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Abstract— In this paper a new system identification approach
for Hammerstein systems is proposed. A straightforward esti-
mation of the nonlinear block through the use of LS-SVM is
done by making use of the behavior of Hammerstein systems
in steady state. Using the estimated nonlinear block, the inter-
mediate variable is calculated. Using the latter and the known
output, the linear block can be estimated. The results indicate
that the method can effectively identify Hammerstein systems
also in the presence of a considerable amount of noise. The
well-known capabilities of LS-SVM for the representation of
nonlinear functions play an important role in the generalization
capabilities of the method allowing to work with a wide range
of model classes. The proposed method’s main strength lies
precisely in the identification of the nonlinear block of the
Hammerstein system. The relevance of these findings resides
in the fact that a very good estimation of the inner workings
of a Hammerstein system can be achieved.

I. INTRODUCTION

In the field of system identification, several block struc-
tured models have been introduced [1]. Even simple nonlin-
ear models can often provide much better approximations to
process dynamics than linear ones. Hammerstein models [2]
are nonlinear models often used. They have been employed
to model heat exchangers [3], sticky control valves [4],
electrical drives [5] and physiological systems [6]. Ham-
merstein systems consist of a static part f(-) containing the
nonlinearity, followed by a linear part Go(q) containing the
dynamics of the process (see Fig. 1).

In this paper the g-notation will be used. The operator ¢
is a time shift operator of the form ¢~ lz(t) = x(t — 1).

In the literature, several identification methods for Ham-
merstein systems have been presented. An overview of
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Fig. 1. A Hammerstein system. Go(q) is a linear dynamical system and
f(u(t)) is a static nonlinearity. v(t) is the measurement noise.

previous works can be found in [7]. Different classifications
of these methods can be found in [8], [9] and [10].

The idea in this paper is to use Least Squares Support
Vector Machines (LS-SVM) [11] while making use of the
characteristic behavior of Hammerstein systems under steady
state. The resulting methodology turns out to be easily
implementable while giving good results. Also, it allows to
separate the identification of the linear and nonlinear parts.

Previous works in the system identification literature have
used LS-SVM. Some authors have applied them specifically
to Hammerstein systems [12], [13] and others have attempted
to include information about the structure of the system into
the LS-SVM models [14], [15]. However, none of those
techniques have attempted a straightforward calculation of
the nonlinear block using LS-SVM.

The proposed method is based on applying a multilevel
input signal in which the duration of the steps is longer than
the settling time of the system. It uses a forward approach as
defined in [16] where the nonlinear block is identified first,
and the linear block is modeled afterwards. More precisely,
the method consists of the following steps:

o The system’s settling time is estimated through the
application of a step signal.

o A multilevel input signal is created based on the calcu-
lated settling time.

e An LS-SVM model is trained using the levels of the
multilevel signal as inputs and their corresponding out-
put values in steady state as outputs.

e An additional experiment is carried out in order to
identify the linear block. Here the applied input is
evaluated using the obtained nonlinearity in order to
estimate the intermediate variable. With the intermediate
variable and the known output, the linear block is
estimated through least squares.

A somewhat similar approach was proposed in [17].
However, there it is assumed that the nonlinearity is a
linear combination of known functions and that it is locally
invertible. In this work, those assumptions are not necessary.
Additionally, in this paper a way for identifying Hammerstein



systems for which the linear block is a high pass filter is
offered, which is not possible in [17].

The proposed method provides an easy way to directly
use standard LS-SVM for the identification of Hammerstein
systems while bearing in mind the structure of such systems.
It allows to estimate the nonlinear block in a straightforward
manner independently of the linear block and does not
require any particularly complex set of inputs-outputs. This
is important as it implies that the method can be applied to
a wide set of problems. Also, given the way it works, it can
give very good approximations to the intermediate variable
(up to a scaling factor) even in the presence of heavy white
Gaussian zero mean noise.

In this work scalars are represented in lower case, lower
case followed by (t) is used for signals in the time domain,
vectors are represented with bold lower case and matrices
with bold upper case. E.g. x is a scalar, x(¢) is a signal in
the time domain, x is a vector and X is a matrix.

The paper is organized as follows: In Section II, the
proposed methodology is presented. Section III illustrates
the results found when applying the described methodology
on two simulation examples. Finally, in Section IV, the
conclusions are presented.

II. PROPOSED METHOD

In this method, the first step is to construct a data set
where the input u;(¢) is a multilevel signal in which each
step lasts a constant amount of time 7T~ defined as:

Toc =Ts + Ar, (D

where T is the settling time of the system and A is an
arbitrary additional time. This way of constructing w;(t)
guarantees that during each step of the input signal some
samples will be taken after the system has reached steady
state (i.e. those taken during A after Ts). The input signal
u1(t) can then be described as:

w1 (t) =1y, for kTe <t < (k+ 1)Tc. ()

For each of the steps k € N, u(¢) has a constant value 7.

