patients on day 1, 23% on day 2, and 15% on day 3), with a median dose of 0 mg on 

day 1, 2, and 3. 

 

Discussion 
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In this mixed population of critically ill patients, low plasma ACTH concentrations were documented upon 

admission to the ICU in the face of normal total and elevated free cortisol plasma concentrations. A further

lowering of plasma ACTH and a steep rise in plasma total/free cortisol were shown from the morning after

admission to the ICU onwards. With multivariable analysis, adjusting for other known determinants of the

stress response, it was shown that none of the drugs administered 24h prior to ICU admission

independently affected plasma ACTH on ICU admission. However, for opioids, etomidate, and propofol

administered 24h prior to ICU admission a suppressive effect on admission plasma cortisol was

suggested, whereas for dobutamine this effect on admission plasma cortisol appeared to be stimulatory.

These associations were independent of the medical or surgical diagnostic category, severity of illness,

sepsis, or other patient characteristics.

Except for etomidate, it is generally assumed that sedative and analgesic drugs suppress the stress

response via a central inhibition of the HPA axis and of the sympathetic nervous system resulting in a

decreased release of CRH and ACTH from the hypothalamus and pituitary.5 However, in this study, none 

of the drugs administered 24h before ICU-admission were found to be independently associated with the 

plasma ACTH concentration upon ICU admission. We can only speculate on why such a correlation was

not present in the critically ill. First, plasma ACTH was only measured at one single time point, whereas

ACTH release follows a dynamic pulsatile pattern. Second, higher plasma ACTH values may have

occurred prior to the ICU admission and could thus have been missed. Indeed, previous studies have 

documented a rise in plasma ACTH and cortisol during and shortly after surgery, followed by a rapid fall 

in plasma ACTH to baseline levels while plasma cortisol remained high.21, 22 Third, other mechanisms

responsible for a low plasma ACTH may play a dominant role. These comprise negative feedback

inhibition exerted by the elevated plasma free cortisol, or by inflammation and ischemia at the level of the 

pituitary or the hypothalamus.23, 24 Conceivably, inhibition of ACTH release through such mechanisms

may have dominated in the critically ill which may have hidden any additional central pharmacological

suppression on ACTH release. Fourth, it has been shown that the stimulation of the HPA axis and of the
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sympathetic nervous system synergistically interact with each other in the complex microenvironment of 

the adrenal gland and that they are functionally interdependent.25 As sedative and analgesic drugs have 

been shown to evoke a sustained suppression of sympathetic activity4, 9, 10, 13, this may abolish such an 

effect.  

In contrast with ACTH, plasma cortisol was significantly and independently associated with the cumulative 

doses of etomidate, propofol, opioids and dobutamine. A suppressive effect of opioids, etomidate and 

propofol and a stimulatory effect of dobutamine on plasma cortisol was suggested. The effect size of 

opioids was large and dose-dependent. Acute opioid administration to healthy individuals, prolonged 

opioid administration to patients suffering from chronic pain and intraoperative intravenous opioid 

administration in surgical patients have shown to result in suppressed plasma ACTH and/or cortisol 

concentrations.8-10, 26-30 An effect on the hypothalamus and the pituitary are assumed to mediate such an 

effect of opioids on the HPA axis27 most likely via the κ opioid receptor.16 However, also the adrenal gland 

expresses specific opioid binding sites, which, after binding with opioids, could mediate a direct inhibition 

of cortisol secretion.31 This could explain why only cortisol and not ACTH appeared affected by opioids in 

the here studied critically ill patients. 

The results of this study also confirmed a suppressive effect of etomidate on plasma cortisol, even after 

one single induction dose. Etomidate is a known suppressor of adrenocortical cortisol production by 

inhibiting 11-beta-hydroxylase, a key enzyme for cortisol synthesis.32 Prolonged etomidate infusion during 

critical illness has been shown to be associated with an increased mortality and was therefore abandoned 

as sedative for patients in ICUs.33 However, a recent Cochrane review concluded that a single induction 

dose of etomidate was not related with an increase in mortality in critical ill patients, although random 

plasma cortisol concentrations were lowered.6 

The current study also identified propofol as a possible suppressor of plasma cortisol. A previous study 

concluded that continuous intravenous infusion of propofol for up to 24h in critically ill patients did not 
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impair adrenal steroidogenesis.11 However, in patients admitted to the ICU after cardiopulmonary bypass 

