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We evaluated the potential of polycrystalline (poly-) GeSn as channel material for the fabrication

of thin film transistors (TFTs) at a low thermal budget (<600 �C). Poly-GeSn films with a grain

size of �50 nm showed a carrier mobility of �30 cm2 V�1 s�1 after low-temperature annealing at

475–500 �C. Not only carrier mobility but also thermal conductivity of the films is important in

assessing the self-heating effect of the poly-GeSn channel TFT. The thermal conductivity of the

poly-GeSn films is 5–9 W m�1 K�1, which is significantly lower compared with 30–60 W m�1

K�1 of bulk Ge; this difference results from phonon scattering at grain boundaries and Sn intersti-

tials. The poly-GeSn films have higher carrier mobility and thermal conductivity than poly-Ge

films annealed at 600 �C, because of the improved crystal quality and coarsened grain size resulting

from Sn-induced crystallization. Therefore, the poly-GeSn film is well-suited as channel material

for TFTs, fabricated with a low thermal budget. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4937386]

Owing to high carrier mobility, the polycrystalline GeSn

(poly-GeSn) film constitutes a suitable channel material for

high-performance thin film transistors (TFTs). Its mobility is

higher than the mobilities of Si and Ge individually.1,2

Moreover, the thermal budget required to fabricate a TFT

can be reduced using poly-GeSn film as the channel material,

because of its low eutectic temperature (231.1 �C) and corre-

spondingly low crystallization temperature.3–6 Poly-GeSn

films have, therefore, significant potential for the use in

TFTs. However, poly-Si TFTs on glass substrates are suscep-

tible to self-heating.7 The heat generated during the TFT

operation is localized near the drain edge of the structures

because of the low thermal conductivity of the substrates.

Furthermore, the temperature is distributed inhomogeneously

in the channel region, thereby suppressing the TFT driving

current and the threshold voltage shift in current–voltage

curves.7

Self-heating is detrimental to the poly-Ge based TFT

channel materials because of the lower thermal conductivity

of Ge compared with that of Si. Indeed, while poly-Si and

bulk Si have similar high thermal conductivities (60–140 W

m�1 K�1)8 that of bulk Ge that is only 50–60 W m�1 K�1

depending on carrier concentration.9 Furthermore, high lev-

els of phonon scattering at grain boundaries in polycrystal-

line structures reduce thermal conductivity.8 With the

formation of nano-sized grains in poly-Si, this reduction is

up to 90%.8 Moreover, GeSn alloying induces additional

phonon scattering, similar to SiGe alloying.10 Therefore,

GeSn has a significantly lower thermal conductivity than that

of bulk Ge because of these grain boundary and alloy scatter-

ing effects. The thermal conductivity of poly-GeSn is also

expected to be lower than that of poly-Si. To evaluate the

potential of poly-GeSn for the use as a TFT channel, the car-

rier and heat transport properties must be simultaneously

investigated.

In this work, we investigated the electrical (carrier trans-

port) and thermal properties (thermal conductivity j) of

GeSn layers deposited on SiO2/Si substrates. The GeSn films

are deposited with an amorphous structure and are trans-

formed into poly-crystalline GeSn (poly-GeSn) during ther-

mal annealing. Additionally, the relation between phonon

scattering and the j of the poly-GeSn films was elucidated

by numerically simulating j using a frequency-dependent

model based on the Debye dispersion.8

We deposited a-GeSn on SiO2/Si using molecular beam

deposition. After ultrasonically cleaning the Si substrate in

acetone, a 1–lm-thick SiO2 layer was sputter-deposited

using a Si target in Ar and O2 gas. The a-GeSn film was de-

posited on this SiO2 layer at �10 �C using a similar method

described in the literature.2 Ge (99.99%) and Sn (99.99%)

were evaporated from separate effusion cells in an ultrahigh

vacuum chamber at a base pressure of 2.6� 10�8 Pa; molec-

ular beam pressures of 2.1� 10�5 Pa and 3.6� 10�6 Pa were

used for Ge and Sn, respectively. The thickness of all a-

GeSn films used was 100 nm. The concentration of Sn in the

a-GeSn film was estimated as 13.6 6 0.3% via Rutherford

back-scattering (RBS) measurements using a 4He2þ ion

beam operating at 2300 keV. For comparison, we also depos-

ited an amorphous non-Sn-doped Ge (i.e., a-Ge) film on

SiO2/Si substrates using the same molecular beam method.