The settling time of the system T’s is estimated by apply-
ing a step signal to the system and determining the time it
takes for the corresponding output to stay within a certain
range.

It is assumed that the linear block is stable (i.e. all the
poles are inside the unit circle). Also, it is assumed for now
that the step response of the system does not tend to zero as
time tends to infinity, that is:

Jim y(t) #0, 3)
for 0 0
, T < .
z(t)_{r,0§t<oo. with r #£ 0 4)

In Section III-E a way for overcoming this limitation is
presented.

The samples of the output y; (¢) taken during k7o +Ts <
t < (k+1)T¢ are averaged for each k in order to minimize
the effect of the measurement noise during each step.
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Fig. 2. Example of a training signal. (Top) Input signal w1 (t). (Bottom)
Output signal y1 ().
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Fig. 3. Corresponding training points for the example of Fig. 2. (Top-Left)
ri values. (Bottom-Left) Averaged y; (¢) values. (Right) @(k) vs §(k) and
the rescaled nonlinearity.

In Fig. 2 an excerpt of a training signal is shown to
illustrate the samples taken after the settling time at each
step of the signal. The red boxes indicate the values of the
output signal that are averaged for each step.

Let us define @, (k) = 7, a signal containing the ampli-
tude level of each step of the input signal. Also, let us define
y(k), a signal containing the output averages corresponding
to the inputs during kT¢c + Ts < t < (k + 1)T¢. Using
u(k) as input and §(k) as output, an LS-SVM model can be
trained. For the example shown in Fig. 2, the corresponding
extracted values @(k) and (k) are presented in Fig. 3.

In this paper, LS-SVM under a 10-fold cross validation
setting is used to obtain the estimation of the nonlinear block.
Once this is done, another experiment is carried out, where
a new input signal us(t) is generated and its corresponding
output y»(t) is obtained. This input signal is then evaluated
using the estimated nonlinearity to obtain an approximation
to the intermediate variable xo(t) (i.e. £2(t)).

The linear block is a discrete-time rational transfer func-
tion of the form

m

gty = _bjlt—j) =D ayt—i, )

=0
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Fig. 4. Summary of the method.

and 50, y2(t) = D71 bjZa(t — j) — 2oi_ Giya(t —i). The
coefficients l;j and a; are estimated here using standard least
squares to find an approximation of the linear block. This is
done using #2(t) and the known output y5(¢). During this
step, several orders for the numerator and denominator are
tried out.

In Fig. 4, a simplified summary of the method is presented.

III. RESULTS
A. Example

The proposed methodology was applied to a system in the
discrete time domain. The system was generated through a
nonlinear block:

—u(t)? sin(mu(t))
0= ) ©
and a linear block:
Bi(q)
o) = F st ™

where
Bi(q) = 0.1129¢* — 0.2128¢> + 0.283¢>
—0.2128¢q + 0.1129 (8)
A1(q) = ¢* — 2.485¢% + 2.528¢* — 1.184q + 0.2245.

The system is shown in Fig. 5.
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Fig. 5. (Left) Linear block representation in the frequency domain

(normalized frequency). (Right) Nonlinear block representation in the time
domain.
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B. Signals description

In order to be able to make a comparison between results,
let us have the Normalized MAE defined as shown in (9) for
a signal with N measurements. Note that the Normalized
MAE uses the noise free signal y;es:(t).

100 Zi\il ‘ytest (t) - gtest (t)|

%MAE = —
! N |max(yest (t)) — min(ysest ()]

9

To construct uq(t), the settling time Tg was established
first by exciting the system with a step of amplitude 10. In
this example Ts = 191 samples. Afterward, the signal was
constructed by adding 40 extra samples at each step (i.e. Ar)
to those required to achieve steady state. The amplitudes of
the steps in this signal (i.e. r;) were randomly drawn from
a uniform distribution ranging between -10 and 10.

From the resulting y (¢) the values corresponding to the
output of the last Ar samples at each step were retrieved
and averaged (i.e. §(k)). In order to estimate the nonlinear
block, 500 input-output pairs were used.

In Fig. 6 the resulting nonlinear block of the example is
compared with the actual one for a run with a Signal to
Noise Ratio (SNR) of 40dB. Note that a rescaling constant
is present there. If both, the linear and nonlinear, blocks
are considered, there will be a gain factor of the combined
blocks. However, this gain could be distributed in any way
between the two blocks [18]. The actual difference in scaling
has no effect on the input-output behavior of the Hammer-
stein system (i.e. any pair of { f(u(¢))/n, nG(q)} withn # 0
would yield identical input and output measurements). Up
to this scaling factor, it is clear that the estimated nonlinear
block is a good representation of the actual one.
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Fig. 7. (Top) Overlapping of the actual and estimated output variables.
(Bottom) Scatter plot illustrating the behavior of the overlapped plots.

