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Abstract. We design an algorithm that computes a small set containing the jumping
numbers of an ideal in a regular local ring of arbitrary dimension. We also provide some
criteria to decide whether these numbers are jumping numbers.

Introduction

The jumping numbers of an ideal sheaf on a smooth algebraic variety are very interesting
geometric invariants, that were studied in [5], but also appeared earlier in [10], [12], and [15].
They indicate in some sense how bad a singularity is, and are determined by the exceptional
divisors in a resolution of the ideal.

Several algorithms have been developed to compute jumping numbers in specific set-
tings. Tucker [14] designed an algorithm to compute jumping numbers on surfaces with
rational singularities. Alberich-Carramiñana, Àlvarez-Montaner and the second author [1]
introduced another algorithm in that setting. Berkesch and Leykin [3] and Shibuta [13]
developed algorithms using Bernstein-Sato polynomials.

We present a generalization of the algorithm in [1], that can be used for computing
jumping numbers on higher-dimensional varieties. The idea is to compute a small subset
of the candidate jumping numbers, containing all the jumping numbers, and then, in many
cases, one can check whether these numbers are jumping numbers.

1. Multiplier ideals and jumping numbers

In this first section, we introduce some basic notions, such as multiplier ideals, jumping
numbers and contribution. Let R be a regular local ring over C such that X = SpecR is
the germ of a smooth algebraic variety. We will be particularly interested in the case where
d := dimX > 3, since the two-dimensional case has been worked out completely in [1].

Let a ⊂ OX be a sheaf of ideals onX, and take a log resolution π : Y → X of a. Denote by
Kπ the relative canonical divisor of π, and by F the normal crossings divisor on Y satisfying
a · OY = OY (−F ). The multiplier ideal of (X, a) with coefficient c ∈ Q>0 is defined as

J (X, ac) = π∗OY (Kπ − bcF c).
There exists a sequence of numbers 0 < λ1 < λ2 < . . . such that, for all i, we have that

J (X, aλi) ) J (X, aλi+1), and J (X, ac) is constant for c ∈ [λi, λi+1) . These numbers are
called the jumping numbers of the pair (X, a). The multiplier ideals and jumping numbers
do not depend on the chosen resolution.
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Note that if we writeKπ =
∑

i∈I kiEi and F =
∑

i∈I eiEi, where the Ei are the irreducible

components of F , then the set
{
ki+n
ei

∣∣∣ i ∈ I, n ∈ Z>0

}
contains the jumping numbers. The

numbers in this set are called candidate jumping numbers. The smallest candidate is always
a jumping number, and is called the log canonical threshold. We say λ is a candidate for
G = E1 + · · ·+ Er if λ can be expressed as ki+ni

ei
for i = 1, . . . , r, where ni ∈ Z>0.

If λ is a jumping number, and G = E1 + · · ·+ Er is a divisor such that λ is a candidate
for G, we say G contributes λ if J (X, aλ) ( π∗OY (Kπ − bλF c + G). This happens if and
only if H0(G,OY (Kπ − bλF c+G)|G) 6= 0.

2. π-antieffective divisors

Definition 2.1. Generalizing the notion of antinef divisors, we say that a divisor D on Y
is π-antieffective if H0(E,OY (−D)|E) 6= 0 for every π-exceptional prime divisor E. This is
equivalent with saying that −D|E defines a class in PicE that contains an effective divisor.

Given a divisor D, one can compute its π-antieffective closure by the unloading procedure,
i.e., if H0(E,OY (−D)|E) = 0 for some E, replace D by D + E, and continue until the
obtained divisor D̃ is π-antieffective. This is a generalization of the unloading procedure
for divisors on surfaces, described in [4], [6] or [8]. The π-antieffective closure satisfies
π∗OY (−D̃) = π∗OY (−D).

3. An algorithm to compute jumping numbers

The set of supercandidates is constructed as follows.

Algorithm 3.1 (Computing supercandidates). Input: An ideal a and a resolution of a.
Output: The set of supercandidates with their minimal jumping divisors.

• The first supercandidate is the log canonical threshold.
• If λ is a supercandidate, then the next supercandidate is λ′ = min

{
ki+1+eλi

ei

∣∣∣ i ∈ I},
where Dλ :=

∑
i∈I e

λ
i Ei is the π-antieffective closure of bλF c − Kπ. The minimal

jumping divisor of λ′ is the reduced divisor Gλ′ supported on those Ei where this
minimum is achieved.

Theorem 3.2. The set of supercandidates contains all the jumping numbers.

Proof. This follows from the fact that

J (X, aλ) = π∗OY (Kπ − bλF c) = π∗OY (−Dλ),

so there can be no jumping numbers between two consecutive supercandidates. �

If dimX = 2, the converse also holds. This is a consequence of Lipman’s result in [11,
Section 18], stating that there is a one-on-one relation between integrally closed ideals and π-
antieffective divisors. In higher dimensions, different π-antieffective divisors might determine
the same ideal. Therefore, we might have supercandidates that are not jumping numbers.
However, in several cases, we can check that a supercandidate is a jumping number.