The a-GeSn and a-Ge films were annealed via halogen lamp

heating at 350–600 �C in N2 gas for 30 min. Cross-sectional

transmission electron microscope (TEM) images of the

GeSn films were obtained at an electron beam energy of

0003-6951/2015/107(23)/232105/5/$30.00 VC 2015 AIP Publishing LLC107, 232105-1
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200 kV, before and after annealing. Additionally, the GeSn

films were characterized by X-ray diffraction (XRD) using

Co K-alpha (k¼ 0.1789 nm) radiation. Raman spectra were

also obtained from the films; 488-nm-wavelength lasers with

a power of 0.14 mW were used to excite the �2–lm-diame-

ter samples under a microscope objective of �50. Hall meas-

urements performed at 300 K characterized the electrical

transport properties of the GeSn films. Moreover, the j val-

ues of the films were measured at 300 K via a thermo-

reflectance method, using a thin film thermal conductivity

meter (TCN-2x, ULVAC-RIKO Corp.).11

Figure 1 shows the structural evolution of the GeSn film

during the thermal annealing process. The cross-sectional

bright-field TEM images and selected-area electron diffrac-

tion (SAED) patterns [Fig. 1(a)] reveal that the as-deposited

specimen has an amorphous structure. However, the film

starts to crystallize after annealing at 350 �C [Fig. 1(b)], as

evidenced by the appearance of nanocrystallites (NCs) and

weak spots with halo rings in the SAED pattern; these NCs

have diameters of 5–10 nm. Amorphous Ge has a crystalliza-

tion temperature of �600 �C on the SiO2 layer; therefore, the

lower crystallization temperature of the GeSn film is attrib-

uted to Sn doping, as reported in the literature.3,4 Further

annealing enhances the formation of high density NCs [Fig.

1(c)], for which sizes increase with increasing annealing

temperature. Additionally, at temperatures higher than

500 �C, typical polyhedral-shaped NCs form throughout the

films, indicating the disappearance of an amorphous region

in GeSn films. Bright spots (marked with arrows) between

the 111 and 220 rings of the Ge crystals in the SAED pattern

[Fig. 1(f)] also result from the formation of Sn crystals, indi-

cating the Sn segregation.

The NC diameters of 3.5–22 nm, 5.0–24 nm, 9.0–27 nm,

and 24–91 nm were derived from TEM images [Figs.

1(c)–1(f)] annealed at 400 �C, 450 �C, 475 �C, and 500 �C,

respectively; these NCs had corresponding average sizes of

10 nm, 13 nm, 15 nm, and 47 nm. The significant increase of

NC sizes in the 500 �C-annealed specimen is attributed to the

Sn-induced crystallization of the films.

Figure 2 shows the XRD 2h-scan profiles obtained at

various annealing temperatures of the films. Bragg peaks

corresponding to GeSn NCs with Miller indices of (111),

(220), and (311) are clearly observed. The position of each

peak shifts to a higher scattering angle; the peaks become

narrow with increasing temperature. These changes are

attributed to the increased crystal quality of the NCs and the

decreased Sn concentration. We can estimate the lattice con-

stants of the GeSn NCs (Table I) from the positions of the

(111) peak. The concentration of Sn in the NCs is deter-

mined from the lattice constant using Vegard’s law, assum-

ing that the GeSn layer is not strained. The 450 �C-annealed

film had an estimated Sn concentration of 14%, which con-

curred with the RBS result, suggesting that the assumption

of limited lattice strain was reasonable. The concentration of

Sn in the GeSn lattice decreased with increasing annealing

temperature of 470 �C and 500 �C, indicating that Sn segre-

gations occurred during annealing.

We examined the structural changes from amorphous to

polycrystalline by measuring the Raman spectra [Fig. 3(a)]

of the films annealed at 400 �C, 470 �C, and 500 �C. The

FIG. 1. Cross-sectional bright-field TEM images and SAED patterns of the

GeSn films (a) before and after annealing at (b) 350 �C, (c) 400 �C, (d)

450 �C, (e) 475 �C, and (f) 500 �C. The arrows indicate the diffraction spots

corresponding to the Sn crystal.

