Title:	Recording and Stimulation of the Pathologic Brain Cavity Wall in a Rat Model
	for Thalamic Syndrome
Authors:	Philippe De Vloo, Janaki Raman Rangarajan, Els Crijns, Alexander Bertrand, Bart J. Nuttin
Session Name:	Poster Session with Wine and Cheese
Session Date/Time:	Monday, June 20, 2016
Study Design:	Laboratory Investigation
Keywords:	Central post-stroke pain; CPSP; Thalamic syndrome
Selected Format:	Poster Presentation
Preferred Format:	Poster Presentation - Abstracts submitted in the Late Breaking Abstract Center will only
	be eligible for Poster Presentations.
Introduction:	The thalamic syndrome, first described by Dejerine and Roussy, is a central
	neuropathic pain syndrome occurring after thalamic stroke, often associated with
	a mild paresis. It is a form of central post-stroke pain. Treatment is challenging
	and often not satisfying.
Methods:	30 rats were tested for thermal and mechanical pain and motor performance, and
	were then randomly allocated into a lesion group (L; electrolytic thalamic
	lesioning; n=22) and a sham group (S; sham surgery; n=8). Pain and motor tests
	were repeated weekly over the next 4 weeks. Next, after CT and MR imaging, 3
	bipolar electrodes were implanted. L was randomly divided into a cavity wall
	electrode group (E; electrodes aiming for the ventral cavity wall; n=11) and a
	random electrode group (C; electrodes aiming for a random brain target not
	related to motor or pain behaviour; n=11). In S, electrodes were implanted at the
	same coordinates as in W. Motor tests were then repeated during deep brain
	stimulation (DBS; biphasic, 130Hz, 200µs at 0%-50%-75%-100% of the highest
	tolerated amplitude (HTA; amplitude above which side effects are observed)).
	Afterwards, local field potentials (LFPs) were recorded in resting state.
Results:	After but not before lesioning, motor scores were significantly (P<.05) worse in L
	vs. S, while pain scores did not differ. In C, DBS at 50%, 75% or 100% HTA did
	not improve motor scores significantly as compared to 0% HIA in W or to DBS
	In C or S. LFPS obtained from identical anatomical locations in C and S rats
Constant	amered significantly.
Conclusions:	In a thatamic syndrome rat model with motor deficits but no mechanical or
	thermal hyperalgesia, the tested DBS parameters did not alleviate symptoms.