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Abstract

Many practical problems and applications of data driven modelling are embedded
into our daily lives and support decision making in various business and industry
domains. Proliferation of data lakes and exponentially growing data volume
is a source of new challenges in the machine learning and data governance
fields. This immense amount of data has resulted in massive web-scale sources
of information and very large datasets. The latter has led the industry and
science to an emerging concept of Big Data. Effective analysis, understanding
and learning from such sources of data using flexible software tools are among
primary goals of this thesis, related to kernel-based and sparse linear modelling.

Kernel-based methods like Support Vector Machines (SVM) and Least-Squares
Support Vector Machines (LSSVM) are among the most popular machine
learning techniques for solving complex classification, regression, clustering or
correlation analysis tasks. These techniques are capable of handling nonlinear
mappings from the input space to the function (solution) space and dealing with
non-stationary data. In this thesis we focus on the kernel-based methods for
unsupervised and semi-supervised learning. Among unsupervised techniques we
study density estimation problems for fault, anomaly and novelty detection. The
latter problem is investigated by the Multi-Class Supervised Novelty Detection
(SND) method by which we combine ideas of One-Class Support Vector Machines
with a novel multi-class classification approach which is tackling discrimination
between modelled i.i.d. distributions and corresponding densities. Within semi-
supervised techniques we have developed an extension of the Kernel Spectral
Clustering (KSC) framework tailored towards learning from both labeled and
unlabeled data using very similar to the SND approach ideas.

Another contribution of this thesis is related to a study of a stochastic learning
paradigm. In this particular setting one deals with randomly drawn subsamples
of the entire dataset. With respect to a given subsample, we re-iteratively
update our solution in order to achieve in expectation a nearly optimal result.
We study a stochastic optimization and learning for classification, regression
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iv ABSTRACT

and clustering problems. Along these lines we develop several extensions of the
Pegasos (Primal Estimated sub-GrAdient SOlver for SVM) algorithm and some
specific reweighted modifications for dual averaging schemes with primal-dual
iterate updates. Within the first approach we modify the Pegasos algorithm
by incorporating novel and interesting loss functions, like pinball loss which is
robust in the presence of outliers. Another studied modification of the Pegasos
algorithm is represented by the usage of the Nyström approximated feature space
where we obtain nonlinear decision boundaries. Within the second direction
we implement very sparse linear classification and regression models using the
regularized dual averaging framework. This framework embodies a notion
of different regularization schemes, for instance elastic-net, l1-regularization
etc. As a novel contribution to this framework we propose reweighted l1- and
l2-regularization schemes.

Currently there are many machine learning software packages available for the
end user but the majority of such solutions is merely intended for the use of
novice practitioners and cannot be adopted by the out-of-field scientists. One
might consider the ultimate necessity for a simple self-explanatory software
design and user-friendly usage patterns where sophisticated machine learning
methods are wrapped by the out-of-box tuning, cross-validation and evaluation
procedures. One of the essential contributions of this thesis is presented by
the SALSA.jl (Software lab for Advanced machine Learning with
Stochastic Algorithms in Julia) software library. It combines kernel-based
and sparse linear modelling with stochastic learning methods. It uses advanced
software design principles for elaborating scalable, robust and user-friendly
black-box modelling library. The latter is one of the major contributions of this
thesis.



Beknopte samenvatting

Veel praktische problemen en toepassingen van data-driven modelling zijn
ingebed in ons dagelijks leven en helpen om beslissingen te maken met
betrekking tot vele bedrijfs- en industrie-domeinen. Het profileren van data
en de exponentiëel groeiende hoeveelheid gegevens is een bron van nieuwe
uitdagingen in de machine learning en data governance velden. Deze immense
hoeveelheid data heeft geresulteerd in enorme web-scale bronnen van informatie
en zeer grote datasets. Dit laatste heeft in de industrie en de wetenschap geleid
tot een nieuw concept, namelijk Big Data. Effectieve analyse, begrip en leren
uit dergelijke gegevensbronnen met behulp van flexibele software tools zijn
een aantal van de primaire doelstellingen van deze thesis, gerelateerd aan de
kernel-gebaseerde en sparse lineaire modellering.

Kernel-gebaseerde methoden zoals Support Vector Machines (SVM) en Least-
Squares Support Vector Machines (LSSVM) behoren tot de meest populaire
machine learning technieken voor het oplossen van complexe classificatie,
regressie, clustering of correlatieanalyse taken. In deze thesis richten we ons op
de kernel-gebaseerde methoden voor unsupervised en semi-supervised leren. Als
unsupervised technieken bestuderen we dichtheidschatting problemen voor de
fout, anomalie en nieuwheid detectie. Het laatste probleem wordt onderzocht
door de Multi-Class Supervised Novelty Detection (SND) methode, waarbij
we ideeën van One-Class Support Vector Machines met een nieuwe multi-class
classificatie benadering combineren om zo de discriminatie tussen gemodelleerd
i.i.d. distributies en hun overeenkomstige dichtheden aan te pakken. Voor
semi-supervised technieken hebben we een uitbreiding van het Kernel Spectral
Clustering (KSC) framework afgestemd op het leren van zowel gelabelde als
ongelabelde data ontwikkeld, gebruikmakend van ideeën vergelijkbaar met SND
benaderingen.

Een andere bijdrage van deze thesis heeft betrekking tot een studie van een
stochastisch leerparadigma. Met betrekking tot een bepaalde deelverzameling,
wordt de oplossing op een re-iteratieve wijze ge-update om zo een vrijwel
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optimaal resultaat te bekomen. We bestuderen een stochastische optimalisatie
en het leren van classificatie, regressie en clustering problemen. Langs deze lijnen
ontwikkelen we een aantal uitbreidingen van het Pegasos (Primal Estimated
sub-gradiënt Solver voor SVM) algoritme en een aantal specifieke herwogen
aanpassingen voor dual averaging schemas met iteratieve primal-dual updates.
In een eerste benadering passen wij het Pegasos algoritme aan door het opnemen
van nieuwe en interessante verliesfuncties, zoals pinball loss welke robuust
is in aanwezigheid van uitschieters. Andere bestudeerde aanpassingen aan
het Pegasos algoritme worden weergegeven door het gebruik van de Nyström
benaderende ruimte waar we lineaire beslissingsgrenzen verkrijgen. In de tweede
richting implementeren we zeer schaarse lineaire classificatie en regressiemodellen
gebruikmakend van regularized dual averaging framework. Dit kader belichaamt
een notie van verschillende regularisatie modellen, bijvoorbeeld elastic-net, l1-
regularisatie enz. Als een nieuwe bijdrage aan dit kader stellen wij herwogen l1-
en l2-regularisatie modellen voor.

Momenteel zijn er veel machine learning software pakketten beschikbaar voor de
eindgebruiker, maar de meerderheid van dergelijke oplossingen is louter bedoeld
voor het gebruik van beginnende gebruikers en kan niet door de wetenschappers
out-of-field worden aangenomen. Men zou de noodzaak kunnen overwegen
voor een eenvoudig vanzelfsprekend software design en gebruiksvriendelijke
gebruikspatronen, waar geavanceerde machine learning methoden worden
verpakt door procedures voor out-of-box tuning, cross-validatie en de evaluatie.
Een van de belangrijkste bijdragen van deze thesis wordt gepresenteerd door de
SALSA.jl (Software lab voor geavanceerde machine learning met
Stochastic Algorithms in Julia) softwarebibliotheek. Het combineert
kernel-gebaseerde en ijle lineaire modellen met stochastische leermethoden. Het
maakt gebruik van geavanceerde software design principes voor de uitwerking van
een schaalbare, robuuste en gebruiksvriendelijke black-box modeling bibliotheek.
De laatste is een van de belangrijkste bijdragen van deze thesis.
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Chapter 1

Introduction

1.1 General Background

Our generation is facing a unique challenge in conceiving, processing and
learning from the unprecedented volumes of information generated each day.
This information is barely structured and demands better machine learning
tools and software packages to be processed and understood. In 2014 Google
received over 4 million search queries from the 2.4 billion strong global internet
population, Facebook users shared nearly 2.5 million pieces of content and email
users sent over 200 million messages. And everything happened just in one
minute. Petabytes of data are being generated every moment. A prominent
source of such information is related to the social media and messengers. In
Figure 1.1 one can find the most recent outlook on the numbers and processing
throughputs of these media in 20151.

Our understanding and ability to learn from such volumes and variety of data
sources stumbles upon our mathematical interpretation and analysis. Here
comes the machine learning field of science and Big Data concepts [2]. In this
thesis we focus on different aspects of machine learning methods applied to a
diverse set of challenging problems, such as classification, clustering and novelty
detection.

One of the prominent research directions in machine learning is related to
kernel-based techniques for probability density estimation problems [103]. In
this particular setting one is interested in detecting anomalies or novelties

1Refer to https://www.domo.com/blog/2015/08/data-never-sleeps-3-0
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2 INTRODUCTION

Figure 1.1: Social media and data volumes in 2015.

in data by estimating the support of a high-dimensional distribution which
is induced by the kernel trick. The latter problem is interesting from many
different perspectives. On the one hand it introduces a non-parametrized setting
into the well-known field of statistics and on the other hand it extends ideas
of Support Vector Machines [19, 125] beyond classification but tackles it as a
typical classification problem where all unlabelled data points are discriminated
against a "single-point" class: the origin.

Another interesting direction of machine learning research is allotted to a
stochastic learning paradigm for Support Vector Machines [19, 125] and
regularized parametric models in the primal. In this particular setting we
are interested in learning iteratively from randomly drawn subsamples of the
entire dataset. This can be particularly welcomed in the context of Big Data
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and online learning with large-scale data sources where we cannot observe all
data at once and are obliged to delve into the batch (semi-stochastic) or single
point2 updates. A prominent and widely acknowledged example of such an
algorithm is Pegasos (Primal Estimated sub-GrAdient SOlver for SVM) [107]
which learns an SVM objective in the primal via proximal Stochastic Gradient
Descent (SGD) steps.

Sparsity is considered to be another challenging machine learning topic. It
can be tackled by applying sparsity inducing norms, such as l1- or nuclear
norm, or within the kernel-based approach by applying Nyström approximation
[129] and the Fixed-Size technique [39]. The latter approach allows to reduce
computational complexity of the kernel-based methods by selecting a small
representative subsample and projecting original dataset onto the approximated
and kernel-induced feature space. This method guarantees non-linear mappings
and the reduced computational complexity in comparison to the full-scale3 kernel
techniques. Furthermore the Fixed-Size approach can be directly embedded
into the stochastic learning paradigm by replacing an original input space with
the approximated one [63].

Finally every machine learning scientist devotes a lot of time and attention to
the design and implementation details of his or her software. We can allude
here to the necessity of writing machine learning libraries as an open source
software which implements flexible and extendable design principles. The latter
aspect should be perceived as a cornerstone and a necessary ingredient to the
successful adoption of machine learning software among out-of-field researchers
and practitioners.

Open source machine learning software is gaining an increasing importance
as an essential toolkit for many challenging scientific and industrial problems.
On the other hand one of the major drawbacks of such a toolkit is the lack
of easy-to-use and user friendly software packages. The latter boils down to
the incomplete documentation, very narrow command-line interfaces or lack of
abstraction which gives the desired level of flexibility in the implementation of
proper extensions and plugins. In our thesis we aim at closing a gap between
many sophisticated machine learning methods, scalable and robust open source
software and out-of-field practitioners which are supposed to utilize this software
in their daily routine activities.

Our attention is focused on the scalability of the aforementioned software.
In the momentum of the Big Data era we have to take into account every
implementation aspect which might be of huge importance in scaling up and out
the way we process data. Many modern technological startups and mainstream

2We refer to an update based on a single data point xi ∈ X d

3We refer to the O(dn2) order complexity of computing dense kernel matrices
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companies utilize distributed and complex MapReduce eco-systems, like Hadoop4

[128] or Spark5 [137], to handle this issue. Scalability and flexibility of the
modern machine learning software are among our interests and key stories which
are in a closer view of this thesis.

Figure 1.2: Machine Learning domain is overlapping with other related but
different scientific domains.

1.2 Machine Learning Challenges in Data-Driven
Modelling

Machine Learning can be considered as a core scientific domain in the applied
mathematics. It is comprised of different sub-domains and overlaps with
other related scientific domains, as shown in Figure 1.2. As we can notice
Artificial Intelligence, Data Mining, Information theory as well as Statistics and
Optimization share with the Machine Learning domain a considerable amount
of findings and methodology which are essential for a successful and seamless

4See http://hadoop.apache.org
5See http://spark.apache.org

http://hadoop.apache.org
http://spark.apache.org
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implementation in software and hardware. As an example we can mention the
foundation of Statistical Learning Theory [125] by Vladimir Vapnik in the ’60s
and later developments of the soft-margin Support Vector Machines [19] which
can be considered as one of the cornerstones and breakthroughs in the Machine
Learning field.

1.2.1 Role of Unsupervised and Semi-Supervised Learning

In the last years kernel-based methods in unsupervised and semi-supervised
learning were gaining importance and weight. This fact can be easily explained
by the underlying assumptions and envisioned by our understanding of the
connection between the distance in some feature space and inner product
evaluated in Reproducing Kernel Hilbert Space (RKHS) [7]. Both these terms
can be represented by the kernel function [3].

The Machine Learning domain is divided into several more specific sub-areas.
We can mention an unsupervised learning problem and more specifically the
Kernel Spectral Clustering (KSC) framework [5], Maximum Margin Clustering
[136] and other kernel-based clustering approaches. On the other hand among
other unsupervised techniques we can emphasize probability density estimation
problem related to the novelty or anomaly detection. In the latter problem one
seeks for a compact support of the underlying high-dimensional distribution
in order to detect outliers in data [103]. Kernel-based approaches can be very
efficient in estimating such a support in a non-parametric way. This is a
promising research direction because of numerous applications and flexibility
of the kernel expansion and RKHS framework [3] in modelling any kind of a
function.

In retrospect, semi-supervised learning has received an unprecedented attention
due to very limited and scarce labelling information available for learning a
model. Nowadays petabytes of information are being generated every moment
and only a few bytes are being correctly labelled by the human operator.
Therefore kernel-based techniques utilizing both labelled and unlabelled samples
are very important for obtaining a correct classification or clustering model.
Here we can mention a semi-supervised extension of the KSC framework [87]
and well-acknowledged Laplacian Support Vector Machines [14, 88] based on
manifold regularization.

In Figure 1.3 we can see a diagram reflecting only a few out of many possible
choices of kernel methods. We emphasize that kernel-based learning can be
structured into several sub-domains: unsupervised, semi-supervised, supervised
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Figure 1.3: Kernel-based methods in machine learning. With the filled light
blue circles we emphasize our contribution to the field.

and manifold learning6. We do highlight with the filled light blue circles our
contribution described in Section 1.4. As we can notice from this Figure some
of our contributions such as Supervised Novelty Detection [65] can be classified
to several categories.

1.2.2 Role of Stochastic Learning for Big Data

Stochastic Learning can be considered as another promising direction in the
Machine Learning domain. In particular we are interested in stochastic
optimization when the number of data points (or the sample size) is too large
and both computation- and memory-wise kernel-based techniques and other
approaches become infeasible.

One of the oldest and most recognizable approaches in stochastic optimization
is represented by Stochastic Gradient Descent (SGD) [20]. In Figure 1.47

we present a simplified outlook on how the SGD scheme works in case of
unconstrained and convex optimization objective. As we can notice SGD

6typically used in the dimensionality reduction context
7Refer to http://www.holehouse.org/mlclass/17_Large_Scale_Machine_Learning.html.

http://www.holehouse.org/mlclass/17_Large_Scale_Machine_Learning.html
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Figure 1.4: With Stochastic Gradient Descent (SGD) every descent step (given
in pink) is much faster but every iteration is fitting only a single observation.
In this figure we present a contour plot of a convex optimization objective
evaluated in 2D domain with respect to arguments θ0, θ1. With red lines we
depict a descent step evaluated with the full gradient information.

performs a lot of very simple descent steps. Each step is based on a single
observation (data point). Therefore the total number of iterations is larger
but computationally the overall computational cost is smaller. In stochastic
optimization the convergence rates do not depend on the total number of data
points. For instance we can reach an ε-optimal solution within T ≈ 1

ε iterations
in case of the strongly convex optimization objective and we need T ≈ 1√

ε

iterations in the general convex and non-smooth case.

Challenges of the Big Data world are around us. Stochastic optimization and
learning is perceived as a cornerstone of the modern Machine Learning era,
especially in such domains as Empirical Risk Minimization and Deep Learning.
Stochastic Gradient Descent constitutes an essential component of learning
schemes and algorithms in many practical scientific and industrial problems.
Learning of interconnection weights in deep convolutional networks, learning
from the streaming data, learning from images etc. Many of the aforementioned
problems are difficult to handle without a stochastic learning setting.

From the very beginning the flexibility of the Support Vector Machines
framework was related to the kernel trick and dual quadratic optimization
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objective. Indeed kernel-based techniques are flexible enough to approximate
any kind of a function in RKHS. This motivation can be extended to the
stochastic learning setting with the aforementioned SVM optimization objective
in primal as well. The key ingredient to learning a non-linear (in the input
space) solution via stochastic optimization is related to the Nyström method
[129] and approximated feature maps.

1.2.3 Role of Sparsity in Parametric Models

For many years sparsity was tightly related to compressed sensing [43, 48] in the
signal processing field. Nowadays we can easily stumble upon sparsity inducing
regularization in many machine learning challenges. For instance learning from
graphs and biological microarrays, understanding of protein-to-protein networks.
All these problems involve sparse data and are believed to retain their solution
or signal in a sparse basis.

The most well-studied example of sparsity inducing regularization is Least
Absolute Shrinkage and Selection Operator or LASSO [53] which promotes a
sparse statistical model with only a small number of non-zero parameters or
weights; therefore, it is much easier to estimate and interpret such a model than
a dense one. This particular operator represents the l1-type of a penalty, i.e.
sum of absolute values or ‖·‖1 norm. In case of parametric models in Regularized
Empirical Risk Minimization this implies finding an optimal trade-off between
an induced sparsity in the recovered signal (solution) and an observed empirical
loss (risk). The latter can be represented by the average mismatch between
the predicted ŷ outputs of the aforementioned statistical model and the true
measured signal y.

Another interesting example of sparsity inducing regularization is referred to the
l0-type of a penalty or ‖ · ‖0 pseudo-norm. This particular type of regularization
can be approached through the reweighted l1-norm induced optimization schemes
[67, 70]. This regularization promotes the sparsest possible solution. To give a
quantitative example please refer to Figure 1.5 where we present an evaluation
of occurrence frequencies for different features of the Spambase UCI [49] dataset
when using l1 and the reweighted l1 regularization.

Finally sparsity is important because of very evident computation- and memory-
wise issues. Imagine a bag of words or n-gram model capturing some specific
attributes or features of the text corpus. These models can span millions or
even billions of entries but not all of them might be inherent to the presented
corpus. If we evaluated a dense model in such a setting8 we would spend hours

8For instance by assigning a diminishing weight to each element of the model.
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Figure 1.5: Frequency of being non-zero for the features of the Spambase dataset.
In the top subfigure we present the results for the reweighted l1-norm induced
approach [67], while the bottom subfigure corresponds to the l1-norm induced
regularization [134].

for a single full scan through the entire dataset.

1.2.4 Role of Different Loss Functions

Loss functions are considered as a cornerstone in the Regularized Empirical Risk
Minimization [125] framework and the analysis of trade-offs between attained
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model complexities and observed (empirical) errors. Among the most popular
loss functions for classification we can distinguish hinge loss and logistic loss
[101]. The first one is heavily utilized for learning linear SVMs while the latter
one is suitable for interpreting a classification decision from the probabilistic
perspective, i.e. how likely is the obtained solution. Furthermore other loss
functions are interesting from an emerging prospect of robustness. A pinball
loss was well-known before in quantile regression [115] but recently rediscovered
in the classification and SVM setting [58] as a promising candidate solution
to handle outliers in data. This particular advantage can be explained by
Figure 1.6 where we obtain different SVM decision boundaries when using
hinge and pinball loss respectively. In Figure 1.6b we can notice that pinball
loss is much less sensitive in the presence of outliers and preserves a good
classification boundary. We can reason that other well-suited loss functions
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Figure 1.6: Points in two classes are marked by red crosses and green stars. The
data in (a) and (b) come from the same distribution but the results of hinge
loss SVM (the solid lines) differ significantly. By contrast, the results of pinball
loss SVM (the dashed lines) are more robust to the presence of outliers and
possible re-sampling.

might be successful in other more specific machine learning subdomains and
provide a justified measure of empirical risk.

1.2.5 Flexible Software Design in Machine Learning

History of the scientific software dates back to the early days of computing. The
language Fortran was developed at IBM in the mid 1950s, and became the first
widely used high-level general purpose and scientific programming language. In
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Figure 1.79 we present a small snippet of code in Fortran which is calculating
statistics on data.

Figure 1.7: Printout of the code snippet calculating statistics on data in Fortran,
the first high-level scientific programming language.

Since then hundreds of high-level languages have been developed. However, a
few have stood the test of time. The same claim applies to the machine learning
software as well. Since the times of Weka [55] many talented and visionary
researchers and practitioners have tried to devise their own implementation of
the most famous and cutting edge machine learning methods. Nowadays there
are many available implementations, such as scikit-learn [99] or Shogun [112],
which are tailored towards different machine learning sub-domains but only
a few of them in practice are implemented based on flexible and extendable
software design principles. The latter paves the way to a number of possible
extensions and enhances the user experience of other software developers and
out-of-field practitioners.

One of the promising directions in scientific computing and high-level, high-
performance dynamic programming languages is called Julia. Julia language
features a syntax that is familiar to users of other technical computing
environments. It provides a sophisticated compiler, distributed parallel
execution, numerical accuracy, and an extensive mathematical function library
largely written in Julia itself. In Figure 5.1 we present a logo of the Julia
technical and scientific computing language.

