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ABSTRACT
We consider the design of a distributed algorithm that is suitable for a
wireless acoustic sensor network formed by nodes solving multiple
tasks (MDMT). In the network, some of the nodes aim at estimat-
ing the node-specific direction-of-arrival of some desired sources.
Additionally, there are other nodes that aim at implementing either
a multi-channel Wiener filter or a minimum variance distortionless
response beamformer in order to estimate node-specific desired sig-
nals as they impinge on their microphones. By using compressive
filter-and-sum operations that incorporate a low-rank approximation
of the sensor signal correlation matrix, the proposed MDMT algo-
rithm let the nodes cooperate to achieve the network-wide central-
ized solution of their node-specific estimation problems without any
knowledge about the tasks of other nodes. Finally, the effectiveness
of the algorithm is shown through computer simulations.

Index Terms— Distributed node-specific signal estimation,
subspace estimation, wireless acoustic sensor networks.

1. INTRODUCTION
Recently, there has been an increasing interest in distributed algo-
rithms that can be implemented over so-called wireless acoustic
sensor networks (WASNs). A WASN consists of a multitude of
wireless nodes which are equipped with a microphone or an array
of microphones. Traditionally, the design of distributed algorithms
has focused on networks where the nodes observe the same phe-
nomenon and/or are interested in the same network-wide signal
processing task [1]- [3]. However, motivated by the heterogeneity
of today’s digital networks, recent advances in distributed adaptive
signal processing and communication networking are currently en-
abling a novel paradigm where the networks are formed by Multiple
Devices cooperating in Multiple Tasks (MDMT) [4], [5].

Unlike distributed parameter estimation algorithms for single-
task networks, (e.g. [6]- [10]), under the MDMT paradigm the
design of distributed parameter estimation algorithms assumes that
the nodes are interested in estimating different but coupled pa-
rameters. Toward this goal, all the resulting distributed parameter
estimation algorithms rely on novel node-specific implementations
of a particular adaptive filtering technique such as least mean squares
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(LMS), recursive least squares (RLS) or the affine projection algo-
rithm (APA). For instance, in the context of cognitive radio networks
and smart grids, there are node-specific incremental [11], [12] and
diffusion [13], [14] algorithms that solve a distributed parameter
estimation problem where the nodes are interested in different but
overlapping vectors of parameters. Similarly, several diffusion-
based algorithms were also derived to facilitate the cooperation
among subsets of nodes with similar estimation interests [15]- [18].
The aforementioned works are all focused on regression-based pa-
rameter estimation problems. Other works have focused on other
parameter estimation problems such as node-specific direction of
arrival (DOA) estimation [19]- [20]. In this setting, each node has a
different orientation and hence a different DOA with respect to the
target source [19].

Another class of distributed MDMT algorithms focuses on
node-specific signal estimation (NSSE) problems, which rely on
a network-wide spatial filtering. Most of these algorithms rely on
compressive filter-and-sum operations on the sensor signals in order
to let the nodes solve their NSSE problems with the same perfor-
mance as a central unit that collects and processes all the sensor
signals. These compressive filter-and-sum operations were used to
solve NSSE problems under different beamformer criteria where the
nodes are interested in estimating samples of desired signals that
share a common latent signal subspace, e.g., for speech enhance-
ment in WASNs. Based on the multi-channel Wiener filter (MWF),
a distributed algorithm was derived to obtain the centralized linear
minimum mean square error estimates of the node-specific desired
signals in binaural hearing aids [21] or in wireless networks with a
fully-connected topology [22], a tree topology [23] and combina-
tions thereof [24]. To run all these algorithms over networks that
operate under non-stationary and low-SNR conditions, in [25] the
estimation of each node-specific desired signal is performed by a
MWF in which a low-rank approximation based on a generalized
eigenvalue decomposition (GEVD) is incorporated. Moreover, the
authors in [26] derived a distributed algorithm under which the es-
timation of the node-specific signals is undertaken through two dif-
ferent but coupled blind minimum variance distortionless response
(MVDR) beamformers. Unlike the MWF-based node-specific signal
estimation algorithm, under the blind MVDR criterion the goal of
each node is to minimize the output power of a filter subject to linear
constraints to avoid distortion of a desired (e.g., speech) signal.

