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Abstract

We report on our experience implementing category theory in
Coq 8.5. Our work formalizes most of basic category theory, includ-
ing concepts not covered by existing formalizations, in a library that
is fit to be used as a general-purpose category-theoretical foundation.

Our development particularly takes advantage of two features
new to Coq 8.5: primitive projections for records and universe poly-
morphism. Primitive projections allow for well-behaved dualities
while universe polymorphism provides a relative notion of largeness
and smallness. The latter is one of the main contributions of this
paper. It pushes the limits of the new universe polymorphism and
constraint inference algorithm of Coq 8.5.

In this paper we present in detail smallness and largeness in cat-
egories and the foundation they are built on top of. We furthermore
explain how we have used the universe polymorphism of Coq 8.5
to represent smallness and largeness arguments by simply ignoring
them and entrusting them to the universe inference algorithm of Coq
8.5. We also discuss our experience throughout this implementation,
discuss concepts formalized in this development and give a compar-
ison with a few other developments of similar extent. Furthermore,
we discuss (future) works on top of or related to this development
including our experience regarding our ongoing effort of porting a
version of this development on top of the HoTT library.
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Abstract

We report on our experience implementing category theory in Coq 8.5. Our work formal-
izes most of basic category theory, including concepts not covered by existing formalizations,
in a library that is fit to be used as a general-purpose category-theoretical foundation.

Our development particularly takes advantage of two features new to Coq 8.5: primitive
projections for records and universe polymorphism. Primitive projections allow for well-
behaved dualities while universe polymorphism provides a relative notion of largeness and
smallness. The latter is one of the main contributions of this paper. It pushes the limits of
the new universe polymorphism and constraint inference algorithm of Coq 8.5.

In this paper we present in detail smallness and largeness in categories and the foundation
they are built on top of. We furthermore explain how we have used the universe polymor-
phism of Coq 8.5 to represent smallness and largeness arguments by simply ignoring them
and entrusting them to the universe inference algorithm of Coq 8.5. We also discuss our
experience throughout this implementation, discuss concepts formalized in this development
and give a comparison with a few other developments of similar extent. Furthermore, we
discuss (future) works on top of or related to this development including our experience
regarding our ongoing effort of porting a version of this development on top of the HoTT
library [32].

1 Introduction

A category [20, 3] consists of a collection of objects and for each pair of objects A and B a
collection of morphisms (aka arrows or homomorphisms) from A to B. Moreover, for each object
A we have a distinguished morphism idA : A → A. Morphisms are composable, i.e., given
two morphisms f : A → B and g : B → C, we can compose them to form: g ◦ f : A → C.
Composition must satisfy the following additional conditions:

∀f : A→ B. f ◦ idA = f = idB ◦ f

∀f, g, h. (h ◦ g) ◦ f = h ◦ (g ◦ f)

The notion of a category can be seen as a generalization of sets. In fact sets as objects
together with functions as morphisms form the important category Set. On the other hand,
it can be seen as a generalization of the mathematical concept of a preorder. In this regard, a
category can be thought of as a preorder where objects form the elements of the preorder and
morphisms from A to B can be thought of as “witnesses” of the fact that A � B. Thus, identity
morphisms are witnesses of reflexivity whereas composition of morphisms forms witnesses for
transitivity and the additional axioms simply spell out coherence conditions for witnesses. Put
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concisely, categories are preorders where the quality and nature of the relation holding between
two elements is important. In this light, categories are to preorders what intuitionistic logic is to
classical logic. A combination of these two interpretations of categories can provide an essential
and useful intuition for understanding most, if not all, of the theory.

This generality and abstractness is what led some mathematicians to call this mathematical
theory “general abstract nonsense” in its early days. However category theory, starting from
this simple yet vastly abstract and general definition, encompasses most mathematical concepts
and has found applications not only in mathematics but also in other disciplines, e.g, computer
science.

In computer science it has been used extensively, especially in the study of semantics of pro-
gramming languages [24], in particular constructing the first (non-trivial) model of the untyped
lambda calculus by Dana Scott (see [28]), type systems [19], and program verification [8, 6, 7].

Given the applications of category theory and its fundamentality on the one hand and the
arising trend in formalizing mathematics in proof assistants on the other, it is natural to have
category theory formalized in one; in particular, a formalization that is practically useful as a
category-theoretical foundation for other works. This paper is a report of our experience formal-
izing such a library. There already exist a relatively large number of formalizations of category
theory in proof assistants, e.g. [23, 27, 18, 2, 13]. However, most of these implementations are
not general purpose and rather focus on parts of the theory which are relevant to the specific
application of the authors. See the bibliography of [14] for an extensive list of such developments.

Features of Coq 8.5 used: η for records and universe polymorphism

This development makes use of two features new to Coq 8.5 which as of this writing is still under
development. Namely, primitive projection for records (i.e., the η rule for records) and universe
polymorphism.

Following [13], we use primitive projections for records which allow for well behaved dualities
in category theory. The dual (aka opposite) of a category C is a category Cop which has the
same objects as C where the collection of morphisms from A to B is swapped with that from
B to A. Drawing intuition from the similarity of categories and preorders, the opposite of a
category (seen as a preorder) is simply a category where the order of objects is reversed. Use
of duality arguments in proofs and definitions in category theory are plentiful, e.g., sums and
products, limits and co-limits, etc. One particular property of duality is that it is involutive.
That is, for any category C, (Cop)op = C. The primitive projection for records simply states that
two instances of a record type are definitionally equal only if their projections are. In terms of
categories, two categories are definitionally equal only if their object collections are, morphism
collections are and so forth. This means that we get that the equality (Cop)op = C is definitional.
Similar results hold for the duality and composition of functors, for natural transformations, etc.
That is we get definitional equalities such as the following:

(Fop)op = F (N op)op = N

(F ◦ G)op = Fop ◦ Gop

where F and G are functors and N is a natural transformation.
To achieve well behaved dualities, in addition to primitive projections one needs to slightly

adjust the definition of a category itself. More precisely, the definition of the category must carry
a symmetric form of associativity of composition. The reason being the fact that for the dual
category we can simply swap the proof of associativity with its symmetric form and thus after
taking the opposite twice get back the proof we started with.
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In this development we have used universe polymorphism, a feature new to Coq 8.5. to
represent relative smallness/largeness. In short, universe polymorphism allows for a definition to
be polymorphic in its universe variables. This allows us, for instance, to construct the category
of (relatively small) categories directly. That is, the category constructed is at a universe level
(again polymorphic) while its objects are categories at a lower universe level. We will elaborate
the use of universe polymorphism to represent relative largeness and smallness below in Section 2.

Contributions

The main contributions of this development are its extent of coverage of basic concepts in category
theory and its use of the universe polymorphism of Coq 8.5 and its universe inference algorithm
to represent relative smallness/largeness.

The latter, as explained below, allows us to represent smallness and largeness using universe
levels by simply forgetting about them and letting Coq’s universe inference algorithm take care
of smallness and largeness requirements as necessary.

Also, our experience of migrating from Coq 8.5 towards the HoTT library, despite not having
high code base coverage has provided interesting lessons for us, as outsiders to the HoTT and
HoTT library [32] projects, which we find worth sharing.

The structure of the rest of this paper

The rest of this paper is organized as follows. Section 2 gives an explanation of smallness
and largeness in category theory based on the foundation used. This is followed by a detailed
explanation of our use of the new universe polymorphism and universe constraint inference
algorithm of Coq 8.5 to represent relative smallness/largeness of categories. There, we also give
a short comparison of the way other developments represent (relatively) large concepts.

In Section 3, we give a high-level explanation of the concepts formalized and some notable
features in this work. We furthermore provide a comparison of our work with a number of other
works of similar extent. We also briefly discuss the axioms that we have used throughout this
development.

In Section 4 we give a general overview of homotopy type theory and the representation of
category theory in it. We particularly discuss the use of axioms in HoTT that we have used
throughout our work. Section 5 outlines our on-going effort of migrating to the HoTT library
and in particular how we have adapted or plan to adapt the use of axioms in our work so as to
conform with HoTT premises.

