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We introduce and evaluate mixed-frequency multivariate GARCH models for forecasting low-
frequency (weekly or monthly) multivariate volatility based on high-frequency intra-day re-
turns (at five-minute intervals) and on the overnight returns. The low-frequency conditional
volatility matrix is modelled as a weighted sum of an intra-day and an overnight component,
driven by the intra-day and the overnight returns, respectively. The components are specified
as multivariate GARCH(1,1) models of the BEKK type, adapted to the mixed-frequency data
setting. For the intra-day component, the squared high-frequency returns enter the GARCH
model through a parametrically specified mixed-data sampling (MIDAS) weight function or
through the sum of the intra-day realized volatilities. For the overnight component, the squared
overnight returns enter the model with equal weights. Alternatively, the low-frequency condi-
tional volatility matrix may be modelled as a single-component BEKK-GARCH model where
the overnight returns and the high-frequency returns enter through the weekly realized volatil-
ity (defined as the unweighted sum of squares of overnight and high-frequency returns), or
where the overnight returns are simply ignored. All model variants may further be extended
by allowing for a non-parametrically estimated slowly-varying long-run volatility matrix. The
proposed models are evaluated using five-minute and overnight return data on four DJIA stocks
(AXP, GE, HD, and IBM) from January 1988 to November 2014. The focus is on forecasting
weekly volatilities (defined as the low frequency). The mixed-frequency GARCH models are
found to systematically dominate the low-frequency GARCH model in terms of in-sample fit
and out-of-sample forecasting accuracy. They also exhibit much lower low-frequency volatility
persistence than the low-frequency GARCH model. Among the mixed-frequency models, the
low-frequency persistence estimates decrease as the data frequency increases from daily to
five-minute frequency, and as overnight returns are included. That is, ignoring the available
high-frequency information leads to spuriously high volatility persistence. Among the other
findings are that the single-component model variants perform worse than the two-component
variants; that the overnight volatility component exhibits more persistence than the intra-day
component; and that MIDAS weighting performs better than not weighting at all (i.e., than
realized volatility).

Keywords: multivariate GARCH, mixed-frequency sampling, overnight returns.

1. INTRODUCTION

GARCH models are widely used to model conditional variances and covariances of asset returns.

The availability of high-frequency financial data in recent decades opened up possibilities for

more accurate estimation of return volatilities. At the same time, new challenges for GARCH

modeling arose since the variance forecast horizons of interest are often at a lower frequency,

e.g., daily, weekly, or monthly, than the frequency at which financial returns are observed.

Standard GARCH models are single-frequency models. How to efficiently use high-frequency

data to forecast lower-frequency covariance matrices in GARCH-type models is of great interest.

A useful tool for this type of mixed-frequency problem is the mixed-data sampling (MIDAS)

approach introduced by Ghysels, Santa-Clara, and Valkanov (2005, 2006). In the univariate
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case, Chen, Ghysels, and Wang (2015) extended the regression-based method of Ghysels, Santa-

Clara, and Valkanov (2006) to GARCH-type models, proposing a HYBRID GARCH process

that allows to forecast volatilities at different frequencies than the frequency of the information

set. In the multivariate GARCH setting, the literature about mixed sampling frequencies is

relatively scarce. As far as we know, the only existing work is Colacito, Engle, and Ghysels

(2011) and Golosnoy, Gribisch, and Liesenfeld (2012), where the MIDAS filter has been used

to extract long-run variances.

In this paper, we propose multivariate versions of mixed-frequency GARCH models. In par-

ticular, we focus on weekly conditional variance forecasts using 5-minute returns. One inevitable

issue with this type of weekly variance forecast is how to use the overnight information effec-

tively. Simply treating the overnight return as one extra 5-minute return might not work well,

since asst prices are likely to evolve in different ways during trading and non-trading hours;

see, e.g., Blanc, Chicheportiche, and Bouchaud (2014) and Ahoniemi and Lanne (2013). To

the best of our knowledge, the overnight returns have not been considered in previous work on

MIDAS GARCH models, and also has it only rarely been considered in the GARCH literature

in general.