All the aforementioned distributed node-specific estimation al-
gorithms consider a setting where all nodes cooperate to obtain
different but coupled solutions of the same signal processing (SP)
task (e.g., signal enhancement, spectrum estimation, DOA estima-
tion etc.,). Moreover, when obtaining these node-specific estimates,
all the existing works assume that all nodes apply the same SP tech-
nique, e.g., a particular adaptive filter (e.g., LMS, RLS or APA),
beamformer (e.g., MWF or MVDR) or subspace-based DOA esti-



mation method. However, in heterogeneous multi-task networks,
the nodes may be interested in solving different but interrelated SP
tasks. Furthermore, each node may apply different SP techniques
(filters or beamformers) in order to fulfill the particular performance
requirement of its application layer. Motivated by these facts, we
first define in this paper an instance of an MDMT network where
some nodes aim at obtaining estimates of the node-specific DOAs
of some desired sources, while others are interested in enhancing
node-specific desired sources by using different beamformer criteria,
i.e., a GEVD-based MWF or blind MVDR. Next, after describing
the corresponding centralized problems of the different SP tasks,
we rely on compressive linear estimation techniques to design a
distributed MDMT-based algorithm that lets the nodes cooperate
while solving their node-specific SP tasks as if they had access to all
the sensor signals available in the network. In this particular setting,
the nodes do not even have to be aware of the tasks that other nodes
are solving, i.e., MWF, MVDR or DOA estimation. Finally, we
provide simulation results for such a multi-task WASN to illustrate
its effectiveness.

2. DATA MODEL AND PROBLEM STATEMENT
We consider a fully-connected WASN with K nodes observing a
single target speech source1. Each node k ∈ K = {1, . . . ,K} is
equipped with a microphone array consisting of Mk microphones,
where its Mk-channel microphone signal is denoted as yk. We con-
sider frequency domain processing, where the microphone signal yk

can be modeled as (ω is the frequency variable)

yk(ω) = ak(θk, ω)s(ω) + nk(ω) (1)

where s is the signal of the target speech source, ak is a node-specific
Mk-dimensional steering vector (acoustic transfer function from the
source to the microphones of node k), θk is the DOA at node k, and
nk is additive noise which includes both spatially correlated (e.g.,
due to localized noise sources) and uncorrelated (e.g., microphone
self-noise) noise contributions. We assume that each node’s micro-
phone array has a different orientation, and hence the DOA θk is
different for each node. In the sequel, we always omit ω for the
sake of brevity. We also define sk , aks as the Mk-channel speech
component of the noisy microphone signals at node k. By stacking
all yk, nk and sk, we obtain the network-wide M -channel signals
y, s and n, respectively, where M =

∑K
k=1Mk. With this we can

write y = s + n = as + n, where a denotes the network-wide
M -dimensional steering vector.

Each node is then tasked to attain a node-specific goal from the
following three cases, i.e., K , {KMWF⋃KMVDR⋃KDOA}. Each
node k ∈ KMWF estimates its node-specific desired speech signal dk
from the available noisy microphone signals using MWF [27]. Each
node k ∈ KMVDR minimizes the output power of its beamformer
under a single linear constraint that steers the beam towards the lo-
cation of the target speech source such that the target speech signal
(as received at its reference microphone) is processed without distor-
tion [26]. Finally, each node k ∈ KDOA estimates its node-specific
DOA θk from the target speech source [19]. We assume that the lo-
cal microphone array geometry of the nodes k ∈ KDOA is known, but
the position of these nodes as well as the relative geometry between
them and the other nodes are unknown.

3. CENTRALIZED ESTIMATION
We first consider the centralized estimation problems where we as-
sume that each node k transmits its unprocessedMk-channel micro-

1These assumptions are mainly for the sake of easy exposition, as all re-
sults can be extended to networks with nearest-neighbor topology or scenar-
ios where multiple target speech sources are present [22]- [24].

phone signal yk to all other nodes. Therefore the objective for node
k is to carry out its node-specific task based on the network-wide
M -channel microphone signal y.