surgery, continuous infusion of propofol has been associated with an attenuated rise of plasma cortisol, 

when compared with an anesthetic regimen based on sufentanil and midazolam.4 It is well known that 

propofol rapidly binds to GABA(gamma-aminobutyric acid)-A-receptors, which are ubiquitous in the 

central nervous system. However, no effect on plasma ACTH could be demonstrated in the current study, 

which is not in favour of a central effect of propofol. However, GABA-A-receptor sites have been reported 

in rat adrenal chromaffin cells34 which modulate catecholamine secretion35 whereby indirectly cortisol 

secretion could be affected in this complex microenvironment. The GABA-A-receptor has also been 

described in bovine glomerulosa cells of the adrenal cortex, which mediate an inhibition of aldosterone 

secretion.36 Therefore, rather than via a central inhibitory effect, propofol might also directly inhibit cortisol 

secretion by binding to the GABA-A-receptor in the adrenal gland. This hypothesis is supported by the 

rise in corticosterone secretion which has been shown in rats immediately after discontinuation of 

propofol, in the absence of an effect on ACTH secretion.14 

The results of the multivariable analysis suggested that dobutamine prior to ICU admission may increase 

plasma cortisol levels without an effect on plasma ACTH.  As in univariate analysis, this effect was 

negligible, these data suggest that any stimulatory effect of dobutamine is likely small and context 

dependent. Catecholamines are known to stimulate the HPA axis by an activation of α1-adrenergic 

receptors and to inhibit the HPA axis by an activation of α2-adrenergic receptors in the central nervous 

system.37 Dobutamine predominantly activates β1-adrenergic receptors, but also β2- and α1-adrenergic 

receptors are activated at doses used clinically.38 Although dobutamine has been shown to increase 

plasma ACTH levels in a study of freely moving non-anesthetized rats, no results on corticosterone were 

given.39 As the current evidence suggests that catecholamines activate the HPA axis via receptors in the 

central nervous system, the absence of an association with plasma ACTH in the current study does not 

support such an effect. Again, the complex interaction between the adrenal medulla and cortex suggests 

that a direct effect of catecholamines on the adrenal cortex is possible. In our study, the stimulatory effect 
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on plasma cortisol levels could not be shown in a univariate analysis, suggesting that these effects are a 

result of the interaction of dobutamine with the HPA axis, only in the presence of the other administered 

drugs.  

It cannot be concluded from this association study whether a suppressive effect of opioids, propofol and 

etomidate on plasma cortisol upon ICU admission is beneficial or harmful. Lower plasma cortisol levels 

could either indicate that the drugs reduced the stress of trauma, major surgery or serious illnesses and 

hereby its detrimental consequences. However, the steep rise in plasma cortisol observed on the morning 

following ICU admission, when the transient drug effect waned off, could be an indication that patients 

need higher cortisol availability during critical illness. Unfortunately, the number of patients in this study 

was too small to investigate whether or not the iatrogenic suppression of cortisol upon ICU admission was 

associated with adverse outcome. However, the main clinical interest of this study is to inform physicians 

on the potential iatrogenic suppressive effects of commonly used drugs. Specifically, the data suggest 

that prior to considering treatment with hydrocortisone based on a low plasma cortisol, avoidable 

iatrogenic suppressive drugs should be discontinued and the effects on plasma cortisol documented. 

This study has some limitations to highlight. First, the observed independent associations suggest drug 

effects not mediated centrally via ACTH, but rather peripherally by (in)direct actions on the adrenal cortex. 

However, the use of a single sample for quantification of plasma cortisol and ACTH concentrations may 

have precluded the detection of subtle effects on the dynamics of ACTH and cortisol secretion. Second, 

an association study does not provide proof of causality. Although the multivariable analyses were 

adjusted for known risk factors, unknown confounders may have played a role. Also, the study was not 

statistically powered to study outcome of any iatrogenic effect on cortisol availability. Furthermore, in this 

association study we did not account for differences in drug metabolism and thus only assessed drug 

doses rather than drug exposures. 
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In conclusion, besides the known suppressive effect of etomidate, also opioids and propofol may suppress 

plasma cortisol, and dobutamine may increase plasma cortisol, in a dose-dependent manner in critically 

ill patients. Whether or not drug-induced alteration of cortisol availability during acute critical illness is 

beneficial or harmful requires further investigation.   
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TABLES 

Table 1: Characteristics of the patients and healthy volunteers. 