In the literature on realized volatility, there are several related approaches of incorporating

the overnight returns. The simplest one is to add the squared overnight return to the intra-day

volatility as if the overnight return were an extra 5-minute return; see, e.g., Ahoniemi and

Lanne (2013) and the references therein. Another approach, called the scaling estimator, is to

scale the intra-day realized volatility estimator to a measure of volatility for the whole day,

as discussed in Martens (2002) and Hansen and Lunde (2005). Still another approach is to

combine the overnight and intra-day volatilities with optimally chosen weight parameters, as

proposed by Hansen and Lunde (2005). In this paper, we explore these various approaches in a

mixed-frequency multivariate GARCH framework, and compare them empirically.

Section 2 proposes the mixed-frequency GARCH models: one-component, two-component,

and local stationary two-component models. Section 3 evaluates the models in and out of

sample using return data from 1998 to 2014 on four DJIA stocks: AXP, GE, HD, and IBM.

Section 4 concludes.

2. MIXED-FREQUENCY MULTIVARIATE GARCH MODELS

Let rt be the vector of log returns on n assets between Friday’s close of week t− 1 and that of

week t. Also, let It−1 be the information set at Friday’s close of week t− 1 and define

Ht = Var(rt|It−1). (2.1)

Our purpose is to predict Ht, the weekly conditional variance matrix of rt, using a multivariate

GARCH framework that incorporates the 5-minute intra-day returns and the overnight returns

prior to week t. Since we work with returns in log form, the weekly returns are additively

composed as

rt =

5∑
d=1

rtd, rtd = rcotd + roctd , roctd =

78∑
i=1

r5mtdi , (2.2)
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where rtd, r
co
td , and roctd are the close-to-close, close-to-open (overnight), and open-to-close returns

on day d of week t and r5mtdi is the ith 5-minute return on day d of week t. We shall use the set

of variables

rcoτd, r
5m
τdi, τ ≤ t− 1; d = 1, . . . , 5; i = 1, . . . , 78; (2.3)

all belonging to It−1, as predictors of Ht. For simplicity, and given that the weekly conditional

mean returns are negligible compared to their volatilities, we assume that E(rt|It−1) = 0.

Alternatively, we can allow for nonzero but constant conditional mean returns by demeaning

the returns at each frequency prior to the analysis. Doing so gave nearly identical empirical

results, so we omit these.

The models developed below are all models of Ht. They vary in the level of detail in which the

intra-day or intra-week returns are used and weighted, the way in which the overnight returns

enter the model (as a separate component or not), and the specification of the unconditional

variance (constant or slowly varying over time). We group the models under four different

headings: two-component models, one-component models, locally stationary models, and garch

models.

2.1. Two-component models

As documented in Blanc, Chicheportiche, and Bouchaud (2014), the intra-day and overnight

returns behave very differently. One possibility, therefore, is to specify Ht as a weighted sum of

an intra-day component Pt and an overnight component Qt,

Ht = λ1Pt + λ2Qt, (2.4)

where λ1 and λ2 are scalar weight parameters and Pt and Qt are modeled as separate processes.

We specify Pt as a diagonal BEKK model (Engle and Kroner 1995) extended with the MIDAS

approach (Ghysels, Santa-Clara, and Valkanov 2005, 2006) to incorporate the variation in the

390 5-minute intra-day returns in week t− 1:

Pt = (In − aa′ − bb′)� P + aa′ �
∑
d,i

ωdir
5m
t−1,dir

5m′
t−1,di + bb′ � Pt−1. (2.5)