3.1. MWF
Under the MWF criterion, the goal for each node k ∈ KMWF is to
process the network-wide noisy microphone signal y in order to ob-
tain the linear minimum mean square error (LMMSE) estimate of its
node-specific desired signal dk = ak,rs, where ak,r is the r-th ele-
ment of ak corresponding to the reference microphone. Toward this
goal, each node k ∈ KMWF then applies an M -dimensional linear
estimator ŵk to estimate dk as d̂k = ŵH

k y, with

ŵk = min
wk

E
{
|dk −wH

k y|2
}

(2)

where the hat (̂.) refers to the fact that the centralized estimation is
considered and where E{·} and the superscript H denote the ex-
pected value operator and the conjugate transpose operator, respec-
tively. Assuming that Ryy = E{yyH} is a full rank matrix, the
unique solution of (2) is [27]

ŵk = R−1
yy Rssek with Rss , E{ssH} = PsaaH (3)

where ek selects the column of Rss corresponding to the reference
microphone of node k, and where Ps = E{|s|2} is the power of the
target speech source signal s.

Note that Ryy can be estimated using sample averaging during
‘speech-and-noise’ segments. In addition, the noise correlation ma-
trix, defined as Rnn = E{nnH}, is assumed to be either known or
to be estimated in the ‘noise-only’ segments when the target speech
source is silent. To distinguish between such segments, a Voice Ac-
tivity Detection (VAD) is required (as explained in [19, 27]). In the
sequel, we use an overline to denote a correlation matrix that is esti-
mated from the data, i.e., R̄.

When s and n are uncorrelated, we have Rss = Ryy − Rnn,
where Rss is a rank-1 matrix (see (3)). In practice, however, the
rank of R̄ss = R̄yy − R̄nn is often greater than one, which is due
to the finite window size in the short-time Fourier transform (STFT)
analysis and/or nonstationarity of the noise. Moreover, in low-SNR
conditions, R̄ss may even lose its positive semi-definiteness, leading
to suboptimal or even unstable filters [28]. A GEVD-based rank-1
approximation of R̄ss can be alternatively incorporated in the MWF
solution (3) to increase the estimation performance in such cases
(more discussion in [25], [28]).

A GEVD of the matrix pair (R̄yy, R̄nn) is defined as [29]

R̄yyX̂ = R̄nnX̂Λ̂ s.t X̂HR̄nnX̂ = IM (4)

where Λ̂ and X̂ contain the Generalized EigenVaLues (GEVLs)
and their corresponding Generalized EigenVeCtors (GEVCs), re-
spectively. It is assumed w.l.o.g. that the GEVLs are sorted in
descending order and that the GEVCs are scaled such that their
R̄nn-weighted norm is 1 (as expressed in (4)). Assuming that
R̄nn is invertible, the GEVD problem (4) is equivalent to a joint
diagonalization of R̄yy and R̄nn, i.e., it can be verified from (4) that

R̄yy = Q̂Λ̂Q̂H , R̄nn = Q̂Q̂H (5)

where Q̂ = X̂−H , with Q̂ a full-rank M × M matrix (not nec-
essarily orthogonal). We can then write R̄ss = R̄yy − R̄nn =

Q̂
(
Λ̂− IM

)
Q̂H . Comparing this with (3), the GEVD-based rank-1

approximation of R̄ss can be computed as

R̄ss = (λ̂− 1)q̂q̂H (6)



where λ̂ is the first (i.e., largest) GEVL of (R̄yy, R̄nn), and where q̂

denotes the first column of Q̂. By plugging (6) into (3), the GEVD-
based estimate of the node-specific desired signal at node k ∈ KMWF

is d̂k = ŵH
k y with

ŵk = R̄−1
yy q̂(λ̂− 1)q̂∗k,r (7)

where q̂k,r denotes the entry of q̂ corresponding to the r-th micro-
phone of node k, , i.e., q̂∗k,r = q̂Hek, where superscript ∗ is the
complex conjugate operator. Note that by plugging (5) in (7), it can
be easily shown that ŵk in (7) is equal to x̂ up to a scaling, where
x̂ is the first column of X̂. The node-specific desired signal at node
k ∈ KMWF is then estimated as d̂k = ŵH

k y.

