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Andrea Natale Tallarico, Steve Stoffels, Paolo Magnone, Jie Hu, Silvia Lenci, Denis Marcon,
Enrico Sangiorgi, Fellow, IEEE, Claudio Fiegna, and Stefaan Decoutere

Abstract— In this paper, we report the results of an
experimental analysis of the degradation induced by ON-state
stress in GaN-based Schottky barrier diodes (SBDs). When a high
stress current is applied to the device, turn-ON voltage (VTON),
forward voltage (VF), and ON-resistance (RON) are affected by
charge carrier trapping occurring at the AlGaN surface close to
the anode corners and/or into the AlGaN barrier layer. We have
investigated the degradation of SBDs under different stress
conditions, analyzing the influence of temperature and voltage,
investigating the activation energy of the traps, and hence the
trapping mechanisms. In addition, thanks to this approach, the
device lifetime has been evaluated, proving good device reliability.

Index Terms— AlGaN/GaN Schottky diode, gated edge
termination (GET), lifetime, ON-resistance (RON), ON-state
stress, reliability, trapping/detrapping mechanisms, turn-ON
voltage (VTON).

I. INTRODUCTION

THANKS to the intrinsic properties of the adopted mate-
rials, GaN-based power devices represent today one of

the best candidates for switching power applications [1]–[4].
In particular, they feature a higher breakdown voltage and
a lower ON-resistance with respect to silicon-based devices,
because of the wider bandgap of the III-N compounds
and the formation of the 2-D electron gases (2-DEG) at
the AlGaN/GaN heterointerface, due to spontaneous and
piezoelectric polarization [5], [6].

However, high performance is not enough to dominate
the power electronic market, as a low fabrication cost and
a high level of reliability under heavy-duty operation must
be guaranteed. A low-cost fabrication approach relies on the
epitaxial growth of GaN over large diameter silicon (Si)
substrates, by means of metal-organic chemical vapor depo-
sition (MOCVD) [7]–[10]. Furthermore, this technology,
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being CMOS-compatible, can take advantage of a widely
available and mature technological infrastructure.

The reliability of GaN-based power devices is mainly lim-
ited by trapping and detrapping phenomena occurring when
transistors or diodes have to withstand large electric fields
or current density during OFF- and ON-state operation mode,
respectively.

Although many papers about trapping mechanisms in GaN
high electron mobility transistors (HEMTs) have been pub-
lished [11]–[18], limited work has been done on the trapping
effects affecting GaN-based Schottky barrier diode (SBD)
reliability [19], especially regarding the degradation under
ON-state stress.

Terano et al. [20] investigated the relationship between the
2-DEG density and the reverse leakage current in AlGaN/GaN
SBDs, asserting that a leakage reduction of several orders
of magnitude is achieved by slightly reducing the 2-DEG
density.

In [21], the temperature dependence of the leakage cur-
rent mechanisms affecting Schottky contacts, fabricated on
AlGaN/GaN HFET, was investigated. The authors found out
that at room temperature, the reverse leakage is dominated by
carrier transport via conductive dislocations, whereas at higher
temperatures, the Frenkel–Poole emission represents the main
source of the reverse leakage.

The degradation mechanism and the influence of the anode
recess on the electrical properties of the SBDs were analyzed
in [22], highlighting that the anode recess process activates
traps with relatively short capture and escape times, hence
leading to a higher degradation of the I–V characteristics in
short reverse stress experiments.

Finally, Hu et al. [23] by combining experimental and
simulation results have proposed the physical origin of the
current collapse and ON-resistance degradation in Au-free
AlGaN/GaN SBDs occurring when a negative bias is applied
on the anode. In particular, they have linked the gradual
increase in the RON to those traps featuring an energy of 1 eV
below the conduction band and located at Si3N4/AlGaN inter-
face. On the other hand, a sudden collapse of the ON-current
has been related to the traps having an energy of 0.5 eV
positioned around the Schottky contact corner and playing a
role only for the negative bias above a critical value (−175 V
in that case).

In this paper, we extensively analyze the degradation mech-
anisms occurring when a large direct stress current (ON-state)
is forced through Au-free AlGaN/GaN SBDs.

0018-9383 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Schematic of the AlGaN/GaN-on-Si GET-SBDs (not in scale) [7].
The AlN spacer between the AlGaN barrier and the GaN channel and the
SiN cap between the AlGaN barrier and the Si3N4 surface passivation are
not shown.