FIG. 2. XRD 2h-scan profiles of GeSn films annealed at temperatures of

400–500 �C.
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phonon bands corresponding to Ge occur at Raman shifts of

285 cm�1–296 cm�1 in the spectra. The low-frequency tail

of the band corresponding to the 400 �C-annealed films

results from the amorphous regions of the films. The amor-

phous GeSn layer typically gives rise to a broad peak at

�260 cm�1 in the Raman spectra.2 The peak position shifts

to a higher frequency [Fig. 3(b)] and approaches that of bulk

Ge (300 cm�1) with increasing annealing temperature. This

shift stems from decreases in the concentration of Sn in the

NCs with increasing temperature (Table I), as reported by

Lin et al.12 for single crystal of epitaxially grown GeSn. The

SAED pattern and XRD spectrum of GeSn films annealed at

500 �C show Sn segregation in the film. We found the Sn

segregation and/or precipitation of Sn at the interface

between the GeSn and SiO2 layer in high-angle annular

dark-field scanning TEM (HAADF-STEM) images of 475 �C
and 500 �C samples. Typical sizes of Sn NCs ranged from

5–10 nm and 50–70 nm in diameter for the 475 �C and

500 �C samples, respectively.

The full-width at half maximum (FWHM) of the Ge

phonons of the films decreased from 17 cm�1 at an annealing

temperature of 475 �C to 8 cm�1 at 470 �C. This narrowing

of the phonon-related peaks indicates that the crystal quality

of the film increases with increasing annealing temperature.

The carrier mobility also increased at temperatures higher

than 475 �C. Indeed, a relatively small increase of 5 �C in

annealing temperature from 470 �C to from 475 �C had a sig-

nificant effect on the ability to improve the crystal quality of

GeSn lattice. The improvement of crystal quality occurs at

the same time as the segregation of Sn NCs in the films.

Figure 4 shows the dependence of the Hall carrier mo-

bility and concentration of the poly-GeSn films on annealing

temperatures of 400–500 �C; densities of �1019 cm�3 are

consistent with that of a p-type hole carrier semiconductor.

Additionally, the films annealed at temperatures lower than

470 �C, and at 475–500 �C exhibited mobilities of 1–5 cm2

V�1 s�1 and 27–30 cm2 V�1 s�1, respectively. This increase

in carrier mobility stems from the improved crystal quality;

i.e., annealing resulted in a decrease in the defect density of

the film. Moreover, the decrease in the carrier density from

5.6� 1019 cm�3 to 1.2� 1019 cm�3 is attributed to a reduc-

tion in the density of acceptor-like defects during annealing.

The estimated hole mobility and density of the poly-Ge film

were 12 cm2 V�1 s�1 and 2.2� 1018 cm�3, respectively,

even after annealing at temperatures higher than 600 �C.

High hole mobility and density render GeSn films well-

suited for use in low-thermal-budget TFTs.

The thermal conductivity values (j) of GeSn films were

determined at 300 K via a thermo-reflectance 2x method.11

The measured sample consisted of four layers: an Au thin

film (100 nm), the GeSn or Ge film (100 nm), the SiO2 film

(1 lm), and the Si substrate. The Au film was deposited onto

the GeSn or Ge film by DC magnetron sputtering of the Au

TABLE I. Dependence on annealing temperature (Ta) of lattice constants

(LGe) of Ge, as determined from XRD spectra, Ge1�xSnx concentration (x),

calculated using Vegard’s law. Given bulk Ge and Sn lattice spacings of

0.566 nm and 0.649 nm, respectively, the x values are obtained from

LGe¼ 0.566 � (1� x)þ 0.649 � x.

Ta ( �C) LGe (nm) x

400 0.579 0.16 (16%)

450 0.577 0.14 (14%)

475 0.574 0.1 (10%)

500 0.570 0.05 (5%)

FIG. 3. (a) Raman spectra of the GeSn films annealed at 400 �C, 470 �C, and

500 �C. (b) The peak frequency and FWHM of Ge phonons near �300 cm�1

in the films annealed at 400–500 �C.