Here, P = E(Pt) = E (
∑
d r

oc
td ), a and b are parameter vectors, � is the Hadamard product, and

ωdi is a weight function with average value, across d and i, equal to 1. We specify exponential

weights,

ωdi =
(78(d− 1) + i)γ∑

d,i(78(d− 1) + i)γ/390
, (2.6)

as in Engle, Ghysels, and Sohn (2008). We leave the sign of γ unrestricted, although it is natural

to expect γ > 0, giving more weight to the more recent 5-minute periods; γ = 0 gives equal

weights, ωdi = 1. For the overnight component we adopt a relatively parsimonious specification,

Qt = (1− α2 − β2)Q+ α2
∑
d

rcot−1,dr
co′
t−1,d + β2Qt−1, (2.7)

where Q = E(Qt) = E (
∑
d r

co
td) and α and β are scalar parameters. We shall refer to the model

(2.4)–(2.7) as the 2comp(co,5m) model, as it makes use of the overnight returns (close-to-open)

and the 5-minute intra-day returns.
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If we ignore the information in the 5-minute returns and replace (2.5) by

Pt = (In − aa′ − bb′)� P + aa′ �
∑
d

roct−1,dr
oc′
t−1,d + bb′ � Pt−1 (2.8)

(where each weekday is given equal weight), we obtain the 2comp(co,oc) model, which uses the

close-to-open and open-to-close returns only.

2.2. One-component models

Alternatively, and somewhat more in line with the GARCH literature, we also consider a one-

component model, with basic specification

Ht = (In − aa′ − bb′)�H + aa′ �Wt−1 + bb′ �Ht−1, (2.9)

where H = E(Ht) = E(Wt) and Wt−1 is a combination of the 5-minute intra-day and the

overnight squared returns,

Wt−1 = λ1
∑
d,i

ωdir
5m
t−1,dir

5m′
t−1,di + λ2

∑
d

rcot−1,dr
co′
t−1,d. (2.10)

We refer to the model (2.9)–(2.10) as the 1comp(co,5m) model.

By analogy with the two-component model, replacing (2.10) with

Wt−1 = λ1
∑
d

roct−1,dr
oc′
t−1,d + λ2

∑
d

rcot−1,dr
co′
t−1,d (2.11)

gives the 1comp(co,oc) model.

Note, further, that ignoring the information in the overnight returns amounts to setting λ2 =

0, which makes the one- and two-component models coincide. For example, with λ2 = 0, the

models 2comp(co,5m) and 1comp(co,5m) reduce to the same model, which we label 1comp(5m).

2.3. Locally stationary models

The empirical realism of global stationarity as implied by the standard GARCH approach to

volatility modeling has been called into question. Several authors have suggested ways of extend-

ing GARCH models with a slowly varying variance component, giving rise to locally stationary

GARCH processes. Engle and Rangel (2008) specified the slowly varying component by linking

it to macro-economic variables using splines. Engle, Ghysels, and Sohn (2008) specified it using

a parametric MIDAS filter. Hafner and Linton (2010) proposed a nonparametric specification.

Here, we follow the approach of Hafner and Linton (2010) to obtain locally stationary versions

of the two-component models developed above. Consider the main two-component equation,

(2.4), with the intra-day component and the overnight component now specified as

Pt = M
1/2
t P ∗t M

1/2
t , (2.12)

Qt = N
1/2
t Q∗tN

1/2
t , (2.13)

where Mt and Nt are nonparametrically specified unconditional variance matrices that are

slowly varying as a function of t and P ∗t and Q∗t are short-run variance matrices with the

property that E(P ∗t ) = E(Q∗t ) = In. As in the stationary two-component model, we specify P ∗t
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and Q∗t as stationary BEKK processes with a MIDAS extension,

P ∗t = (In − aa′ − bb′)� In + aa′ �M−1/2t−1

∑
d,i

ωdir
5m
t−1,dir

5m′
t−1,diM

−1/2
t−1 + bb′ � P ∗t−1, (2.14)

Q∗t = (1− α2 − β2)In + α2N
−1/2
t−1

∑
d

rcot−1,dr
co′
t−1,dN

−1/2
t−1 + β2Q∗t−1. (2.15)

We refer to the model (2.4) and (2.12)–(2.15) as ls2comp(co,5m). If Mt and Nt are constant in

t, the model reduces to 2comp(co,5m).