We experimentally investigate the impact of the stress on
the main figures of merit, such as the turn-ON voltage (VTON),
the forward voltage (VF ), and the ON-resistance (RON). Stress
analyses at different voltages and temperatures are performed
and the recovery phase, happening after removing the stress,
is monitored. Thanks to this approach, it is possible to
ascribe the VTON and the RON degradation to different defects.
In particular, the turn-ON voltage is affected by defects located
under the anode contact into the AlGaN barrier. Moreover, the
SBD lifetime was evaluated under ON-state operation mode
proving a good device reliability.

This paper is organized as follows. In Section II, the devices
under test and the measurement approach are described.
In Section III, the experimental results are reported and
discussed. Finally, in Section IV, we summarize the main
achievements of the work.

II. DEVICE STRUCTURE AND MEASUREMENT TECHNIQUE

Gated edge termination-SBDs (GET-SBDs) (Fig. 1) fabri-
cated on silicon wafers by IMEC [7] with a nominal forward
voltage (VF ) of ≈1.25 V are considered in this study. The
epitaxial structure is grown on an 8-in 〈111〉 silicon substrate
by means of MOCVD and features a stack of: 200-nm-thick
AlN nucleation layer (on top of the Si substrate), followed by
a 2800-nm-thick AlGaN buffer, 150-nm-thick GaN channel,
0.5-nm-thick AlN spacer, 10-nm-thick Al25Ga75N barrier,
and 5-nm-thick SiN cap. Then the whole epitaxial stack is
passivated with 140 nm of Si3N4 by rapid thermal chemical
vapor deposition. Prior to the deposition of metal stack, the
Si3N4 passivation layer is removed at the anode region by SF6
dry etch and the AlGaN barrier is recessed by about 5 nm
through atomic layer etching.

It is worth noting that with the anode recess, the forward
characteristic is improved by reducing the VTON and the VF

with respect to the case of nonrecessed devices. Moreover,
the GET-SBD functionality not only as a stand-alone diode
but also in combination with MISHEMT process flow was
proved [7].

A further 25-nm-thick Si3N4 deposition with a subsequent
etching in the central region of the anode (with length LSC) is
performed in order to make the GETs (Fig. 1). Finally, Au-free
anode and cathode contacts are realized. In particular,

Fig. 2. Forward characteristics of the GET-SBDs. Due to the variability
of the process along the wafer, a screening of devices featuring similar
I–V characteristics has been performed.

an Au-free metal stack, consisting of 20-nm TiN/20-nm
Ti/250-nm Al/20-nm Ti/60-nm TiN, is deposited and etched
to define the diode anode. A more detailed description of the
diode process is reported in [7].

The experimentally tested devices feature a central anode
finger with two independently addressable cathode contacts.
By referring to Fig. 1, the Schottky diode length (LSC)
is 9 μm, the edge termination length (LG ) is 1.5 μm, the
anode to cathode spacing (LAC) is 5 μm, and the finger width
is 100 μm.

The reliability study has been carried out by adopting
the conventional measure/stress/measure (MSM) technique.
During the stress phase, a constant voltage (VAC_S) was
applied on the anode contact while short-circuiting the
two cathodes with the substrate. The stress was periodically
interrupted in order to monitor VTON, VF , and RON shift
by measuring a full I–V characteristic from 0 to 2.5 V.
The turn-ON and forward voltages were extrapolated at the
current density of 1 and 100 mA/mm, respectively, whereas
the RON was evaluated by considering the slope in linear
region between 1.5 and 2.5 V. At the end of the stress phase,
the reverse leakage current was evaluated by sweeping VAC
between 0 and −6 V. Finally, the recovery was monitored
by applying 0 V (VAC_R) and periodically analyzing VTON,
VF , and RON.

It is worth noting that, in order to evaluate the degra-
dation (and recovery) under different stress (and recovery)
conditions, several devices (22) featuring a similar fresh
I–V characteristic (Fig. 2) have been selected. Moreover,
for each stress/recovery analysis, different devices have been
initially considered in order to verify the statistical dispersion
of the measurements.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Introduction to Different Trapping/Detrapping
Mechanisms Causing VTON Degradation