FIG. 4. Carrier mobility and concentration of poly-GeSn films annealed at

temperatures of 400–500 �C.
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target. This film was used as an AC Joule heating source and

a sensor for detecting the temperature response via the

thermo-reflectance technique. For the current sample struc-

ture, j values of up to 5 W m�1 K�1 can be measured using

this 2x method. Figure 5 shows the dependence of the j of

the GeSn and Ge films on the annealing temperature. Prior to

annealing, both films exhibited a similar j (�1 W m�1 K�1)

to that of amorphous Ge (a-Ge).13 The j of both films also

increased with increasing annealing temperature. However,

the GeSn films annealed at 300–350 �C, which consisted pre-

dominantly of amorphous regions [Fig. 1(b)], had a slightly

higher j (2.1–2.3 W m�1 K�1) than the a-Ge film. This sug-

gests that the short-range ordering of the Ge networks

improved with annealing, as evidenced by the formation of

nanocrystals in the 350 �C-annealed film [Fig. 1(b)]. The j
increased further owing to poly-crystallization of the films at

temperatures higher than 400 �C. The films annealed at

400 �C and 450–470 �C had j values of 2.7 W m�1 K�1 and

4.6–4.7 W m�1 K�1, respectively. In contrast, the j of bulk

Ge varies from 30–60 W m�1 K�1, as mentioned above.9

The significantly lower j is attributed to enhanced phonon

scattering by Sn interstitials and grain boundaries in the

poly-GeSn films. The j values obtained concur with those

calculated for Ge [Fig. 5] using a similar calculation method

in the literature,14 based on the models of Klemens15 and

Callaway.16 In the calculation, we assumed that phonon scat-

tering stemmed from domain boundary scattering, phonon-

phonon (Umklapp) scattering; parameters and functional

forms are provided in the supplementary material.17–19 For

the calculations of the domain boundary scattering, we used

the average size of the NCs, the domain size, and the concen-

trations of Sn listed in Table I; the average size of the NCs

was determined from TEM images (Fig. 1). The calculated j
values of GeSn films, which were annealed at 400 �C,

450 �C, and 475 �C, were close to the j values estimated by

the 2x method, suggesting that the calculation model pro-

vides reasonable estimates of the j values. The 2x method

was not used to estimate the j of the samples annealed at

temperatures higher than 500 �C, because of the detection

limit of 5 W m�1 K�1, as mentioned above. Indeed, the ther-

mal conductivity of the 500 �C-annealed sample was calcu-

lated to be 9.0 W m�1 K�1, obtained by numerical

calculation [Fig. 5]. The j (2.3 W m�1 K�1) of the poly-Ge

sample annealed at 600 �C, was, however, significantly lower

than those of the poly-GeSn films annealed at

475 �C–500 �C. This lower j resulted from the improved

crystal quality and coarsened grain size because of Sn-

induced crystallization. The poly-GeSn films have, therefore,

higher j values than their poly-Ge counterparts during low-

temperature (<500 �C) annealing. This indicates that when

TFT is fabricated at a low thermal budget, the poly-GeSn

film should exhibit better carrier and thermal transport prop-

erties for the channel material than the poly-Ge film.

Here, we benchmark the poly-GeSn film for TFT chan-

nel materials. The poly-GeSn film has an advantage with

lower thermal budget than poly-Si films. However, measures

must be taken to prevent or at least reduce self-heating of the

poly-GeSn-channel TFT; this heating results from the lower

j of poly-GeSn (5–9 W m�1 K�1) than poly-Si (60–140 W

m�1 K�1).8 The amorphous Si (a-Si) films, amorphous

InGaZnO (a-IGZO) films, and films of organic semiconduc-

tors, for example, pentacene, are also useful as TFT channels

fabricated at low thermal budgets. However, the j of these

films is estimated to be 1–2 W m�1 K�1 for a-Si film,20

1.4 W m�1 K�1 for a-IGZO film,21 and 0.51 W m�1 K�1 for

pentacene film22 lower than poly-GeSn films because of the

amorphous structures. Thus, the poly-GeSn films have an

advantage over these films in suppressing heat from self-

heating of the TFT channel.

In conclusion, poly-GeSn films (Sn¼ 13.6%) were syn-

thesized on SiO2/Si substrates by thermal annealing at

400–500 �C in N2 gas. The GeSn NCs had average grain

sizes of up to �50 nm after annealing at 500 �C.

Additionally, the hole carrier mobility and j of the GeSn

films increased to maximum values of 30 cm2 V�1 s�1 and

9.0 W m�1 K�1, respectively, with annealing. The films also

had higher hole mobility and j than their Ge counterparts,

when annealed at temperatures lower than 500 �C; this

resulted from an improved crystal quality and increased

grain size because of Sn-induced crystallization. The results

indicate that the poly-GeSn film is well-suited as channel

material for TFTs, fabricated with a low thermal budget.
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