3.2. MVDR
The objective for each node k ∈ KMVDR is to design an M -
dimensional beamformer ŵk that minimizes the output noise power,
subject to a unity gain constraint in the target speech source direc-
tion, i.e.,

ŵk = min
wk

E
{
|wH

k n|2
}

s.t. aHwk = 1. (8)

In practice, due to the fact that often the network-wide steering vec-
tor a is either unknown or difficult to estimate, the constraint is re-
placed by q̂Hwk = q̂∗k,r [30]. This replacement is essentially moti-
vated by the fact that q̂ is an estimate for the steering vector a (up to
an unknown scaling), as can be verified by comparing (6) with (3).
With the latter constraint, the optimization problem (8) alternatively
preserves the target speech signal as it impinges on the reference mi-
crophone of node k. The closed-form solution of (8) is then given
by [30]

ŵk =
R−1

nnq̂

q̂HR−1
nnq̂

q̂∗k,r (9)

in which by plugging (5), it can be easily shown that ŵk is equal to x̂
up to a scaling. The node-specific desired signal at node k ∈ KMVDR

is then estimated as d̂k = ŵH
k y.

3.3. DOA estimation
The objective for each node k ∈ KDOA is to estimate its node-specific
DOA θk from the network-wide M -channel microphone signal y.
To achieve this, an estimate of the local steering vector (up to a
complex scalar) can be fed into a subspace-based DOA estimation
method, such as MUSIC [31], or ESPRIT [32]. We first partition q̂
as q̂ = [q̂T

1 . . . q̂K ]T , where q̂T
k contains the Mk entries of q̂ cor-

responding to the local array of node k. Note that the node-specific
DOA estimation at each node k ∈ KDOA is then carried out only us-
ing q̂k, which is due to the fact that the relative geometry between
the nodes is unknown. Although this means that we only partially
exploit the information, cooperation between nodes has led to an im-
proved GEVD-based estimate of q̂ (and hence its sub-vectors q̂k’s
) [19]. The obtained DOA estimate is denoted as θ̂k.

4. DISTRIBUTED MDMT-BASED ALGORITHM
In the proposed distributed algorithm, each node k ∈ K first fuses
its Mk-channel microphone signal yk into a single-channel signal
zk = fHk yk with an Mk-dimensional linear compressor fk (which
will be defined later, see (14)) , and then broadcasts zk to all other
nodes. As a result, the required per-node communication bandwidth
is reduced by a factor of Mk, compared to the centralized approach.

Considering a K-channel signal z = [z1 . . . zK ]T , z−k denotes
the vector z with zk excluded. Assuming a fully-connected WASN,
each node k then has access to a Pk-channel signal ỹk which is
defined as ỹk = [yT

k zT
−k]T , with Pk = Mk+(K−1). In the sequel,

we use the .̃ notation for quantities that are computed based on the

extended signal ỹk = s̃k + ñk. Moreover, the corresponding Pk-
dimensional correlation matrix estimates at each node k are denoted
as R̄ỹk ỹk , R̄s̃k s̃k and R̄ñkñk .

At iteration i, node q is the only updating node, which uses a
block of L samples to locally estimate the required correlation ma-
trices. In the next iteration the updating node q is changed, and
a new block of L samples (over a different time window) is used,
which means that the iterations are spread out over time in a block-
wise fashion. Similar to (4)-(5) node q then computes a local GEVD
on the matrix pencil (R̄i

ỹk ỹk
, R̄i

ñkñk
), leading to Pq-dimensional

matrices containing the local GEVCs and GEVLs denoted as X̃i
q ,

Λ̃q (with ordered as GEVLs in (4)) and Q̃i
q , respectively, where

Q̃i
q = (X̃i

q)−H . The iteration index i will be dropped in the se-
quel for conciseness. We also define q̃q as the first column of Q̃q .
Regarding the update procedure at the updating node q, we first con-
sider the following three single-SP task cases:

• If all nodes were MWF nodes, i.e., if K = KMWF, one could
run the GEVD-based distributed adaptive node-specific signal es-
timation (DANSE) algorithm [25], in which all nodes sequentially
perform the following operations (compare to (2),(7)).

w̃q = min
w̃q

E
{
|dq − w̃H

q ỹq|2
}

(10)

w̃q = R̄−1
ỹq ỹq

q̃q(λ̃q − 1)q̃ ∗
q,r (11)

with q̃q,r denoting the r-th entry of q̃q and λ̃q equal to the largest
GEVL in Λ̃q .