Section 6 describes the work that we have done or plan to do which are based on the current
work as category theoretical foundation. Finally, in Section 7 we conclude with a short summary
of the paper.

Development source code The repository of our development can be found at [34]. The
ongoing migration on top of the HoTT library can be found at [35].

2 Universes, Smallness and Largeness

A category is usually called small if its objects and morphisms form sets and large otherwise. It
is called locally small if the morphisms between any two objects form a set but objects fail to.
For instance, the category Set of sets and functions is a locally small category as the collection
of all sets does not form a set while for any two sets, there is a set of functions between them.
These distinctions are important when working with categories. For instance, a category is said
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to be complete if it has the limit of all small diagrams (F : C → D is a small diagram if C is
a small category). For instance, Set is complete but does not have the cartesian product of all
large families of sets.

This terminology and considerations are due to the fact that the original foundations of
category theory by Eilenberg and Mac Lane were laid on top of NGB (von Neumann-Gödel-
Bernays) set theory. In NBG, in addition to sets, the notion of a class (a collection of sets which
it self is not necessarily a set) is also formalized. For any property ϕ, there is a class Cϕ of
all sets that have property ϕ. If the collection of sets satisfying ϕ forms a set then Cϕ is just
that set. Otherwise, Cϕ is said to be a proper class. In this formalism, one can formalize large

categories but cannot use them. For instance, the functor category SetSet is not defined as its
objects are already proper classes and there is no class of proper classes in NBG.

The other foundation that is probably the most popular among mathematicians is that of
ZF with Grothendieck’s axiom of universe. Roughly speaking, a Grothendieck universe V is a
set that satisfies ZF axioms, e.g., if A ∈ V and B ∈ V then {A,B} ∈ V (axiom of pairing), if
A ∈ V then 2A ∈ V (axiom of power set), etc. We also have if A ∈ B and B ∈ V then A ∈ V .
Grothendieck’s axiom says that for any set x there is a Grothendieck universe V such that x ∈ V .
This also implies that for any Grothendieck universe V , there is a Grothendieck universe V ′ such
that V ∈ V ′.

Working on top of this foundation, one can talk about V -small categories and use all the
set-theoretic power of ZF. The notion of completeness for a V -small category can be defined as
having all V -small limits. The category of all V -small sets will be a V ′-small category where
V ∈ V ′. It is also a V -locally-small category as its set of morphisms are V -small but its set of
objects are not. For more details on foundations for category theory see chapter 12 of [22].

The type hierarchy of Coq (also known as universes), as explained below, bears a striking
resemblance to Grothendieck universes just explained. In the rest of this section we discuss how
Coq’s new universe polymorphism feature allows us to use Coq universes, instead of Grothendieck
universes in completely transparent way. That is, we never mention any universes in the whole
of the development and Coq’s universe inference algorithm (part of the universe polymorphism
feature) infers them for us.

2.1 Coq’s Universes

In higher-order dependent type theories such as that of Coq, types are also terms and themselves
have types. As expected, allowing existence of a type of all types results in self-referential
paradoxes, such as Girard’s paradox (see [11]). Thus, to avoid such paradoxes type theories like
Coq use a countably infinite hierarchy of types of types (also known as universes): Type0 : Type1 :
Type2 : . . . The type system of Coq additionally has the cumulativity property, i.e., for any term
T : Typen we also have T : Typen+1.

The type system of Coq has the property of typical ambiguity. That is, in writing definitions,
we don’t have to specify universe levels and/or constraints on them. The system automatically
infers the constraints necessary for the definitions to be valid. In case, the definition is such
that no (consistent) set of constraints can be inferred, the system rejects it issuing a “universe
inconsistency” error. It is due to this feature that throughout this development we have not had
the need to specify any universe levels and/or constraints by hand.

To better understand typical ambiguity in Coq, let’s consider the following definition.

Definition Tp := Type.

In this case, Coq introduces a new universe variable for the level of the type Type. That is,
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internally, the definition looks like1:

Definition Tp : Type@{i+1} := Type@{i}.

Note that the universe level i above is global universe level, i.e., it is fixed. Hence, the following
definition is rejected with a universe inconsistency error.

Definition TpTp : Tp := Tp.

The problem here is that this definition requires (Type@{i} : Type@{i}) which requires the system
to add the constraint i < i which makes the set of constraints inconsistent. Without universe
polymorphism, one way to solve this problem would be to duplicate the definition of Tp as Tp’

which would be internally represented as:

Definition Tp’ : Type@{j+1} := Type@{j}.

Now we can define TpTp’:

Definition TpTp’ : Tp’ := Tp.

which Coq accepts and consequently adds the constraint i < j to the global set of universe
constraints. As these constraints are global however, after defining TpTp’ we can’t define Tp’Tp

Definition Tp’Tp : Tp := Tp’.

This is rejected with a universe inconsistency error as it requires j < i to be added to the global
set of constraints which makes it inconsistent as it already contains i < j from TpTp’.

2.2 Universe Polymorphism

Coq has recently been extended (see [31]) to support universe polymorphism. This feature is
now included in the recently released Coq 8.5. When enabled, universe levels of a definition are
bound at the level of that definition. Also, any universe constraints needed for the definition
to be well-defined are local to that definition. That is the definition of Tp defined above is
represented internally as:

Definition Tp@{i} : Type@{i+1} := Type@{i}. (* Constraints: *)

Note that the universe level i here is local to the definition. Hence, Tp can be instantiated at
different universe levels. As a result, the definition of TpTp above is no longer rejected and is
represented internally as:

Definition TpTp@{i j} : Tp@{j} := Tp@{i}. (* Constraints: i < j *)

That is, the two times Tp is mentioned, two different instances of it are considered at two different
universe levels i and j resulting in the constraint i < j for the definition to be well-defined.

Note the resemblance between universes in Coq and Grothendieck universes. E.g., the fact
that if A : Type@{i} and B : Type@{i} then {x : Type@{i} | x = A ∨ x = B} : Type@{i}, cumulativ-
ity, etc.

In the sequel, in some cases, we only show the internal representation of concepts formalized
in Coq.

1Type@{i} is Coq’s syntax for Typei.
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2.3 Smallness and Largeness

In this implementation, we use universe levels as the underlying notion of smallness/largeness.
In other words, we simply ignore smallness and largeness of constructions and simply allow
Coq infer necessary conditions for definitions to be well-defined. We define categories without
mentioning universe levels. They are internally represented as:

Record Category@{i j} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
. . .

} : Type@{max(i+1, j+1)} (* Constraints: *)

The category of (small) categories is internally represented as:

Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun (C D : Category@{k l}) ⇒ Functor@{k l k l} C D;
. . .

|} : Category@{i j} (* Constraints: k < i, l < i, k ≤ j, l ≤ j *)

That is, Cat has as objects categories that are small compared to itself.
Having a universe-polymorphic Cat means for any category C there is a version of Cat that

has C as an object. Therefore, for example, to express the fact that two categories are isomorphic,
we simply use the general definition of isomorphism in the specific category Cat. This means
we can use all facts and lemmas proven for isomorphisms, for isomorphisms of categories with
no further effort required.

The category of types (representation of Set in Coq) is internally represented as:

Definition Set@{i j} :=
{|

Obj := Type@{j};
Hom := fun (A B : Type@{j}) ⇒ A → B;
. . .

|} : Category@{i j} (* Constraints: j < i *)

The constraint j < i above is exactly what we expect as Set is locally small. The reason that
Coq’s universe inference algorithm produces this constraint is that the type of objects of Set is
Type@{j} which itself has type Type@{i}. But, the homomorphisms of this category are functions
between two types whose type is Type@{j}. Thus, the type of homomorphisms themselves is
Type@{j}. For details of typing rules for function types see [21].