9Refer to http://www.biosmuseum.com/en/2015/10/01/fortran.

http://www.biosmuseum.com/en/2015/10/01/fortran


12 INTRODUCTION

Figure 1.8: Julia language logo.

Figure 1.9: Usage of SALSA.jl software library used with Ripley dataset.

One of the evident advantages of Julia is an emerging eco-system comprising of
thousands solid software packages purely written in Julia. Another advantage
is presented by the backbone of open source and well-recognized and tested
numerical libraries, such as LAPACK [6] or BLAS [17]. Finally data structures,
lexical scoping and mechanisms embedded into Julia allow an infinite number
of combinations and usage patterns previously inherent only to purely Object
Oriented or Functional Programming languages.

Using the aforementioned principles many researches and software developers
have implemented useful and interesting libraries for machine learning and
artificial intelligence fields. To give a good qualitative example in Figure 1.9
we present a snippet of our contribution to the open source software initiative,
namely SALSA.jl software library and corresponding classification use case
using Ripley dataset [121].
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1.2.6 Scalability of the Machine Learning Software

Scalability of the Machine Learning software was always a major concern since
we have started generating amounts of data that cannot fit into the memory of
a single computer. There are multiple ways of approaching the scalability issue.
One is related to cloud computing environments and the aforementioned Hadoop
[128] and Spark [137] eco-systems which are implementing a well-acknowledged
MapReduce scheme [40].

One of the machine learning libraries embedded into Apache Spark is MLib [89].
It implements a wide range of learning settings and includes several underlying
statistical, optimization and linear algebra primitives. These primitives take
a full advantage of the distributed environment and do parallelize numerical
computations across available nodes in a cluster.

Another way of approaching the same issue is related to the multi-threaded
compilation and execution of programs. This option is more suitable for
supercomputers and it is less prone to the communication bottleneck problem.
Many existing numerical computing libraries, such as LAPACK or BLAS, can
be easily compiled with this option and can distribute computations across all
available processors (cores).

Listing 1.1: Usage of SALSA.jl package with HIGGS Data Set [11]
julia > using SALSA ;
julia > f = LabelledDelimitedFile ("./ Data/ HIGGS .csv",false ,’,’,1);
julia > @time w, b = pegasos_alg ( loss_derivative ( LOGISTIC ),f ,[] ,.1 ,22000 ,500 ,1e -5);
300.523824 seconds (1.06 G allocations : 232.014 GB , 14.80% gc time)
julia > size(f)
(11000000 ,28)

To illustrate an importance of scalability we present a quantitative experiment
for the previously mentioned SALSA.jl software library when learning from the
large-scale HIGGS Data Set [11]. As we can see from the code snippet presented
in Listing 1.1 it contains 11 million data points and 28 dimensions. Just in
a matter of few minutes we can learn a stochastic model with logistic loss by
going though the entire sample (dataset) within 500 iterations and 22 thousand
data points (batch size) per iteration. We learn our model sequentially in one
thread.

Using this model (w, b) we can try to visualize our findings and predicted labels
for the first 10 thousand samples in Figure 1.10. Subfigures represent the
Multidimensional Scaling (MDS) approach [18] applied to this subsample in
order to lower the dimensionality of the input space for visualization. As we
can see even a linear model observing the entire sample only once can deliver a
decent accuracy rate of more than 60%.
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Figure 1.10: Distribution of (a) true and (b) predicted labels of the first 10000
observations in the HIGGS dataset. We train our Pegasos-based [107] model
with logistic loss using the entire HIGGS sample of 11 million data points. MDS
approach [18] was applied to reduce dimensionality of the problem.

1.3 Objectives and Motivations

We outline the objectives and motivations of this thesis below:

• The first objective is to design a novel kernel-based approach for novelty
(outlier) detection which would take into account labelling information
from several observed classes (distributions) and optimally model density
and support of the aforementioned distributions to detect outliers in data.
We aim at developing a unified kernel-based approach which is suitable
for both: novelty detection and multi-class classification. We approach a
data-driven model which exploits different aspects of the presented novelty
detection problem in terms of the primal-dual optimization framework [22].
Another related objective is to extend our approach to the semi-supervised
learning setting. We aim at learning from partially labelled data while
being able to classify or cluster unlabelled data points.

• The second objective is to address a stochastic learning paradigm within
the Regularized Empirical Risk Minimization [125] framework, and more
specifically linear Support Vector Machines solvable by the Pegasos (Primal
Estimated sub-GrAdient SOlver for SVM) algorithm [107]. We aim at
developing more specific extensions for this algorithm which would be
tailored towards new loss functions and adaptive coordinate-wise learning
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schemes. We focus on the stochastic learning paradigm because of an
emerging Big Data concept and infeasibility of other learning schemes
when dealing with large-scale datasets comprising of millions and billions of
data points. Application of proximal Stochastic Gradient Descent (SGD)
to the well-known machine learning problems guarantees convergence
rates independent of the sample size. We can reach ε-optimal solution
within a fixed computational budget of T ≈ 1

ε iterations in case of the
strongly convex optimization objective.

• The third objective is related to a study of the sparsity inducing l0 pseudo
norm. Again we tackle our objective within the Regularized Empirical Risk
Minimization [125] framework and regularized dual averaging schemes
[134] applied via stochastic optimization. We aim at studying reweighted
learning schemes which in a limit could approach the l0-type of a penalty.
This is in particular interesting when the l1-norm regularization does not
attain considerable recovery of a sparse pattern in the obtained solution
or we are interested in the maximally compressed solution. The latter
speeds up model evaluation and reduces the overall memory footprint.

• The fourth objective is devoted to an extension of the well-acknowledged
K-Means [83] clustering algorithm which we tackle via the Regularized
Empirical Risk Minimization framework. We opt for the compressed
and sparsified solution (prototype vectors). We study the regularization
applied to prototype vectors in order to reduce the effect of outliers in data.
Another related objective is connected with the MapReduce [40] scheme
which can be used for learning in parallel individual prototype vectors.
We would like to achieve a considerable speed-up when the number of
clusters to be located is large.

• Our final objective is related to the machine learning open source software.
We aim at developing a unique blend of the latest methodology based on
the Regularized Empirical Risk Minimization and stochastic algorithms
together with the user-centric and user-friendly implementation and
design strategies. These strategies are ubiquitous in software development
industry but still are somewhat incomplete or missing in academia. We
can notice a lot of advanced low-level machine learning libraries which
are hardly conceived by the out-of-field scientists and practitioners. We
want to bridge the gap between broader audience which is unfamiliar
with programming or implementation details on the one hand and skilful
machine learning practitioners and developers on the other. Furthermore
our motivation is to enhance and foster the usage of machine learning
software by adopting very easy to comprehend and utilize application
programming interfaces and routines. In addition these interfaces should
be tailored to the needs of the Big Data world.
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Figure 1.11: Outline of the contributions in this doctoral thesis.

1.4 Contributions of this thesis

The main contributions of this thesis are summarized as follows:

• New regularization and coupling mechanisms for kernel-based
methods in unsupervised and semi-supervised learning. We
study a novel regularization approach based on a coupling term between
classifiers (classes) in primal. This approach extends the One-Class
Support Vector Machine (SVM) setting for supervised and semi-supervised
classification while keeping the nice properties of the novelty detection
problem at hand. We address the latter problem by presenting a new class
of SVM-like algorithms which helps to approach multi-class classification,
semi-supervised classification and novelty detection from a new perspective.
The introduced coupling term between classes leverages the problem of
finding a good decision boundary while preserving the compactness of a
support with the l2-norm penalty. Additionally by utilizing the Kernel
Spectral Clustering [5] framework we are able to extend our approach to
the semi-supervised setting where only a few data points are provided
with the labeling information. The related contributions are:

1. Jumutc V., Suykens J.A.K., "Multi-Class Supervised Novelty
Detection", IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 36, no. 12, Dec. 2014, pp. 2510 - 2523.
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2. Jumutc V., Suykens J.A.K., "New Bilinear Formulation to
Semi-Supervised Classification Based on Kernel Spectral
Clustering", in Proc. of the 2014 IEEE Symposium Series on
Computational Intelligence (IEEE SSCI 2014), Orlando, Florida,
Dec. 2014, pp. 41-47.

• New algorithms for stochastic learning and linear SVM. We
present several extensions to the widely acknowledged Pegasos algorithm
[107, 106]. It utilizes properties of hinge loss and theory of strongly convex
optimization problems for fast convergence rates and lower computational
and memory costs. First we adopt recently developed pinball loss SVM
[58] for the Pegasos algorithm and show some advantages of using it in
a variety of classification problems. Additionally we present extensions
of the Pegasos algorithm applied to the kernel-induced and Nyström
approximated [129] feature space which introduces non-linearity in the
input space. This is done using a Fixed-Size kernel approach [39]. Second
we devise a new weighted formulation of the Pegasos algorithm which
favors from the coordinate-wise regularization hyperparameters. For
both methods we provide theoretical justifications of the convergence and
optimality. The related contributions are:

1. Jumutc V., Huang X., Suykens J.A.K., "Fixed-Size Pegasos for
Hinge and Pinball Loss SVM", in Proc. of the 2013 International
Joint Conference on Neural Networks (IJCNN 2013), Dallas, USA,
Aug. 2013, pp. 1122-1128

2. Jumutc V., Suykens J.A.K.„ "Weighted Coordinate-Wise Pe-
gasos", in Proc. of the 5th International Conference on Pattern
Recognition and Machine Intelligence (PREMI 2013), Kolkata, India,
Dec. 2013, pp. 262-269.

• New sparsity inducing regularization for stochastic learning
with SVM and other parametric models. Recent advances in
stochastic optimization and regularized dual averaging approaches revealed
a substantial interest for a simple and scalable stochastic method which
is tailored to some more specific needs. Among the latest one can find
sparse signal recovery and l0-based sparsity inducing approaches. These
methods in particular can force many components of the solution shrink
to zero thus clarifying the importance of the features and simplifying the
evaluation. We concentrate on enhancing sparsity of the recently proposed
l1- and l2-Regularized Dual Averaging (RDA) methods [134, 44] with a
simple reweighting iterative procedure [68, 67] which in a limit applies the
l0-type of a penalty. We provide theoretical justifications of a bounded
regret for a sequence of convex repeated games where every game stands
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for a separate reweighted RDA problem. Additionally we present a novel
clustering approach based on the well-acknowledged K-Means algorithm
which exploits some of the aforementioned schemes [44] for applying the
regularization and inducing sparsity on the level of prototype vectors. The
related contributions are:

1. V. Jumutc, J.A.K. Suykens, "Reweighted stochastic learning",
Neurocomputing Special Issue - ISNN2014, 2015. (In Press)

2. V. Jumutc, R. Langone, and J. A. K. Suykens, "Regularized
and sparse stochastic k-means for distributed large-scale
clustering", to appear in 2015 IEEE International Conference on
Big Data, 2015.

• Flexible software design for machine learning software. We
present Software lab for Advanced machine Learning with
Stochastic Algorithms (SALSA) which implements some of the well-
known stochastic algorithms for machine learning [107, 134, 44] and
our recent developments in [68, 67]. It was developed in the high-level
technical computing language Julia. By this software package we address
challenges in sparse linear modelling, linear and non-linear Support Vector
Machines applied to large data samples with user-centric and user-friendly
emphasis. We focus also on flexibility and extensibility of the package
for other software developers and out-of-field practitioners. We have
implemented SALSA to alleviate and enhance user experience with
ubiquitous machine learning problems including classification, regression
and clustering. It provides various interfaces and utilities for different pre-
and post-processing routines, such as cross-validation, normalization etc.
The related contributions are:

1. Jumutc V., Suykens J.A.K., "SALSA: Software Lab for Ad-
vanced Machine Learning with Stochastic Algorithms",
Internal Report 15-179, ESAT-SISTA, KU Leuven (Leuven, Belgium),
2015. (Submitted to JMLR Software Section)
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Kernel-based Methods for
Unsupervised and
Semi-Supervised Learning

This chapter comprises previously published articles including:

1. Jumutc V., Suykens J.A.K., "Multi-Class Supervised Novelty
Detection", IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 36, no. 12, Dec. 2014, pp. 2510 - 2523. (Section
2.1)

2. Jumutc V., Suykens J.A.K., "New Bilinear Formulation to Semi-
Supervised Classification Based on Kernel Spectral Clustering",
in Proc. of the 2014 IEEE Symposium Series on Computational
Intelligence (IEEE SSCI 2014), Orlando, Florida, Dec. 2014, pp. 41-
47. (Section 2.2)
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2.1 Multi-Class Supervised Novelty Detection

2.1.1 Introduction

Novelty or anomaly detection is a widely recognized machine learning problem
where one tries to find a compact support of some unknown probability
distribution. Many existing methods, like One-Class SVM [103] or Bayesian
approaches [41], heavily rely on the i.i.d. assumption and deal with unlabeled
data. Contrary to these methods it was proposed recently [116] to approach
novelty detection from a classification perspective. In this setting one tries to
tackle density estimation via a weighted binary classification problem. However,
while the results presented in [116] are consistent with those obtained by other
works on Novelty Detection [24, 42], it is still unclear how these methods behave
when the i.i.d. assumption does not hold or data are generated by a mixture of
distributions. In this research we try to close the gap by answering some of the
following questions. What if we model the support of each distribution (class)
separately? How, in this case, are these models relating to each other? What is
the optimal interpretation of such a problem?

In this paper we concentrate on presenting three different extensions of our
previous method of Supervised Novelty Detection (SND) introduced in [66].
The first extension is formulated in terms of a QP problem with box constraints.
The second one is a Least-Squares problem given by a linear Karush-Kuhn-
Tucker (KKT) system. The third one is related to large-scale problems where
one cannot approach the solution with standard QP solvers. In our previous
research [66] we derived only the binary formulation of the SND method while
in the current paper we extend it to the multi-class case. In this setting one is
interested in obtaining decision functions for each class respectively while trying
to keep the data description compact [122]. This merges together objectives
of novelty detection and classification and reveals the importance of bringing
them together. The outliers in this scheme can be identified as the data which
are not covered by any of the classes related to the obtained decision functions.

To illustrate the practical importance of the Supervised Novelty Detection we
apply it to data from AVIRIS (Airborne Visible/InfraRed Imaging Sensor)
[97]. Some previous papers on anomalous change detection [117, 59] already
exploited the importance of SVM-based approaches in hyperspectral analysis of
infrared images. However we can extend this along the lines of classification and
detect hyperspectral changes among different types of terrain while trying to
automatically categorize the pixels according to these types. Another promising
application of SND are Intrusion Detection Systems (IDS). Here the goal is
to identify intruders which might be scattered between many existing user
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groups. We cannot rely then on the fact that all users are originated from the
same underlying distribution. Therefore many existing approaches would fail
to generalize under the i.i.d. assumption. One might consider intruders as a
separate class and resolve the problem in a multi-class fashion. But this approach
is not very practical because of the initial diversity of intruders and high risk of
overfitting of the resulting classifier. Combining One-Class with Multi-Class
SVM might not be an optimal solution because of an added complexity and
intermediate difficulties with integration in the provided solution.

The remainder of this paper is structured as follows. Section 2.1.2 gives a
general view of our approach and discusses some related methods proposed in
the literature. Section 2.1.3 gives some conventional notations and reviews the
binary case of the SND method. Section 2.1.4 outlines the multi-class QP and
Least-Squares formulation while Section 2.1.5 extends the SND algorithm to
large-scale problems with the newly derived optimization objective and provides
theoretical bounds for convergence. Section 2.1.6 discusses some implementation
and algorithmic issues. Section 2.1.7 provides the experimental setup and results.
Finally Section 2.1.8 concludes the paper.

2.1.2 Problem statement and related work

Problem statement

Supervised Novelty Detection (SND) is designed for finding outliers in the
presence of several classes/distributions. While being useful for detecting the
outliers, the SND method can be effectively used for multi-class classification
and it supplements the class of SVM-based algorithms. One can regard our
approach as an extension of the original work by Schölkopf et al. [103] for One-
Class SVM where one deals with the support of a high-dimensional distribution.
Contrary to Schölkopf’s approach we deal with labeled data and take the i.i.d.
assumption for every class separately. We might also find some connections to
[135] where the authors try to ablate outliers while trying to locate them with
a new SVM objective reformulated in terms of a hinge loss. SND doesn’t try to
find outliers in the existing data pool of data. In general our objective is quite
opposite. We try to find the support of each distribution per class such that we
can identify outliers within our test or validation set while keeping a necessary
discrimination between the observed classes. Moreover we can use outliers at
the learning stage just by keeping their labels negative for all involved classes.
This strategy helps to incorporate all available information at once.
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Difference with other SVMs

We can think of SND as solving a density estimation problem for each involved
distribution per class while trying to separate the classes as much as possible.
In practice this results in finding an appropriate trade-off between the amount
of errors, separation and compactness1 of our model describing these particular
distributions. The demonstrated problem is not of the same kind as other SVMs
where one copes only with optimal separation (minimization of an average error)
and the smoothness of the classifier. For instance, in Laplacian SVMs [88] one
uses additional regularization to keep the values of the decision function for
adjacent points similar but this regularization mostly affects unlabeled samples.
In other methods [135] one is estimating outliers explicitly via a reformulated
hinge-loss penalty. This setting is quite different from our objective of density
estimation where we deal with the outliers either implicitly (see Section 2.1.6
for further remarks) or explicitly by setting all respective labels to −1’s.

2.1.3 Binary case

Notation

We first introduce terminology and some notational conventions. We consider
training data with the corresponding labeling given as a set of pairs

(x1, y1), ..., (xn, yn), xi ∈ X , yi ∈ {−1, 1},

where n is the number of corresponding observations in the set X . Let X be a
compact subset of Rd.

In Section 2.1.3 index i spans the range 1, n if it is not declared explicitly.
Greek letters α, β, λ, ξ without indices denote n-dimensional vectors, while
in Section 2.1.4 Greek letters α, β, λ, ξ spanning only one index denote n-
dimensional vectors. In Section 2.1.5 letters w and x denote d-dimensional
vectors. Otherwise Greek letters denote constants or scalars throughout the
paper.

Illustrative example

According to the classical work by Schölkopf et al. [103] in One-Class SVM we
aim at mapping the data points into the feature space and separating them

1by that we mean finding the smallest unit ball in the feature space that captures all the
data, see [103] for details
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from the origin with maximum margin. From the joint perspective of density
estimation for multiple distributions simultaneously we require more than only
the compactness properties discussed in the previous section. From the model
perspective we need a classification scheme which would preserve compactness
and separation of distributions simultaneously. In our illustrative example we

Figure 2.1: SND solution in the feature space. SND aims at separating training
data by minimizing the inner product between the normal vectors w1 and w2
to the decision hyperplanes while maximizing the margins (distances) between
these hyperplanes and the origin.

are emphasizing two core objectives of the SND method:

• maximizing margins ρ1
‖w1‖ and ρ2

‖w2‖ ,

• pushing θ closer to 180◦ angle (making cos θ ' −1).

If we take a look at the illustrative example in Figure 2.1 we can notice that
these objectives are contradicting with each other. By making angle θ closer to
180 degrees we are making margins ρ1

‖w1‖ and ρ2
‖w2‖ smaller as it can be observed

from Figure 2.2. This can be explained as well from the cosine perspective
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Figure 2.2: SND solution in the feature space if we are emphasizing the second
objective, making cos θ ' −1.

cos θ = 〈w1, w2〉
‖w1‖‖w2‖

as we should maximize ‖w1‖, ‖w2‖ (denominator) and minimize 〈w1, w2〉
(numerator) in order to minimize the cosine and push angle θ closer to 180◦.
Following exactly this reasoning we present our binary QP problem in Section
2.1.3 where we trade-off the minimization of a coupling term 〈w1, w2〉 in the
cosine, minimization of the l2-norms for the normal vectors w1 and w2 and the
training errors ξi. We maximize the ρ1, ρ2 values as well as they do enter the
definition of the margins for both decision hyperplanes.

In Figure 2.3 we show some clear advantages of the SND approach over One-
Class SVM. The latter is not capable of identifying an outlier if it is located on
the line connecting centroids of each distribution. One-Class SVM treats all
samples as being drawn from the same distribution under the i.i.d. assumption.
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Figure 2.3: Qualitative figure illustrating the main difference between SND
solution (left) and One-Class SVM solution (right) in the input space. SND
can provide the better and more compact estimate of each distribution. If an
outlier sample (marked with the red square) was located on the line connecting
centroids of each distribution One-Class SVM method would not detect such
an outlier.

Binary QP problem

For the completeness we recap in this section the binary formulation of our
approach [66] and then continue with the generalized multi-class QP and Least-
Squares problem in the next sections.

First we start with the initial set of constraints which clarify the nature of our
optimization problem w.r.t. normal vectors w1, w2 and maximization of the ρ
bias terms [103, 104]

〈w1,Φ(xi)〉 ≥ ρ1 − ξ(1)
i , {xi ∈ X |yi = 1},

〈w2,Φ(xi)〉 ≥ ρ2 − ξ(2)
i , {xi ∈ X |yi = −1},

(2.1)

where yi ∈ {−1, 1}. To make a link between the One-Class SVM formulation
and our method we join the constraints in Eq.(2.1) and propose the following
optimization problem

min
w1,w2∈F ;ξ,ξ∗∈Rn;ρ1,ρ2∈R

γ
2 (‖w1‖2 + ‖w2‖2) + 〈w1, w2〉

+C
∑n
i=1(ξi + ξ∗i )− ρ1 − ρ2

(2.2)

s.t. yi(〈w1,Φ(xi)〉) ≥ ρ1 − ξi, i ∈ 1, n
yi(〈w2,Φ(xi)〉) ≥ ρ2 − ξ∗i , i ∈ 1, n
ξi ≥ 0, ξ∗i ≥ 0, i ∈ 1, n

(2.3)
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where γ and C are trade-off parameters. The decision functions are

fc1(x) = 〈w1,Φ(x)〉 − ρ1,
fc2(x) = 〈w2,Φ(x)〉 − ρ2. (2.4)

The final decision rule collects fc1 and fc2 as follows

c(x) =
{
argmaxci fci(x), if maxi fci(x) > 0
cout, otherwise,

(2.5)

where ci is either the positive or negative class in the binary classification setting
and cout stands for the outliers’ class.