The turn-ON voltage shift occurring during the ON-state
stress and recovery is shown in Fig. 3(a). Four devices,
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Fig. 3. Turn-ON voltage shift during two cycles of ON-state stress and
recovery for four devices positioned in different dies. VTON was extracted at
a current density of 1 mA/mm and the following conditions were considered:
VAC_S = 7 V (during stress), VAC_R = 0 V (during recovery), and T = 25 °C
(both phases). (a) Four samples show similar VTON degradation and recovery.
(b) Dual slope shown in the stress phase is probably attributed to two
different mechanisms, build-up of charges and new trap creation, precisely.
�VTON degradation related to the second cycle is calculated with respect
to the end of the first recovery phase. (c) Two recovery phases show a
similar dynamics, meaning that the same defects are involved in the detrapping
mechanism.

positioned in different dies and selected as shown in Fig. 2,
have been characterized under the same stress and recovery
conditions in order to prove a good reproducibility of the

VTON degradation induced by trapping/detrapping mecha-
nisms. During the stress phase, electrons are trapped in the
region under the anode (Schottky junction) causing an increase
in the Schottky barrier height, and hence in VTON. Then, as the
stress is removed (recovery phase), some defects are detrapped
and a partial VTON recovery occurs.

A second cycle of stress and recovery has been performed
in order to understand which kind of trapping/detrapping
mechanism occurs, by comparing the two stress and recovery
dynamics.

It is worth noting that Fig. 3(b) and (c) shows the average
of four samples [reported in Fig. 3(a)]. In order to account for
the statistics dispersion, the error bars were calculated as ±3σ
(standard deviation).

From the evolution of VTON reported in Fig. 3(b), it is
possible to distinguish two degradation phases characterized
by different power slopes that may be associated with two dif-
ferent trapping mechanisms. For stress time up to 20 s,
the build-up of charge in pre-existing defects appears to be
the dominant mechanism causing the degradation, whereas
afterwards, as discussed in Section III-C, the creation of new
defects becomes the dominant one.

Based on Fig. 3(a)–(c), it is possible to observe the
following.

1) In both degradation cycles [Fig. 3(a)], the relative degra-
dation occurring during the first 10 s of stress is com-
parable to the amount of the corresponding subsequent
recovery (≈4% and ≈3.2% for the first and second
cycles, respectively).

2) For short stress times (≈10 s), the VTON degradation
features the same dynamics (same slope) in both cycles
[Fig. 3(b)].

3) The two recovery phases exhibit the same trend
[Fig. 3(c)].

In conclusion, by considering together these aspects, we can
conclude that the shift of the turn-ON voltage in the first 10 s
of stress and during the whole recovery phase, in both cycles,
may be mainly ascribed to the trapping and detrapping of the
same pre-existing defects.

In addition, these results suggest that pre-existing defects are
the source of the recoverable degradation component, whereas
the new created defects cause a quasi-permanent or slowly
recoverable component.

Thanks to the adopted MSM technique, the impact of
degradation on reverse leakage during ON-state stress and
recovery has been analyzed (Fig. 4).

A slight nonrecoverable reduction of the reverse leakage
after the ON-state stress, due to electrons trapping, is shown
in Fig. 4. By trapping negative charge in the AlGaN barrier
layer or at Si3N4/AlGaN interface, the 2-DEG density in the
channel is reduced; therefore, as observed in [19], a reverse
leakage reduction may occur.

B. Voltage Dependence

It is worth noting that from here on, the reverse leakage
measurement has not been performed in order to avoid
a possible alteration of the defects state due to negative
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Fig. 4. Reverse leakage measured in fresh condition after 104 s of stress
and after 3 × 104 s of recovery. The electrons trapping during the ON-state
stress lead to a slight reduction of the reverse leakage. This behavior is also
verified at high temperatures (not shown).

Fig. 5. (a) VTON shift for different ON-state stress conditions. (b) Corre-
sponding recovery phase happening after the end of the stress. By stressing at
higher voltage, the pre-existing traps filling is faster. As a result, (a) change
in the power slope occurs for shorter stress time.

voltage sweep. Moreover, given the limited statistical disper-
sion reported in Fig. 2, from here on a single device is used
for each stress/recovery condition.

Fig. 6. Turn-ON and forward voltage degradation versus stress voltage.
A power dependence is observed for both parameters.

The VTON degradations for different stress voltages and the
corresponding recovery phase are reported in Fig. 5(a) and (b),
respectively. As already discussed with reference to Fig. 3(b),
two degradation phases are evident, and the first one may be
attributed to pre-existing traps filling. Indeed, by increasing
the stress voltage, the end of the first degradation phase
(i.e., the change of the power slope) occurs for shorter stress
time. This is expected when a fixed number of traps, with a
fixed energy level, are present in the fresh device. By applying
a higher stress bias, a faster charge trapping occurs, leading
to a larger degradation and to a faster filling of the available
traps.