Complete Small Categories are Mere Preorder Relations! Perhaps the best show-
case of using the new universe polymorphism of Coq to represent smallness/largeness can be seen
in the theorem below which simply implies that any complete category is a preorder category,
i.e., there is at most one morphism between any two objects.

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : Obj C, Hom x y’ ' ((Arrow C) → Hom x y)

where y’ is the limit of the constant functor from the discrete category Discr(Arrow C) that
maps every object to y, (Arrow C) is the type of all homomorphisms of category C and ' denotes
isomorphism. In other words, for any pair of objects x and y the set of functions from the set
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of all morphisms in C to the set of morphisms from x to y is isomorphic to the set of morphisms
from x to some constant object y’. This though, would result in a contradiction as soon as we
have two objects A and B in C for which the collection of morphisms from A to B has more
than one element. Hence, we have effectively shown that any complete category is a preorder
category.

This is indeed absurd as the category Set is complete and there are types in Coq that have
more than one function between them! However, this theorem holds for small (in the conventional
sense) categories. That is, any small and complete category is a preorder category2.

As expected, the constraints on the universe levels of this theorem that are inferred by Coq
do indeed confirm this fact. That is, this theorem is in fact only applicable to a category C for
which the level of the type of objects is less than or equal to the level of the type of arrows. This
is in direct conflict with the constraints inferred for Set as explained above. Hence, Coq will
refuse to apply this theorem to the category Set with a universe inconsistency error.

2.4 Limitations Imposed by Using Universe Levels for Smallness and
Largeness

The universe polymorphism of Coq, as explained in [31], treats inductive types by considering
copies of them at different levels. Furthermore, if a term of a polymorphic inductive type is
assumed to be of two instances of that inductive type at two different universe levels, those
levels are enforced to be equal. As records are a special kind of inductive types, the same holds
for them. For us, this implies that if we have C : Category@{i j} and we additionally have that
C : Category@{i’ j’}, Coq enforces i = i’ and j = j’. This means, Cat@{i j k l} is in fact not
the category of all smaller categories. Rather it is the category of smaller categories that are at
level k and l and not any lower level.

Apart from the fact that Cat defined this way is not the category of all relatively small
categories, these constraints on universe levels impose practical restrictions as well. For instance,
looking at the fact that Cat@{i j k l} has exponentials (functor categories), we can see the
constraints that j = k = l. Consequently, only those copies have exponentials for which this
constraints holds. Looking back at Set, we had the constraint that the level of the type of
morphisms is strictly less than that of objects. This means, there is no version of Cat that both
has exponentials and a version of Set in its objects.

Moreover, we can use the Yoneda lemma to show that in any cartesian closed category, for
any objects a, b and c:

(ab)
c ' ab×c (1)

Yet, this theorem can’t be applied to Cat, even though it holds for Cat.
It is worth noting that although Cat@{i j k l} is the category of all categories Category@{k l}

and not lower, for any lower category it contains an “isomorphic copy” of that category. That is
any category C : Category@{k’ l’} such that k′ ≤ k and l′ ≤ l can be “lifted” to Category@{k l}.
Such a lifting function can be simply written as:

Definition Lift (C : Category@{k’ l’}) : Category@{k l} :=
{|

Obj := Obj C;
Hom := Hom C;
. . .

|}.

2This theorem and its proof are taken from [3].
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and the appropriate constraints, i.e., k′ ≤ k and l′ ≤ l are inferred by Coq. However, working
with such liftings is in practice cumbersome as in interesting cases where k′ < k and/or l′ < l,
we can’t prove or even specify Lift C = C as it is ill-typed. This means, any statement regarding
C must be proven separately for Lift C in order for them to be useful for the lifted version.

It is possible to alleviate these problems if we have support for cumulative inductive types in
Coq, as proposed in [37]. In such a system, any category C : Category@{i j} will also have type
Category@{k l} so long as the constraints i ≤ k and j ≤ l are satisfied.

However, these limitations are not much more than a small inconvenience and in practice we
can work in their presence with very little extra effort. At least as far as basic category theory
goes. Our development is an attestation to that.

2.5 Smallness and Largeness in Other Developments

In homotopy type theory (HoTT) [33] a category C has a further constraint that for any two
objects A and B the set of morphisms from A to B must form an hSet (a homotopy type-
theoretical concept). On the other hand, for two categories C and D, the set of functors from
C to D does not necessarily form an hSet. It does however when the set of objects of D forms
an hSet. Therefore, in HoTT settings one can construct the category of small strict categories,
i.e., small categories whose type of objects forms an hSet, and not the category of all small
categories. However, the category of small strict categories itself is not strict. Hence, contrary to
the category Cat in our development, there is no category (in the HoTT sense, i.e., one whose
objects form an hSet) that has the category of small strict categories as one of its objects. In
this regard, working in HoTT is similar to working in NBG rather than ZF with Grothendieck
universes.

The situation regarding the category of small strict categories discussed above is due to the
fact that homotopy type-theoretical levels for types (e.g., hSet) concern a notion of (homotopy
theoretical) complexity rather than cardinality. In fact, in other situations, e.g., in defining limits
of functors, where cardinality is concerned universe levels can be used to express smallness and
largeness. In other words, in HoTT settings, when defining limits, one can simply not mention
universe levels and let Coq infer that the definition of limit for a functor F : C → D is well-defined
whenever, C is relatively small compared to D. This also means that the restrictions mentioned
above are also present in HoTT settings when universe levels are used to represent smallness and
largeness. For instance isomorphism 1 above can’t be proven in Cat using the Yoneda lemma
even if a, b and c are strict categories.

This is how smallness and largeness works in both Gross et al. [13] and Ahrens et al. [2].
This is also the case for our development when ported on top of the HoTT library [32]. As one
consequence, contrary to what was explained above, in migrating to the HoTT library settings
we can’t simply consider the isomorphism of categories as the general notion of isomorphism in
the specific case of Cat.

In Huet et al. [18], working in Coq 8.4, the authors define a duplicate definition of categories,
Category’, tailored to represent large categories. This way, they form the Category’ of categories
(Category) – much like we used Tp’ above.

Peebles et al. [27] however use universe levels to represent smallness and largeness. But
working in Agda which provides no typical ambiguity or cumulativity, they have to hand code
all universe levels everywhere; whereas we rely on Coq’s inference of constraints to do the hard
work. Noteworthy is also the fact that their categories have three universe variables instead of
our two. One for the level of the type of objects, one for the level of the type of morphisms and
one for the level of the type of the setoid equality for their setoids of morphisms.
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3 Concepts Formalized, Features and Comparison

In this development we have formalize most of the basic category theory. Here, by basic we
mean not involving higher (e.g., 2-categories), monoidal or enriched categories. This spans over
the simple yet important and useful basic concepts like terminal/initial objects, products/sums,
equalizers/coequalizers, pullbacks/pushouts and exponentials on the one hand and adjunctions,
Kan extensions, (co)limits (as (left)right local Kan extensions) and toposes on the other.

The well-behaved dualities (in the sense discussed above) allow us to simply define dual
notions, just as duals of their counterparts, e.g., initial objects as terminal objects of the dual
category or the local left Kan extension of F along G as the local right Kan extension of Fop
along Gop.

Throughout this development we have tried to formalize concepts in as general a way as
possible so long as they are comfortably usable. For instance, we define (co)limits as (left)right
local Kan extensions along the unique functor to the terminal category. By doing so, we can
extend facts about them to (co)limits. As an example, consider (left)right adjoints preserving
(co)limits and (co)limit functors being adjoint to ∆ explained below.

Different versions of adjunction and Kan extensions Throughout this development we
have tried to formalize concepts in as general a way as possible so long as they are comfortably
usable. For instance, we define (co)limits as (left)right local Kan extensions along the unique
functor to the terminal category. By doing so, we can extend facts about them to (co)limits.
As an example, consider (left)right adjoints preserving (co)limits and (co)limit functors being
adjoint to ∆ explained below.