Remark 1. Here we should stress the main difference with the binary
classification setting where labels yi are strongly associated with classes ci.
Our decision rule implies a separate class which doesn’t directly enter the
formulation in Eq.(2.2) but is thoroughly used for determining tuning parameters
and calculation of the performance measures for our method. These data are
assigned to an outliers’ class as it doesn’t belong to any of the encoded classes
and can be seen as an unsupervised counterpart of our algorithm that can enter
the optimization objective but those yi labels for all classes will be set to −1.
This is different from Laplacian SVMs [88] and manifold regularization [14].
The data Z are a subset of X defined as follows

z1, . . . , zm ∈ Z ⊆ {X : yi = −1, i ∈ 1, nc}, (2.6)

where nc gives the total number of classes. This setting explicitly follows the
multi-class case of Section 2.1.4 and will be explained in detail in Section 2.1.6.

Using αi, λi,≥ 0 and βi, β∗i ≥ 0 Lagrange multipliers we introduce the following
Lagrangian

L(w1, w2, ξ, ξ
∗, ρ1, ρ2, α, λ, β, β

∗) = γ
2 (‖w1‖2 + ‖w2‖2)

+〈w1, w2〉+ C
∑n
i=1(ξi + ξ∗j )

−
∑n
i=1 αi(yi(〈w1,Φ(xi)〉)− ρ1 + ξi)

−
∑n
i=1 λi(yi(〈w2,Φ(xi)〉)− ρ2 + ξ∗i )

−
∑n
i=1 βiξi −

∑nc
i=1 β

∗
i ξ
∗
i − ρ1 − ρ2.

(2.7)

Before going to the final dual representation of Eq.(2.2) let Φ be a feature map
X → F in connection to a positive definite Gaussian kernel [19, 102]

k(x, y) = 〈Φ(x),Φ(y)〉 = e−
‖x−y‖2

2σ2 . (2.8)
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By setting the derivatives of the Lagrangian with respect to the primal variables
to zero, obtaining the saddle point conditions and substituting those into
the Lagrangian one can directly obtain the matrix form of the corresponding
Lagrangian to be maximized

max
α,λ
LD(α, λ) = µ1

2 (αTGα+ λTGλ)− µ2(αTGλ), (2.9)

s.t. C ≥ αi ≥ 0, ∀i
C ≥ λi ≥ 0, ∀i
yTα = 1,
yTλ = 1,

(2.10)

where y is a vector of labels, K is the kernel matrix of dimension n× n with
Kij = k(xi, xj) = 〈Φ(xi),Φ(xj)〉, G = K ◦ yyT , µ1 = γ

1−γ2 , µ2 = 1
1−γ2 , and

◦ denotes component-wise multiplication. LD is maximized and supplements
the class of QP problems with box constraints. We can ensure the concavity
of our dual objective in Eq.(2.9) by setting γ > 1. The latter condition is a
straightforward consequence from the eigendecomposition of the matrix in the
quadratic form of our optimization objective.

2.1.4 Multi-class case

Multi-class QP problem

In this subsection we develop a generic QP formulation for the multi-class
setting of our algorithm which returns decision functions fi for each of the
involved target classes (distributions). These functions encode the support for
each distribution and output positive values in a corresponding region capturing
most of the data points drawn from it.

Combining ideas from One-Class SVM and our assumption we presented
previously in Section 2.1.3 the following QP problem is formulated

min
wi∈F ;ξi∈Rn;ρi∈R

γ
2
∑nc
i=1 ‖wi‖2 +

∑nc
i,j=1;i 6=j〈wi, wj〉

+C
∑n
i=1
∑nc
j=1 ξij −

∑nc
i=1 ρi

(2.11)

s.t. yij〈wj ,Φ(xi)〉 ≥ ρj − ξij , i ∈ 1, n, j ∈ 1, nc
ξij ≥ 0, i ∈ 1, n, j ∈ 1, nc

(2.12)

where yij ∈ {−1, 1}, γ and C are trade-off parameters and nc is the number of
classes. Here we observe that we are working with the set of indices Y, where
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every entry yi ∈ {−1, 1}nc . The decision functions are

fci(x) = 〈wi,Φ(x)〉 − ρi, (2.13)

and the final decision rule is derived in Eq.(2.5). Using αij , βij ≥ 0 as Lagrange
multipliers we introduce the following Lagrangian

L(w, ξ, ρ, α, β) = γ
2
∑nc
i=1 ‖wi‖2 +

∑nc
i,j=1;i 6=j〈wi, wj〉

+C
∑n
i=1
∑nc
j=1 ξij −

∑n
i=1 ρi −

∑n
i=1
∑nc
j=1 βijξij

−
∑n
i=1
∑nc
j=1 αij(yij〈wj ,Φ(xi)〉 − ρj + ξij).

(2.14)

By setting the derivatives of the Lagrangian with respect to the primal variables
to zero and defining η = γ + n− 2 we obtain

wi =
η
∑n
j=1 αjiyjiΦ(xj)−

∑n
j=1

∑nc
p=1,p6=i αjpyjpΦ(xj)

(η + 1)(γ − 1) , (2.15)

C − βij − αij = 0, ∀i ∈ 1, n ∀j ∈ 1, nc (2.16)

∑n
i=1 αij = 1, ∀j ∈ 1, nc. (2.17)

Substituting Eq.(2.15-2.17) into the Lagrangian and using the kernel trick with
the expression given by Eq.(2.8) one can directly obtain the matrix form of the
corresponding Lagrangian to be maximized

max
αi
LD(αi) = − 1

µ

nc∑
i

λTi Kαi, (2.18)

s.t. C ≥ αij ≥ 0, ∀i ∈ 1, n, ∀j ∈ 1, nc∑n
i=1 αij = 1, ∀j ∈ 1, nc

(2.19)

where λi = (γ + n− 2)(αi ◦ yi)−
∑nc
j=1,j 6=i(αj ◦ yj), µ = (η + 1)(γ − 1), K is a

kernel matrix of size n× n and ◦ denotes component-wise multiplication. LD is
maximized and is almost identical to one defined in Eq.(2.9) if we take nc = 2.
The expression for fi becomes

fci(x) =
η
∑n
j=1 αjiyjik(xj , x)−

∑n
j

∑nc
p=1,p6=i αjpyjpk(xj , x)

(η + 1)(γ − 1) − ρi, (2.20)

where k(x, y) stands for our preferred kernel function in Eq.(2.8).

We can ensure the concavity of our dual objective in Eq.(2.18) by examining
necessary conditions for the primal problem in Eq.(2.11) to be strictly convex.
This can be done by applying the Gershgorin circle theorem to bound the
minimal positive eigenvalue. It is very easy to verify when γ > nc − 1 we have
λmin > 0.
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Least-Squares problem

To obtain Least-Squares (LS-SND) formulation with equality constraints of our
initial problem we reformulate Eq.(2.11) in terms of squared error residuals ξij

min
wi∈F ;ξi∈Rn;ρi∈R

γ1
2
∑nc
i=1 ‖wi‖2 +

∑nc
i,j=1;i 6=j〈wi, wj〉

+γ2
2
∑n
i=1
∑nc
j=1 ξ

2
ij −

∑nc
i=1 ρi

(2.21)

s.t. yij〈wj ,Φ(xi)〉 = ρj − ξij , i ∈ 1, n, j ∈ 1, nc. (2.22)

The Lagrangian for this problem is

L(wi, ξ, ρ, α) = γ1
2
∑nc
i=1 ‖wi‖2 +

∑nc
i,j=1;i 6=j〈wi, wj〉

+γ2
2
∑n
i=1
∑nc
j=1 ξ

2
ij −

∑nc
i=1 ρi

−
∑n
i=1
∑nc
j=1 αij(yij〈wj ,Φ(xi)〉 − ρj + ξij),

(2.23)

where the αij values are the Lagrange multipliers which can be both positive
and negative now due to the equality constraints.

By substituting η = γ1 + n− 2 the conditions for optimality now yield

wi =
η
∑n
j αjiyjiΦ(xj)−

∑n
j

∑nc
p=1,p6=i αjpyjpΦ(xj)

(η + 1)(γ1 − 1) , (2.24)

αij = γ2ξij , ∀i ∈ 1, n ∀j ∈ 1, nc (2.25)

∑n
i=1 αij = 1, ∀j ∈ 1, nc. (2.26)

By substituting the expressions for wi and ξij in our equality condition, applying
the kernel trick in Eq.(2.8) and preserving matrices Gij = K ◦ yiyTj and
constraints from Eq.(2.19) we can obtain the following linear Karush-Kuhn-
Tucker (KKT) system of the form:

Ωα? = θ, (2.27)
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which we solve in αi and ρi, where

Ω =



0 . . . 0
... . . . ...
0 . . . 0

1T1 . . . 0Tn
... . . . ...

0Tn . . . 1Tn

1n . . . 0n
... . . . ...

0n . . . 1n

−ηG
?
11
µ

. . .
G1nc
µ

... . . . ...
Gnc1
µ

. . . −
ηG?ncnc
µ


(2.28)

defining G?ij = Gij + µ
ηγ2

I and

α? =



ρ1
...
ρnc

α1
...
αnc


θ =



1
...
1
0n
...

0n


(2.29)

and 1n and 0n denote vectors of length n. To clarify the structure of the
matrix Ω we should refer to every part of this matrix separately. The upper-left
submatrix is a square matrix of size nc × nc where all residuals are zeros. The
upper-right and bottom-left matrices are block diagonal where every element
on the diagonal is a vector 1n. These matrices are identical but the upper-
right matrix is transposed. The bottom-right matrix is a square matrix of size
nnc × nnc where every element on the diagonal is of the form − η

µ (Gii + I/γ2)
and any off-diagonal element is bound to matrix Gij in the following form: Gij

µ .
The final decision function and the decision rule are of the same form as in
Eq.(2.20) and Eq.(2.5).

Remark 2. Additionally we should emphasize that the Least-Squares form of
our algorithm is of much less complexity than QP formulation and results in only
one linear system of size nnc × nnc. This drastically decreases computational
costs for the cross-validation procedure which will be presented in Section 2.2.4
and mentioned in the description of Algorithms 2 – 3.
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2.1.5 Large-scale optimization problem

Algorithm

To cope with large-scale datasets we propose a scalable first-order optimization
algorithm for the multi-class QP problem. The formulation is inspired by the
Pegasos algorithm [107] and we provide theoretical justification along the lines
of the Pegasos formulation.

Remark 3. The large amount of variables significantly slows down every
iteration of any QP solver and starting from several thousands of variables even
our approach for tuning the parameters (see Section 2.2.4) becomes unfeasible.
To tackle this problem one may study a scalable SMO-like method by Platt [100]
or Nesterov’s approach for convex optimization [94]. However we selected here
a Pegasos-like implementation of the SND algorithm which makes use of the
Nyström approximation of the RBF kernel [39, 129] and converges with the
selected accuracy ε within O(R2

λε ) iterations. This result originally provided in
[107] is much better than previously implemented approaches (e.g. SVM-Perf
[62]) which like Pegasos make use of the subgradient descent but converge in
O( R2

λε2 ).

First we rewrite our optimization objective in Eq.(2.11) in terms of the hinge
loss. Second we move the bias terms ρi into the hinge loss. Finally we optimize
only over the weights wi which are joint together as

w =

 w1
...

wnc


to be compatible with the original formulation of the Pegasos algorithm.
We benefit from the convergence analysis provided in [107] and present our
adjustments for the SND method in Theorem 3.

We derive an approximate instantaneous objective function in the primal for
the SND method by

f(w;At;Bi; Γ) = λ

2w
TΓw + 1

m

nc∑
i=1

∑
(x,y)∈At

L(w;Bi; (x, y)), (2.30)

where the hinge loss for the i-th class is given by

L(w;Bi; (x, y)) = max{0, 1− y(〈w,BTi x〉+ ρi)}, (2.31)
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and At is our working subset (subsample) at iteration t and matrices Γ and Bi
are of the special form

Γ =

 γI11 . . . I1nc
... . . . ...

Inc1 . . . γIncnc

 ,

Bi =
(

0 . . . Ii . . . 0
)
.

(2.32)

In the above equations we expect w to be of dimension dnc where d is our input
dimension and nc is the number of classes. Every identity matrix or zero matrix
is of dimension d × d and ρi ∈ R. Scalar m denotes the size of the working
subset At.

Here we should emphasize that we carry out optimization only w.r.t. w and
we include ρ (which is part of the hinge loss) as a additional (last) element of
vector w. This strategy, originally proposed in [107], allows us to rely on the
strong convexity of the optimization objective.

Next we present a brief summary of the large-scale SND method in Algorithm
1 and continue with the analysis in the next subsection. Below we denote the
whole dataset by S.

Algorithm 1: Pegasos-based SND algorithm
Data: S, γ, λ, T,m

1 Compute Γ and Bi matrices defined in Eq.(2.32)
2 Set w(1) randomly s.t. ‖w(1)‖ ≤

√
nc/λ(γ + nc − 1)

3 for t = 1→ T do
4 Set ηt = 1

λt
5 Select At ⊆ S, where |At| = m

6 A+
t(i) = {(x, y) ∈ At : y(〈w,BTi x〉) < 1},∀i

7 w(t+ 1
2 ) = w(t) − ηt(λΓw(t) − 1

m

∑nc
i=1
∑

(x,y)∈A+
t(i)

yBTi x)

8 w(t+1) = min
{

1,
√
nc/λ(γ+nc−1)

‖w(t+ 1
2 )‖

}
w(t+ 1

2 )

9 end
10 return w(T+1)

The above algorithm is based on the Pegasos formulation but differs in the
computation of the subgradient and the projection step. Now we can see that
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the subgradient

∇t = λΓw(t) − 1
m

nc∑
i=1

∑
(x,yi)∈A+

t(i)

yiB
T
i x (2.33)

depends on the additional matrices Γ and Bi introduced in Eq.(2.32) and in
projection step (8) we have slightly different rescaling term.

Analysis

In this subsection we present a convergence analysis which brings to our
algorithm the same convergence bounds as in Pegasos. We extend the analysis
presented in [107] to our instantaneous objective by presenting Theorem 3.
But first we recap the important lemma from [107] which establishes necessary
conditions for our theorem.

Lemma 1 (Shalev-Shwartz et al., 2007). Let f (1), ..., f (T ) be a sequence of λ-
strongly convex functions w.r.t. the function 1

2‖ ·‖
2. Let B be a closed convex set

and define
∏
B(w) = argminw′∈B ‖w − w′‖. Let w(1), . . . , w(T+1) be a sequence

of vectors such that w(1) ∈ B and for t ≥ 1, w(t+1) =
∏
B(w(t)−ηt∇t), where ∇t

is a subgradient of f (t) at w(t) and ηt = 1/λt. Assume that for all t, ‖∇t‖ ≤ G.
Then, for all u ∈ B we have

1
T

T∑
t=1

f(w(t)) ≤ 1
T

T∑
t=1

f(u) + G2(1 + ln(T ))
2λT .

Based on the above lemma, we are now ready to bound the average instantaneous
objective of Algorithm 1.

Theorem 1. Assume ‖x‖ ≤ R for all (x, y) ∈ S. Let w∗ = argminw f(w;At;Bi; Γ)
and let c =

√
λnc(γ + nc − 1) + ncR. Then, for T ≥ 3 and γ > nc − 1 we have

1
T

T∑
t=1

f(w(t);At;Bi; Γ) ≤ 1
T

T∑
t=1

f(w∗;At;Bi; Γ) + c2 ln(T )
λT

.

Proof. To prove our theorem it suffices to show that all conditions of Lemma 1
hold. First we show that our problem is strongly convex. It is easy to verify
that matrix Γ given in Eq.(2.32) is always positive definite if γ > nc − 1 which
implies that Bregman divergence is always bounded from below w.r.t to λ and
2-norm ‖ · ‖. Since f (t) is a sum of λ-strongly convex function λ

2w
TΓw and
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another convex function (hinge-loss), it is also λ-strongly convex. Next by
assuming B = {w : ‖w‖ ≤

√
nc/λ(γ + nc − 1)} and the fact that ‖x‖ ≤ R we

can bound subgradient ∇t. The explicit form for the subgradient evaluated
at point x is given in Eq.(2.33). Using the triangular inequality and denoting
2-norm by ‖ · ‖ one obtains

‖∇t‖ ≤ λ‖Γw‖+
∑
i ‖BTi x‖ ≤ λ‖Γ‖‖w‖+ nc‖x‖ ≤

≤ λ(γ + nc − 1)‖w‖+ ncR ≤
√
λnc(γ + nc − 1) + ncR.

The upper bound on ‖Γ‖ is derived using the Gershgorin circle theorem as
follows:

‖Γ‖ ≤
√
υmax(Γ∗Γ) = υmax(Γ) ≤ D(γ, nc − 1) = γ + nc − 1,

where Γ∗ is the conjugate transpose of Γ, υmax is the maximum eigenvalue
and D(γ, nc − 1) is the Gershgorin circle with the center γ and radius nc − 1.
The first equality follows from the block-wise structure of matrix Γ. The last
inequality follows from the fact that diagonal elements of Γ are the same and
equal to γ everywhere and the sum of off-diagonal elements is exactly nc − 1,
which is clear from the structure of Γ in Eq.(2.32). Finally we have to show
that w∗ ∈ B. To do so, we derive the dual form of our objective in terms of the
dual variables αi ∈ [0, 1]n, i ∈ 1, nc related to decision functions fci in Eq.(2.13)
such that we have the following mixed optimization objective

max
αi

min
w

1
m

nc∑
i=1
‖αi‖1 −

λ

2w
TΓw

and after assuming strong duality and the optimal solution w.r.t the primal
variable w∗ and dual variables α∗i one gets

λ

2w
∗TΓw∗ + 1

m

nc∑
i=1

∑
x∈S

L(w∗;x) = −λ2w
∗TΓw∗ + 1

m

nc∑
i=1
‖α∗i ‖1.

For simplicity we replace the notation for the hinge-loss with L(w∗;x).
Rearranging the above, using the non-negativity of the hinge-loss and applying
the Gershgorin circle theorem we obtain our bound: ‖w‖ ≤

√
nc/λ(γ + nc − 1).

Now we can plug-in everything back to inequality in Lemma 1 which completes
the proof.

Fixed-Size approach

One of the crucial aspects in estimating the support of some unknown high-
dimensional distribution is the non-linearity of the feature space where we are
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trying to find a solution. As it was discussed in [103] we cannot rely on the
linear kernel in this case and should use the RBF kernel instead. To overcome
restrictions of Algorithm 1 which operates only in the primal space we apply
a Fixed-Size approach [39] to approximate the RBF kernel with some higher
dimensional explicit feature vector.

First we use an entropy based criterion to select the prototype vectors (small
working sample of size m� n)2 and construct kernel matrix K. Based on the
Nyström approximation [129] an expression for the entries of the approximation
of the feature map Φ̂(x) : Rd → Rm, with Φ̂(x) = (Φ̂1(x), . . . , Φ̂m(x))T is given
by

Φ̂i(x) = 1√
λi,m

m∑
t=1

uti,mk(xt, x),

where λi,m and ui,m denote the i-th eigenvalue and the i-th eigenvector of K
defined in Eq.(2.8). Using the above expression for Φ̂(x) we can proceed with
the original formulation of Algorithm 1 and find the solution of our problem in
primal.

2.1.6 Algorithms and explanations

Coupling term and γ explained

To illustrate the importance of the coupling term 〈wi, wj〉 we implemented a
toy example where initially the coefficient γ in Eq.(2.11, 2.21) is fixed and the
other hyperparameters were obtained via the tuning procedure described in
Section 2.2.4.

As we can see in Figure 2.4 the parameter γ directly affects the decision
boundaries of the SND method as it increases from 1.1 in the topmost subfigure
to 100 in the bottom one. To facilitate the reasoning of how γ value affects the
coupling term and and the overall model consistency we provide each subfigure
with the effective value of ‖w1‖, ‖w2‖ and cos θ terms which are calculated
w.r.t. our dual representation in Eq.(2.9) and the kernel expansion in Eq.(2.8)
as

cos θ = 〈w1, w2〉
‖w1‖‖w2‖

= αTGλ√
(αTGα)(λTGλ)

,

where ‖w1‖ =
√
αTGα, ‖w2‖ =

√
λTGλ and G = K ◦ yyT relates to the matrix

calculated from the training data. From examining Figure 2.4 one can observe
that only carefully chosen parameter γ and a trade-off for 〈w1, w2〉 term can

2see Section 4 of [39] for the details
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Figure 2.4: Decision boundaries of the SND method for varying values of the
γ hyperparameter, illustrating the importance of small cosθ and minimized
‖w1‖, ‖w2‖.
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bring necessary discrimination between classes while preserving the compactness
of the support. This means that any over- or underestimation of γ parameter
can lead to an unsatisfactory solution. The central subfigure of Figure 2.4
clearly indicates that a minimal cos θ term doesn’t ensure the best possible
solution. This fact empirically illustrates our intuition and reasoning about
the relation between the coupling term and margins as the top and bottom
subfigures provide a good separation between classes but do not ensure the
compact support for one of the distributions. We can see that ‖w1‖, ‖w2‖ are
quite large (of 102 magnitude) and one of the classes almost completely covers
the entire space.

Classification and novelty detection algorithms

In this section we present a general purpose algorithm for SND which can be
applied both in classification and novelty detection settings.

To clarify how the SND method can be used in both settings: classification and
novelty detection, we present a brief algorithmic summary for these settings
in Algorithms 2–3. One should notice that the main difference between both
algorithms is the cross-validation step, decision rule and the input data.