By comparison, the locally stationary model of Hafner and Linton (2010) to predict Ht uses

weekly returns only and is specified as

Ht = L
1/2
t H∗t L

1/2
t , (2.16)

H∗t = (In − aa′ − bb′)� In + aa′ � L−1/2t−1 rt−1r
′
t−1L

−1/2
t−1 + bb′ �H∗t−1, (2.17)

where Lt is the slowly varying unconditional variance matrix of rt. We refer to this model as

lsgarch(w).

2.4. GARCH models

As benchmarks against which to compare the models that use intra-day information, we consider

the diagonal BEKK model for weekly returns,

Ht = (In − aa′ − bb′)�H + aa′ � rt−1r′t−1 + bb′ �Ht−1, (2.18)

which we label garch(w), and its extension that incorporates the equally-weighted daily returns,

Ht = (In − aa′ − bb′)�H + aa′ �
∑
d

rt−1,dr
′
t−1,d + bb′ �Ht−1, (2.19)

which we label garch(d).

3. ESTIMATION

It is already known since the seminal work of Engle (1982) that (G)ARCH processes generate

heavier tails than the normal density. To further account for the heavy tails of asset returns, we

model the standardized weekly returns, H
−1/2
t rt, as independent standard multivariate Student

t-distributed variates with ν > 2 degrees of freedom. Then the density of rt, given Ht, is

Γ(ν+n2 )

Γ(ν2 )(π(ν − 2))n/2|Ht|1/2

(
1 +

r′tH
−1
t rt

ν − 2

)− ν+n2
. (3.1)

Each model is now defined by the parametric density (3.1) and the specification of Ht. The

log-likelihood corresponding to the series of weekly returns r1, . . . , rT , sequentially conditioned

on H1, . . . ,HT , is L =
∑T
t=1 lt where

lt = log Γ

(
ν + n

2

)
− log Γ

(ν
2

)
− n

2
log(π(ν − 2))− 1

2
log |Ht| −

ν + n

2
log

(
1 +

r′tH
−1
t rt

ν − 2

)
.
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We estimate the models in two steps. In step 1, we profile out the unconditional variance

matrices from L. For the stationary models, we use variance targeting, setting

Q = T−1
∑

t,d
rcotdr

co′
td ,

P =

{
T−1

∑
t,d,i ωdir

5m
tdir

5m′
tdi in 2comp(co,5m),

T−1
∑
t,d r

oc
tdr

oc′
td in 2comp(co,oc),

H =


T−1

(
λ1
∑
t,d,i ωdir

5m
tdir

5m′
tdi + λ2

∑
t,d r

oc
tdr

oc′
td

)
in 1comp(co,5m),

T−1
(
λ1
∑
t,d r

co
tdr

co′
td + λ2

∑
t,d r

oc
tdr

oc′
td

)
in 1comp(co,oc),

T−1
∑
t,d rtdr

′
td in garch(d),

T−1
∑
t rtr

′
t in garch(w).

For the locally stationary models, we use the nonparametric smoothing estimator of Rodŕıguez-

Poo and Linton (2001), setting

Mt =

∑T
τ=1Kh(t− τ)

∑
d,i ωτir

5m
τdir

5m′
τdi∑T

τ=1Kh(t− τ)
,

Nt =

∑T
τ=1Kh(t− τ)

∑
d r

co
τdr

co′
τd∑T

τ=1Kh(t− τ)
,

Lt =

∑T
τ=1Kh(t− τ)rτr

′
τ∑T

τ=1Kh(t− τ)
,

where Kh(·) = K(·/h)/h, K(·) is a kernel function, and h is a bandwidth parameter. We use

a quartic kernel (truncated near the boundaries) with h = 0.15. In step 2, we estimate the

other parameters, a, b, α, β, λ1, λ2, and γ, by maximizing the profiled log-likelihood obtained

from step 1.