Different versions of adjunction and Kan extensions In this formalization, we have
multiple versions of the definition of adjunctions and Kan extensions. In particular, we define
unit-universal morphism property adjunction, unit-co-unit adjunction, universal morphism ad-
junction and hom-functor adjunction. For these different versions, we provide conversions to and
from the unit-universal morphism property definition which is taken to be the main definition.
This definition is also taken to be the main definition of adjunction in Awodey’s book [3]. For
local Kan extensions, we define them as (initial)terminal (co)cones along a functor as well as
through the hom-functor. Global Kan extensions are simply defined through adjunctions.

The main reason for this diversity, aside from providing a versatile category theory library,
is the fact that each of these definitions is most suitable for some specific purpose.

For instance, using the hom-functor definition of adjunctions makes it very easy to prove that
isomorphic functors have the same adjoints: F ' F ′ ⇒ F a G ⇒ F ′ a G, duality of adjunction:
F a G ⇒ Gop a Fop, and uniqueness of adjoint functors: F a G ⇒ F ′ a G ⇒ F ' F ′. The last
case simply follows from the Yoneda lemma. On the other hand, the unit-universal morphism
property definition of adjunctions together with the definition of Kan extensions as cones along
a functor provide an easy way to convert from local to global Kan extensions.

Universal morphism adjoints in practice express sufficient conditions for a functor to have a
(left)right adjoint. That is, a functor G : C → D is a right adjoint (has a left adjoint functor)
if the comma category (x ↓ G) has a terminal object for any x : D. As we will briefly discuss
below, (left)right adjoint functors preserve (co)limits. Freyd’s adjoint functor theorem gives an
answer to the question “when is a functor that preserves all limits a right adjoint (has a left
adjoint functor)”. Universal morphism adjoints appear in this theorem and that’s why we have
included them in our formalization.
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(Left)right adjoints preserve (co)limits Awodey [3] devotes a whole section to this fact
with the title “RAPL” (Right Adjoints Preserve Limits). For a better understanding of this fact
and perhaps the concept of adjunctions, let us draw intuition from categorical interpretations
of logic. In categorical interpretations of logic, the existential and universal quantifiers are
interpreted as left and right adjoints to some functor while conjunctions and disjunctions are
defined as products and sums respectively which respectively are in turn limits and co-limits
(see Jacobs’ book [19] for details). In this particular case, RAPL and its dual boil down to:
∀x. P (x)∧Q(x)⇔ ∀x. P (x)∧ ∀x. Q(x) and ∃x. P (x)∨Q(x)⇔ ∃x. P (x)∨ ∃x. Q(x). We prove
this fact in general for (left)right local Kan extensions. To this end, the unit-co-unit definition of
adjunctions is the easiest to use to prove the main lemma which along with hom-functor definition
of Kan extensions proves that (left)right adjunctions preserve (left)right Kan extensions. That
is for an adjunction L a R where R : D → E and L : E → D if in the diagram on the left H is
the local right Kan extension of F along P then in the right diagram R ◦ H is the local right
Kan extension of R ◦ F along P :

C D

C′

F

P H

C E

C′

R◦F

P R◦H

The case of (co)limits follows immediately. In Coq we show this by constructing a local right
Kan extension (using the hom-functor definition) of R ◦ F along P where the Kan extension
functor (HLRKE) is R composed with the Kan extension functor of F along P:

Definition Right_Adjoint_Preserves_Hom_Local_Right_KanExt

{C C′ : Category} (P : Functor C C′) {D : Category} (F : Functor C D)
(hlrke : Hom_Local_Right_KanExt P F)
{E : Category} {L : Functor E D} {R : Functor D E} (adj : UCU_Adjunct L R)

: Hom_Local_Right_KanExt P (R ◦ F) :=
{|

HLRKE := (R ◦ (HLRKE hlrke));
HLRKE Iso := . . .

|}.

(Co)limit functors are adjoint to ∆ In order to show that (co)limits are adjoint to
the diagonal functor (∆) we simply use the fact that local (left)right Kan extensions assemble
together to form (left)right global Kan extensions. As global Kan extensions are defined as
(left)right adjoints to the pre-composition functor, putting these two facts together, we effortlessly
obtain that (co)limits form functors which are (left)right adjoint to ∆.

Cardinality restrictions We introduce the notion of cardinality restriction in the category
Set. A cardinality restriction is a property over types (objects of Set) such that if it holds for
some type, it must hold for any other type isomorphic (in Set) to it. That is, if a cardinality
restriction holds for a type, it must hold for any other type with the same cardinality.

Record Card_Restriction : Type :=
{ Card Rest : Type → Prop;
Card Rest Respect : forall (A B : Type),

(A '' B ::> Set) → Card_Rest A → Card_Rest B }.
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The type (A '' B ::> Set) is the type of isomorphisms A ' B in Set. As an example, the
cardinality restriction corresponding to finiteness is defined as follows.

Definition Finite : Card_Restriction :=
{| Card Rest := fun A ⇒ inhabited {n : nat & (A '' {x : nat | x < n} ::> Set)}; . . . |}.

The definition above basically says that a type A is finite if there exists some n such that A is
isomorphic to the type {x : nat | x < n} of natural numbers less than n.

(Co)limits restricted by cardinality We use the notion of cardinality restrictions above
to define (co)limits restricted by cardinality. For a cardinality restriction P , we say a category
C has (co)limits of cardinality P (C is P -(co)complete) if for all functors F : D → C such that
P (ObjD) and ∀AB ∈ ObjD, P (Hom(A,B)), C has the (co)limit of F .

Definition Has_Restr_Limits (C : Category) (P : Card_Restriction) :=
forall {J : Category} (F : Functor J C), P J → P (Arrow J ) → Limit F .

We state several lemmas about cardinality restricted (co)completeness, e.g., if a category has
all limits of a specific cardinality its dual has all co-limits of that cardinality.

Definition Has_Restr_Limits_to_Has_Restr_CoLimits_Op

{C : Category} {P : Card_Restriction}
(HRL : Has_Restr_Limits C P) : Has_Restr_CoLimits (Cop) P := . . .

This also allows us to define a topos, simply as a category that is cartesian closed, has all
finite limits and a subobject classifier where finiteness is represented as a cardinality restriction.

Class Topos : Type :=
{ Topos Cat : Category;
Topos Cat CCC : CCC Topos_Cat;
Topos Cat Fin Limit : Has_Restr_Limits Topos_Cat Finite;
Topos Cat SOC : SubObject_Classifier Topos_Cat }.

(Co)Limits by (Sums)Products and (Co)Equalizers A discrete category is a category
where the only morphisms are identities. That is, any set can induce a discrete category by simply
considering the category which has as objects members of that set and the only morphisms are
identity morphisms. We define the discrete category of a type A as a category, Discr(A) with
terms of type A as objects and the collection of morphisms from an object x to an object y are
proofs of equality of x = y.

Definition Discr_Cat (A : Type) : Category := {|Obj := A; Hom := fun a b ⇒ a = b; . . . |}.

Similarly, a discrete functor is a functor that is induced from a mapping f from a type A to
objects of a category C:
Definition Discr_Func {C : Category} {A : Type} (f : A → C) : Functor (Discr_Cat A) C :=
{| FO := f ; . . . |}.

We define the notion of generalized (sums)products to be that of (co)limits of functors from a
discrete category.

Definition GenProd {A : Type} {C : Category} (f : A → C) := Limit (Discr_Func f).

We use these generalized (sums)products to show that any category that has all generalized
(sums)products and (co)equalizers has all (co)limits. We also prove the special case of cardinality
restricted (co)limits. Using the notions explained above, we show that given a cardinality re-
striction P if a category has (co)equalizers as well as all generalized (sums)products that satisfy
P , then that category is P -(co)complete.
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Definition Restr_GenProd_Eq_Restr_Limits

{C : Category} (P : Card_Restriction)
{CHRP : forall (A : Type) (f : A → C), (P A) → (GenProd f)}
{HE : Has_Equalizers C}

: Has_Restr_Limits C P := . . .