In the presented algorithms the "CrossvalidateSND" function stands for the
tuning procedure which will be described in the next section. The crucial
difference between Algorithm 2 and 3 is the usage of the data Z defined in
Eq.(2.6). The SND model is tuned to perform novelty detection with respect
to data Z and maximize the observed detection rate. In binary classification
problem in Eq.(2.2) we cannot use data Z because of the labeling limitation
on yi ∈ {−1, 1}. We have to switch to the multi-class optimization objective
in Eq.(2.11). Here we refer to Z as a matrix containing subset Z ⊆ X which
is labeled negatively everywhere, by taking yi = −1, i ∈ 1, nc. It can be used
in the cross-validation procedure, such that we do care about maximizing
detection rate of those samples along with minimization of the validation error
for positively labeled samples. As a result of the "CrossvalidateSND" function
we output the optimal parameters γ,C for the SND model and the optimal
RBF kernel width σ. Finally c(x) decision functions are defined by the means of
the dual variables αi, the primal variables ρi, the optimal parameters γ, σ and
the labeling Y in Eq.(2.5) and Eq.(2.20). Here we can notice that for Algorithm
2 we are not giving any alternative decisions in c(x) and are obliged to select
between classes ci.
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Algorithm 2: SND for binary classification
input : training data X of size l × d, class labels Y of size l × nc
output : SND explicit decision rule

1 begin
2 [γ, σ, C]← CrossvalidateSND(X,Y );
3 [α, ρ]← ComputeSND(X,Y, γ, σ, C);
4 c(x)← argmaxci fci(x);
5 end

Algorithm 3: SND for novelty detection
input : training data X of size l × d, outliers’ data Z of size m× d, class

labels Y of size l × nc, −1z matrix of minus ones of size m× nc
output : SND explicit decision rule

1 begin
2 [γ, σ, C]← CrossvalidateSND(X,Y, Z,−1z);
3 [α, ρ]← ComputeSND([X;Z], [Y ;−1z], γ, σ, C);

4 c(x)←
{
argmaxci fci(x), if maxi fci(x) > 0
cout, otherwise

;

5 end

2.1.7 Empirical results

Experimental setup

In all our experiments for all tested SND and SVM models we use a 2-step
procedure for tuning the parameters. This procedure consists of Coupled
Simulated Annealing [133] initialized with 5 random sets of parameters for
the first step and the simplex method [91] for the second step. After CSA
converges to some local minima we select the tuple of parameters that attains
the lowest error and start the simplex procedure to refine our selection. On
every iteration step for CSA and simplex method we proceed with a 10-fold
cross-validation. While being considerably faster than the straightforward
grid search technique obtained parameters tend to vary more because of the
randomness in initialization.

We selected the universal RBF kernel (see [114]) that is generally capable to
separate all compact subsets and is suitable for many kinds of data. The choice
of the RBF kernel was motivated by [103] where the authors explain an obvious
advantage of it and that the data are always separable from the origin in the
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feature space (see Definition 1 in [103]). We tune the bandwidth of the RBF
kernel in Eq.(2.8) with additional trade-off parameters for all methods using
the tuning procedure described within the previous paragraph.

For the large-scale version of SND we use the Nyström approximation and the
Fixed-Size approach [39] where the σ parameter was inferred via cross-validation
procedure described above. The active subset was selected via maximization of
the Renyi entropy. The size of this subset was set to be

√
n for all methods that

utilize Nyström approximation. Finally we fix the m parameter in Algorithm 1
to be 0.1|S|.

For the Toy Data (1) we performed 100 iterations with random sampling of size
100 according to the separate uniform distributions from intersecting intervals
[0, 1] and [−0.5, 0.5], collected averaged error rates with corresponding standard
deviations. For novelty detection we performed 100 iterations with random
sampling from three different distributions3 (see Figure 2.6) scaled to the range
[−1, 1] for all dimensions. For all toy datasets in every iteration we splitted all
data points in proportion 80% to 20% into training and test counterparts. In
novelty detection setting 15% of all data samples were generated as outliers.
For all UCI datasets [49] (except for Arcene and large scale datasets) we used
5 independent 10-fold splittings and performed averaging and paired t-tests
[38] for the comparison of errors. Arcene was split into training and validation
datasets initially and we simply run the classification scheme 10 times. For
the large scale datasets we run all methods 50 times with the random split
in proportion of 50% by 50% for training and test data respectively. For the
properties of UCI and toy datasets one can refer to the Table 2.1.

We implemented the original QP formulation of the SND method as an
optimization problem using the Ipopt package (see [127]), which implements
a general purpose interior point search algorithm. The Least-Squares version
of SND was implemented using standard Matlab backslash operation. The
large-scale version of SND and Pegasos were implemented in Matlab. LS-SVM
with Fixed-Size approach is entirely implemented in Matlab as well. For learning
C-SVM and One-Class SVM we used the LIBSVM package [27]. All experiments
were run on Core i7 CPU with 8GB of RAM available under Linux CentOS
platform.

Numerical results with UCI datasets

First we present some results for the classification setting where we can fairly
compare our method to C-SVM [19] and LS-SVM [121]. Then we proceed

3Toy Data (2-4)
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Table 2.1: Datasets

Dataset # of attributes # of classes # of data points

Toy Data (1) 2 2 200
Toy Data (2-4) 2 2 150
Arcene 10000 2 900
Ionosphere 34 2 351
Parkinsons 23 2 197
Sonar 60 2 208
Zoo 17 7 101
Iris 4 3 150
Ecoli 8 5 336
TAE 5 3 151
Seeds 7 3 210
Arrhythmia 279 2 452
Pima 8 2 768
Madelon 500 2 2000
Red Wine 12 2 1599
White Wine 12 2 4898
Magic 11 2 19020

with some results for the large-scale UCI datasets. Then we continue with the
novelty detection scheme in the presence of two and more classes and some
number of outliers. Here we simply present preliminary results for different toy
problems and report performance in terms of general test error and detection
rate4. Finally in the next subsection we present real life example from anomalous
change detection in AVIRIS (Airborne Visible/InfraRed Imaging Sensor) images
[97].

Tables 2.2-2.3 present results for independent runs of QP and Least-Squares
formulation of SND method in comparison to C-SVM and LS-SVM. All
misclassification rates are collected on the identical test sets described in Section
2.2.4. Comparing the results in Tables 2.2-2.6 we can clearly observe that
our method is quite comparable in terms of generalization error to C-SVM
and LS-SVM. In Tables 2.5-2.6 we show p-values of a pairwise t-test which
gives a clear evidence that generalization errors for SND and LS-SND are
comparable to the corresponding values obtained for C-SVM and LS-SVM and
there is no statistically significant difference in the mean values. However in

4we report the percentage of the detected outliers
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Table 2.2: Averaged misclassification error on test data

Dataset SND C-SVM LS-SVM

Toy Data (1) 0.1395± 0.097 0.1385± 0.078 0.1325± 0.085
Arcene 0.1620± 0.006 0.1730± 0.095 0.1810± 0.091
Ionosphere 0.0684± 0.043 0.0740± 0.031 0.0483± 0.030
Parkinsons 0.0613± 0.046 0.0721± 0.060 0.0621± 0.064
Sonar 0.0962± 0.069 0.1250± 0.105 0.1205± 0.101
Zoo 0.0500± 0.081 0.0733± 0.119 0.1071± 0.119
Iris 0.0467± 0.068 0.0440± 0.065 0.0493± 0.067
Ecoli 0.1263± 0.069 0.1240± 0.061 0.1562± 0.062
TAE 0.4031± 0.159 0.4346± 0.146 0.5545± 0.131
Seeds 0.0667± 0.060 0.0650± 0.050 0.0838± 0.073

Table 2.3: Averaged misclassification error on test data

Dataset LS-SND C-SVM LS-SVM

Toy Data (1) 0.1425± 0.079 0.1450± 0.081 0.1395± 0.079
Ionosphere 0.0803± 0.033 0.0705± 0.044 0.0541± 0.034
Parkinsons 0.0566± 0.046 0.0664± 0.065 0.0647± 0.050
Sonar 0.1198± 0.059 0.1173± 0.074 0.1283± 0.054
Arrhythmia 0.2193± 0.050 0.2220± 0.050 0.2286± 0.061
Pima 0.2325± 0.039 0.2308± 0.043 0.2391± 0.039
Zoo 0.1487± 0.145 0.0671± 0.079 0.1518± 0.109
Iris 0.0667± 0.070 0.0427± 0.060 0.0347± 0.043
Ecoli 0.1586± 0.084 0.1192± 0.044 0.1376± 0.040
TAE 0.4219± 0.110 0.4300± 0.141 0.5655± 0.116
Seeds 0.0905± 0.063 0.0629± 0.049 0.0905± 0.063

Table 2.3 we can see that LS-SND algorithm almost in all cases is superior to
LS-SVM and obtains lower generalization errors. In general we can observe
better performance from QP versions of SVM but this can be easily explained
by properties of hinge-loss which better deals with the outliers. The latter
disadvantage can be easily handled with a weighted formulation of LS-SVM
[119].

For the second part of our numerical experiments we applied a large-scale
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Table 2.4: Averaged misclassification error on test data

Dataset SND Pegasos NyFS-LSSVM

Pima 0.2885± 0.024 0.2866± 0.020 0.2333± 0.020
Madelon 0.4307± 0.022 0.4272± 0.017 0.4531± 0.014
Red Wine 0.2648± 0.016 0.2625± 0.014 0.2583± 0.014
White Wine 0.2747± 0.021 0.2715± 0.014 0.2381± 0.008
Magic 0.1474± 0.012 0.1576± 0.004 0.1375± 0.003

Table 2.5: P-values of a pairwise t-test on generalization error between SND
and other methods

Dataset to C-SVM to LS-SVM

Toy Data (1) 0.87329 0.63883
Arcene 0.71842 0.52162
Ionosphere 0.73986 0.24175
Parkinsons 0.65938 0.97501
Sonar 0.47715 0.53844
Zoo 0.25673 0.011471
Iris 0.84167 0.84356
Ecoli 0.85788 0.02481
TAE 0.30483 1.9013e-09
Seeds 0.86329 0.20278

modification of the SND algorithm to five large UCI datasets and collected
corresponding misclassification errors. Table 2.4 presents these results and
we can see that almost everywhere NyFS-LSSVM [84] (Nyström Fixed-Size
LS-SVM) method achieves better performance than SND or Pegasos algorithms.
This can be simply addressed by the nature of NyFS-LSSVM method, which is
an exact algorithm while Algorithm 1 and Pegasos are approximate algorithms.
On the other hand SND and Pegasos are very similar in the achieved results but
for the largest Magic dataset SND surprisingly achieves better performance with
very high statistical significance (see Table 2.7). One of the major advantages
of Pegasos-based algorithms is the price of every iteration/training which
can be controlled by m parameter in Algorithm 1. The example of novelty
detection problem solved by this large-scale algorithm one can observe in Figure
2.5. Table 2.8 represents a pivot table of the effective values for the l2-norms
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Table 2.6: P-values of a pairwise t-test on generalization error between LS-SND
and other methods

Dataset to C-SVM to LS-SVM

Toy Data (1) 0.8265 0.79085
Ionosphere 0.2189 0.00016358
Parkinsons 0.33084 0.40091
Sonar 0.8537 0.44872
Pima 0.82858 0.40384
Sonar 0.8537 0.44872
Zoo 0.0006965 0.90418
Iris 0.007038 0.068409
Ecoli 0.0039443 0.11129
TAE 0.75031 6.5273e-09
Seeds 0.18541 1

Table 2.7: P-values of a pairwise t-test on generalization error between large-scale
Pegasos-based SND and other methods

Dataset to Pegasos to NyFS-LSSVM

Pima 0.66776 9.5771e-22
Madelon 0.37543 1.4418e-08
Red Wine 0.45226 0.032591
White Wine 0.37445 9.4174e-20
Magic 9.3029e-08 1.0061e-07

Table 2.8: Effective values of the l2-norms and the cosθ value between the
corresponding normal vectors in Figure 2.5

Classes (ci - cj) cos θ norms (‖wi‖, ‖wj‖)

c1 - c2 -0.3795 (0.5113, 0.4928)
c1 - c3 -0.4812 (0.5113, 0.5174)
c2 - c3 -0.4034 (0.4928, 0.5174)
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Figure 2.5: Pegasos-based SND method in a novelty detection scheme with 3
classes. Size of the toy dataset is 9200.

Table 2.9: Averaged misclassification error / (detection rate) for SND and
One-Class SVM

Dataset SND One-Class SVM

Toy Data (2) 0.0083 / (0.9746) 0.0233 / (1)
Toy Data (3) 0.0113 / (1) 0.0233 / (1)
Toy Data (4) 0.0366 / (0.8182) 0.0791 / (0.7808)

and the cosθ value between the corresponding normal vectors and decision
boundaries (hyperplanes in the feature space) in Figure 2.5. This information
helps us to understand the connection in a large-scale setting between the
pairwise discrimination of classes and the corresponding compact support of
the distributions from which these classes are drawn.

For the third part of our numerical experiments we have chosen to apply SND in
an anomaly detection scheme in the presence of 2 or more classes. In this setting
we cannot fairly compare our method to other SVM-based algorithms because
of an obvious novelty of our problem. So we restrict ourselves to evaluating
the SND algorithm for our 3 toy datasets and comparing it to One-Class SVM
in terms of total misclassification error (assuming binary setting: non-outliers
vs. outliers) and detection rate of outliers. From the Table 2.9 we can clearly
conclude that SND provides better support for underlying distributions and
gives comparable or even better detection rates. One can also observe decision
boundaries of the SND method for several random runs on different toy problems
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Figure 2.6: SND method in a novelty detection scheme with 2 classes. Subfigures
(a) through (c) represent SND boundaries in the presence of outliers (+) and
correspond to Toy Data (2) through (4).

(Toy Data (2-4)) in Figure 2.6. The latter figure provides a better view on
SND properties and output decision boundaries in the presence of the scattered
outliers. In Figures 2.7 and 2.8 we can see a comparison of the SND approach
with One-Class SVM. In Figure 2.7 we use for One-Class training all data points
available in both classes while in Figure 2.8 we try to find the support for each
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Figure 2.7: Comparison of SND (a,c) and One-Class SVM (b,d) in the novelty
detection scheme.

Figure 2.8: Comparison of SND (a) and two joint One-Class SVMs (b) in
the novelty detection scheme showing a clear improvement of SND. White
region depicts the area which belongs to the support of both One-Class SVMs
simultaneously.

class/distribution separately. Here by the white color we denote intersecting
regions of two separate One-Class SVM estimators. However One-Class SVM is
able to capture many data points by the underlying support it still far from the
correct density estimation.

Analyzing these figures one can clearly observe the importance of labeling to
capture the different underlying distributions in the data. One of the key
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advantages of the SND approach is a better understanding and modelling of
the support for a mixture of distributions where one possesses a certain amount
of information about each distribution.

Real life example

To justify the practical importance of our method we applied the SND Algorithm
1 in the context of AVIRIS data (Airborne Visible/InfraRed Imaging Sensor)
[97]. We took one of the high definition greyscale images and extracted two
disjoint sub-images of sizes 205×236 and 283×281 pixels respectively. The first
sub-image was used for training the SND algorithm while the second one for
test purposes.

We extracted for every pixel its intensity and averaged intensity of the window
of size 10×10 of surrounding pixels excluding the nearest 5×5 pixels. Finally we
took these values along with pixel intensities as our 2-dimensional training/test
datasets. We separated the training image by the average white color intensity
of the mentioned window across all pixels. Finally we defined outliers as the
white spots on the darker greyscale region5 by taking pixels belonging to that
segment of the processed image with intensities grater than 190. The setting is
artificial but it will help us to evaluate our approach w.r.t. real life data.

We applied Algorithm 3 to the final training data of size 48380 and determined
σ parameter of the RBF kernel, λ and γ parameters of Algorithm 1 using 10-fold
cross-validation on training data as described in Section 2.2.4. On every step of
Algorithm 3 the SND model was calculated via Algorithm 1 and non-linearity of
the model was achieved applying the Fixed-Size approach described in Section
10.

Figure 2.9: AVIRIS training (top) and test (bottom) images.

5these spots correspond to the tracks remained after the transition of the fast boats
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Figure 2.10: AVIRIS training image after preprocessing (left) and test image
after evaluation by the SND algorithm (middle) and the Pegasos algorithm
(right) with pointed out outliers.

In Figure 2.9 we can see these AVIRIS images while in Figure 2.10 we notice
the same images but after the segregation to different terrains and detection
of outliers by the SND and Pegasos6 algorithms. As we can see our method is
capable of good image segregation while being able to detect anomalous spots
in the test image7. Both methods were able to detect outliers denoting pixels
of interest8 while Pegasos was much less accurate in estimating the densities
of two classes and resulted in the increased number of the detected outliers9.
These results can be extended to anomalous change detection when we consider
the problem of finding anomalous changes in the obtained scenes of the same
image.

In Figure 2.11 we can observe two histograms corresponding to the different
decision functions obtained by SND Algorithm 3 which was evaluated on AVIRIS
test image. Topmost image corresponds to the function which outputs positive
values for the marine region and the bottom one outputs positive values for the
land views. Analyzing these figures we can clearly notice some revealing patterns
and distributions of output values. For instance in the images we can see two
major peaks which obviously correspond to two classes. In general outliers are
not concentrated as there are no intersecting peaks on both histograms. This
fact corresponds to the intuition of [116] and validates the usefulness of the
SND approach.

6we trained 2 Pegasos-based classifiers w.r.t. each class
7black pixels pointed by arrows in Figure 2.10
8big fast-boat transition track
9222 for SND and 507 for Pegasos
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Figure 2.11: Histograms of the output values for two decision functions (see
Eq.(2.13)) obtained by SND Algorithm 3 and evaluated on AVIRIS test image.
Top image corresponds to the function which outputs positive values for the
marine region and the bottom one outputs positive values for the land views.

2.1.8 Conclusion and future work

In this paper we approached the novelty detection problem and estimation of
the support for a high-dimensional distribution from the new perspective of
multi-class classification. This setting is mainly designed for finding outliers in
the presence of several classes while being valuable as a general purpose classifier
as well. The SND setting can be potentially extended for a semi-supervised
case with and an intrinsic norm [14] applied in conjunction with coupling terms
(see Eq.(2.11)). The latter formulation implies that we need only few labeled
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data points to approximate the coupling term fairly well and the other data
can be involved in the manifold learning. We consider the latter approach as
a promising extension of our method for future work. We demonstrated that
the performance and obtained generalization errors are comparable or even less
than for other SVMs. The experimental results verify the usefulness of our
approach for both settings: classification and novelty detection.

2.2 New Bilinear Formulation to Semi-Supervised
Classification Based on Kernel Spectral Clus-
tering

2.2.1 Introduction

For many decades classification and Semi-Supervised Learning (SSL) were
among the most popular machine learning topics [102, 121]. The substantial
interest is driven by the simple and very important observation: the amount of
unlabeled data is instantly growing while resources for labeling and preprocessing
are limited and not always easily accessible. Many existing semi-supervised
approaches [105, 138] aim at utilizing either labeled or unlabeled data. While
both strategies have numerous drawbacks it was recently stressed [14] that
preserving them jointly might be important for obtaining good generalization
in the presence of major unlabeled counterpart.

Laplacian Support Vector Machine (LapSVM) [14, 88] is one of the state-of-
the-art techniques which addresses this problem and provides a natural out-of-
sample extension for unseen unlabeled data. It is based on implicit manifold
regularization introduced by the normalized Laplacian matrix [111]. Another
possible approach is related to the Spectral Clustering techniques [95, 36, 5]
which make use of the eigenspectrum of the Laplacian matrix to divide a
dataset into the clusters such that points within the same cluster are similar and
points from other clusters are dissimilar to each other. However though these
techniques are of great interest for machine learning practitioners they often lack
proper model selection and verification procedures in semi-supervised setting
and cannot be applied blindly. Recently a kernel-based extension for semi-
supervised learning was proposed known as Semi-Supervised Kernel Spectral
Clustering [4, 85]. The main idea of the latter approach is to formulate the
semi-supervised learning problem as a combination of a weighted kernelized
Principal Component Analysis (PCA) and minimization of an empirical error
associated with the labeled counterpart.
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For the roots of the bilinear term minimization which we utilize in our approach
we refer the interested reader to the recently proposed Supervised Novelty
Detection (SND) approach [64, 65]. SND can be effectively used for multi-class
classification and it supplements the class of SVM-based algorithms intended
for the detection of outliers in the presence of several classes (distributions).
We should mention that the SND approach is related to other non-parallel SVM
classifiers, like Twin SVM (TWSVM), GEPSVM [61, 110, 72] or Non-Parallel
Semi-Supervised KSC [87] etc., but it has one crucial difference in its primal
formulation, i.e. a bilinear term which couples two non-parallel classifiers. In
this paper we extend ideas given by [65] to the semi-supervised setting and show
that it can be quite beneficial to couple non-parallel classifiers in the presence
of unlabeled information. We compare our results with the aforementioned
approaches and present some convincing and challenging toy-problems where we
are violating a commonly referenced low-density assumption (between clusters)
and performing better than other approaches.

The remainder of this paper is structured as follows. Section 2.2.2 outlines some
existing semi-supervised learning approaches. Section 2.2.3 gives an overview of
our method and the resulting optimization problem. Section 2.2.4 provides the
experimental setup and results, while Section 2.2.5 discusses some important
issues and further directions of our research. Section 2.2.6 concludes the paper.

2.2.2 Semi-supervised learning

In this section we present a brief outlook on the existing state-of-the-art methods
in semi-supervised learning. But first we present some preliminary notations
which will be used across this paper.