Independently of the amount of degradation at the end of
the stress, the recovery dynamics is slow, meaning that the
traps feature a long detrapping time constant.

Finally, as it is possible to observe in Fig. 6, the voltage
dependence of both turn-ON and forward voltage degradations
can be modeled by a power law.

The ON-resistance shifts (�RON) during stress and recovery
phase are reported in Fig. 7(a) and (b), respectively. The
evolution of �RON and its dependence on stress bias are much
more complex, and chaotic, compared with the case of turn-ON

voltage.
By moving the stress bias from 4 to 5 V, a larger

RON degradation occurs; a further increase of the stress
voltage, hence going from VAC_S = 5 to 8 V, produces a
higher degradation for short stress time (<10 s) and a lower
degradation for longer stress times (>100 s). In addition, by
observing Fig. 8, the current monitored during the stress, in the
case of VAC_S = 8 V, shows an increase after an initial
decrease (≈3 s), which is in good correlation with the observed
RON degradation. As soon as the stress is removed for RON

measurement (10, 30, 100 s, etc.), a recovery mechanism,
opposite to that occurred in the case of VAC_S = 5 V, occurs.
We think that the combined effects of higher stress voltages,
hence higher stress currents, and higher temperatures due
to self-heating effect can enable different trapping/detrapping
mechanisms.

Moreover, it is worth noting that a certain variability of this
phenomenon affecting the RON, probably linked to variability
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Fig. 7. RON shift, due to (a) ON-state stress and (b) recovery, for different
stress conditions. For stress voltages higher than 5 V, an additional trap-
ping/detrapping mechanism is involved. As a result, lower RON degradations
are shown (a). Unlike VTON [Fig. 5(b)], RON degradation seems to be quasi-
totally recoverable (b) in the considered recovery time.

Fig. 8. Currents monitored during the ON-state stress. In the case of
VAC_S = 8 V, an additional trapping/detrapping mechanism is involved
causing an increase in the current during the stress. Further analysis is
necessary for understanding the mechanisms underneath this phenomenon.

of the process along the wafer, has been observed. By stressing
devices with the same stress conditions but positioned in
different dies, the RON decrease during the stress phase can
occur for shorter or longer stress time.

Fig. 9. VTON shift for (a) different temperatures stress and (b) Arrhenius
plot. The VTON shift has been extracted at the end of the stress (104 s)
in devices with (circle) and without (square) anode recess. By considering
the database of the deep levels in GaN- and AlGaN-based devices [24], the
activation energy of ≈0.09 eV is linked to the nitrogen vacancies.

In conclusion, further analyses are necessary for understand-
ing the physical mechanisms behind the RON degradation and
its variability.

Instead, by focusing on the recovery phase [Fig. 7(b)],
unlike the case of turn-ON voltage, after ≈100 s, a faster
detrapping mechanism occurs and a quasi-total recovery is
reached. Therefore, RON and VTON degradations may be
related to different defects positioned in different regions.

C. Temperature Dependence

The role of temperature on the ON-state degradation has
been investigated. Fig. 9(a) shows the shift of the turn-ON

voltage as a function of temperature.
It can be noticed that by stressing at temperatures higher

than 25 °C, the dual slope of the VTON degradation is not
clearly observed [Fig. 9(a)], contrary to the case of room
temperature [Fig. 5(a)]. As a matter of fact, by increasing
the temperature, the process of filling of pre-existing traps,
according to our results, is shorter than 1 s. Moreover, curves
at different temperatures feature a similar slope (0.09).
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By considering the Arrhenius plot of Fig. 9(b), an effective
activation energy of 0.093 eV has been extracted from
VTON degradation. By considering the database of the deep
levels in GaN- and AlGaN-based devices (see [24]), traps
having an activation energy of 0.09 eV can be ascribed to
the nitrogen vacancies. A similar value has been found by
Bisi et al. [24] in AlGaN/GaN HEMT, by means of the current
transient investigation at several temperature levels, linking
these traps to the AlGaN barrier in the region under the
gate.

In our diodes, the VTON shift under forward stress is
ascribed to an increase in Schottky barrier height and features
a similar activation energy (0.093 eV). Hence, we can assume
that traps, responsible for VTON degradation, are located in the
AlGaN barrier layer under the anode metal.