4. APPLICATION TO FOUR DJIA STOCKS, 1998-2014

We applied the models presented above using the 5-minute intra-day and overnight returns

between January 2, 1998, and November 28, 2014 (Friday’s close to Friday’s close) to predict

the weekly return volatility of four DJIA stocks: American Express (AXP), General Electric

(GE), Home Depot (HD), and International Business Machines (IBM). There are 15 model

variants in total. Our selection of stocks is the same as in the study of Golosnoy, Gribisch, and

Liesenfeld (2012) for the period 2000 to 2008, except that they also included Citigroup. We

excluded Citigroup because it was removed from the DJIA in 2009 after a price drop of around

90%.

4.1. In-sample evaluation

Table 1 reports the model estimates using the entire sample. A very clear picture emerges on

how the coefficients ai and bi evolve as higher-frequency returns are introduced in the models.

In the classic GARCH model for weekly returns, garch(w), the estimated GARCH coefficients

bi are around 0.97 to 0.98. These estimates decrease to about 0.95 in the garch(d) model, where

daily returns are incorporated as volatility predictors. They further decrease in the models that

use 5-minute returns, to around 0.9 in the 1comp models, to 0.5 to 0.8 in the 2comp models,

and even to 0.3 to 0.7 in the ls2comp models. The substantial decrease of the bi estimates, as
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higher-frequency returns are incorporated, is compensated by a corresponding increase of the

ARCH coefficients ai from around 0.2 in the garch(w) model to 0.3 in the garch(d) model, 0.3

to 0.5 in the 1comp models, 0.3 to 0.8 in the 2comp models, and 0.6 to above 0.9 in the ls2comp

models. Hence, while all estimated models exhibit nearly integrated volatility (with a2i + b2i

being estimated close to unity), much more weight is given to information in the most recent

week if that information is more detailed, i.e., when it consist of high-frequency returns. This is

most pronounced in the locally stationary models. There is a corresponding clear-cut tendency

in the estimated degree-of-freedom parameter, ν, which varies from around 5 in the garch(w)

model to around 8 or 9 in the models with 5-minute returns. Hence, when viewed through the

sharper lens of the high-frequency returns, the weekly returns appear somewhat less fat-tailed.

Another observation, in line with Blanc, Chicheportiche, and Bouchaud (2014), is that the

dynamics of the overnight and intra-day components are very different from each other. In the

2comp(co,oc) model, which treats the close-open and open-close returns nearly symmetrically,

the estimated intra-day coefficients ai and bi are on the order of 0.3 to 0.4 and 0.9 to 0.95,

respectively, while the corresponding overnight coefficients α and β are estimated as 0.07 and

0.99, respectively. This suggests that the overnight component decays more slowly than the

intra-day component, a property that is also borne out by the other 2comp and ls2comp models,

although there is a natural tendency for the intra-day decay rate to go up as more refined intra-

day return information is used.

In the 2comp and ls2comp models, the weights given to the intra-day and overnight compo-

nents, λ1 and λ2, are both estimated to be around 1, with those for λ2 being somewhat bigger

than for λ1, and those for the 2comp models being somewhat bigger than for the ls2comp

models. In the 1comp models, the estimates of λ1 and λ2 are quite different, with λ1 system-

atically exceeding 1 and λ2 being close to 0. Because of the much lesser weight given to the

overnight returns, the estimated 1comp(co,5m) and 1comp(5m) models are almost identical.

This is rather unexpected and, in particular, difficult to reconcile with the 2comp model esti-

mates, even though the 1comp and 2comp models are very different in the way the intra-day

and overnight returns enter the model.