• If all nodes were MVDR nodes, i.e., ifK = KMVDR, one could run
the linearly constrained (LC-) DANSE algorithm [33], in which
all nodes sequentially perform

w̃q = min
w̃q

E
{
|w̃H

q ñq|2
}

s.t. q̃H
q w̃q = q̃ ∗

q,r (12)

w̃q =
R̄−1

ñqñq
q̃q

q̃H
q R̄−1

ñqñq
q̃q

q̃ ∗
q,r. (13)

• If all nodes were DOA nodes, i.e., if K = KDOA, one could run
the algorithm in [20] to estimate the first Mq entries of q̃q corre-
sponding to the local array at node q, defined as qq . As an esti-
mate of the steering vector ak (up to an unknown scaling), qq is
then fed into a subspace-based DOA estimation algorithm such as
MUSIC or ESPRIT. The resulting DOA estimate is denoted as θ̃q .
Note that in this case node q updates an auxiliary vector w̃q via
w̃q = x̃q , where x̃q is the first column of X̃q , i.e., it is the largest
principal GEVC of (R̄i

ỹk ỹk
, R̄i

ñkñk
). This auxiliary parameter

will define the linear compressor fq (see (14)). The reason be-
hind this choice is explained in [20], where it is shown that using
(part of) the local principal GEVC as a compressor, eventually re-
sults in a local steering vector estimate qq which is a subset of the
network-wide steering vector q̂ (details omitted).

In all of the three aforementioned algorithms (i.e., [25], [33], [20]),
the fusion rule is updated in a similar fashion, i.e., the updating node
q updates fq by replacing it with the first Mq rows of w̃q , i.e.,

fq = [IMq0] w̃q (14)

where IMq is theMq-dimensional identity matrix and 0 is an all-zero
matrix with proper dimension. Nevertheless, note that the fusion up-
date in (14) is different for each of these three single-SP cases, as
the respective w̃q’s are different. Using these ingredients, we now
define the distributed MDMT algorithm case where we let the nodes



Table 1. Distributed MDMT-based algorithm

1. Set i← 0, q ← 1, and initialize all f0k and w̃0
k , ∀k ∈ K, with random

entries.

2. Each node k ∈ K broadcasts L new observations of its single-channel
compressed signal zik:

zik[iL+ j] = f iHk yi
k[iL+ j], j = 1 . . . L (15)

where the notation [.] denotes a time (STFT-frame) index.

3. Updating node q: first update R̄i
ỹq ỹq

and R̄i
ñqñq

via sample

averaging and then computes X̃i
q and Λ̃i

q from the GEVD of
(R̄i

ỹq ỹq
, R̄i

ñqñq
) from which q̃i

q is estimated.

• if q ∈ KMWF: compute the node-specific MWF w̃i+1
q as in (11).

• if q ∈ KMVDR: compute the node-specific MVDR w̃i+1
q as in (13).

• if q ∈ KDOA: use qi
q and estimate the node-specific DOA θ̃q , e.g.,

via ESPRIT or MUSIC and update w̃i+1
q = x̃i+1

q .

4. Updating node q: updates f i+1
q = [IMq0] w̃i+1

q .

5. The other nodes k ∈ K \ q update their parameters as w̃i+1
k = w̃i

k

and f i+1
k = f ik .

6. Each node k ∈
{
KMWF⋃KMVDR

}
estimates the next L samples

of its single-channel signal dk , as d̃k = (w̃i+1
k )H ỹk . Each node

k ∈ KDOA \ q keeps its latest node-specific DOA θ̃k .

7. i← i+ 1 and q ← (q mod K) + 1 and return to step 2.

use the fused signals of the other nodes, independent of how they lo-
cally update their w̃q with the fusion rule fq based on GEVD-based
DANSE, LC-DANSE or DOA estimation. The resulting distributed
MDMT-based algorithm is described in Table 1. Note that nodes
k ∈ {KMWF⋃KMVDR} estimate their node-specific desired signal
as d̃k = w̃H

q ỹq in each iteration. It is noted that the nodes are not
aware of each others tasks, and hence perform the same operations as
they would perform in a hypothetical homogeneous network where
all the (other) nodes perform the same network-wide distributed al-
gorithm (DANSE, LC-DANSE or DOA estimation). Remarkably,
despite the fact that each node solves a different local task, it can
be shown that all their local estimates converge to the corresponding
centralized solution as if all nodes would have access to the micro-
phone signals from all other nodes.