An activation energy of 0.093 eV suggests that the traps
are fairly shallow, and hence they should feature a short
trapping/detrapping time constant. On the contrary, in our
case, the activation energy is extracted after 104 s of stress.
This observation confirms that the creation of new defects is
the responsible mechanism causing the permanent or slowly
recoverable degradation.

In order to understand which is the cause of the nitro-
gen vacancies, a study of the temperature dependence of
VTON degradation has also been performed on devices without
anode recess [Fig. 9(b)]. By considering the Arrhenius plot of
Fig. 9(b), we can observe the following.

1) Devices without recess show a comparable (or slightly
higher) VTON degradation.

2) The VTON shift in both typologies of device is induced
by the same kind of traps because of the similar activa-
tion energies.

As a result, nitrogen vacancies are not caused by the recess
process but are probably linked to the crystal quality of
the AlGaN barrier layer. By avoiding the anode recess, the
AlGaN barrier under the anode metal is thicker; as a conse-
quence, a larger number of bulk defects are present, leading
to a slightly higher VTON degradation.

Finally, the study of the RON degradation for different
temperatures is shown in Fig. 10(a). It seems from Fig. 10
that no RON degradation increase is observed for higher
temperatures. On the other hand, from Fig. 10(b), it is possible
to observe a decrease in the ON-current during the stress and a
huge recovery happening during each measurement phase. It is
well known that by increasing the temperature, the detrapping
mechanism becomes faster, and hence the detrapping time
constant could be lower than the delay time introduced by
measurement setup. As a result, the ON-resistance degrades
during the stress but it is not possible to catch the real
degradation with this technique.

However, it is again proved that RON and VTON degradations
are due to different defects.

D. Device Lifetime Estimation

The analysis of the ON-state degradation at different
stress bias, by means of constant voltage-stress method,
allowed us to estimate the lifetime of the AlGaN/GaN-on-
Si GET-SBDs at the temperatures of 25 °C and 150 °C,

Fig. 10. (a) RON degradation at different temperatures. By increasing
the temperature, as the stress voltage is removed in order to perform
I–V characteristics, (b) a fast recovery of the ON-current is observed.
As a result, (a) no RON degradation is observed.

Fig. 11. Lifetime extrapolation. The failure criterion is considered as
the 5% of the forward voltage shift in ten years at the temperature of
25 °C and 150 °C. In the worst case (150 °C), the maximum applicable
voltage is higher than nominal operating voltage (VF ≈ 1.25 V).

as reported in Fig. 11. The lifetime has been extrapolated
by considering the forward voltage degradation since it
takes into account both VTON and RON degradations by the
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following relationship:
�VF = �VTON + (�VON ∗ IAC). (1)

By adopting as a failure criterion a shift of 5% in
ten years, the maximum applicable voltages at temperatures of
25 °C and 150 °C are 1.85 and 1.35 V, respectively. For the
considered samples, the nominal operating voltage in forward
condition is 1.25 V, corresponding to a nominal forward
current of 100 mA/mm. Therefore, under these assumptions,
we expect a lifetime higher than ten years. It is worth noting
that SBDs in actual application are forced to work with fixed
ON-current, rather than with fixed VF (as reported in Fig. 11).
However, the change of the ON-current, during the stress
(see Fig. 8) at fixed voltage, is relatively low.

IV. CONCLUSION

In this work, we have investigated the degradation of the
turn-ON voltage, forward voltage, and ON-resistance induced
by ON-stress in AlGaN/GaN-on-Si GET-SBDs.

By performing stress and recovery phases at different
voltages and temperatures, we found out that RON and VTON
degradations are triggered by different defects.

Traps causing RON degradation are quickly and quasi-totally
recoverable in the monitored time window, especially at higher
temperatures.

On the other hand, defects triggering VTON degradation
are located into the AlGaN barrier layer under the Schottky
contact, slowly recoverable, and due to nitrogen vacancies
because of 0.093 eV of activation energy. In order to further
improve the reliability of the devices, therefore, defectiveness
on AlGaN barrier should be reduced.

Moreover, we have shown a power voltage dependence of
the VTON degradation, pointing out that the first phase of the
stress and the quasi-total recovery phase (noticeable at 25 °C)
are dominated by charging and discharging of the preexisting
defects, respectively.

Finally, GaN-based SBDs have shown a good reliability to
ON-state stress. In fact, by using them at the nominal operating
voltage (VF ≈ 1.25 V) and at a temperature of 150 °C, the
lifetime exceeds ten years by considering the 5% of forward
voltage shift.
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