Categories of Presheaves To the best of our knowledge, ours is the only category theory
development featuring facts about categories of presheaves such as their (co)completeness, and
being a topos. The category of presheaves on C, (PSh(C)), is a category whose objects are
functors of the form Cop → Set and whose morphisms are natural transformations. In other
words, a presheaf P : Cop → Set on C is a collection of sets indexed by objects of C such that for
a morphism f : A→ B in C, there is a function (a conversion if you will) P (f) : P (B)→ P (A)
in Set. Presheaves being toposes, each come with their own logic. As an example, [7] shows that
the logic of the category of presheaves on ω (the preorder of natural numbers considered as a
category) corresponds to the step-indexing technique used in the field of programming languages
and program verification.

For more details about elementary properties of categories of presheaves see [3]. There cate-
gories of presheaves are called categories of diagrams.

Comparison Figures 1 and 2 give an overall comparison of our development with select other
implementations of category theory of comparable extent. These figures mention only the most
notable features and concepts formalized and do not contain many notions and lemmas in these
developments. In these figures, our development is the fist column. As evident from these figures,
in the areas concerning the basics of category theory, i.e., not higher or enriched categories, our
development has almost any notable construction the other developments do and more.

In what follows, we briefly discuss features of automation and consequences of the use of
setoids of morphisms or lack thereof. Features relevant to HoTT, i.e., use of axiom of unicity of
identity proofs (UIP) and Rezk completion shall be discussed in Section 4 and 5. Comparison of
the way these developments represent relative smallness and largeness appears in Section 2.

3.1 Automation

We use custom Ltac tactics for automation of some of the proofs. The use of custom Ltacs in [13]
is much heavier. They use automation in almost any place possible. Our use is mostly in proving
simple diagrams commute. There are for instance general tactics for simplifying compositions
with identity morphisms, resolving associativity, or simplifying composition of a morphism with
its inverse, in case of isomorphisms.

Another use of automation in our development is in combination with the Russell system.
Russell is a mechanism for writing programs and proofs in Coq by allowing the user to write
a definition and leave some parts as holes. Russell type checks the definition creating proof
obligations for these holes that should be proven separately for that definition to be complete.
It additionally tries to solve these obligations using Coq’s automation system. Furthermore,
allowing the user to specify an obligation tactic which is used to solve obligations provides
greater control over the way obligations are handled. For further details on the Russell system
see [30].

A tactic for smart rewriting of associativity We used to have a general tactic that given
two morphisms f and g tried to find f ◦ g in the goal or a hypothesis. This tactic applied for
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Concept / Feature [34] [13] [18] [2] [27]
Automation partial X
Based on HoTT in [35]] X X
Setoid for Morphisms X X
Assumes UIP or equivalent few restricted cases X
Basic constructions:

Terminal/Initial object X X X X X
Products/Sums X X X X
Equalizers/Coequalizers X X
Pullbacks/Pushouts X X X X
Basic constructions X X

above are (co)limits
exponentials X X X
Subobject classifier X X X

External constructions:
Comma categories X X X X X
Product category X X X X X
Sum category X

Cat. of categories (Cat): X X X X
Cartesian closure X X
Initial/terminal object X X X X

Category of sets (Set): X X X X X
Basic (co)limits X init./term. partial
(Local†)Cartesian closure X CCC
(Co†)Completeness X comp. X
Sub-object classifier (Prop : Type)†

Topos X†

Hom functor X X X X X
Fully-faithful functors X X X X
Essentially (inj)sur-jective X X X X
functors
The Yoneda lemma X X X X X
Monoidal Categories partial X
Enriched Categories partial partial
2-categories X
Pseudo-functors X X
(Co)monads and algebras :

(Co)Monad X X
T -(co)algebras X X X

(T : an endofunctor)
Eilenberg Moore cat. X
Kleisli cat. X

†Uses the axioms of propositional extensionality and constructive indefinite description (axiom
of choice).
]This is the version of our development we are migrating to HoTT settings, on top of HoTT
library.

Figure 1: Comparison of features and concepts formalized with a few other implementations of
comparable extent.
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Concept / Feature [34] [13] [18] [2] [27]
Adjunction X X X X

Unit-universal morphism adjunction X X
Hom-functor adjunction X X X
Unit-counit adjunction X X X X X
Universal morphism adjunction X X X
Uniqueness up to natural isomorphism X
Naturally isomorphic functors have X

the same left/right adjoints
Adjoint composition laws X X X
Category of adjunctions X

(objects: categories; morphisms: adjunctions)
Partial adjunctions X

Adjoint Functor Theorem X X
Kan extensions X X X

Global definition X X X
Local definition X X

Through hom-functor X
Through cones (along a functor) X X
Through partial adjoints X

Uniqueness X
Preservation by adjoint functors X
Naturally isomorphic functors form X

the same left/right Kan extension
Pointwise kan extensions X X

(preserved by representable functors)
(Co)Limits X X X X X

As (left)right kan extensions X X
As (initial)terminal (co)cones X X X

(Sum)Product-(co)equalizer (co)limits X
(Co)Limit functor X X
(Co)Limits functor adjoint to ∆ X X
(Co)limits restricted by cardinality X
Pointwise (as kan extensions), i.e., X X

preserved by Hom functor
Category of presheaves over C (PShC): X X

Terminal/Initial object X
Products/Sums X
Equalizers/Coequalizers X†

Pullbacks X
Cartesian closure X
Completeness/Co-completeness X†

Sub-object classifier (Sieves) X†

Topos X†

†Uses the axioms of propositional extensionality and constructive indefinite description (axiom
of choice).

Figure 2: Comparison of features and concepts formalized with a few other implementations of
comparable extent (cont.).
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example to a goal containing the term

(h2 ◦ (h1 ◦ f)) ◦ ((g ◦ h3) ◦ h4)

would replace this term by
(h2 ◦ h1) ◦ ((f ◦ g) ◦ (h3 ◦ h4))

This tactic was useful both in proofs by hand and for proof automation purposes. It was specially
useful for detecting cases where f is the left inverse of g and hence f ◦g can be replaced with the
identity morphism, e.g., in the case isomorphisms. Unfortunately, this tactic was very inefficient.
The source of this inefficiency was the use of context in pattern matching to find sub-terms of
a goal (or hypothesis) which contained f and g which was exponential. That is, in case both f
and g were present in a term where they failed to form f ◦ g by applying associativity law, the
context would reattempt to form the composition on smaller sub-terms containing both f and
g. As we could not fix this intractability we chose to stop using it.

Perhaps some additional options to context pattern matching can make such tactics more
efficient. For instance, if context pattern matching could also return the precise term where
matchee was found on. In this case we could simply try finding the other morphism in this
part of the term and not in the whole term. Additionally, there should be a way to instruct
the pattern matching mechanism to simply fail in case the body fails instead of trying smaller
matching sub-terms.

3.2 Setoids and Co-limits/Subobject Classifier in Set and PSh(C)
Setoids (aka Bishop sets) [9] consist of a set (a type in type theoretical foundations like Coq and
Agda) together with an equivalence relation usually referred to as the setoid equality. In their
implementation [27] and [18] have used setoids to represent morphisms of categories. Using them
comes with the cost of heavier development as e.g., every function must be shown to respect the
setoid equality. On the other hand, they offer the benefit of diminishing the need for axioms
such as functional extensionality and propositional extensionality.

A particular case is the case of co-limits and subobject classifier of Set and categories of
presheaves. Co-limits, drawing intuition from set theory, are quotients of sum types with respect
to an equivalence relation. Having the equivalence relation built-in, the category of setoids and
functions respecting their equalities, as is taken to play the role of Set in [27] and [18], leaves
no need for axioms to define co-limits.