Preliminaries

We first introduce terminology and some essential conventions. We consider
training data with the corresponding partial labeling given as a set of pairs

(x1, y1), . . . , (xl, yl), xi ∈ X , yi ∈ {−1, 1},

where l is the number of corresponding labeled observations in the set X of
size m. The unlabeled part is given by the set {xl+1, . . . , xm} = Xu ∈ X . For
simplicity we think of all our data as a compact subset of Rd. Then define ϕ
to be a feature map ϕ : Rd → Rh which is a mapping to a high-dimensional
feature space of dimension h with the connection to a positive definite kernel
[102]

k(x, y) = 〈ϕ(x), ϕ(y)〉, (2.34)
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where by using a kernel trick [102, 121] one can define a kernel matrix Ω as
Ωij = k(xi, xj).

Further in the paper index i spans the range 1,m if it is not declared explicitly.
Greek letters α, λ without indices denote m-dimensional vectors.

Laplacian SVM [14]

The solution of the LapSVM problem proposed by Belkin et al. [14] is based
on manifold learning. This problem explicitly incorporates the kernel matrix Ω
and the Laplacian matrix L as follows:

min
α∈Rm;ξ∈Rl

γAα
TΩα+ γIα

TΩLΩα+
l∑
i=1

ξl (2.35)

s.t. yi(
∑m
j=1 αjk(xj , xi) + b) ≥ 1− ξi, i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l (2.36)

This formulation directly implies regularization over two different terms and
minimization of the empirical error ξi. The first term is establishing a
regularization framework for function learning, given a kernel function k(·, ·),
its associated Reproducing Kernel Hilbert Space (RKHS) Hk of functions
X → R with the corresponding norm ‖ · ‖A and a trade-off hyperparameter
γA. The second term stands for the implicit manifold regularization with the
corresponding norm ‖f‖I = fTLf defined as the Laplace-Beltrami operator
[13] applied to the function f .

Semi-supervised KSC [4]

The following formulation to the semi-supervised learning problem is very close
to the presented one in the next section. We provide it for the interested reader
as a reference point in understanding our own extension to it. The proposed
primal problem of Semi-Supervised Kernel Spectral Clustering (SemiKSC) in
[4] is given by:

min
w∈Rd;e∈Rm

1
2‖w‖

2 + ρ
2
∑l
i=1(ei − yi)2 − γ

2 e
TV e

s.t. Φw + b1M = e,

(2.37)

where Φ = [ϕ(x1)T ; . . . ;ϕ(xm)T ] ∈ Rm×h is a stacked feature map for all
samples in X , e ∈ Rm is the projection, b is the bias, V is the weighting
diagonal matrix while γ and ρ are trade-off hyperparameters.
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After eliminating primal variables and converting the above problem into a
linear system of equations we obtain the following problem in terms of the dual
variables α ∈ Rm:

(IM − (γD−1 − ρA)MSΩ)α = ρMT
S y, (2.38)

where IM is m × m identity matrix and MS ∈ Rm×m is a centering matrix
defined as:

MS = IM −
1
c

1M1TM (γD−1 − ρA)

with

A =
[

0p×p 0p×l
0l×p Il×l

]
∈ Rm×m

and p = m − l, c = 1TM (γD−1 − ρA)1M . If we omit bias term b in the latent
clustering model for training points, we can now write it in terms of the dual
variables α:

e = MSΩα− ρ

c
1M1TMy.

This model defines the binary cluster membership by sign(e).

2.2.3 Bilinear Non-Parallel Kernel Spectral Semi-Supervised
Learning

In this section we present an optimization problem in the primal form. Further
we derive a dual formulation with respect to our constraints. Finally using
Karush-Kuhn-Tucker (KKT) optimality conditions we boil-down the problem
into a linear system of equations which can be efficiently solved without
introducing extra costs.

Optimization problem

We start with a primal formulation for a simple binary semi-supervised
classification problem where we introduce an additional bilinear term 〈w1, w2〉
between classifiers:

min
w1,w2∈Rd;e1,e2∈Rm

γ1
2 (‖w1‖2 + ‖w2‖2) + 〈w1, w2〉

+γ2
2
∑l
i=1[(e1i − yi)2 + (e2i + yi)2]

−γ3
2 e

T
1 V e1 − γ4

2 e
T
2 V e2

(2.39)
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s.t. Φw1 = e1
Φw2 = e2

(2.40)

where w1, w2 ∈ Rh are the hyperplanes associated with each non-parallel
classifier, Φ = [ϕ(x1)T ; . . . ;ϕ(xm)T ] ∈ Rm×h is a stacked feature map for all
samples in X , e1, e2 ∈ Rm are the projections, V is the weighting diagonal
matrix and γ1 through γ4 denote trade-off hyperparameters. For the simplicity
and because of the flexibility of RBF-kernel which is often used in the KSC-based
models we omit in our formulation a bias term b.

In the primal optimization objective we have different terms which are related to
either supervised or unsupervised counterpart. Terms (e1i− yi)2 and (e2i + yi)2

are trying to minimize empirical error w.r.t. each non-parallel classifier and
provided set of labels y. Terms eT1 V e1 and eT2 V e2 are related to the KSC model
[5] and are trying to explain (maximize) variance w.r.t. involved classes.

Before proceeding to the formulation of the dual problem we explain the
importance of the weighting matrix V . It can be shown that if we take V as an
inverse of a degree matrix10

V = D−1 = diag( 1
d1
, . . . ,

1
dm

),

where di =
∑
j k(xi, xj), the overall problem can be related to the random walk

algorithms in spectral clustering [95, 36].

The final decision function is

c(x) =
{
argmaxi 〈wi, ϕ(x)〉, if maxi〈wi, ϕ(x)〉 > 0,
cout, otherwise,

(2.41)

where i ∈ {1, 2} and cout is representing the outliers’ class. This decision rule
can be advantageous when one tries to estimate a high-dimensional support
of the underlying distributions (per class). This specific setting is discussed in
detail in [65].

10we assume degree of i-th data point in a neighborhood graph
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Dual formulation

Using α and λ vectors as Lagrange multipliers we introduce the following dual
optimization problem

L(w1, w2, e1, e2, α, λ) = γ
2 (‖w1‖2 + ‖w2‖2) + 〈w1, w2〉

+γ2
2
∑l
i=1[(e1i − yi)2 + (e2i + yi)2]

−γ3
2 e

T
1 V e1 − γ4

2 e
T
2 V e2

+αT (e1 − Φw1) + λT (e2 − Φw2).

(2.42)

By setting the derivatives of the dual problem with respect to primal and dual
variables to zero we obtain the following Karush-Kuhn-Tucker (KKT) optimality
conditions: 

∂L
∂α = 0→ e1 − Φw1 = 0,
∂L
∂λ = 0→ e2 − Φw2 = 0,
∂L
∂w1

= 0→ w1 = 1
1−γ2

1
ΦT (λ− γ1α),

∂L
∂w2

= 0→ w2 = 1
1−γ2

1
ΦT (α− γ1λ),

∂L
∂e1

= 0→ α− γ3V e1 + γ2G(e1 − y∗) = 0,
∂L
∂e2

= 0→ λ− γ4V e2 + γ2G(e2 + y∗) = 0,

(2.43)

where defining p = m− l as an auxiliary indexing upper bound G is given by

G =
[
Il×l 0l×p
0p×l 0p×p

]
∈ Rm×m

and y∗ = [y1, . . . , yl, 0, . . . , 0]T ∈ Rm, while Il×l is an identity matrix.

Linear system

One can observe that our primal problem is non-convex but after eliminating the
primal variables w1, w2 and e1, e2 we can directly work with the dual objective
which is always concave in terms of the dual variables. Despite this fact it is
more convenient to work with a linear system which we can obtain by plugging
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substituted primal variables back into the last two optimality conditions of
Eq.(2.43) and deriving the following linear system of equations[

Ad Aoff
Loff Ld

] [
α
λ

]
= γ2

[
y∗

−y∗

]
, (2.44)

where Ad = γ3γ1γ
′
1ΩD−1 − γ2γ1γ

′
1G + I, Aoff = γ2γ

′
1G − γ3γ

′
1ΩD−1, Ld =

γ4γ1γ
′
1ΩD−1 − γ2γ1γ

′
1G+ I, Loff = γ2γ

′
1Ω− γ4γ

′
1GD

−1, γ′1 = 1/(1− γ2
1), Ω is

a full-rank kernel matrix and G, D−1 were given in the previous subsection,
while I is an identity matrix of size m×m.

By solving this linear system of equations we obtain key components of our
final decision function defined in Eq.(2.41). If we take a look again at KKT
conditions in Eq.(2.43) we can notice that we have a closed form solution for w1
and w2 in terms of our dual variables α and λ. By plugging these variables and
taking into account definition of 〈ϕ(x), ϕ(y)〉 in Eq.(2.34) we obtain a kernel
expansion for the decision function as

c(x) =
{
argmaxi fi(x), if maxi fi(x) > 0
cout, otherwise,

(2.45)

where fi(x) functions are defined as follows

f1(x) = 1
1−γ2

1

∑m
i=1 k(x, xi)(λi − γ1αi),

f2(x) = 1
1−γ2

1

∑m
i=1 k(x, xi)(αi − γ1λi).

(2.46)

2.2.4 Experiments

Experimental setup

In all our experiments we tested all semi-supervised kernel-based models using a
2-step procedure for tuning the hyperparameters. This procedure consists of the
Coupled Simulated Annealing [133] initialized with 5 and up to 30 random sets
of parameters for the first step and the simplex method [91] for the second step.
After CSA converges to some local minima we select the tuple of parameters that
attains the lowest error and start the simplex procedure to refine our selection.
On every iteration step for CSA and simplex method we proceed with a 5-fold
cross-validation. Cross-validation is performed only with respect to the labeled
information and classification accuracy. We do not impose any additional model
selection criteria at this step, because most of them, like Silhouette index, Fisher
index or Davies-Bouldin index [16], according to our empirical observations are
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resulting in worse generalization capabilities and might not reflect properly the
non-linearity of clustering in some higher dimensional spaces and manifolds. In
our experiments we use RBF-kernel related to Eq.(2.34) and given by

k(x, y) = 〈ϕ(x), ϕ(y)〉 = e−
‖x−y‖2

2σ2 .

We use the aforementioned cross-validation tuning procedure to estimate kernel
bandwidth σ together with other trade-off hyperparameters.

In our toy examples we experiment with two challenging problems when data are
drawn from the mixture of overlapping distributions. In this case we do violate
the low-density assumption between clusters and semi-supervised algorithms
based upon spectral clustering techniques and normalized cuts [111] might
fail in this case. We artificially created two datasets, namely "spirals" and
"half-moons". In the first one we have two spirals which are separable in the
beginning and are merging in the end. For the second dataset we have two
banana-shaped distributions which are overlapping at their tails. Additionally
to the overlapping scenarios we present the results for the noiseless case where
classes are clearly separable. In every dataset only 20% of points were labeled
randomly.

For the numerical benchmark tests we took some recognized datasets in semi-
supervised learning mentioned or created for [30]. Each of these datasets11 is
provided in 12 splits where each split is represented by the labeled points and
the remaining unlabeled counterpart. We perform cross-validation using entire
data (only labeled information is considered) for the split and then report the
average misclassification rate for all datapoints as we are provided with the
ground truth for them. We average the results across all 12 splits for each
dataset. This experimental setup is used in the original book by Chapelle et
al. [30] and is considered in other research papers as well [4, 87]. For our
experiments we use the splits with 100 labeled datapoints only. We perform
additional experiments on public UCI datasets [49] where we randomly select
100 points to remain labeled. We run all algorithms for UCI datasets 50 times
and report average misclassification rate evaluating the methods on the entire
dataset, where we know the ground truth for the unlabeled points. All datasets
were normalized by mapping each dimension to zero mean and one standard
deviation as (µi, σi) = (0, 1), i ∈ 1, d. For the properties of UCI and SSL
benchmark datasets used in this paper one can refer to the Table 2.10.

We implemented Eq.(2.44) in MATLAB using the backslash operator. Because
we are not using a bias term b in our method we decided to omit this term in
the implementation of SemiKSC [4] approach as well, which would give us a

11i.e. BCI, Text, g241c and g241d
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Table 2.10: Datasets

Dataset # of attributes # of classes # of data points

Ionosphere 34 2 351
Parkinsons 23 2 197
Sonar 60 2 208
Ecoli 8 2 336
Arrhythmia 279 2 452
BCI 117 2 400
Text 11960 2 1500
g241c 241 2 1500
g241d 241 2 1500

fair comparison with the former. All experiments were run on Core i7 CPU
with 8GB of available RAM.

Toy problems

In this subsection we present the results obtained on two artificial toy-problems.
In Figure 2.12 we can see the classification boundaries of three methods applied
to the "half-moons" problem. Figure 2.13 corresponds to the "spirals" dataset. In
the noiseless case12 all algorithms are performing reasonably good but SemiKSC
approach is slightly inferior w.r.t. the other methods. Comparing Figures 2.12 -
2.13 (a-c) for the overlapping case we can clearly observe that Bilinear Semi-
Supervised KSC (Bi-SemiKSC) is capturing the underlying manifolds better
resulting in more precise and smoother classification boundaries. Although
only 20% of datapoints are labeled in these examples Bi-SemiKSC method
was able to converge to an acceptable solution while LapSVM is failing to
generalize on Figures 2.12 - 2.13 (a-c). While for the "half-moons" problem
original Semi-Supervised KSC (SemiKSC) is giving an acceptable result, for
"spirals" problem it is obviously overfitting.

Numerical experiments

In this subsection we are analyzing the performance of four algorithms on
the benchmark UCI and SSL datasets. We are comparing our Bilinear Semi-

12Figures 2.12 - 2.13 (d-f)
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Figure 2.12: Different approaches applied to the "half-moons" problem. From
left to right: (a) Bilinear Semi-Supervised KSC, (b) Laplacian SVM in primal,
(c) Semi-Supervised KSC in an overlapping scenario. Bottom from left to
right: (d) Bilinear Semi-Supervised KSC, (e) Laplacian SVM in primal, (f)
Semi-Supervised KSC in a noiseless scenario. With small black dots we denote
unlabeled datapoints. Bigger red stars and squares represent labeled samples
from two classes.

Supervised KSC (Bi-SemiKSC) approach with LapSVM in primal (LapSVMp)
[88], LapSVM in dual and the original Semi-Supervised KSC (SemiKSC) [4, 85].
As we can see from Tables 2.11 and 2.12 our approach is performing much
better and the classification accuracy evaluated by the ground truth on the
entire data suggests that Bi-SemiKSC with the help of an additional coupling
term is able to find an appropriate embedding of data where classification is
the most accurate.
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Figure 2.13: Different approaches applied to the "spirals" problem. Top from
left to right: (a) Bilinear Semi-Supervised KSC, (b) Laplacian SVM in primal,
(c) Semi-Supervised KSC in an overlapping scenario. Bottom from left to
right: (d) Bilinear Semi-Supervised KSC, (e) Laplacian SVM in primal, (f)
Semi-Supervised KSC in a noiseless scenario. With small black dots we denote
unlabeled datapoints. Bigger red stars and squares represent labeled samples
from two classes.
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Table 2.11: Averaged misclassification rate for the benchmark SSL datasets

Dataset Bi-SemiKSC LapSVM [14] LapSVMp [88] SemiKSC [4]

g241c 0.148±0.044 0.232±0.052 0.248±0.063 0.194±0.102
g241d 0.158±0.034 0.278±0.062 0.276±0.053 0.191±0.069
BCI 0.244±0.056 0.376±0.049 0.324±0.057 0.315±0.078
Text 0.382±0.082 0.458±0.026 0.455±0.025 0.477±0.062

Additionally to the misclassification rate for UCI data we report in Table 2.13
p-values of a pairwise t-test on the same rate. We do not report these values
for SSL data because we averaged the results only across 12 runs/splits which
is quite a small number for a reliable t-test. By evaluating Table 2.13 we can
conclude that attained p-values are very small and the means of distributions
for misclassification rates differ statistically significantly between our approach
and the corresponding competing approaches.

Table 2.12: Averaged misclassification rate for UCI datasets

Dataset Bi-SemiKSC LapSVM LapSVMp SemiKSC

Parkinsons 0.039±0.015 0.117±0.109 0.074±0.059 0.067±0.025
Sonar 0.088±0.018 0.131±0.085 0.122±0.086 0.102±0.053
Ionosphere 0.099±0.021 0.201±0.093 0.138±0.078 0.119±0.065
Ecoli 0.036±0.009 0.059±0.029 0.041±0.016 0.039±0.012
Arrhythmia 0.257±0.042 0.349±0.061 0.291±0.029 0.317±0.062

Additionally to the presented results we would like to compare some of the
obtained results for SSL datasets with the reported values in the book of
Chapelle et al., Chapter 21.3 [30] and recently published paper on non-parallel
KSC-based semi-supervised learning [87]. The experimental setup everywhere
is the same but implementation details of cross-validation and hyperparameter
tuning differ. Comparing our results with the book [30] we can clearly see that
the best reported value for g241c dataset is 0.1741 which is by 2% worse than
our result and it is related to Low-Density Separation technique (LDS) [28]. For
BCI dataset our approach again is the best one and attained rates are much
lower than those reported in the book. If we consider another relevant and
non-parallel approach discussed in [87] we can see that authors report better
result of 0.26± 0.01 for BCI dataset but it is still around 2% worse than we do.
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Table 2.13: P-values of a pairwise t-test on misclassification rate between
Bilinear SemiKSC and other methods

Dataset to LapSVM to LapSVMp to SemiKSC

Parkinsons 2.4488E-06 0.00013319 1.1295E-09
Sonar 0.00064336 0.0077843 0.077444
Ionosphere 2.7248E-11 0.001315 0.044832
Ecoli 1.2486E-06 0.079189 0.11091
Arrhythmia 6.0693E-14 1.2068E-05 1.7722E-07

2.2.5 Discussion

Differences with other approaches

In this subsection we will briefly discuss some of the important differences
between our approach and other non-parallel semi-supervised classifiers. As
we aforementioned in Section I there exist several kernel-based non-parallel
classifiers [61, 72] and only some of them explicitly utilize unlabeled information
[87]. While being together with [4] and [87] based fundamentally on the same
principles of KSC-implied modelling our method can be distinguished in a way
we are coupling non-parallel classifiers. The reasoning and motivation behind
this approach one can find in [65]. In brief it relates to the optimal separation
between classes when i.i.d. assumption doesn’t hold. From the modelling
perspective in semi-supervised learning it might help to model each class and the
underlying manifold better while preserving necessary discrimination between
classes.

Future work

For the future research direction we are considering to explore different possible
formulations of the Bi-SemiKSC model and apply them to large-scale datasets.
While working on the millions of datapoints is not being directly feasibly in the
dual formulation one can use Nyström approximation and Fixed-Size techniques
[126, 39, 86] to go back for the primal formulation. This approach helps to
devise a high-dimensional feature map which approximates well non-linearity
while keeping first-order gradient-descent methods [107, 62] applicable and
reasonably effective for optimizing the objective function in the primal.
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2.2.6 Conclusion

In this paper we proposed a novel and promising way of handling Semi-
Supervised Learning via incorporating a bilinear coupling term between non-
parallel classifiers. This term enters a primal problem formulation and eventually
boils-down to the coupled Lagrange multipliers comprising the solution of the
dual problem. The fundamental part of our approach is a KSC-based model
which helps to learn from the unlabeled datapoints and possesses a natural
out-of-sample extension for the unseen ones. Our experimental validation for
the artificial and real-life datasets confirms the usefulness and generalization
capabilities of the proposed approach. We showed that even when a low-
density assumption is broken we can learn from the unsupervised data and
obtain acceptable results. For the future we consider extending our method to
cope with large-scale data sources where proliferation of unlabeled information
hampers the successful adoption of the supervised modelling techniques.
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3.1 Fixed-Size Pegasos for Hinge and Pinball Loss
SVM

3.1.1 Introduction

Recent research in linear Support Vector Machines (SVM) [62, 107, 29] justified
the importance of the first order approaches in bringing these machine learning
techniques to large scale. While computing full gradients sometimes might be
not feasible it was proposed recently to apply stochastic approximations [92]
to the original optimization problem. The latter approach considerably saves
memory and only to some degree increases the number of iterations to converge.
In this paper we consider another aspect of learning SVM models in primal and
particularly put our attention to using another loss function.

Pegasos [107] has become a widely acknowledged algorithm for learning linear
SVM and has attracted research interest because of the strongly convex
optimization objective and better convergence bounds. Pegasos utilizes hinge loss
which replaces the original linear constraints while making the SVM objective
unconstrained. With the proper projection step Pegasos achieves a solution of
accuracy ε in O(R2

λε ) iterations where λ is the regularization parameter. We
would like to stress the fact that the hinge loss plays an important but not
the essential role in establishing the results of Pegasos. Other authors [56]
experimented with other types of loss (e.g. logarithmic loss) and optimization
techniques.

In this paper we try to enrich the class of loss functions applicable for Pegasos
with pinball loss [58] while establishing some essential theory to support our
findings. We show some advantages and potential strengths of using the pinball
loss within the Pegasos framework in a variety of classification problems. By
the latter we assume achieving better classification performance and greater
numerical stability in a partially or fully stochastic setting.

Together with the new loss function we employ in this paper Fixed-Size approach
[129, 39, 121] which can be coupled with the Pegasos algorithm for learning linear
classifiers in the induced feature space1 for linearly non-separable cases. This
setting generally enables us to solve any classification problem with the Pegasos
algorithm and requires only one additional parameter for active subset selection.
The details of this approach together with the corresponding algorithm will be
given in Section IV.

1hereafter the induced feature space stands for the feature space of the RBF kernel
approximated by the Fixed-Size approach.
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This paper is organized as follows. Section 3.1.2 provides an introduction
to hinge and pinball loss SVM and presents the corresponding properties of
both loss functions. Sections 3.1.3–3.1.4 briefly outlines Pegasos optimization
objective and presents our main results. Section 3.1.5 explains the Fixed-Size
approach and outlines our algorithm for learning the Pagasos with the induced
feature space. Experimental setup and numerical results are given in Section
3.1.6 while Section 3.1.7 concludes the paper.