The estimates of γ range between 1.35 and 1.7, suggesting that the most recent 5-minute re-

turns (near to Friday’s close) have considerably more predictive power for next week’s volatility

than the earlier 5-minute returns. For example, when γ = 1.5, the aggregate relative weights of

Monday to Friday’s 5-minute returns are 0.02, 0.08, 0.18, 0.29, and 0.43.
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In terms of model fit, the locally stationary two-component models yield the greatest logL

values, but to some extent this is because the long-run variance at any time t is estimated

by a two-sided kernel (only truncated near the boundaries of the sample period), thus using

information on returns that occur after time t. The next best fit is given by the 2comp(co,5m)

model with exponential weights, followed by the 2comp(co,5m) model with equal weights. These

models dominate the 1comp, garch(d), garch(w), and lsgarch(w) models by a large margin.

Surprisingly, the 1comp(co,5m) model with equal intra-day weights and λ1 = λ2 = 1, which

corresponds to using realized volatility augmented with the squared overnight return as volatility

predictor, fits rather poorly, even more poorly than the garch(d) model and the 1comp(co,oc)

model with λ1 = λ2 = 1. Apart from this, using high-frequency return information improves

the model. Compare, for example, the garch(w), garch(d), 2comp(co,oc), and 2comp(co,5m)

sequence of models. Another important conclusion is that incorporating the overnight returns

generally improves the model, as a comparison between the garch(d) and 2comp(co,oc) models

shows (and, to a lesser extent, between the garch(d) and 1comp(co,oc) models). Because the

number of estimated parameters is relatively small and does not vary much across the models,

roughly the same picture emerges on comparing the BIC values. The locally stationary two-

component models yield the least BIC value, but in addition to the earlier remark it should

be mentioned that the reported BIC value does not penalize for the nonparametric long-run

variance estimation step. The next least BIC value is reached, again, by the 2comp(co,5m)

model with exponential weights, but very closely followed by the 2comp(co,5m) model with

equal weights.

As a diagnostic model check, Table 1 reports the portmanteau statistic of Ling and Li (1997),

which is based on the sum of squared (standardized) residual autocorrelations. Under the null

hypothesis of no conditional heteroskedasticity of the standardized residuals, the statistic is

asymptotically distributed as χ2
` , where ` is the lag length chosen to compute the sample residual

autocorrelation matrix. We only report the statistics and asymptotic p-values for ` = 10, given

that the results for other values of ` are very similar. The garch(w) and lsgarch(w) models

are the only models that strongly reject the null of no conditional heteroskedasticity in the

standardized residuals.

Table 2 reports likelihood ratio tests for several sets of parameter restrictions. The null

hypothesis that the overnight returns do not matter in the 2comp(co,5m) model corresponds

to α = β = λ2 = 0 and is strongly rejected by the data. In the 1comp(co,5m) model this

hypothesis corresponds to λ2 = 0 and is not rejected, but this model fits considerably less well.

The hypothesis of equal 5-minute return weights, γ = 0, is rejected, although only marginally

so in the 2comp(co,5m) model. Thus, MIDAS weights help to improve the in-sample model fit,

albeit only to a modest degree. Finally, in the 1comp(co,5m) model, the hypothesis of equal

intra-day and overnight weights, λ1 = λ2 = 1, is very strongly rejected.
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Table 2. Likelihood ratio tests

model null hypothesis LR statistic p-value
2comp(co,5m) α = β = λ2 = 0 32.09 0.000
2comp(co,5m) γ = 0 3.01 0.083
2comp(co,5m) α = β = λ2 = γ = 0 39.76 0.000
1comp(co,5m) γ = 0 8.62 0.003
1comp(co,5m) γ = 0, λ1 = λ2 = 1 55.76 0.000
1comp(co,5m) λ2 = 0 0.04 0.842
1comp(co,5m) γ = λ2 = 0 8.66 0.034
1comp(co,oc) λ1 = λ2 = 1 20.98 0.000