We on the other hand, take the category of types in Coq and functions among them as Set and
have resorted to axioms of propositional extensionality and constructive indefinite description
(a form of axiom of choice) to define co-limits. That is, we define the (quotient representing)
co-limit as an existential proposition (in Prop). This way, whenever two elements are related we
can show that their representation in the quotient type is equal using the axiom of propositional
extensionality. On the other hand, when need be, we use the axiom of constructive indefinite
description to take out an element of the quotient. Similar treatment is required to show that
Prop is the subobject classifier of Set.

Showing that Prop is the subobject classifier in the category of types of Coq shows that the
type A→ Prop which is usually taken as the subset type of type A is indeed categorically speaking
the type representing its subsets.

Categories of presheaves involve sets (as objects are functors to Set). Hence, an argument
similar to the foregoing shows that, like Set, we need axioms of propositional extensionality and
constructive indefinite description for constructing their co-limits and subobject classifier.

We will elaborate our use of axioms in Section 5 where we discuss our migration to the HoTT
library. In particular we will discuss the case of UIP and how we and [27] use it.
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3.3 Category Theory: Coq vs. Pen and Paper

There is no doubt that the level of rigor of working in a proof assistant such as Coq is much
higher than that in the usual mathematical practices with pen and paper.

Category theory is no exception. Yet, in our experience in case of category theory the use
of Coq has indeed helped make things easier. It is our experience that using the right balance
between Coq and sketches on paper is the best practice. That is, we use the general understanding
of the topic on paper to divide a problem into easy to handle definitions and lemmas. Then, the
use of Coq helps keep track of crucial details throughout the proof.

For instance, when a definition and/or theorem involves simultaneously a category C and its
dual Cop, if not careful enough in working with pen and paper, it is very easy to get lost and
confused as to which morphism was from C and which from Cop. In Coq on the other hand, use
of simplification tactics like cbn and simpl in the context helps level the field by simplifying most
dualities allowing the user to carry the proof out considering only the objects and morphism of
C.

On the other hand, although dualities behave nicely (in the aforementioned sense), working
with dual definitions is not always as smooth as we would have wished. This is especially evident
in rewriting equalities. In some cases one has to add the equality to the proof context (usually
applied to the arguments that are difficult to match) and perform a simplification on them
before they can be used with the rewrite tactic. In some rare extreme cases, simplifications with
tactics like cbn and simpl were not enough and we had to change the goal in such a way that
those lemmas can be used with, e.g., the apply tactic, instead of rewrite.

4 HoTT, Axioms and Categories

In Martin-Löf’s intensional type theory (see [26]), the equality type, which we denote by x =A y
for terms x : A, y : A and A : Type, has a single formation rule:

A : Type x : A

id(x) : x =A x
(id-formation)

We use x = y instead of x =A y when it is clear from the context. Similar to Martin-Löf’s
intensional type theory in systems like Coq which feature inductive types, the equality type is
usually defined as an inductive family of types with a single constructor. In particular, in Coq
it is defined as follows:

Inductive {A : Type} (x : A) eq : A → Prop :=
eq_refl : eq x x.

That is, it is defined as a family of types indexed by a type A : Type, a term x : A and a term
y : A and represents the proposition x =A y. For details of inductive types and in particular the
equality type in Coq, see [21].

4.1 UIP and Other Equivalent Axioms

The fact that there is only one formation rule/constructor begs the seemingly trivial question is
id(x) the only proof of the identity x = x? This was in fact an open problem for a while until it
was settled with a negative answer by [17]. They construct a model of Martin-Löf’s intensional
type theory where there are multiple non-equal proofs for some identities. In the following, we
write UIP(A) to say UIP holds for type A, that is, for any two elements of type A there is at
most one proof of equality x = y.
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Although the axiom of “unicity of identity proofs” (UIP for short) is not provable in Coq, it
is consistent to assume it and it is provided as part of the standard library. In Agda however,
due to a different form of pattern matching in that language, UIP is provable unless the pattern
matching mechanism is restricted to disallow it (see [10] for details).

In [27], the authors use Agda and make explicit use of heterogeneous equality which as
explained below is equivalent to UIP. We will discuss our use of UIP in more details below.

There are other axioms that are equivalent to UIP, in particular, the axiom that heterogeneous
equality implies equality. Heterogeneous equality is defined similarly to the inductive type eq

above with the difference that it expresses equality of terms of different types. In Coq it is
defined as follows:

Inductive JMeq (A : Type) (x : A) :
forall (B : Type), B → Prop := JMeq_refl : JMeq A x A x.

The axiom equivalent with UIP about heterogeneous equality implying equality is called JMeq_eq:

Axiom JMeq_eq : forall (A : Type) (x y : A), JMeq A x A y → x = y.

The definition of JMeq and the axiom above are part of the standard library of Coq. The standard
library also features proofs that this axiom along with some other axioms, e.g., axiom K, are
equivalent to UIP.

One particularly important point about the JMeq_eq axiom is that to prove it, one needs to
assume UIP for equalities of the form A = A, i.e., UIP(Type). This fact, as discussed below, is of
special significance when we consider UIP in a restricted form, i.e., only for some types.

4.2 HoTT and the Univalence Axiom

Inspired by [17], homotopy type theory (HoTT) [33] is an interpretation of Martin-Löf’s inten-
sional type theory using homotopy theoretic notions from algebraic geometry.

At the center of HoTT sits the univalence axiom by Voevodsky (see [4, 33]). The univalence
axiom states that for types equivalence3 is equivalent to identity:

∀A,B : Type. (A = B) ' (A ' B)

The univalence axiom has interesting consequences. For one, it allows us to consider isomorphic
structures to be equal, a common practice in mathematics on paper. On the other hand, it
implies interesting axioms like functional extensionality and, as discussed below, propositional
extensionality (see [33]). However, whether the univalence axiom is constructive or not is still
an open problem.

The univalence axiom is in direct contradiction with UIP, however. This can be easily seen
as there are types that are equivalent to themselves in more than one way. Take the type Bool

for example. The two functions

f1(x) = x

f2(x) =

{
false if x = true

true if x = false

are inverses to themselves both establishing equivalences which are different.
Although it is inconsistent to assume UIP in general when working in HoTT, there are types

for which UIP holds. For example, any type with decidable equality, like the type of natural
numbers, satisfies UIP (see [33]). In HoTT, such a type is called an hSet or a 0-Type.

3Equivalence can be thought of as isomorphism. That is, A ' B if there are functions f : A → B and
g : B → A such that ∀x, f(g(x)) = x and ∀x, g(f(x)) = x. In HoTT settings the exact definition is slightly
different (see [33]).
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4.3 n-Types, hSets and hProps

In HoTT (see [33]), in order to generalize the notion of a set and a proposition (in the spirit
of propositions as types), a hierarchy of types is devised. At the bottom of the hierarchy is
the notion of a (−2)-Type (also known as a contractible type). A type A is contractible if it is
inhabited by a term center : A and for any element of that type x : A, we have center = x. In
other words, a type is contractible if it is provably a singleton. A type A is an (n + 1)-Type if
for any two elements x, y : A, the type x = y is an n-Type.

In particular, for a (−1)-type (also known as an hProp) P , for any two elements x, y : P , the
type x = y is contractible and hence inhabited. That is, if P is inhabited, it is inhabited by at
most one term. In other words, it satisfies the property of proof irrelevance. Hence, the name
hProp. Note also that the univalence axiom for hProp gives us propositional extensionality, i.e.,
any two equivalent propositions are equal.

On the other hand, for a 0-Type (also known as an hSet) A, for any two elements x, y : A
the type x = y is an hProp. That is, there is at most one proof for equality of two terms of A.
In other words, we have UIP(A).

The number n in n-Type is also referred to as the homotopy level or truncation level of
that type. [12] gives an excellent concise explanation of the concept of homotopy levels and the
foregoing arguments about hSet and hProp.

There are many interesting and useful facts about n-Types stated and proven in [33]. Most
notably, a (dependent) function type (∀x : A. B(x)) has the truncation level n if for all (x : A),
the type B(x) has truncation level n. Also, the product A×B and the sum A+B of types have
truncation level n if both A and B do. Furthermore, the truncation hierarchy is cumulative, i.e.,
any n-Type is also an (n+ 1)-Type.