Proposition 3.3. If λ is a supercandidate such that Gλ has an irreducible connected com-
ponent, then λ is a jumping number.
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This is a very important case, since in many situations, a significant number of supercan-
didates seem to have an irreducible jumping divisor.

Proposition 3.4. If λ is a jumping number, it is contributed by Gλ, and hence there is a
minimal contributing divisor G 6 Gλ.

So if we want to check whether a supercandidate is a jumping number, we only need
to check contribution by divisors G 6 Gλ. This seems to be hard in general when Gλ is
reducible, but the following result can help.

Proposition 3.5. If λ is a candidate for G = E1+E2, and if OY (Kπ−bλF c+G)|Ei ∼= OEi
for i ∈ {1, 2}, then λ is a jumping number contributed by E1 + E2.

All together, we get the following algorithm.

Algorithm 3.6 (Computing jumping numbers). Input: An ideal a and a resolution of a.
Output: The set of jumping numbers of a.

• Compute the supercandidates λ, along with their minimal jumping divisors Gλ.
• If Gλ has an irreducible connected component, λ is a jumping number.
• Otherwise, check whether λ is a jumping number.

By Skoda’s theorem [9, Theorem 9.6.21], it suffices to compute the supercandidates in
(0, d], or even in (0, n], where n is the number of generators of a.

Remark 3.7. It can be hard in general to determine whether a linear equivalence class
contains an effective divisor, or to decide about the existence of a global section on reducible
divisors. This might complicate the unloading procedure and make it hard to check whether
a supercandidate is a jumping number when Proposition 3.5 does not apply. However, in
many examples, the provided results suffice to determine all the jumping numbers.

Remark 3.8. Apart from the obstructions mentioned in Remark 3.7, the algorithm can be
implemented as follows. For the computation of a log resolution, one could use the algorithm
of [7], implemented in the packages “resolve.lib” and “reszeta.lib” in Singular. If we are able
to describe the effective cones of the exceptional divisors in the resolution, the computation
of supercandidates and their minimal jumping divisors is easy to implement.

Example 3.9. Let X be the germ of affine threespace around the origin, and a the ideal
generated by f = x(yz − x4)(x4 + y2 − 2yz) + yz4 − y5. After six point blow-ups, we
obtain a resolution π : Y → X. We have Kπ = 2E1 + 4E2 + 8E3 + 14E4 + 6E5 + 6E6 and
F = Faff + 5E1 + 9E2 + 16E3 + 27E4 + 11E5 + 11E6, where the Ei are the exceptional
divisors, numbered in order of creation, and Faff is the strict transform of {f = 0}. The
supercandidates in (0, 1] are 5

9 ,
2
3 ,

20
27 ,

7
9 ,

23
27 ,

8
9 ,

25
27 ,

26
27 and 1, and Gλ equals E4 for 20

27 ,
23
27 ,

25
27

and 26
27 , and E2 +E4 for 5

9 ,
2
3 ,

7
9 and 8

9 . Since the ideal is principal, 1 is a jumping number.
By Proposition 3.3, 20

27 ,
23
27 ,

25
27 and 26

27 are jumping numbers contributed by E4. The log
canonical threshold 5

9 is a jumping number, and using Proposition 3.5, one can see that 2
3 is

a jumping number contributed by E2+E4. Finally, one can check that 7
9 and 8

9 are jumping
numbers contributed by E2. By Skoda’s theorem, we know all the jumping numbers.

In this example, our method is clearly faster than naively checking for all candidate jump-
ing numbers whether they are jumping numbers. The algorithm of [3], that is implemented
in Macaulay2, did not give a result after several days of computing.
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Example 3.10. Let X be as in the previous example, and let a be the ideal generated
by f = (xd + yd + zd)2 + g(x, y, z), with d > 3 and g(x, y, z) a homogeneous polynomial
of degree 2d + 1. To compute a resolution, we first blow up at the origin, and then at
the k = d(2d + 1) singular points on the strict transform of D. The exceptional divisors
are denoted E1 and Epi for i = 1, . . . , k, respectively. After two more blow-ups, centered
at a curve of genus g = 1

2(d − 1)(d − 2), with exceptional divisors E2 and E3, we have a
resolution. We have F = Faff + 2dE1 + (2d + 2)

∑k
i=1E

p
i + (2d + 1)E2 + (4d + 2)E3 and

Kπ = 2E1 + 4
∑k

i=1E
p
i + 3E2 + 6E3. Since E2 and E3 are ruled surfaces over a curve of

higher genus, it is not obvious to determine the classes in their Picard groups containing
effective divisors. However, we can deduce enough information to run our algorithm. We
find that the set of supercandidates in (0, 1] is{ n

2d

∣∣∣ 3 6 n < d
}
∪
{
2n+ 1

4d+ 2

∣∣∣∣ d 6 n 6 2d

}
∪
{ n

2d

∣∣∣ d+ 3 6 n 6 2d
}
,

and all of them are jumping numbers contributed by E1 or E3.
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