3.1.2 Hinge and Pinball Loss SVM

The linear hinge loss SVM proposed by [125] takes the following formulation,

min
w

γ

2 ‖w‖
2 + 1

m

∑
(x,y)∈S

L(w; (x, y)), (3.1)

where S is the training dataset and

L(w; (x, y)) = max{0, 1− y〈w, x〉} (3.2)

stands for the hinge loss with the (x, y) pair. In this setting the decision
function is given by ŷ = sign(〈w, x〉). Hinge loss SVM has a nice geometrical
interpretation for separable cases. It tries to find the largest margin between
the instances of two classes. Consider a two dimensional example: points in two
classes follow Gaussian distribution N (µ1,Σ) and N (µ2,Σ), respectively, where

µ1 = [0.5,−3]T , µ2 = [−0.5, 3]T , and Σ =
[

0.2 0
0 3

]
. Fig.3.1a illustrates one

sampling by red crosses and green stars. For this data set, via hinge loss SVM
(3.1), we find a decision function 〈w, x〉 which has the largest margin between
〈w, x〉 = ±1 among all the functions satisfying y〈w, x〉 ≥ 1. In Fig.3.1a, the
obtained lines 〈w, x〉 = −1, 0 and 1 are illustrated by red, blue, and green solid
line, respectively. For this data set, hinge loss SVM in Eq.(3.1) performs well
but it is easy to be affected by noise around decision boundary. That means
that hinge loss SVM in Eq.(3.1) may have very different results for training sets
drawn from the same distribution. To illustrate this point, another data set,
which has the same distribution in Fig.3.1a, and the corresponding result of
Eq.(3.1) are shown in Fig.3.1b. One can see that though the data come from
the same distribution, the results of Eq.(3.1) can be significantly different.

The sensitivity to noise or the instability to re-sampling comes from the fact
that in hinge loss SVM, the distance between two sets is measured by the
nearest points. Hence, one way to overcome this weak point is to change the
definition of distance between two sets. For example, if we use the distance of
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Figure 3.1: Points in two classes are marked by red crosses and green stars.
The decision functions are shown by red, blue, and red lines, corresponding to
〈w, x〉 = −1, 0, and 1, respectively. The data in (a) and (b) come from the same
distribution but the results of hinge loss SVM (the solid lines) differ significantly.
By contrast, the results of pinball loss SVM (the dashed lines) are more stable
to re-sampling, which is suitable for stochastic gradient methods.

the nearest 30% points to measure the distance between two sets, the results
are less sensitive, as shown by the dashed lines in Fig.3.1. Such distance is a
kind of quantile value, which is closely related to pinball loss Lτ defined by

Lτ (w; (x, y)) =
{

1− y〈w, x〉 y〈w, x〉 ≤ 1,
τ(y〈w, x〉 − 1), y〈w, x〉 > 1, (3.3)

where the reasonable range of τ is [0, 1] as explained in [58]. The pinball loss Lτ
has been applied for quantile regression, see, e.g. [71] [33] and [115]. Motivated
by the relationship between pinball loss and quantile value, we proposed the
following pinball loss SVM in [58],

min
w

γ

2 ‖w‖
2 + 1

m

∑
(x,y)∈S

Lτ (w; (x, y)). (3.4)

Hinge loss is a special case of pinball loss in Eq.(3.3) with τ = 0. Accordingly,
pinball loss SVM in Eq.(3.4) is an extension to hinge loss SVM. It has been
shown in [58] that Eq.(3.4) and Eq.(3.2) have similar computational complexity
and consistency property. Besides, the result of pinball loss SVM is less sensitive
to noise around the boundary. Equivalently speaking, using pinball loss SVM,
the results corresponding to different training data from the same distribution
are stable. For the data in Fig.3.1, the decision functions obtained by Eq.(3.4)
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are shown by dashed lines. Compared with hinge loss SVM in Eq.(3.1), the
results of pinball loss SVM are more stable for re-sampling from the same
distribution, which is especially suitable for stochastic gradients methods.

3.1.3 Pegasos with Pinball Loss

In the original paper by Shalev-Shwartz et al. [107] the instantaneous
optimization objective of Pegasos algorithm is given by

f(w;At) = λ

2 ‖w‖
2 + 1

m

∑
(x,y)∈At

L(w; (x, y)), (3.5)

where the hinge loss for the (x, y) pair is denoted by Eq.(3.2) and At stands
for our working random subsample at iteration t. We can write down the
subgradient of the instantaneous objective as follows

∇t = λwt −
1
|At|

∑
(x,y)∈A+

t

yx, (3.6)

where A+
t denotes the subset of At for which L(w; (x, y)) > 0. Finally after

taking the gradient descent step with learning rate given by ηt = 1/(λt) we
need to project back our solution onto the set

B = {w : ‖w‖ ≤ 1/
√
λ}. (3.7)

The latter effectively enables better convergence rates of the Pegasos algorithm.

3.1.4 The algorithm

In this part we provide the main results of using the pinball loss within the
Pegasos algorithm. We start with redefining the instantaneous optimization
objective by the means of a new loss function which we already defined in
Eq.(3.3). Now we can see that the subgradient term in Eq.(3.6) can be refined
in terms of a new loss function as follows

∇t = λwt −
1
|At|

 ∑
(x,y)∈A+

t

yx−
∑

(x,y)∈A−t

τyx

 (3.8)

where ∇t additionally depends on the τ parameter of the pinball loss and A−t
stands for the subset of At where y〈w, x〉 > 1 (see Eq.(3.3)).
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Next we present a brief summary of the modified Pegasos in Algorithm 4 and
extend it with the pinball loss in Algorithm 5. Next we continue with the
analysis of Algorithm 5 in the next subsection. In Algorithm 4 we can see a
major "for" loop where gradient and projection steps are taking place and a
minor "if" condition which terminates execution if the norm of the difference of
two subsequent w vectors is less than ε. In Algorithms 4–5 we denote the whole
dataset by S and at each iteration select randomly m samples for computation
of the subgradient. Another important issue is related to the computation of
the bias term. We should emphasize that the bias term ρ is not part of our
instantaneous optimization objective and we perform computation of it just to
return convenient and ubiquitous representation of SVM decision function by
ŷ = sign(〈w, x〉+ ρ) where ρ is returned in the Line 10 and 13 of Algorithm 4
together with w vector. We should note that the incorporation of the bias term
is fairly straightforward via adding a constant cd+1 = 1 to the feature vector
xi ∈ Rd.

Algorithm 4: Pagasos with hinge loss
Data: S, λ, T, k, ε

1 Select w1 randomly s.t. ‖w(1)‖ ≤ 1/
√
λ

2 for t = 1→ T do
3 Set ηt = 1

λt
4 Select At ⊆ S, where |At| = k

5 ρ = 1
|S|
∑

(x,y)∈At(y − 〈wt, x〉)
6 A+

t = {(x, y) ∈ At : y(〈wt, x〉+ ρ) < 1}
7 wt+ 1

2
= wt − ηt(λwt − 1

k

∑
(x,y)∈A+

t
yx)

8 wt+1 = min
{

1, 1/
√
λ

‖w
t+ 1

2
‖

}
wt+ 1

2

9 if ‖wt+1 − wt‖ ≤ ε then
10 return (wt+1,

1
|S|
∑

(x,y)∈S(y − 〈wt, x〉))
11 end
12 end
13 return (wT+1,

1
|S|
∑

(x,y)∈S(y − 〈wt, x〉))

By comparing Algorithm 4 and 5 we can see that the major difference is the
computation of the gradient step which involves additional parameter τ and a
new subset A−t .
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Algorithm 5: Pagasos with pinball loss
Data: S, λ, τ, T, k, ε

1 Select w1 randomly s.t. ‖w(1)‖ ≤ 1/
√
λ

2 for t = 1→ T do
3 Set ηt = 1

λt
4 Select At ⊆ S, where |At| = k

5 ρ = 1
|S|
∑

(x,y)∈At(y − 〈wt, x〉)
6 A+

t = {(x, y) ∈ At : y(〈wt, x〉+ ρ) < 1}
7 A−t = {(x, y) ∈ At : y(〈wt, x〉+ ρ) > 1}
8 wt+ 1

2
= wt − ηt(λwt − 1

k

[∑
(x,y)∈A+

t
yx−

∑
(x,y)∈A−t

τyx
]
)

9 wt+1 = min
{

1, 1/
√
λ

‖w
t+ 1

2
‖

}
wt+ 1

2

10 if ‖wt+1 − wt‖ ≤ ε then
11 return (wt+1,

1
|S|
∑

(x,y)∈S(y − 〈wt, x〉))
12 end
13 end
14 return (wT+1,

1
|S|
∑

(x,y)∈S(y − 〈wt, x〉))

Analysis

In this subsection we present a convergence analysis which brings to our
algorithm the same convergence bounds as in Pegasos. We extend the analysis
presented in [107] to our new instantaneous objective by presenting Theorem 3.
But first we recap the important lemma from [107] which establishes necessary
conditions for our theorem.

Lemma 2 (Shalev-Shwartz et al., 2007). Let f1, . . . , fT be a sequence of λ-
strongly convex functions w.r.t. the function 1

2‖ · ‖
2. Let B be a closed convex

set and define
∏
B(w) = argminw′∈B ‖w −w′‖. Let w1, . . . , wT+1 be a sequence

of vectors such that w1 ∈ B and for t ≥ 1, wt+1 =
∏
B(wt − ηt∇t), where ∇t

is a subgradient of ft at wt and ηt = 1/(λt). Assume that for all t, ‖∇t‖ ≤ G.
Then, for all u ∈ B we have

1
T

T∑
t=1

ft(wt) ≤
1
T

T∑
t=1

ft(u) + G2(1 + ln(T ))
2λT .

Based on the above lemma, we are now ready to bound the average instantaneous
objective of Algorithm 5.
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Theorem 2. Assume ‖x‖ ≤ R for all (x, y) ∈ S. Let

w∗ = arg min
w

λ
2 ‖w‖

2 + 1
|At|

∑
(x,y)∈At

Lτ (w; (x, y))


and let c = (

√
λ+ (τ + 1)R). Then, for T ≥ 3 we have

1
T

T∑
t=1

f(wt;At) ≤
1
T

T∑
t=1

f(w∗;At) + c2 ln(T )
λT

.

Proof. To prove our theorem it suffices to show that all conditions of Lemma 1
hold. First we show that our problem is strongly convex. It is easy to verify
that the first term in Eq.(3.5) is strictly convex with respect to w. Since f is a
sum of λ-strongly convex function λ

2 ‖w‖ and another convex function (pinball
loss), it is also λ-strongly convex. Next by assuming B = {w : ‖w‖ ≤ 1/

√
λ}

and the fact that ‖x‖ ≤ R we can bound subgradient ∇t. The explicit form for
the subgradient evaluated at point x is given in Eq.(3.8). Using the triangular
inequality and denoting 2-norm by ‖ · ‖ one obtains

‖∇t‖ ≤ λ‖w‖+ 1
|At|

∑
i(1 + τ)‖xi‖ ≤

√
λ+ (1 + τ)R.

Finally we have to show that w∗ ∈ B. To do so, we need to derive the dual form
of our objective for the whole dataset |S| = n in terms of the dual variables
ηi ∈ [− τ

n ,
1
n ]. By [58] we know that dual form of SVM with pinball loss can be

cast as the same SVM objective but with ζi = αi−βi and additional constraints
αi + 1

τ βi = 1
n ,∀i, such that the final Lagrangian form is given by

max
ηi

min
w

n∑
i=1

ζi −
λ

2 ‖w‖
2

and because strong duality holds for the optimal solution w.r.t the primal
variable w∗ and dual variables ζ∗i one gets

λ

2 ‖w
∗‖2 + 1

n

∑
x∈S

Lτ (w∗;x) = −λ2 ‖w
∗‖2 +

n∑
i=1

ζ∗i .

Rearranging the above, using the non-negativity of the pinball loss and the
bound on ‖ζ‖1 ≤ 1 we obtain our initial condition of set B: ‖w‖ ≤ 1/

√
λ. Now

we can plug-in everything back to the inequality in Lemma 1, follow our initial
bound on T and complete the proof by putting all together.
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3.1.5 Fixed-Size approach

Nyström approximation of the RBF kernel feature map

While linear SVM techniques operating in the primal space achieved good
generalization capabilities in some specific application areas, like text
categorization [51] and microarray analysis [80] one cannot in general deliver
solutions with a low generalization error. To overcome restrictions of Algorithm
5 which operates only in the primal space we apply a Fixed-Size approach
[121, 39, 129] to approximate the RBF kernel feature map with some higher
dimensional explicit and approximate feature vector. In some of our previous
works [65] we already exploited the Fixed-Size approach for achieving an
approximation of the RBF kernel while bringing the algorithm to the large scale.
The latter introduces desired level of the non-linearity in our solution.

First we use an entropy based criterion to select the prototype vectors (small
working sample of size m� n)2 and construct the RBF kernel matrix K with

Kij = e−
‖xi−xj‖

2

2σ2 . (3.9)

Based on the Nyström approximation [129] an expression for the entries
of the approximation of the feature map Φ̂(x) : Rd → Rm, with Φ̂(x) =
(Φ̂1(x), . . . , Φ̂m(x))T is given by

Φ̂i(x) = 1√
λi,m

m∑
t=1

uti,mk(xt, x), (3.10)

where λi,m and ui,m denote the i-th eigenvalue and the i-th eigenvector of K
defined in Eq.(3.9). Using the above expression for Φ̂(x) we can proceed with
the original formulation of Algorithms 4–5 and find the solution of our problem
in primal.

Complete procedure with the Fixed-Size approach

In Algorithms 6–7 we present the complete outline of the Pegasos algorithm
evaluated together with the Fixed-Size approach and two types of loss functions.

In Algorithm 6 "PegasosHL" function stands for the shortcut of Algorithm 4
and "ComputeNystromApprox" function denotes the Fixed-Size part where we
first compute m ×m RBF kernel matrix from the data points found by the
maximization of Renyi entropy in "FindActiveSet" function and than we apply

2see Section 4 of [39] for additional details
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Algorithm 6: Fixed-Size Pegasos with hinge loss
input : training data S, labeling Y , parameters λ, T, k, ε,m
output : mapping Φ̂(x),∀x ∈ S, SVM model given by w and ρ

1 begin
2 Sr ← FindActiveSet(S,m);
3 Φ̂(x)← ComputeNystromApprox(Sr);
4 X ← [Φ̂(x1)T , . . . , Φ̂(xn)T ];
5 [w, ρ]← PegasosHL(X,Y, λ, T, k, ε);
6 end

Eq.(3.10) to derive our approximate feature map. Finally we stack our explicit
feature vectors in matrix X and proceed to the actual Pegasos implementation.

Algorithm 7: Fixed-Size Pegasos with pinball loss
input : training data S, labeling Y , parameters λ, τ, T, k, ε,m
output : mapping Φ̂(x),∀x ∈ S, SVM model given by w and ρ

1 begin
2 Sr ← FindActiveSet(S,m);
3 Φ̂(x)← ComputeNystromApprox(Sr);
4 X ← [Φ̂(x1)T , . . . , Φ̂(xn)T ];
5 [w, ρ]← PegasosPBL(X,Y, λ, τ, T, k, ε);
6 end

In Algorithm 7 "PegasosPBL" function stands for the shortcut of Algorithm 5
and the rest procedure is the same as in Algorithm 6.

3.1.6 Experiments

Setup

In all our experiments we use a 2-step procedure for tuning the λ parameter of
Algorithm 5 and bandwidth σ of RBF kernel used to approximate our feature
map in Eq.(3.10). This procedure consists of Coupled Simulated Annealing
[133] initialized with 5 random sets of parameters for the first step and the
simplex method [91] for the second step. After CSA converges to some local
minima we select the tuple of parameters that attains the lowest error and start
the simplex procedure to refine our selection. On every iteration step for CSA
and simplex method we proceed with a 10-fold cross-validation. While being
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considerably faster than the straightforward grid search technique obtained
parameters tend to vary more because of the randomness in initialization.

For both Pegasos-based algorithms (with hinge and pinball losses) we
approximate RBF kernel with Fixed-Size approach [39] where the σ parameter
was inferred via cross-validation procedure described above. The active subset
was selected via maximization of Renyi entropy. The size of this subset m was
set to be

√
n for all UCI and toy datasets of size less than 10000 and

√
n/5

for larger datasets. Parameter ε in Algorithm 5 was to 1e − 6 and pinball
loss related τ parameter was provided separately for each experiment. Finally
we performed two different settings with the fixed m parameter in Algorithm
5. During the first setup (partially stochastic) we set k to be 10% of |S| and
in the second one (fully stochastic) k = 1. We first consider the toy dataset
described in Section II. Experiments with the toy dataset were performed with
the increasing number of switched labels (error) subsequently set to 0.05, 0.15
and 0.35. All experiments were repeated 50 times with the random split to
training and test sets in proportion 1:1. 10-fold cross-validation was performed
only on training set. Descriptions of all public [49] and toy datasets we can find
in Table 3.1.

Table 3.1: Involved datasets

Dataset # of attributes # of classes # of data points

Toy Data 2 2 10000
Pima 8 2 768
White Wine 12 2 4898
Sambase 57 2 4601
Transfusion 5 2 748
Magic 11 2 19020
Shuttle 9 2 58000
Skin 4 2 245057

Results

In this subsection we give numerical results on running Pegasos-based Algorithm
5 with pinball loss in different settings and choices of user-defined parameter
τ . In Table 3.2 we can see our results for toy dataset generated with different
number of switched labels (artificial noise). From Table 3.2 we can notice
that everywhere pinball loss incorporated within Algorithm 5 attains better
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classification rates and smaller errors which are very close to initially embedded
noise.

Table 3.2: Test errors for Pegasos

Dataset Hinge Loss Pinball Loss
(% of errors) τ = 0.1 τ = 0.5 τ = 1

Toy Data (5%) 0.08262 0.06908 0.06926 0.07446
Toy Data (15%) 0.18753 0.15843 0.16141 0.16538
Toy Data (35%) 0.36094 0.31829 0.32335 0.31571

In Table 3.3 we can observe results for UCI datasets within partially stochastic
setting where we set k to be 10% of |S|. We can notice that we perform almost
equally good as hinge loss while giving better classification rates for Pima, Wine
and Skin datasets with τ = 1.

Table 3.3: Test errors for Pegasos with k = 10% of |S|
(partially stochastic)

Dataset Hinge Loss Pinball Loss
τ = 0.1 τ = 0.5 τ = 1

Pima 0.28885 0.28417 0.27797 0.27625
Spambase 0.13496 0.13992 0.15047 0.15923
Transfusion 0.23684 0.23904 0.23824 0.23989
White Wine 0.27281 0.27124 0.26340 0.26274
Magic 0.17992 0.19330 0.20912 0.21371
Shuttle 0.01015 0.01943 0.02515 0.02705
Skin 0.00944 0.00997 0.01039 0.00859

In Table 3.4 we can see that when going to a completely stochastic setting
with k = 1 advantages of pinball loss become more apparent and degradation
of performance is not so crucial in comparison with hinge loss. We can
notice that for almost all UCI datasets optimal value of τ = 0.5. We can
conclude that pinball loss SVM is more stable for re-sampling as shown in
Figure 3.1b. Comparing our approach to Pegasos with hinge loss we can see
general sustainability in fully stochastic setting which leads to immediate and
practical application-wise importance in online learning.



FIXED-SIZE PEGASOS FOR HINGE AND PINBALL LOSS SVM 77

Table 3.4: Test errors for Pegasos with k = 1
(fully stochastic)

Dataset Hinge Loss Pinball Loss
τ = 0.1 τ = 0.5 τ = 1

Pima 0.28896 0.29422 0.28870 0.29198
Spambase 0.21444 0.21229 0.20816 0.21903
Transfusion 0.23406 0.23465 0.23396 0.23465
White Wine 0.29607 0.29526 0.29694 0.28898
Magic 0.22667 0.22385 0.22481 0.22750
Shuttle 0.04505 0.04145 0.03499 0.03736
Skin 0.02705 0.02498 0.02172 0.02401

Convergence

In this subsection we present some plots which give a better understanding
of the convergence properties for the Pegasos algorithm with pinball loss. On
plots we see the convergence over time for Pegasos with hinge loss (blue) and
pinball loss (red) incorporated into the instantaneous optimization objective.
In general we should note that the pinball loss should give a higher value of
optimization objective and thereafter we are more interested in the convergence
rates. We experiment with different values of λ and k parameters in Algorithm
5.

In Figures 3.2–3.3 we could see that Pegasos with pinball loss gives more stable
and even better results. In Figure 3.2 the pinball loss reaches smaller objective
values and in Figure 3.3 the convergence to near-optimal solution is faster than
the corresponding convergence for hinge loss. We also observe more numerical
stability in convergence for pinball loss which is justified by a smaller number
of sudden peaks in the objectivsubsectione value.

3.1.7 Conclusion

In this paper we proposed an extension of the Pegasos algorithm for pinball loss
and showed that it results into better classification rates and better numerical
stability while running with pinball loss incorporated into its instantaneous
optimization objective. We showed that the Fixed-Size approach helps to deal
with linearly non-separable cases while applying the same learning procedure
used for the linear SVM. Extensive numerical experiments show certain
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Figure 3.2: Convergence of Pegasos algorithm for Magic dataset in a short term
(100 iterations) for hinge loss (blue) and pinball loss (red) respectively. In the
experimental setup λ = 0.1 and k = 100.