To estimate the linear block, a new data set of 5000 points
was generated. us(t), the input to generate this data set, is
a multilevel signal where each step has a duration T = 10
samples. The amplitudes at each level were drawn from a
uniform distribution ranging between -10 and 10.

Using w2 (t) and the estimated nonlinear block, an es-
timation of the intermediate variable #o(t) is calculated.
Using Z2(t) and the known output y»(t), the linear block
is estimated through least squares. Orders ranging between
1 and 10 were tried out for numerator and denominator. Note
that in order to fulfill the made assumptions, given a linear
block defined as in (5), only cases where m < n can be
considered.

Finally, the system was tested in a third data set. The input
for generating this set, uses(t), is a multilevel signal where
each step has a duration T~ = 10 samples. The amplitudes
at each level were drawn from a uniform distribution ranging
between -10 and 10. This data set consists of 5000 points.

In Fig. 7 the estimated output is compared with the actual
one for the same run used in Fig. 6.

Note that white Gaussian noise with zero mean was
applied to the output of each data set. In Section III-C the
effect of noise in the method is explained.

C. Noise effect analysis

In order to evaluate how the noise affects the performance
of the proposed method, 100 Monte Carlo simulations were
carried out for each of four different SNRs varying between
10dB and 80dB.

In Fig. 8 the results of the Monte Carlo simulations are
presented. As can be seen, the performance of the proposed
method dramatically changes as the level of the noise varies.

It is important to highlight that the impact of noise can
be further reduced if more points are considered in the data
set employed for estimating the nonlinear block. To illustrate
this, in Fig 9 it is shown how the performance of the method
changes for the example when using a SNR of 10dB.

D. Methods comparison

The proposed method was compared with:

¢ A NARX LS-SVM [11] with 10 lags of input and 10
lags of output.

100 Monte Carlo Simulations (500 training points)

al % 000503 1
T
osl J
E:
Z osf ]
g
=T E—osase 1
.
o2l ]
2000807 0.0055473
ol 0.0058473 |
10 20 SNR 40 80
Fig. 8. Evolution of the normalized MAE of the output of the model as

the SNR changes. The corresponding median values appear next to each
box.
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Fig. 9. Evolution of the normalized MAE of the output of the model as
the number of training points changes. The corresponding median values
appear next to each box.

o The Hammerstein and Wiener Identification procedure
(in this paper denoted by WHIP) presented in [19].

o The iterative method (in this paper denoted by IM)
presented in [20].

The proposed method was implemented using a RBF
kernel for the LS-SVM part. This kernel requires the tuning
of a kernel parameter o and a regularization parameter
~v [11].

For the IM method a Gaussian noise input was used. This
signal had a standard deviation as large as the standard
deviation of the concatenation of the input signals wuq ()
and uy(t) as described in Section III-B. The models were
estimated using 115500 samples, while 5000 samples were
used to look for the best model order (i.e. scan over orders
2, 3, 4, 5, and 6). To model the nonlinearity a piecewise
linear function with 50 breakpoints was used. It is important
to note that the choice for the input signal of the IM method
is such that as many samples and as much total energy is
used for the identification of the system as for the proposed
method.

For the WHIP method a random-phase multisine was
employed. Again, this signal had the same standard deviation
as the concatenation of signals wu; (¢) and us(t). Seven phase
realizations and 2 periods (plus an additional period to reduce
the effect of transients) of the multisine with 5000 samples
per period were used to estimate the models. One period (no
transient removal) of an additional realization was used to
look for the best model order with the same order scanning
used for the IM method.



In Table I the results of the comparison in Normalized
MAE form are presented. Each of the presented results
corresponds to an average over 10 runs.

TABLE I
RESULTS COMPARISON IN NORMALIZED MAE ON TEST DATA.

SNR (dB)
10 20
Proposed method 1.5259 | 0.6925
NARX LS-SVM 9.9266 | 9.9314
M 8.8621 | 9.3660
WHIP 5.6204 | 8.3097

The results indicate that the proposed method obtains
better results as the noise is reduced. For the NARX LS-
SVM the results seem to stay almost the same as the noise is
increased. For WHIP and IM, the results are better when the
noise is increased. This result is explained by the presence
of outliers in the results, which indicates that these methods
are sensitive to local minima.