Theorem I: If R̄nn is full rank, then the estimates obtained from
the proposed distributed MDMT-based algorithm converge for any
initialization of the fusion rules fq to the corresponding estimates
obtained from the centralized solutions, i.e., when i → ∞, ∀k ∈
{KMWF⋃KMVDR}, d̃k = d̂k, and ∀k ∈ {KDOA}, θ̃k = θ̂k.

We do not provide a rigorous proof here due to space constraints.
The proof relies on the fact that, even though the w̃q’s are estimated
in a different manner at each node, there is an inherent compatibility,
i.e., it can be shown that all the w̃q’s represent a scaled version of
the local GEVC x̃q (only for the DOA node, this link is explicit
as we define w̃q as x̃q). This makes the algorithm akin to Dis-
tributed Adaptive Covariance Generalized Eigenvector Estimation
(DACGEE) [34], of which convergence and centralized optimality
can be proven. The proof of Theorem I then follows from the con-
vergence of the latter and the fact that the proposed algorithm is im-
mune to the different scaling applied by each node’s fusion rule fk.
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Fig. 1. Convergence of the distributed MDMT-based algorithm

5. NUMERICAL SIMULATIONS
To investigate both the convergence and the performance of the pro-
posed distributed MDMT-based algorithm, an acoustic scenario is
simulated using the image method [35]. The room is rectangular
(5m × 5m × 5m), with reflection coefficients 0.2 for all surfaces.
A WASN with 4 nodes (K = 4) is considered, where each node is
equipped with a uniform linear array with 3 microphones (Mk =
3, ∀k ∈ K) and where the inter-microphone distance is 10cm. The
target speech source produces seven speech sentences, with one sec-
ond of silence between each two consecutive sentences. Four local-
ized multi-talker noise sources (mutually uncorrelated) are placed in
the room at the broadside direction of the nodes, with equal noise
power. We use a sampling frequency of 16kHz, a Hann-windowed
DFT with window size 256 and with 50% overlaps. We assume
a perfect VAD to exclude the effect of VAD errors. An uncorre-
lated white Gaussian noise is also added to each microphone signal
to model the microphone’s self-noise and other possible isotropic
noise contributions. The simulations are carried out in batch mode,
which means that the signal statistics are estimated over the full sig-
nal length in each iteration. Nodes 1 and 3 are tasked with MWF,
node 2 with MVDR and node 4 with DOA estimation (via wideband
ESPRIT). As a performance measure, at MWF and MVDR nodes
we utilize the SNR improvement (in dB), i.e., the difference between
the input and the output SNR, and at the DOA node we use the ab-
solute error of the estimates (in degrees). Figure 1 illustrates both
the convergence and the performance of the proposed distributed
MDMT-based algorithm at all nodes. Cases where nodes estimates
their node-specific tasks on their own, called as ‘isolated’, are added
to also show the effectiveness of the algorithm. Results show that
the estimates obtained with the distributed MDMT-based algorithm
converges to the corresponding centralized estimates obtained in the
centralized case.

6. CONCLUSION
We have studied a distributed multi-task problem in a WASN formed
by three different groups of nodes. One of the groups is composed
of nodes that aim at estimating the node-specific DOA of a desired
speech source. The second and the third group are formed by nodes
that aim at solving different node-specific speech enhancement prob-
lems by implementing either a MWF or a MDVR beamformer, re-
spectively. We have derived a distributed algorithm that let the nodes
cooperate to attain the network-wide centralized solution of their es-
timation problems without any knowledge on the tasks solved by the
other nodes. To do so, the proposed algorithm employs compressive
filter-and-sum operations and a low-rank approximation of the sen-
sor correlation matrix based on the GEVD. Finally, simulations have
shown the efficiency of the proposed algorithm.
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