Patients Healthy 
Volunteers 

(n=156) (n=20) 
Demography and anthropometry 
Male sex - no. (%) 103 (66) 11 (55) 
Age - yr (mean ± SEM) 66 ± 1.1 58 ± 1.1 
BMI – kg m-2 (mean ± SEM) 26.5 ± 0.4 24.3 ± 0.7 
Admission characteristics 
Diabetes mellitus - no. (%) 33 (21) 
Malignancy - no. (%) 34 (22) 
Pre-admission dialysis – no. (%) 2 (1) 
Sepsis - no. (%) 53 (34) 
APACHE II score (mean ± SEM) 24 ± 0.8 
NRS score > 4 – no. (%) 32 (21)
eGFR - mL min-1 1.73 m-2 (mean ± SEM) 77 (2.5) 
Plasma total bilirubin - mg/dL (median (interquartile range)) 0.8 (0.5-1.2) 
Emergency admission - no. (%) 76 (49) 
Randomization EPaNIC trial: Early - no. (%) 83 (53) 
Surgery <24h pre-admission ICU - no. (%) 113 (72) 
Diagnostic admission categories
Cardiac surgery - no. (%) 86 (55) 
Complicated surgery / Trauma - no. (%) 44 (28) 
Medical - no. (%) 26 (17) 
Clinical outcomes
Duration of ICU stay – median (interquartile range) 9 (4-11) 
ICU nonsurvivor - no. (%) 6 (4%) 

The body-mass index (BMI) is the weight in kilograms divided by the square of the height in meters. The 

Acute Physiology and Chronic Health Evaluation II (APACHE II) score reflects severity of illness, with 

higher values indicating more severe illness, and can range from 0 to 71. Scores on nutritional risk 

screening (NRS) range from 0 to 7, with higher scores indicating a higher risk of malnutrition. eGFR stands 

for estimated glomerular filtration rate. The duration of surgery was defined as the time from skin incision 

until the end of skin closure, if surgery took place 24h prior to admission to the ICU. The diagnostic 
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admission category ‘Complicated surgery / Trauma’ comprises complicated abdominal or pelvic surgery, 

complicated pulmonary or esophageal surgery, complicated neurosurgery, complicated vascular surgery, 

trauma, burns or reconstructive surgery. The diagnostic admission category ‘Medical’ comprises 

respiratory disease, gastroenterologic or hepatic disease, hematological or oncological disease, 

neurological presentation of medical disease, and other. 
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Table 2: Drug categories.  

Drug category Generic drug name Patients received - no. (%) 

Anesthetics Propofol 96 (62) 
 Etomidate 62 (40) 
 Volatile anesthetics (sevoflurane, desflurane) 102 (65) 

Analgetics Opioids (morphine, alfentanil, fantanyl, 
sufentanil, tramadol, piritramide) 134 (86) 

 Acetaminophen 17 (11) 
Sedatives Midazolam 88 (56) 
Vasopressors / Inotropics Norepinephrine 116 (74) 

 Dobutamine 50 (32) 
 Enoximone 18 (12) 
 Vasopressin / Desmopressin 11 (7) 

Anticoagulants Enoxaparin 8 (5) 
 Heparin 63 (40) 

 

Equipotent drug doses were calculated for volatile anesthetics (Minimum Alveolar Concentration (MAC) 

in O2 at 37°C PB760 (%) for sevoflurane = 1.8, for desflurane = 6.6) and for opioids (relative to morphine 

(=1): alfentanil = 30, fentanyl = 120, remifentanil = 120, sufentanil = 1200, tramadol = 0.1, piritramide = 

0.75).   
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Table 3: Multivariable linear regression analyses determining significant and independent 

associations between drug doses of all included drugs and plasma ACTH concentrations upon 

admission, adjusted for baseline risk factors. 