Figure 3.3: Convergence of Pegasos algorithm for Shuttle dataset in a long term
(1000 iterations) for hinge loss (blue) and pinball loss (red) respectively. In the
experimental setup λ = 1 and k = 100.

advantages of using the Pegasos algorithm with pinball loss and the Fixed-Size
approach in the fully stochastic setting which in the turn implies a practical
application-wise importance in online learning.
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3.2 Weighted Coordinate-Wise Pegasos

3.2.1 Introduction

Recent advances in linear Support Vector Machines (SVM) and the first order
stochastic optimization [62, 107, 29, 92] unlocked a room for improvement in
the large-scale machine learning and black-box modelling. Usually computation
of a full gradient for such large-scale problems is not bearable on a single
machine, so one might consider to use a stochastic approximation to the original
problem. In expectation [107, 92] such approach converges to the global optima
if we consider strongly convex optimization objectives. Additionally the latter
approach considerably saves the memory and only moderately increases the
number of iterations to converge.

In this paper we propose a new weighted formulation of the Pegasos optimization
objective and revise some of the algorithmic steps in order to maintain the
consistency with the underlying theory. The key feature of the Pegasos [107]
algorithm is a strongly convex optimization objective with the proper projection
step. This combination helps to achieve a solution of accuracy ε in O(R2

λε )
iterations where λ is the regularization parameter. On the other hand this
approach imposes uniformed convergence speed for every single dimension. In
general such uniform convergence is useful but doesn’t reflect the importance
and contribution of each dimension to the final classification result. The latter
problem in Bayesian inference relates to Automatic Relevance Determination
(ARD) [82, 123, 35]. We will compare this approach with the tuning via
cross-validation for finding optimal λi hyperparameters.

The task of inferring optimal tuning parameters for our weighted coordinate-wise
Pegasos is interesting by itself. In this paper we will highlight recent research in
this subject and stress the difference in assumptions and behavior of Bayesian
approach and tuning via global optimization techniques like Coupled Simulated
Annealing (CSA) [133]. In kernel methods one can have three levels of inference.
Two of them explicitly cope with the inference of hyperparameters like C in
C-SVM [125], γ in LS-SVM [120] or σ which is relevant to the RBF kernel
and non-linearity of the decision boundary. In our formulation of the Pegasos
algorithm we deal with the linear approach and we are interested in obtaining
the fittest regularization parameters λi w.r.t generalization and training speed-
up. In our paper we will mostly consider only the first goal. In the end we will
show convergence speed-up of the Weighted Coordinate-Wise Pegasos algorithm
and explain the acquired results.

This paper is organized as follows. Section 3.2.2 outlines original and Weighted
Coordinate-Wise Pegasos formulations, explains in detail our algorithm and
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gives a theoretical background, i.e. convergence proofs. Section 3.2.3 highlights
Automatic Relevance Determination and Coupled Simulated Annealing used for
tuning λi regularization hyperparameters. Experimental setup and numerical
results are given in Section 3.2.4 while Section 3.2.5 concludes the paper.

3.2.2 Proposed method

Pegasos

In the Pegasos paper by Shalev-Shwartz et al. [107] authors propose to learn
linear SVM model ŷ = sign(wTx+ρ) by the following instantaneous optimization
objective

f(w;At) = λ

2 ‖w‖
2 + 1
|At|

∑
(x,y)∈At

L(w; (x, y)), (3.11)

where λ is the regularization hyperparameter, L(w; (x, y)) is the hinge loss for
the (x, y) pair and At stands for our working random subsample at iteration t.
The subgradient of the instantaneous objective is obtained as follows

∇t = λwt −
1
|At|

∑
(x,y)∈A+

t

yx, (3.12)

where A+
t denotes the subset of At for which L(w; (x, y)) > 0. Finally we can

ensure proper convergence of the algorithm after making the gradient descent
step with the learning rate at iteration t given by ηt = 1/(λt) and projecting
back the solution onto the set

B = {w : ‖w‖ ≤ 1/
√
λ}. (3.13)

Optimization objective

Our approach is based on a simple assumption related to Automatic Relevance
Determination. If we impose regularization differently for each dimension or
data point we end up with the method which has a weighted impact of the
features, dimensions or data samples on the classification output. In the case
of the dual representation of SVMs we might talk about box constraints [125]
which are related to the dual α unknowns. The larger is the upper bound of
the particular box constraint the greater might be the influence of that data
point on the decision boundary. On the other hand with ARD techniques and
Bayesian inference one maximizes the posterior and the evidence can be used
to assign a preference to alternative values of the hyperparameters [82].
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To obtain such weighted formulation for the Pegasos algorithm first we propose
a new optimization objective

fwcw(w;At) = 1
2w

TΛw + 1
|At|

∑
(x,y)∈At

L(w; (x, y)), (3.14)

where fwcw stands for our new "weighted coordinate-wise" instantaneous
optimization objective and it differs w.r.t original Pegasos objective only in the
way we define our hyperparameters. Here Λ stands for the diagonal matrix with
entries corresponding to coordinate-wise λi regularization hyperparameters.

Now we can see that the subgradient term in Eq.(3.12) becomes

∇t = Λwt −
1
|At|

∑
(x,y)∈A+

t

yx. (3.15)

These modifications to the Pegasos algorithm do not guarantee a convergence
without further modifications to the projection step in Eq.(3.13). In the next
subsection we will take a closer look at our Weighted Coordinate-Wise Pegasos
algorithm and present these missing details.

The algorithm

Hereby we present a brief summary of the modified Pegasos in Algorithm
8. Next we continue with the theoretical guarantees for convergence of this
algorithm in the next subsection. In Algorithm 8 we can see a major "for" loop
where gradient and projection steps are taking place and a minor "if" condition
terminates an execution if the norm of the difference of two subsequent w
vectors is less than ε. In Algorithm 8 we denote the whole dataset by S and at
each iteration select randomly k samples for computation of the subgradient in
Eq.(3.15). We should emphasize the importance of the projection step at the
Line 9 where we are projecting our solution back on the ball with the radius
1/
√
λmin and updated step size at the Line 4.

Analysis

This subsection presents a convergence analysis and theoretical background
which brings our algorithm to the similar bounds as in the original paper of
Shalev-Shwartz et al. [107]. We extend the analysis given in their paper to our
new instantaneous objective by presenting Theorem 3.
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Algorithm 8: Weighted Coordinate-Wise Pagasos
Data: S,Λ, T, k, ε

1 Set λmin = mini Λii
2 Select w1 randomly s.t. ‖w(1)‖ ≤ 1/

√
λmin

3 for t = 1→ T do
4 Set ηt = 1

tΛ−1

5 Select At ⊆ S, where |At| = k

6 ρ = 1
|S|
∑

(x,y)∈S(y − 〈wt, x〉)
7 A+

t = {(x, y) ∈ At : y(〈wt, x〉+ ρ) < 1}
8 wt+ 1

2
= wt − ηt(Λwt − 1

k

∑
(x,y)∈A+

t
yx)

9 wt+1 = min
{

1, 1/
√
λmin

‖w
t+ 1

2
‖

}
wt+ 1

2

10 if ‖wt+1 − wt‖ ≤ ε then
11 return (wt+1,

1
|S|
∑

(x,y)∈S(y − 〈wt, x〉))
12 end
13 end
14 return (wT+1,

1
|S|
∑

(x,y)∈S(y − 〈wt, x〉))

Theorem 3. Let B be a closed convex set and define
∏
B(w) = argminw′∈B ‖w−

w′‖. Let w1, . . . , wT be a sequence of vectors such that w1 ∈ B and for t ≥ 1,
wt+1 =

∏
B(wt − ηt∇t), where ∇t is a subgradient of Eq.(3.14) at wt and

ηt = 1
tΛ−1. Let w∗ be the solution of the optimization problem in Eq.(3.14),

λmin = mini Λii, λmax = maxi Λii, λmin > 0 and let G = λmax/
√
λmin + R.

Assume ‖x‖ ≤ R for all (x, y) ∈ S. Then, for T ≥ 1 we have

‖wT − w∗‖ ≤ 2Gλmax
λ2
min

(ln(T ) + 1) + 2R
λmin

.

Proof. To prove our theorem we refer to Lemma 4 in [106] and Section 9.1.2
in [22]. To apply results from Boyd’s book [22] first we need to show that our
problem is strongly convex. It is easy to verify that the first term in Eq.(3.14)
is λmin-strongly convex with respect to w. Since f is a sum of λmin-strongly
convex function and another convex function (hinge loss), it is also strongly
convex. From Section 9.1.2 in [22] we know that one can bound the distance to
the minimizer w∗ of the objective in Eq.(3.14) by

‖wT − w∗‖ ≤
2

λmin
‖∇f(wT )‖.
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The simplistic bound on ‖∇f(wT )‖ is derived using the upper-bound on the
matrix-vector product as follows

‖∇f(wT )‖ ≤ ‖Λ‖‖wT ‖+ 1
|AT |

∑
(x,y)∈A+

T

‖yx‖ ≤ λmax‖wT ‖+R.

Next using the fact that there exists t-independent bound on ‖∇f(w)‖ ≤ G,
wt = wt−1 − ηt∇t, w0 = 0 and applying induction and the triangular inequality
one can show that

‖wT ‖ ≤
T∑
t=1
‖ηt∇f(wt)‖ ≤ G‖Λ−1‖

T∑
t=1

1
t
≤ G

λmin
(ln(T ) + 1).

Next by assuming B = {w : ‖w‖ ≤ 1/
√
λmin} and the fact that ‖x‖ ≤ R we can

derive t-independent bound on subgradient ∇f(w). The explicit form for the
subgradient evaluated at intermediate solution wt is given by Eq.(3.15). Using
the triangular inequality, taking into account that Λ is a diagonal matrix one
obtains

‖∇f(w)‖ ≤ ‖Λ‖‖w‖+ 1
|At|

∑
i ‖xi‖ ≤ λmax‖w‖+R ≤ λmax/

√
λmin +R.

Finally we have to show that w∗ ∈ B and that there exist a universal upper
bound for ‖w‖. As a starting point we take Lemma 4 in [106]. First we need to
derive the dual form of our instantaneous optimization objective for any subset
At at iteration t. We use the fact that there exists a vector α∗ ∈ [0, 1]m which
maximizes our dual objective and duality gap equals to zero. Assuming these
conditions and |At| = k one gets

1
2w
∗TΛw∗ + 1

k

∑
(x,y)∈At

L(w∗; (x, y)) = −1
2w
∗TΛw∗ + 1

k
‖α∗‖1.

Rearranging the above, using the non-negativity of the hinge loss, the bound
on ‖α‖1 ≤ k and the fact that w∗TΛw∗ ≥ λmin‖w∗‖2 we obtain our initial
condition of set B: ‖w‖ ≤ 1/

√
λmin. Now we can plug-in everything back to

the inequality in Theorem 1 and complete the proof by putting all together.

3.2.3 Obtaining λi hypermarameters

In this section we focus on the problem of estimating λi hyperparameters.
This problem is interesting by itself and gained a lot of attention within the
framework of Automatic Relevance Determination in neural networks and



84 STOCHASTIC LEARNING FOR SUPPORT VECTOR MACHINES

kernel methods [82, 123, 35]. In our experiments with Weighted Coordinate-
Wise Pegasos algorithm we will use two distinct strategies for obtaining these
hyperparameters.

The first one is related to cross-validation and global optimization techniques,
like Coupled Simulated Annealing [133]. Following this approach we evaluate
10-fold cross-validation for each iteration in every standard simulated annealing
process. In CSA one couples together acceptance probability functions of these
processes in order to control general statistical measures that may have crucial
influence on the performance of the optimization.

The other technique is purely Bayesian and relies on the recent research in
this area [130]. The main idea of the latter approach is to estimate these
hyperparameters from the data by first marginalizing over the coefficients w
and then performing what is commonly referred to as evidence maximization
or type-II maximum likelihood [123, 81, 90]. Mathematically, in the context of
Weighted Coordinate-Wise Pegasos this formulation is equivalent to minimizing

L(λ) , − log p(y;λ) ≡ log |Σy|+ yTΣ−1
y y, (3.16)

where a flat hyperprior on λi hyperparameters is assumed and Σy , γI+ΦΛΦT .
Here Φ denotes evaluated dataset and is given by the original mapping in the
input space, i.e. φ(x) = x, where (x, y) ∈ S as it is given in Theorem 1. In this
setting we are following the proposed optimization via Iterative Re-Weighted
Minimum l1 in [130], where one is estimating the λi unknowns via alternating
update rules which can be derived by decoupling L(λ) using upper bounding
functions. This approach also relates to Sparse Bayesian Learning (SBL) that
has been successful in a variety of applications [123].

3.2.4 Experiments

Setup

For the first part of our experiments we used a 2-step procedure for tuning
the λi hyperparameters in Algorithm 8. This procedure consists of Coupled
Simulated Annealing [133] initialized with 5 random sets of parameters for the
first step and the simplex method [91] for the second step. After CSA converges
to some local minima we select a tuple of λi hyperparameters which attains
the lowest cross-validation error and start the simplex procedure to refine our
selection. On every iteration step for CSA and simplex method we proceed with
a 10-fold cross-validation.
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For the second part of our experiments we used the ARD approach described
in Section 3.2.3. For learning hyperparameters we used the procedure described
in Section 2.1 of [130] and we defined γ = 10−3 parameter related to our flat
hyperprior in Eq.(3.16) (we can bind this parametrization to the numerical
stability of the underlying approach). Finally we defined ε = 10−5 stopping
criterion which controls the norm of the difference for two subsequent solutions.
Once we drop below this threshold iterative re-weighting procedure halts. In
this part we experimented mostly with small-scale UCI datasets given in Table
3.5 because of the computational burden of Σy matrix inversion and storage.

All experiments with large-scale UCI datasets were repeated 50 times with
the random split to training and test sets in proportion 1:1. For the smaller
UCI datasets we performed 50 iterations with splitting in proportion 1:9 taking
90% of the dataset for training. In the presence of 3 or more classes we
performed binary classification where we learned to classify the first class versus
all others. Only for Pen Digits dataset we performed several experiments where
this setting was changed. For Algorithm 8 we fixed parameters: T = 1000 and
ε = 10−5. Parameter k was set to |S|/10 for all small-scale UCI datasets and
we performed experiments with two different values of k for larger-scale UCI
datasets. Description of all public UCI datasets [49] we can find in Table 3.5.

Table 3.5: Datasets

Dataset # of attributes # of classes # of data points

Ionosphere 34 2 354
Parkinsons 23 2 197
Sonar 60 2 208
Iris 4 3 150
Ecoli 8 5 336
Red Wine 12 2 1599
White Wine 12 2 4898
Pen Digits 16 10 10992
Magic 11 2 19020
Shuttle 9 2 58000
Covertype 54 7 581012
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Results

In this subsection we give numerical results on running Algorithm 8 within
cross-validation and ARD settings. In Table 3.6 we can see our results for
small-scale UCI datasets. Notation Pegasoswcw denotes our proposed approach
with the tuning of λi hyperparameters via cross-validation and Pegasoswcw/ard
stands for the same approach with hyperparameters obtained via the ARD
method described in Section 3.2.3.

From Table 3.6 we can notice that Bayesian inference together with Algorithm
8 doesn’t attain better results than the basic Pegasos algorithm. On the other
hand Weighted Coordinate-Wise Pegasos performs better with respect to both
of them.

Table 3.6: Test errors for small-scale datasets

Dataset Pegasos Pegasoswcw Pegasoswcw/ard
Ionosphere 0.16889 0.12714 0.28922
Parkinsons 0.20832 0.18274 0.23253
Sonar 0.23848 0.28667 0.32176
Iris 0.34933 0.30133 0.61467
Ecoli 0.06500 0.05710 0.16299

In Table 3.7 we can observe results for large-scale UCI datasets within partially
stochastic setting where we set k to be 10% of |S|. We can notice that we
perform equally better for almost all datasets in comparison with original
Pegasos algorithm.

In Table 3.8 we can see that when going to a completely stochastic setting with
k = 1 we are slightly deteriorating our performance. We can notice that our
approach outperforms Pegasos algorithm for all datasets and it is well-suited for
learning more accurately large scale linear SVMs via stochastic programming.

Convergence

In this subsection we present some plots which give a better understanding of
the convergence properties for the Weighted Coordinate-Wise Pegasos algorithm.
In Figure 3.4 we see the convergence over time for the basic Pegasos algorithm
and our proposed approach. We ran algorithms with the optimal values of
hyperparameters found via cross-validation procedure described in Section 4.2.5.



WEIGHTED COORDINATE-WISE PEGASOS 87

Table 3.7: Test errors for larger-scale datasets with k = 10% of |S| (partially
stochastic)

Dataset Pegasos Pegasoswcw
Magic 0.30550 0.23607
Shuttle 0.21450 0.08549
Red Wine 0.26924 0.27747
White Wine 0.32443 0.30541
Covertype 0.36466 0.32807
Pen Digits (1 vs all) 0.10432 0.08984
Pen Digits (2 vs all) 0.08448 0.05133
Pen Digits (5 vs all) 0.09609 0.06830
Pen Digits (6 vs all) 0.05835 0.02896

Table 3.8: Test errors for larger-scale datasets with k = 1 (fully stochastic)

Dataset Pegasos Pegasoswcw
Magic 0.32288 0.27743
Shuttle 0.21751 0.08598
Red Wine 0.29552 0.29224
White Wine 0.32807 0.30599
Covertype 0.36474 0.34962
Pen Digits (1 vs all) 0.10409 0.09255
Pen Digits (2 vs all) 0.08437 0.05317
Pen Digits (5 vs all) 0.09635 0.07059
Pen Digits (6 vs all) 0.05863 0.02847

We can notice that Pegasoswcw attains faster convergence and lower objective
values.

3.2.5 Conclusions and remarks

In this paper we proposed an extension of the Pegasos algorithm which is suitable
for learning linear SVMs at the larger scale. It performs considerably better in
terms of the generalization error. We presented two different approaches for
learning λi regularization hyperparameters and showed that cross-validation
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Figure 3.4: Convergence of Pegasos and Pegasoswcw algorithms for Pendigits
dataset

together with CSA attains better results than a Bayesian approach. The latter
results can be explained by the nature of ARD-related data-dependent prior
distribution and inconsistencies between our assumptions and observed data.
Finally we gave numerical results which demonstrated the merits of the proposed
methods and verified the importance of the coordinate-wise parametrization for
linear SVMs in terms of generalization error and training speed-up.
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4.1 Reweighted Stochastic Learning

4.1.1 Introduction

In many domains dealing with online and stochastic learning, the input instances
are of very high dimension, yet within any particular instance several features
are non-zero. Therefore specific stochastic and online approaches crafted with
sparsity inducing regularization are of particular interest for many machine
learning researchers and practitioners. This paper investigates an interplay
between Regularized Dual Averaging (RDA) approaches [134] (along with other
techniques for solving linear SVMs in the context of stochastic learning [107])
and parsimony concepts arising from the application of sparsity inducing norms,
like the l0-type of a penalty.

One can see an increasing importance of correctly identified sparsity patterns and
proliferation of proximal and soft-thresholding subgradient-based methods [134],
[108], [45]. There are many important contributions of the parsimony concept
to the machine learning field. One may allude to the understanding of the
obtained solution and simplified or easy to extract decision rules [12, 96, 23]. On
the other hand the informativeness of the obtained features might be useful for
a better generalization on unseen data [12]. Approaches based on l1-regularized
loss minimization were studied in the context of stochastic and online learning
by several research groups [134], [108], [32], [44] but we are not aware of any
l0-norm inducing methods which were applied in the context of Regularized
Dual Averaging and stochastic optimization.

In this paper we are trying to provide a supplementary analysis and sufficient
regret bounds for learning sparser linear Regularized Dual Averaging (RDA)
[134] models from random observations. We extend and modify our previous
research [68], [67] and present complementary proofs with fewer assumptions and
discussion for the reported theoretical findings. We use sequences of (strongly)
convex reweighted optimization objectives to accomplish this goal.

This paper is structured as follows. Section 4.1.2 describes previous work on
l0-norm induced learning and some existing solutions to stochastic optimization
with regularized loss. Section 4.1.3 presents a problem statement for the
reweighted algorithms. Section 4.1.3 introduce our reweighted l1-RDA and l2-
RDA methods while Subsection on page 100 presents completely novel approach
based on probabilistic reweighted Pegasos-like linear SVM solver. Subsections
on pages 94 and 99 provide a theoretic background for our reweighted RDA
approaches. Section 4.1.4 presents our numerical results and Section 4.1.5
concludes the paper.
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4.1.2 Related work

Learning with ‖w‖0 pseudonorm regularization is a NP-hard problem [78] and
can be approached via the reweighting schemes [31], [37], [131], [26] while lacking
a proper theoretical analysis of convergence in the online and stochastic learning
cases. Some methods, like [57], consider an embedded approach where one has
to solve a sequence of QP-problems, which might be very computationally- and
memory-wise expensive while still missing some proper convergence criteria.

In many existing iterative reweighting schemes [37], [75] the analysis is provided
in terms of the Restricted Isometry Property (RIP) or the Null Space Property
(NSP) [74], [37]. These approaches solely rely on the properties which are
difficult to access beforehand in a data-driven fashion. This might be crucial if
one decides to evaluate methods for their potential applicability. For instance
in case of the Restricted Isometry Property, which is characterizing matrix Φ,
one is interested to find a constant δ ∈ (0, 1) such that for each vector w we
would have:

(1− δ)‖w‖2 ≤ ‖Φw‖2 ≤ (1 + δ)‖w‖2.

The RIP was introduced by Candes and Tao [25] in their study of compressed
sensing and l1-minimization. But it cannot be directly applied in the context
of online and stochastic optimization because we cannot observe matrix Φ
immediately. This fact directly impedes the successful implication of convergence
guarantees based on the RIP or other related properties.

Other groups stemmed their research from the follow-the-regularized-leader
(FTRL) family of algorithms [134], [44], [54] and complementary analysis for
sparsity-induced learning. In primal-dual subgradient methods arising from
this family of algorithms one aims at making a prediction wt ∈ Rd on round t
using the average subgradient of the loss function. The update encompasses a
trade-off between a gradient-dependent linear term, the regularizer ψ(wt) and a
strongly-convex term ht for well-conditioned predictions. Our research is based
on FTLR algorithms with primal-dual iterate updates, such as RDA [134], and
corresponding theoretical guarantees are very much along the lines of the latter.