4.4 Categories in HoTT: Pre-Categories, Strict Categories and Cate-
gories

As discussed in [33], we must assume UIP for the morphism types of categories, as otherwise,
our definition of a category will not be a simple category but rather a form of higher category.
That is, we must assume UIP(A → B) where A and B are objects and A → B is the type of
morphisms from A to B.

That is precisely why, in all formalizations of category theory it is assumed or enforced in one
way or another. Those developments using setoids define custom equalities so as to circumvent
addition of axioms. On the other hand, developments based on HoTT explicitly require it, by
adding to the definition of a category the explicit requirement that types of morphisms should
form an hSet. In our development we have assumed this and use axioms, e.g., proof irrelevance
to enforce it. In moving to HoTT, we follow suit and add this additional requirement and use
UIP holding for hSets instead of the axioms used. We discuss this in more detail below.

In [33] and following it in [13] and [2] the authors use the name pre-category to describe
what we call a category. They call a pre-category a strict category if the type of objects of
that pre-category forms an hSet. A category, in their terminology, is a pre-category for which
we have that any two isomorphic objects are equal. That is, a category is a pre-category that
satisfies a categorical version of the univalence axiom. For instance, the category whose objects
are types that are hSets and morphisms are functions among them is a category, as opposed to
a pre-category, due to the univalence axiom. Note that, as discussed, functions have the same
truncation level as their codomain type and hence in this case form hSets. This category, in our
development (in the HoTT version) as well as other HoTT-based developments, is precisely the
category Set.
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In [2] show that any pre-category C can be completed to a category Ĉ what they call Rezk
completion.

5 Migration to the HoTT library

In this section we discuss our ongoing effort in porting a version of our development to the HoTT
setting. This is based on the HoTT library development [32].

In what follows we discuss our experience so far. We moreover outline the challenges we have
faced or anticipate to face during the course of this migration and our (in some cases anticipatory)
solutions to these problems.

5.1 Permissible Use of UIP

As explained in Subsection 4.4, in our development in Coq 8.5, we have enforced that the type
of morphisms form an hSet by using axioms. Since, in the HoTT version, it is by definition the
case that types of morphisms form hSets, use of these axioms is “permissible” and in fact provide
an easy migration to the HoTT library.

In particular, we package the use of these axioms into lemmas which are used to facilitate
proofs and proof automation. For instance, we have a lemma “NatTrans_eq_simplify” that says
two natural transformations are equal if their underlying family of morphisms are. In proving
this lemma, the fact that the proof of naturality diagrams of the two natural transformations
are equal is simply handled using proof irrelevance.

The similar lemma for functors, “Functor_eq_simplify”, is a bit more complicated however.
It states that two functors F and G are equal if we have a proof (H : Fo = Go) stating their
object maps are equal and we have:

subst(Fo  Go, H,Fa) = Ga

Here, Fa is the morphism map of F and subst(a  b, P, x) is the term x where in its type a is
substituted with b given the proof (P : a = b)4. The fact that the proofs of functors preserving
identity morphisms and composition of morphisms are equal is handled using proof irrelevance.

The benefits of these packagings in migration to HoTT are twofold. First, as the use of axioms
is centralized and not scattered all over the development, in moving to HoTT we only need to
change these lemmas. This we simply do by replacing the tactic that applies proof irrelevance
automatically with another tactic which builds instances of UIP required from the underlying
categories and applies them as appropriate.

One added challenge in working in HoTT settings comes precisely from requiring morphisms
to forms an hSet. In particular, whenever we want to construct a category, we have to show that
the type of morphisms of that category indeed form an hSet. This is in particular the case for
comma categories, categories of functors (natural transformations as morphism), etc.

The second benefit of these packagings, is exactly in facilitating proofs that these constructs,
i.e., natural transformations, functors, etc. form hSets. We do this by providing in each case, a
section (i.e., right inverse) for the equality simplifier lemma making it into a retraction. Sections
are known to preserve levels of truncations. That is, for types A and B where B is an n-Type, we
can conclude that A is also an n-Type as soon as we provide a function f : A→ B and a function
g : B → A and prove that ∀x : A. g(f(x)) = x. See [33] for a proof of this fact. As an example,
consider the case of natural transformations. By providing a section NatTrans_eq_simplify_inv

we show that the level of equalities of natural transformations is the same is the level of equality

4In Coq, subst is implemented through dependent pattern matching on the provided equality proof.
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of morphisms (which is hProp by definition) and hence that natural transformations form an
hSet.

In our on-going migration to HoTT, we have so far successfully applied this technique
to natural transformations, comma morphisms, adjunctions (in creating categories of adjunc-
tions) and functors. The case of functors is slightly different though. As the discussion of
“Functor_eq_simplify” above indicates, equality of functors can’t be simply reduced to the equal-
ity of their morphism mappings. They also involve equality of object mappings of functors; the
type of which may or may not form an hSet. However, we can construct such a required right
inverse whenever the type of objects of the codomain category of the functors in question forms
an hSet. This is precisely why we in our HoTT development, and also [13] in theirs, construct
the category of strict categories.

5.2 Impermissible Use of UIP

In some cases, we have used UIP in a way that is not permissible in HoTT. In these cases we have
used the axiom JMeq_eq on equalities of morphisms. Recall that using JMeq_eq A x A y to prove
x = y requires unicity of proof of (A = A) and not UIP(A) which is provided by the assumption
that morphisms form hSets.

These cases all happen in proofs of equality of functors or equalities depending on them.
In particular, there are three cases: proof of Cat having exponentials, proof of associativity of
adjunct composition and some proofs of isomorphisms of categories.

Cat having exponentials The case of Cat having exponentials can easily be proven without
using UIP in general. This is due to the fact that in Cat, categories are strict and hence the
object maps of functors can only have trivial equalities. This allows for easy simplification of
subst after application of Functor_eq_simplify lemma which before required unrestricted UIP to
apply it to the type of object maps of functors.

Associativity of adjunct composition Composition of adjuncts refers to the fact that when-
ever we have two adjunctions (adj : F a G) and (adj′ : F ′ a G′), we can compose them to obtain

adj ◦ adj′ : F ◦ F ′ a G′ ◦ G

In order to prove associativity, we need to prove that

(adj ◦ adj′) ◦ adj′′ : (F ◦ F ′) ◦ F ′′ a G′′ ◦ (G′ ◦ G)

and
adj ◦ (adj′ ◦ adj′′) : F ◦ (F ′ ◦ F ′′) a (G′′ ◦ G′) ◦ G

are equal which clearly have different types. That is, we have to prove that after correction of
the types by using subst on one side with the proof of associativity of function composition, they
are equal.

In this case, we don’t have the assumption that the codomain category of the functors are
strict categories and so we can’t assume that the functors form hSet. As a result, subst in this
case can’t be easily simplified. To circumvent this problem however, we reduce the the problem to
a case where subst performs substitution based on the proof of equality of object maps underlying
the proof of associativity of the functors. Since associativity of the functors is simply proven by
Functor_eq_simplify eq_refl eq_refl, this reduces to subst with eq_refl which can immediately
be simplified.
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Isomorphism of categories In a number of cases in our development, we have proven iso-
morphism of categories where we have used JMeq_eq. These cases all lead up to two particular
use cases. To define the dual of universal morphism adjoints and to show that a category with
co-equalizers and generalized sums is co-complete from its dual argument. In our migration to
HoTT, we have not yet arrived at a stage where we need to solve these problems. The following
arguments are thus speculative.

In case of isomorphism that we need in order to define the universal morphism adjoints
dually, in [13], they have slightly changed the definition of a category to have those categories be
definitionally equal. We have proved a more general case. That is, we have proven that for any
naturally isomorphic functors F ' F ′, (F ↓ G) ' (F ′ ↓ G). We believe that proving this fact for
the particular case that we need it, i.e., where F and F ′ are special functors from the terminal
category, should be straightforward.