Variables 
Estimated difference (95% CI) in 

plasma ACTH concentration (pmol/l) P-value 
Gender (male vs. female) -1,34 ( -2,74 - 0,06 ) 0.06 
BMI dichotomized (25>BMI≤40 vs. other) -0,26 ( -1,64 - 1,12 ) 0.7 
Diabetes (present vs. not present) 1,56 ( -0,19 - 3,31 ) 0.08 
Malignancy (present vs. not present) -0,22 ( -1,97 - 1,54 ) 0.8 
Pre-admission dialysis (present vs. not present) 0,32 ( -5,69 - 6,33 ) 0.9 
Sepsis upon admission (present vs. not present) 0,31 ( -1,46 - 2,09 ) 0.7 
APACHE II score on admission (per unit added) -0,07 ( -0,27 - 0,13 ) 0.5 
NRS dichotomized (NRS ≥5 vs. <5) -0,94 ( -2,82 - 0,94 ) 0.3 
eGFR (per mL min-1 1.73 m-2) -0,01 ( -0,06 - 0,04 ) 0.7 
Plasma total bilirubin (per mg/dL) -0,22 ( -0,98 - 0,54 ) 0.6 
Elective vs. emergency admission -1,64 ( -4,32 - 1,05 ) 0.2 
Randomization to early PN vs. late PN -0,64 ( -1,93 - 0,64 ) 0.3 
Diagnostic Category - as compared with Medical        
     Cardiac surgery 0,70 ( -3,33 - 4,72 ) 0.7 
     Complicated surgery/Trauma) -1,15 ( -3,96 - 1,65 ) 0.4 
Free Cortisol (per nmol/l) 0,20 ( -0,36 - 0,76 ) 0.5 
Propofol (per 100 mg given) 0,00 ( -0,18 - 0,17 ) 0.9 
Etomidate (given vs. not given) -0,21 ( -1,88 - 1,46 ) 0.8 
Midazolam (per 1 mg given) -0,04 ( -0,15 - 0,08 ) 0.5 
Opioids (per 10 mg morphine-equivalent given) -0,03 ( -0,17 - 0,12 ) 0.7 
Acetaminophen (given vs. not given) -0,43 ( -2,83 - 1,97 ) 0.7 
Volatile Anesthetics (per % min equipotent dose given) 0,00 ( -0,01 - 0,02 ) 0.4 
Norepinephrine - as compared with not given        
     When given >0. <2277 µg -1,64 ( -4,59 - 1,31 ) 0.9 
     When given >=2277 µg -0,05 ( -2,50 - 2,39 ) 0.3 
Dobutamine (per 4200 µg given) 0,14 ( -0,16 - 0,44 ) 0.4 
Enoximone (given vs. not given) -0,88 ( -2,99 - 1,23 ) 0.4 
Enoxaparin (given vs. not given) 0,17 ( -2,96 - 3,31 ) 0.9 
Heparin (per 1 IU given) 0,00 ( 0,00 - 0,00 ) 0.4 
Desmopressin (given vs. not given) -0,43 ( -4,18 - 3,32 ) 0.8 
Vasopressin (given vs. not given) 0,65 ( -2,08 - 3,38 ) 0.6 
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The body-mass index (BMI) is the weight in kilograms divided by the square of the height in meters. The 

Acute Physiology and Chronic Health Evaluation II (APACHE II) score reflects severity of illness, with 

higher values indicating more severe illness, and can range 0 to 71. Scores on nutritional risk screening 

(NRS) range from 0 to 7, with higher scores indicating a higher risk of malnutrition.  
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Table 4: Multivariable linear regression analyses determining significant and independent 
associations between drug doses of all included drugs and plasma total cortisol concentrations 
upon admission, adjusted for baseline risk factors. 