We present two figures that visualize the return (co)variance forecasts implied by the various

models and compare them with the corresponding realized (co)variance, viewed as an approx-

imation to the true unobserved conditional (co)variance. Figure 1 presents the time series of

realized variances at weekly frequency for the returns on the AXP stock (in blue; the same

in each subplot) along with the one-week-ahead conditional variance forecasts implied by the

estimated models (in red; one subplot for each model). The weekly realized variance is defined

as the sum of squares of all 5-minute and all overnight returns of the corresponding week. The

variance forecasts of the garch(w) and lsgarch(w) models exhibit the least variation, in line with

the low estimates of the ARCH coefficients αi. In periods of high volatility, the realized variance

tends to be underpredicted by these models. As we move to models that use daily returns or

close-open and open-close returns, the variance forecasts change more rapidly, matching the

realized variance series more closely. This pattern is further reinforced in models that use 5-

minute return data, and is somewhat more pronounced in the 2comp and ls2comp models than

in the 1comp models. Figure 2 presents a similar set of graphs as in Figure 1, but now for

the realized covariances between the returns on the AXP and IBM stocks, and the correspond-

ing one-week-ahead conditional covariance forecasts. Roughly the same patterns emerge as in

Figure 1, with more rapidly changing forecasts as more detailed return information enters the

models.
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Figure 1. Weekly realized variance and model-implied variance forecast of AXP returns
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Figure 2. Weekly realized covariance and model-implied covariance forecast of AXP and IBM
returns
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4.2. Out-of-sample evaluation

We examine and compare the out-of-sample performance of the models using two methods:

the Giacomini and White (2006) (GW) test and the model confidence set (MCS) approach of

Hansen, Lunde, and Nason (2011). We re-estimated the models using an expanding window

covering at least 722 weeks of data, each expansion consisting of 20 weeks of additional data.

For each estimation window, the corresponding estimated parameters were held fixed and the

next block of 20 weeks was used as the out-of-sample evaluation period, with the forecast

horizon being one week throughout. With 8 different estimation windows, the total length

of the out-of-sample evaluation period is 160 weeks. As argued in Laurent, Rombouts, and

Violante (2012), the combination of an expanding estimation window and a fixed-size rolling

out-of-sample evaluation window satisfies the assumptions required by the MCS procedure.

The GW test allows for a unified treatment of nested and non-nested models. Since the true

conditional variance matrix is unobservable, we use the outer product of the weekly returns,

rtr
′
t, as a proxy for the conditional variance. In the literature on volatility forecast comparisons,

another widely used proxy is the realized variance matrix. See, e.g., Hansen and Lunde (2006)

and Laurent, Rombouts, and Violante (2012, 2013). However, these authors mainly focused on

intra-day (open-to-close) variance forecasting while our paper aims at weekly variance forecast-

ing, with the compounding issue of how to incorporate the overnight variance. Therefore, we

use the outer product of the weekly returns as a proxy, which is less informative than realized

variance but unbiased (and robust). As loss function in the GW test we use the negative out-

of-sample log-likelihood value. Table 3 reports the p-values of the GW tests of the hypothesis

of equal unconditional predictive accuracy of any pair of models. The bottom row of the table

gives the average (per observation) loss corresponding to each model. The 2comp(co,5m) mod-

els with exponential or equal 5-minute return weights significantly dominate all other models

except the locally stationary versions of these models. The garch(w) and garch(d) models are

outperformed by the models that use 5-minute returns and the dominations are statistically

significant for the two-component models. In line with the in-sample results, the 1comp(co,5m)

model with equal 5-minute weights and equal weights on intra-day and overnight returns (i.e.,

with γ = 0 and λ1 = λ2 = 1) exhibits very poor out-of-sample performance, even worse than

the garch(d) model.
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The MCS approach produces a set of models that contains the best model, for a given loss

function and a given confidence level α. It is based on a sequence of equivalence tests. Let M0

be the initial set of models, indexed by i = 1, . . . ,m0, and let Li,t the forecast loss of model

i at time t. The null hypothesis is that all models in M0 have equal expected forecast loss.