The IM and WHIP methods assume that the nonlinearity
can be represented in a basis function expansion form with
known basis functions. Note that the nonlinearity in (6)
is hard to model by a polynomial of reasonable degree
and in consequence, piecewise linear basis functions were
used. Since a finite number of breakpoints is used, the
true nonlinearity is not in the model class. This can be an
explanation for the poor results of the last two methods in
the example.

As can be seen, the proposed method performs very well in
the example. This behavior suggests that it is robust against
the amount of noise used.

E. High pass filter case

The proposed methodology gives good results in the es-
tablished framework. However, as it is presented, the method
is unable to deal with situations where the assumption
introduced in Eqgs. (3) and (4) is violated. A clear illustration
of this occurs when the linear block is a high pass filter. In
this particular situation:

Jim gy (t) =0, (10)
for 0. 1<0
Lt < .
:C(t):{ " 0<t< oo with 7 # 0. 11

In this case, for training the LS-SVM model, the correspond-
ing output points would always be zero or very close to zero:

(k) = 0 Vk. (12)

In order for the method to be able to work in these
situations, the addition of one or several integrators to the
output signal is proposed, this is represented in Fig. 10.
Note that this has to be done only in the first stage of the
method, that is, for the estimation of the nonlinear block. The
number of integrators required depends directly on the linear
block. However, it can be easily established through direct
observation. If more integrators than needed are added, the
system will become unstable.

v(t)

t 7
W e ] e (e 4/ (-1 L

Fig. 10. Hammerstein system with an added integrator at the output for
estimation of the nonlinear block.
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Fig. 11.  High pass filter example: (Left) Linear block representation
in the frequency domain (normalized frequency). (Right) Nonlinear block
representation in the time domain.

To illustrate the high pass filter case, an example is
presented where the nonlinear block has the form

3
2(t) = u(t) + bu(t)? — @ (13)

and the linear block is given by:

Bs(q)
1) = i 14
y(0) = 4 asal) (14)
where
Bs(q) = ¢* — 1. .

2(¢) =¢" —1.8¢+ 038 15)

As(q) = ¢* — 1.5 + 0.7225.

This system is illustrated in Fig. 11. In this example, the
signals used are very similar to those described in Section III-
B, however, 100 {a(k), §(k)} pairs were used instead of 500.
Also, the second data set (i.e. {uz(t),y2(t)}) and the test set
consisted of 1000 samples.

Once the linear block is estimated as explained in Sec-
tion II, the model of the system is tested with an independent
data set. The resulting output variable behavior is presented
in Fig. 12.

In Fig. 13 the results of a Monte Carlo simulation of 10
runs for different levels of noise is shown. It shows how the

Output variable behaviour (means extracted) (6MAE = 0.056914)

Ampitude

Fig. 12. High pass filter example: (Top) Overlapping of the actual and
estimated output variables. (Bottom) Scatter plot illustrating the behavior of
the overlapped plots.
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Fig. 13. High pass filter example: Normalized MAE for different levels
of noise. The corresponding median values appear next to each box.

normalized MAE evolves as the level of noise changes in
the example represented by Eqgs. (13) and (14).

Note that this approach can be sensitive to cases with zeros
very close to 1 but not exactly at 1 in the unit circle. In
those cases, using the proposed method with both the non-
integrated or the integrated output might yield unsatisfactory
results.

IV. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

The presented method offers a simple way for accurate
Hammerstein system identification. This is done mainly by
making use of the behavior of the system in steady state.
In this work, this was done through LS-SVM which allows
a good generalization capability when using different model
classes.

The main strength of the proposed method lies in the
identification of the nonlinear block of Hammerstein sys-
tems. The presented results indicate that the method is very
effective in the presence of zero mean, white Gaussian noise.

Once the nonlinear model is learned, it can be easily
applied. It is shown that even with a small amount of training
points, the results are already quite accurate. In practice, this
means that the calculation of the model can also be done
very quickly. It is also possible to improve the performance
of the method by using more training points for modeling
the nonlinearity.

The estimated nonlinear model is very close to the original
one (up to a scaling factor). This allows insight into the be-
havior of the studied system as it is possible to visualize the
way the nonlinear block will respond to the inputs. Naturally,
this allows as well an estimation of the intermediate variable.

The way w1 (t) is constructed is quite simple and given its
shape, it allows the application of the method in many fields.

A possible drawback of the methodology lies in the fact
that depending on the evaluated system, constructing the
initial input signal u;(¢) could require a long time.

B. Future Works

The central idea of this work can be used in the identi-
fication of Wiener and Wiener-Hammerstein systems as the
working concepts would be basically the same. Though not
as straightforward as in the Hammerstein case, full models
of these structures could be estimated after the nonlinearity
is modeled.

More complex cases like MIMO Hammerstein, Wiener
and Wiener-Hammerstein can also be considered though they
will not be as easily adapted.
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