Variables 
Estimated difference (95% CI) in plasma 

cortisol concentration (nmol/l) P-value 
Gender (male vs. female) -44,7 ( -96,3 - 6,8 ) 0.09 
BMI dichotomized (25>BMI≤40 vs. other) -42,6 ( -91,5 - 6,2 ) 0.09 
Diabetes (present vs. not present) 19,3 ( -44,4 - 83,0 ) 0.6 
Malignancy (present vs. not present) 39,0 ( -24,8 - 102,8 ) 0.2 
Pre-admission dialysis (present vs. not present) -13,0 ( -230,0 - 204,1 ) 0.9 
Sepsis upon admission (present vs. not present) 56,5 ( -7,0 - 120,0 ) 0.08 
APACHE II score on admission (per unit added) -3,2 ( -10,3 - 4,0 ) 0.4 
NRS dichotomized (NRS ≥5 vs. <5) -19,6 ( -87,4 - 48,1 ) 0.6 
eGFR (per mL min-1 1.73 m-2) 0,7 ( -0,9 - 2,4 ) 0.4 
Plasma total bilirubin (per mg/dL) -20,6 ( -47,7 - 6,5 ) 0.1 
Elective vs. emergency admission -132,1 ( -227,6 - -36,5 ) 0.008 
Randomization to early PN vs. late PN 8,9 ( -37,7 - 55,4 ) 0.7 
Diagnostic Category - as compared with Medical        
     Cardiac surgery 104,0 ( -60,7 - 268,7 ) 0.2 
     Complicated surgery/Trauma) -13,8 ( -122,4 - 94,8 ) 0.8 
ACTH (per pmol/l) 2,4 ( -3,9 - 8,8 ) 0.5 
Propofol (per 100 mg given) -7,2 ( -13,4 - -1,0 ) 0.02 
Etomidate (given vs. not given) -65,6 ( -125,6 - -5,7 ) 0.03 
Midazolam - as compared with not given        
     When given >0, <13 mg 5,7 ( -82,5 - 93,8 ) 0.9 
     When given >=13 mg -34,5 ( -123,2 - 54,2 ) 0.4 
Opioids (per 10 mg morphine-equivalent given) -8,6 ( -13,6 - -3,6 ) 0.001 
Acetaminophen (given vs. not given) -64,4 ( -149,0 - 20,2 ) 0.1 
Volatile Anesthetics (per % min equipotent dose given) -0,1 ( -0,6 - 0,3 ) 0.5 
Norepinephrine - as compared with not given        
     When given >0, <2277 µg 35,9 ( -70,9 - 142,8 ) 0.5 
     When given >=2277 µg -57,6 ( -145,5 - 30,2 ) 0.2 
Dobutamine (per 4200 µg given) 18,7 ( 8,2 - 29,2 ) 0.0007 
Enoximone (given vs. not given) -25,1 ( -101,4 - 51,3 ) 0.5 
Enoxaparin (given vs. not given) -25,6 ( -138,6 - 87,3 ) 0.7 
Heparin (per 1 IU given) 0,0 ( 0,0 - 0,0 ) 0.06 
Desmopressin (given vs. not given) -95,5 ( -230,2 - 39,1 ) 0.2 
Vasopressin (given vs. not given) -80,6 ( -178,9  17,6 ) 0.1 
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The body-mass index (BMI) is the weight in kilograms divided by the square of the height in meters. The 

Acute Physiology and Chronic Health Evaluation II (APACHE II) score reflects severity of illness, with 

higher values indicating more severe illness, and can range 0 to 71. Scores on nutritional risk screening 

(NRS) range from 0 to 7, with higher scores indicating a higher risk of malnutrition.  
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FIGURE LEGENDS 

Figure 1: Plasma ACTH, cortisol and free cortisol time course from ICU admission throughout the 

first 3 days of critical illness. Mean values and standard errors for plasma ACTH (Panel A), total cortisol 

(Panel B), and free cortisol (Panel C) in patients from admission onwards until day 3 of ICU stay. The 

shaded area represents the interquartile range of morning values in healthy control subjects. * P≤0.05, ** 

P<0.001, for the comparison with controls. § P≤0.05, §§ P<0.01, §§§ P<0.0001, for the comparison of 

paired values of the consecutive days with the admission sample. For each day, the number of patients 

still in ICU is displayed below the figure. ICU denotes intensive care unit, adm denotes admission. 

 

Figure 2: Univariate time course of total/free cortisol and ACTH plasma concentrations for those 

drugs that were identified by multivariable analysis as independently associated with cortisol. 

Mean values and standard errors for plasma total and free cortisol in patient groups from admission 

onwards until day 3 of ICU stay, divided by the received/not received etomidate (panel A), median 

cumulative opioid dose (panel B), median cumulative propofol dose (panel C), and median cumulative 

dobutamine dose (panel D), during the 24h prior to ICU admission. The presence of a subsequent rebound 

effect on plasma total/free cortisol concentrations was investigated. * P≤0.05, ** P<0.001, comparing 

mean values of both groups. The shaded area represents the interquartile range of morning values in 

healthy control subjects. For each consecutive day, the number of patients who received the drug (panel 

A), or who received more than the cumulative median dose upon admission (panel B, C, D), is displayed 

below the figure. ICU denotes intensive care unit, adm denotes admission.  
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