Since the asymptotic distribution of the test statistic is non-standard, a block bootstrap scheme

is used to obtain the distribution under the null. If the null of equal expected forecast loss is

rejected, an elimination rule is used to remove the model with the greatest loss. The procedure

is repeated until the null is not rejected anymore and the MCS is the set of models that have not

been removed. We implemented the MCS procedure using the Matlab MFE toolbox. Following

Laurent et al. (2012), we used several types of loss functions: (i) the Euclidean loss function

Le,t = vech(rtr
′
t − Ht)

′vech(rtr
′
t − Ht), where the outer product of the weekly returns, rtr

′
t,

is used as a proxy for the conditional variance matrix; (ii) the negative log-likelihood value,

Ll,t = −lt, with lt the multivariate Student t log-likelihood given above; and (iii) the negative

Gaussian quasi log-likelihood value, Lq,t = (log(2π)+log |Ht|+r′tH−1t rt)/2 = −lt|ν=∞. Further,

we set the confidence level equal to α = 0.25 and the average block length and the number of

bootstrap replications to 10 and 1000, respectively. Table 4 reports the average out-of-sample

loss values and the corresponding ranks of the models. Entries in boldface identify the models

contained in the MCS. For each of the three loss functions, the garch(w), garch(d), lsgarch(w),

2comp(co,oc), 1comp(co,oc), and 1comp(co,oc) model with γ = 0 and λ1 = λ2 = 1 are excluded

from the model confidence set. Among the included models, the 2comp(co,5m) models with

exponential and equal 5-minute weights rank first and second. Their locally stationary versions

rank third and fourth. Again, the one-component models perform relatively poorly compared

to the two-component models, even when 5-minute returns are incorporated into the model.
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5. CONCLUDING REMARKS

In this paper, we explored several ways to incorporate mixed-frequency returns and overnight

returns into multivariate BEKK(1,1) GARCH models. The intra-day and overnight returns may

enter the model either as two components or, perhaps closer in spirit to the GARCH approach,

as a single component. Several proposals in the literature of how to deal with overnight returns

are special cases of the models studied here.

In our application to forecast the weekly return variance matrix of four DJIA stocks in the

period 1998–2014, we estimated 15 different models and evaluated them in and out of sample. We

found that (i) the two-component versions of the model performed systematically better than

the one-component versions according to a range of criteria; (ii) models that exploit 5-minute

return information significantly improve on GARCH models that use weekly or daily returns

only; (iii) incorporating overnight returns as a separate component considerably improves the

model performance; (iv) overnight returns exhibit more persistence, as measured by the GARCH

coefficients, than the 5-minute intra-day return component; (v) MIDAS weights improve the

model but not dramatically so. Our findings hold in and out of sample.

One surprising finding is that the one-component model, even though its specification ap-

pears natural and it corresponds to some earlier suggestions of how to treat overnight returns,

performs badly. The estimated weight given to overnight returns is close to zero. One special

case of the one-component model, which corresponds to treating the overnight return as if it

were an extra 5-minute return in a realized variance computation, performs extremely badly,

even worse than a GARCH model that uses daily returns only.

Our tentative conclusion is that models with two components, one for high-frequency intra-

day returns and one for the overnight returns, appear a sensible way to make progress on how

to forecast low-frequency return variance matrices using the available mixed-frequency data.

Stated otherwise, the intra-day and overnight returns seem to behave quite differently, and

cramming the two into a single component does not seem to work well. Finally, it should be

noted that there are potentially many other ways to model the two components (Pt and Qt in

our notation) than those considered here, and that they can also be specified in a dynamically

interdependent way.
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