In the case of co-limits produced by generalized sums and co-equalizers however, it is our
best educated guess that the lemmas necessary can’t be proven in general. They can perhaps be
proven only for cases where categories in question are strict.

One way that we plan to approach this problem is to prove similar results using equivalence
or perhaps adjoint equivalence of categories instead of isomorphism. Two categories are equiva-
lent if there are functors between them that compose to functors that are naturally isomorphic
(rather than equal) to the identity functor of respective categories. An adjoint equivalence is an
equivalence where the underlying functors in addition to forming an equivalence of categories are
also adjoints.

In any case, as these lemmas are simply needed for some dual arguments, in the worst case,
these can be abandoned for a direct proof.

5.3 Other Axioms

In our development, we have made frequent use of the axiom of functional extensionality. How-
ever, this axiom is a consequence of the univalence axiom and is in fact provided in the HoTT
library and frequently used therein.

We have in particular taken advantage of two other axioms, propositional extensionality and
constructive indefinite description which we have used to construct co-limits in Set and presheaf
categories.

We plan to use higher inductive types, as explained in [33], to construct such co-limits. Higher
inductive types are extensions of inductive types. In a higher inductive type definition, other than
the constructors of the type being defined, one can add path constructors. Path constructors
can be used to add custom equalities to the type which can in turn change the truncation level
of the type being constructed.

5.4 Prop vs. hProp

In our implementation, we show that any preorder relation can be extended to a category.
Following the usual practice, we defined a preorder relation as a relation in Coq R : A → A → Prop

that is reflexive and transitive. In the category obtained this way, the type of morphisms is a
type in Prop. This has some unwanted consequences. In particular, we can’t straightforwardly
define a functor from a preorder category defined this way to any category that is not a preorder
category. This is due to Coq’s restriction on elimination of terms whose type is in Prop. More
precisely, case analysis on a term of a type that is in Prop is only allowed if the resulting type of
the case analysis is a type which itself is in Prop. We faced this problem particularly when we
wanted to construct functors out of the preorder category ω induced by (N,≤).
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However, we found out that for a particular class of types in Prop, we can indeed perform
this elimination. These are types for which we can construct a type outside of Prop which is
isomorphic to that type. In particular, this trick works for the relation ≤ of natural numbers.

This class of types corresponds to decidable hProp types. Let us consider the example of ≤.
To eliminate ≤, we define the isomorphic type ≤τ which is defined as an inductive type akin
to ≤ with the difference that it is defined in the universe Type instead of Prop. Our ultimate
goal is to establish that the two types n ≤ m and n ≤τ m are isomorphic. Defining the side
of isomorphism from n ≤τ m to n ≤ m is straightforward. It can be done with a simple case
analysis on n ≤τ m which is allowed. To define the other side of isomorphism directly one
requires to perform case analysis on n ≤ m to construct n ≤τ m which is forbidden. However,
we can prove ¬(n ≤τ m)→ ¬(n ≤ m) by case analysis on n ≤ m. Notice that the result of this
case analysis is supposed to construct a term of type False which is in Prop.

Now to construct a conversion from n ≤ m to n ≤τ m, we use decidability of n ≤τ m. Given
a proof of n ≤ m, we can simply perform the decision procedure to see whether n ≤τ m holds
or not. In case the decision procedure tells us that n ≤τ m holds, we take the proof provided by
the decision procedure as the result of conversion. In case the decision procedure tells us that
(n ≤τ m), this contradicts our assumption n ≤ m and hence we are done. In order to prove
that the constructed conversions form an isomorphism, we simply need to show that n ≤τ m
is hProp. Which we can do. In order to eliminate a term of type n ≤ m then, we can simply
eliminate the corresponding term in n ≤τ m.

One particular drawback of this conversion is its computational behavior. The conversion
procedure simply ignores the input and performs the decision procedure. The input is solely
used to invalidate the contradictory branch after the decision procedure.

Even though, this trick worked in our case, (N,≤), we decided to change the definition of a
preorder category (even in our development in Coq 8.5) to instead require the type of relations to
be an hProp. This was in part due to the fact that these isomorphisms must be proven separately
for different cases and in part due to the fact that his trick only applies to decidable relations.
Anticipation of migration to HoTT was another motivation for this choice.

5.5 Tactics in the HoTT library

One rather technical observation of migrating to the HoTT library is the tactics provided in
there. There are a number of discrepancies between the tactics in the HoTT library and Coq8.5.
In particular, the tactics of inversion and cutrewrite simply don’t work giving the error that
some part of the standard library which is not available in HoTT is not found. In one particular
case we had the destruct tactic failing to generalize the goal the way required. In this case,
reverting some of the hypotheses which could not be included in the generalization by destruct

solved the problem.

6 Future Work: Building on Categories

Our priority, at the moment, is of course to finish the migration to the HoTT library.
We believe that this development is one that provides a foundation for other works based

on category-theoretical foundations. We have plans to make use of the foundation of category
theory that has been laid in this work. In particular, use of this foundation for mechanization of
categorical logic (see [19]) and higher order separation logic (see [6]) for the purpose of using them
as foundations for mechanization of program verification. In particular, the theory of presheaves
developed provides a basis for formalization of the internal logic of presheaf categories with a
particular interest in the topos of trees [7].
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In this regard, we have already used this development as a foundation to formalize the theory
of [8]. In [8], the authors use the theory of ultra-metric spaces to build unique (up to iso-
morphism) fixed-points of particular category-theoretical recursive domain-theoretic equations.
More precisely, they construct fixed-points of a particular class of mixed variance functors, i.e.,
functors of the form F : (Cop × C) → C. Solutions to such mixed-variance functors can for
example be used to construct models for imperative programming languages.

In [8], the authors define the notion of an M-category to be a category in which the set of
morphisms between any two objects form a non-empty ultra-metric space. In [36], based on a
general theory of ultra-metric spaces, we define M-categories as categories in which the type of
morphisms between any two objects forms an ultra-metric space, dropping the rather strong non-
emptiness requirement. We instead require some weaker conditions which still allow us to form
fixed-points. However, we prove the uniqueness of the fixed-points in the “inhabited” subcategory
of that M-category. That is, the full subcategory where every object has a morphism from the
terminal object. This treatment is similar to the other recent mechanization of this theory [29],
except that they don’t prove uniqueness. Successful implementation of [36] on top of our general
foundation of categories, although arguably not huge, is evidence that this development is fit for
being used as a general-purpose foundation.

The main difference between our work, [36], and [29] is the fact that in ours M-categories are
simply categories (as defined in our foundational development) with extra requirements while
they define custom M-categories and provide lemmas necessary for their theory. In contrast, our
work is backed by a wealth of general formalization of category theory. This is of course besides
the technical differences in representation of categories.

An interesting instance of M-categories is the presheaf topos of the preorder category of
natural numbers, i.e., the topos of trees. In our development, just showing that this category
qualifies as an M-category is sufficient to immediately be able to construct desired fixed-points.
This is due to the fact that in the foundations provided, all necessary conditions for an M-
category to allow formation of solutions, e.g., existence of limits of a particular class of functors
is already established.

7 Conclusion

In summary, we presented our development of the foundations of category theory. This develop-
ment features most of the category-theoretical concepts that are formalized in most other such
developments and some more.

We pushed the limits of the new feature of universe polymorphism and the constraint inference
algorithm of Coq 8.5 by using them to represent relative smallness/largeness. As discussed, it
gives encouraging results despite the restrictions imposed by not having cumulative inductive
types.

In the latter part of the paper we discussed our experience of migrating this development to
HoTT settings. We hope that our report on the challenges that we have faced and the solutions
that we have devised prove useful for others undertaking such migrations.

We have successfully used this implementation as the categorical foundation to build categori-
cal metric-space theoretic fixed-points of recursive domain equations. This seems an encouraging
initial indication that this work is fit to perform the important role of a general purpose category
theoretical foundation for other developments to build upon.
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