4.1.3 Reweighted Methods

Problem statement

In the stochastic Regularized Dual Averaging approach developed by Xiao [134]
one approximates the loss function f(w) by using a finite set of independent
observations S = {ξt}1≤t≤T . Under this setting one minimizes the following
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optimization objective:

min
w

1
T

T∑
t=1

f(w, ξt) + ψ(w), (4.1)

where ψ(w) represents a regularization term. Every observation is given as a
pair of input-output variables ξ = (x, y). In the above setting one deals with a
simple classification model ŷt = sign(〈w, xt〉) and calculates the corresponding
loss f(w, ξt) accordingly1. It is common to acknowledge Eq.(4.1) as an online
learning problem if T →∞.

The problem in Eq.(4.1) can be approached using a sequence of strongly convex
optimization objectives. The solution of every optimization problem at iteration
t is treated as a hypothesis of a learner which is induced by an expectation of
possibly non-smooth loss function, i.e. Eξ[f(w, ξ)]. One can regularize it by a
reweighted norm at each iteration t. This approach in case of satisfying the
sufficient conditions will induce a bounded regret w.r.t. the loss function which
is generating a sequence of stochastic subgradients endowing our dual space E∗
[94].

For promoting sparsity we define an iterate-dependent regularization ψt(w) ,
λ‖Θtw‖ which in the limit (t→∞) applies an approximation to the l0-norm
penalty. At every iteration t we will be solving a separate convex instantaneous
optimization problem conditioned on a combination of the diagonal reweighting
matrices Θt. Specific variations of ψt(w) for different norms (e.g. l1- and
l2-norm) will be presented in the next subsections. By using a simple dual
averaging scheme [94] we can solve our problem effectively by the following
sequence of iterates wt+1 :

wt+1 = arg min
w
{1
t

t∑
τ=1

(〈gτ , w〉+ ψτ (w)) + βt
t
h(w)}, (4.2)

where h(w) is an auxiliary 1-strongly convex smoothing term (proximal operator
defined as h(w) = 1

2‖w−w0‖, where w0 is set to origin), gt ∈ ∂ft(wt) represents
a subgradient and {βt}t≥1 is a non-negative and non-decreasing sequence, which
determines the boundedness of the regret function of our algorithms2.

In detail Eq.(4.2) is derived using a different optimization objective where
we have replaced static regularization term ψ(w) in Eq.(4.1) with the iterate-
dependent term ψt(w). In the latter case our optimization objective becomes

1throughout this paper we will fix f(w) to the hinge loss f(w, ξt) = max{0, 1− yt〈w, xt〉}
2see Sections 12 and 12
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min
w

1
T

T∑
t=1

φt(w), (4.3)

where composite function φt(w) is defined as φt(w) , f(w, ξt) + ψt(w). Using
the aforementioned dual averaging scheme from [94] it is easy to show that the
sequence wt in Eq.(4.2) will approximate an optimal solution to Eq.(4.3) if we
linearly approximate an accumulated loss function f(w, ξt) from φt(w) and add
a smoothing term h(w). For exact details the interested reader can refer to
Eq.(2.14) in [94] or in depth to Theorem 1 in [94].

Reweighted l1-Regularized Dual Averaging

For promoting additional sparsity to the l1-Regularized Dual Averaging method
[134] we define ψt(w) = ψl1,t(w) , λ‖Θtw‖1. Hence Eq.(4.2) becomes:

wt+1 = arg min
w
{1
t

t∑
τ=1

(〈gτ , w〉+ λ‖Θτw‖1) + γ√
t
(1
2‖w‖

2
2 + ρ‖w‖1)}. (4.4)

For our reweighted l1-RDA approach we set βt = γ
√
t and we replace h(w) in

Eq.(4.2) with the parameterized version:

hl1(w) = 1
2‖w‖

2
2 + ρ‖w‖1. (4.5)

Each iterate has a closed form solution. Let us define η(i)
t = λ

t

∑t
τ=1 Θ(ii)

τ +
γρ/
√
t and give an entry-wise solution by:

w
(i)
t+1 =

{
0, if |ĝ(i)

t | ≤ η
(i)
t

−
√
t
γ (ĝ(i)

t − η
(i)
t sign(ĝ(i)

t )), otherwise
, (4.6)

where ĝ(i)
t = t−1

t ĝ
(i)
t−1 + 1

t g
(i)
t is the i-th component of the averaged gt ∈ ∂ft(wt).

i.e. ĝt = 1
t

∑t
τ=1 gτ .

Reweighted l1-RDA Algorithm

In this subsection we will outline and explain our main algorithmic scheme
for the Reweighted l1-RDA method. It consists of a simple initialization step,
drawing a sample At ⊆ S from the dataset S, computation and averaging of
the subgradient gt, evaluation of the iterate wt+1 and finally re-computation
of the reweighting matrix Θt+1. By analyzing Algorithm 9 we can clearly see
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that it can operate in a stochastic (k = 1, where k = |At|) and semi-stochastic
mode (k > 1) such that one could draw only one or multiple samples from
the dataset S. We do not restrict ourselves to a particular choice of the loss
function ft(w). In comparison with the l1-RDA approach we have one additional
input parameter ε, which should be tuned or selected properly as described in
[26]. This additional hyperparameter ε controls the stability of the reweighting
scheme and usually is set to a small number to avoid ill-conditioning of the
matrix Θt.

Algorithm 9: Stochastic Reweighted l1-Regularized Dual Averaging [67]
Data: S, λ > 0, γ > 0, ρ ≥ 0, ε > 0, T > 1, k ≥ 1, ε > 0

1 Set w1 = 0, ĝ0 = 0,Θ1 = diag([1, . . . , 1])
2 for t = 1→ T do
3 Draw a sample At ⊆ S of size k
4 Calculate gt ∈ ∂ft(wt;At)
5 Compute the dual average ĝt = t−1

t ĝt−1 + 1
t gt

6 Compute the next iterate wt+1 by Eq.(4.6)
7 Re-calculate the next Θ by Θ(ii)

t+1 = 1/(|w(i)
t+1|+ ε)

8 if ‖wt+1 − wt‖ ≤ ε then
9 return wt+1

10 end
11 end
12 return wT+1

The time complexity of Algorithm 9 is driven by the computational budget T
and subsample size k we use therein as our input parameters. In the worst case
scenario the time complexity is of order O(dkT ) where d is the input dimension.

Analysis for the Reweighted l1-RDA method

In this section we will briefly discuss some of our convergence results and upper
bounds for Algorithm 9. We concentrate mainly on the regret w.r.t. function
φt(w) , f(w, ξt) + ψl1,t(w) in Eq.(4.3) such that for all w ∈ Rn and iterates t
we have:

Rt(w) =
t∑

τ=1
(φτ (wτ )− φτ (w)). (4.7)

In Eq.(4.7) Rt(w) denotes an accumulated gap between function evaluations at
the solution wτ obtained in a closed form at iterate τ as for instance in Eq.(4.6)
and any w ∈ Rn. In detail we pay a fixed regret at each iterate τ if we take wτ
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instead of an optimal solution w∗ for Eq.(4.3). From [94] and [134] we know
that if we consider ∆ψl1,τ = ψl1,τ (wτ )− ψl1,τ (w) the following gap sequence δt
holds:

δt = max
w
{

t∑
τ=1

(〈gτ , wτ −w〉 +∆ψl1,τ )} ≥
t∑

τ=1
(f(wτ )−f(w)+∆ψl1,τ ) = Rt(w),

(4.8)
which due to the convexity of f bounds the regret function from above [22].
Hence by ensuring the necessary condition of Eq.(49) in [134] we can show the
upper bound on δt, which immediately implies the same bound on Rt(w).

Theorem 4. Let the sequences {wt}t≥1, {gt}t≥1 and {Θt}t≥1 be generated by
the Algorithm 9. Assume ψl1,t(wt) ≤ ψl1,t(wt+1), ‖gt‖∗ ≤ G, where ‖ · ‖∗ stands
for the dual norm. Then for any fixed decision w:

Rt(w) ≤ (γD + G2

γ
)
√
t, (4.9)

where hl1(w) ≤ D holds for all w ∈ Rn.
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Figure 4.1: Difference between the reweighted l1-norm and the true l0-norm for
CT slices dataset [49] at each iterate wt.

Our intuition is related to the asymptotic convergence properties of an iterative
reweighting procedure discussed in [57] where in the limit (t→∞) iterate Θt

implies ‖Θtw‖1 ' ‖w‖pt with pt → 0. Hereby we do not give any theoretical
justification of the averaging effect implied by Eq.(4.2) on the approximation.
Instead we present an empirical evidence of the convergence in Figure 4.1.
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We ran the Reweighted l1-RDA algorithm on the CT slices dataset [49] only
once using all data points in an online learning setting with the parameters
of Algorithm 9 set as follows: λ, ρ, γ = 1, ε = 0.1. The number of iterations
corresponds to the total number of available examples in S.

In the next theorem we will slightly relax the necessary condition in order to
derive a new bound w.r.t. maximal discrepancy of ψl1,t function evaluations at
subsequent wt iterates.

Theorem 5. Let the sequences {wt}t≥1, {gt}t≥1 and {Θt}t≥1 be generated
by the Algorithm 9. Assume ψl1,t(wt) − ψl1,t(wt+1) ≤ ν/t for some ν ≥ 0,
‖gt‖∗ ≤ G, where ‖ · ‖∗ stands for the dual norm. Then for any fixed decision
w:

Rt(w) ≤ ν log t+ (γD + G2

γ
)
√
t, (4.10)

where hl1(w) ≤ D holds for all w ∈ Rn.
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Figure 4.2: Near asymptotic convergence of the difference |ψl1,t(wt)−ψl1,t(wt+1)|
at the first 2300 iterations for CT slices dataset.

From the above theorem it can be clearly seen that the dependence on the
maximal discrepancy term is at most O(log t) and is not linked directly to
the non-strongly convex instantaneous optimization objective. Hence this
discrepancy has less influence on the boundedness of the regret in comparison
to the strong convexity assumption.
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In Figure 4.2 we present an empirical evaluation of the near asymptotic
convergence of |ψl1,t(wt)− ψl1,t(wt+1)| sequence, which verifies our assumption
on the boundedness of this sequence in Theorem 5. The algorithmic setup is the
same as in Figure 4.1. Proofs and lemmas related to Theorem 4 and Theorem 5
the interested reader can find in the Proofs for the Reweighted l1-RDA method.

Reweighted l2-Regularized Dual Averaging

Stemmed from the Section 4.1.3 this particular extension of the RDA approach
[134] is dealing with the squared l2 norm. For promoting additional sparsity
we add the reweighted ‖Θ1/2

t w‖22 term such that we have ψl2,t(w) , λ‖w‖22 +
‖Θ1/2

t w‖22. At every iteration t we will be solving a separate λ-strongly convex
instantaneous optimization objective conditioned on a combination of the
diagonal reweighting matrices Θt.

To solve problem in Eq.(4.1) we split it into a sequence of separated optimization
problems which should be cheap to compute and hence should have a closed
form solution. These problems are interconnected through the sequence of dual
variables gτ ∈ ∂f(w, ξτ ), τ ∈ 1, t and regularization terms which are averaged
w.r.t. to the current iterate t.

Following the dual averaging scheme presented by Eq.(4.2) we can effectively
solve our problem with a closed form solution. In our reweighted l2-RDA
approach we use a zero βt-sequence3 such that we omit the auxiliary smoothing
term h(w) in Eq.(4.2) which is not necessary since our ψl2,t(w) function is
already smooth and strongly convex. Hence the solution for every iterate wt+1
in our approach is given by

wt+1 = arg min
w
{1
t

t∑
τ=1

(〈gτ , w〉+ ‖Θ1/2
τ w‖22) + λ‖w‖22}. (4.11)

We will explain the details regarding recalculation of Θt and iterate wt+1 in the
next subsection.

Reweighted l2-RDA Algorithm

In this subsection we will outline and explain our main algorithmic scheme
for the Reweighted l2-RDA method. It consists of a simple initialization step,
computation and averaging of the subgradient gτ , evaluation of the iterate wt+1
and finally recalculation of the reweighting matrix Θt+1. In Algorithm 10 we

3we assume β0 = λ and βt = 0, t ≥ 1 for completeness
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do not have any explicit sparsification mechanism for the iterate wt+1 except for
the auxiliary function "Sparsify" which utilizes an additional hyperparameter ε
and uses it to truncate the final solution wt below the desired number precision
as follows:

w
(i)
t :=

{
0, if |w(i)

t | ≤ ε,
w

(i)
t , otherwise,

(4.12)

where w(i)
t is i-th component of the vector wt. In comparison with the simple

l2-RDA approach [134] we have one additional hyperparameter ε, which enters
the closed form solution for wt+1 and should be tuned or adjusted w.r.t. the
iterate t as described in [31] and highlighted in [26]. As in Section 4.1.3 this
hyperparameter is introduced to stabilize the reweighting scheme and make Θt

well-conditioned if some entries of wt are zeros.

The time complexity of Algorithm 10 is the same as for Algorithm 9 with a
small extra cost for sparsifying the final solution.

In Algorithms 9 and 10 we perform an optimization w.r.t. to the intrinsic bias
term b, which doesn’t enter our decision function

ŷ = sign(〈w, x〉), (4.13)

but is appended to the final solution w. The trick for including a bias term
is to augment every input xt in the subset At with an additional component
which will be set to 1. This will alleviate the decision function with an offset in
the input space. Empirically we have verified that sometimes this design has a
crucial influence on the performance of a linear classifier.

Algorithm 10: Stochastic Reweighted l2-Regularized Dual Averaging [68]
Data: S, λ > 0, k ≥ 1, ε > 0, ε > 0, δ > 0

1 Set w1 = 0, ĝ0 = 0,Θ0 = diag([1, . . . , 1])
2 for t = 1→ T do
3 Draw a sample At ⊆ S of size k
4 Calculate gt ∈ ∂f(wt,At)
5 Compute the dual average ĝt = t−1

t ĝt−1 + 1
t gt

6 Compute the next iterate w(i)
t+1 = −ĝ(i)

t /(λ+ 1
t

∑t
τ=1 Θ(ii)

τ )
7 Recalculate the next Θ by Θ(ii)

t+1 = 1/((w(i)
t+1)2 + ε)

8 if ‖wt+1 − wt‖ ≤ δ then
9 Sparsify(wt+1, ε)

10 end
11 end
12 return Sparsify(wT+1, ε)
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Analysis for the Reweighted l2-RDA method

In this subsection we will provide the theoretical guarantees for the upper
bound on the regret of the function φt(w) , f(w, ξt) + ψl2,t(w) as defined
in Eq.(4.7). In this case we are interested in the guaranteed boundedness of
the sum generated by this function applied to the sequences {ξ1, . . . , ξt} and
{Θ1, . . . ,Θt}. In the next theorem we will provide the sufficient conditions for
the boundedness of δt if the imposed regularization is given by the reweighted
λ-strongly convex terms ‖Θ1/2

t w‖22 +λ‖w‖22. Supplementary proofs and lemmas
are provided in the Proofs for the Reweighted l2-RDA method.

Theorem 6. Let the sequences {wt}t≥1, {gt}t≥1 and {Θt}t≥1 be generated by
Algorithm 10. Assume ψl2,t(wt) ≤ ψl2,t(wt+1) and ‖gt‖∗ ≤ G, where ‖ · ‖∗
stands for the dual norm, and constant λ > 0 is given for all ψl2,t(w). Then
for any fixed decision w:

Rt(w) ≤ G2

2λ (1 + log t). (4.14)

This theorem closely follows results presented in Section 3.2 of [134]. On the
other hand our motivation and outline of the proof differs in many aspects. First
we have to maintain a sequence of different regularization terms {ψl2,τ (w)}1≤τ≤t.
Second averaging of this sequence is crucial for proving the boundedness of the
conjugate support-type function Vτ (sτ ) in [93, 94] for any τ ≥ 1.

Theorem 7 provides the necessary condition for deriving a new bound w.r.t.
maximal discrepancy of ψl2,t function evaluations at subsequent wt iterates.

Theorem 7. Let the sequences {wt}t≥1, {gt}t≥1 and {Θt}t≥1 be generated by
Algorithm 10. Assume ψl2,t(wt)−ψl2,t(wt+1) ≤ ν/t for some ν ≥ 0, ‖gt‖∗ ≤ G,
where ‖·‖∗ stands for the dual norm, and constant λ > 0 is given for all ψl2,t(w).
Then for any fixed decision w:

Rt(w) ≤ G2

2λ + G2 + 2λν
2λ log t. (4.15)

The above bound boils down to the bound in Theorem 5 if we set ν to zero.
In contrast with Theorem 5 here relaxation implies order O(log t) dependency
on the total number of iterations and perfectly fits within original bound in
Theorem 6 implied by the strong convexity of the instantaneous optimization
objective and the zero βt-sequence.
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Reweighted Dropout Pegasos

In this section we present another novel development based on the Pegasos
algorithm [107] for solving linear SVMs. Our finding is motivated by [44], [113]
and is rooted in the observation that more dominant features might require
more frequent regularization based on the previous values (defined by wt−1).

In our approach we maintain a vector of discrete Bernoulli variables of the same
size as wt, where every success probability p(i)

t of the Bernoulli distribution for
feature i at round t is defined as follows:

p
(i)
t =

w
(i)
t−1 · w

(i)
t−1

1 + w
(i)
t−1 · w

(i)
t−1

. (4.16)

Hence if feature i is updated more frequently and growing by modulus it has
higher chances under the Bernoulli distribution for being regularized by the
standard l2-norm penalty [107]. The value of a discrete Bernoulli variable
depends upon the weighted previous iterate wt−1. After obtaining a draw
of the particular Bernoulli distribution at round t we simply drop out from
regularization features with zero-valued Bernoulli variables. This approach
resembles "dropout" regularization applied in convolutional neural networks to
prevent them from overfitting [113].

Algorithm 11: Reweighted Dropout Pegasos
Data: S, λ, T, k, δ

1 Select w0 = w1 randomly s.t. ‖w1‖ ≤ 1/
√
λ

2 for t = 1→ T do
3 Draw a sample At ⊆ S of size k
4 Calculate gt ∈ ∂f(wt,At)
5 Calculate p(i)

t by Eq.(4.16)
6 Draw a binary sample rt from pt
7 Set ηt = 1

λt

8 wt+ 1
2

= wt − ηt(λwt ◦ rt − 1
kgt)

9 wt+1 = min
{

1, 1/
√
λ

‖w
t+ 1

2
‖

}
wt+ 1

2

10 if ‖wt+1 − wt‖ ≤ δ then
11 return wt+1
12 end
13 end
14 return wT+1
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Reweighted Dropout Pegasos has a very simple outline and can be summarized
in Algorithm 11, where ◦ stands for the element-wise multiplication and gt is a
subgradient of an arbitrary convex loss function ft. By analyzing Algorithm 11
we can see that one major deviation from the Pegasos algorithm is formulated
in terms of a binary sample rt which is drawn from the Bernoulli distribution
pt. This sample is used to drop out the regularization counterpart ληtwt at the
step 8 for some particular dominant features.

4.1.4 Simulated experiments

Experimental setup

For all methods in our experiments with UCI datasets [49] for tuning (e.g.
to estimate the ubiquitous λ hyperparameter or tuples of hyperparameters
employed in Algorithms 9 and 10) we use Coupled Simulated Annealing [133]
initialized with 5 random sets of parameters. These random sets are made out
of tuples of hyperparameters linked to one particular setup of an algorithm. At
every iteration step for CSA we proceed with a 10-fold cross-validation. Within
the cross-validation we are promoting additional sparsity with a slightly modified
evaluation criterion. We introduce an affine combination of the validation error
and the obtained sparsity in proportion of 95% : 5% for initially non-sparse
datasets and 80% : 20% for sparse datasets where sparsity is calculated as∑
i I(|w(i)| > 0)/d. This novel cross-validation criterion could be summarized

as follows:

criterioncv(Xvalid, w) = (1− κ)error(Xvalid, w) + κ
∑
i

I(|w(i)| > 0)/d, (4.17)

where d is the input dimension, κ is the amount of introduced sparsity (0.05 vs.
0.20) and error(Xvalid, w) is implemented as a misclassification rate.

All experiments with large-scale UCI datasets [49] were repeated 50 times
(iterations) with the random split to training and test sets in proportion 90% :
10%. At every iteration all methods are evaluated with the same test set
to provide a consistent and fair comparison in terms of the generalization
error and sparsity. In the presence of 3 or more classes we perform binary
classification where we learn to classify the first class versus all others. For
CT slices4 dataset we performed a binarization of an output yi by the median
value. For URI dataset we took only "Day0" subset as a probe. For all
presented stochastic algorithms we set T = 1000, k = 1, δ = 10−5 and other
hyperparameters were determined using the cross-validation tuning procedure

4originally it is a regression problem
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described above. All methods were using a hinge loss as ft given in Eq.(4.1) and
implemented in julia technical computing language5. Corresponding software
can be found online at www.esat.kuleuven.be/stadius/ADB/software.php
and github.com/jumutc/SALSA.jl.

Table 4.1: Datasets

Dataset # attributes # classes # data points

Pen Digits 16 10 10992
Opt Digits 64 10 5620
CNAE-9 1080 9 857
Semeion 256 10 1593
Spambase 57 2 4601
Magic 11 2 19020
Shuttle 9 2 58000
CT slices 386 2 53500
Covertype 54 7 581012
URI 3231961 2 16000
RCV1 47152 4 804414

A slightly different approach we took for the RCV1 corpus data [79]. We adopted
the experimental setup described in [44]. We ran all competing algorithms only
once using cross-validation to search for the optimal trade-off hyperparameter
λ. All other hyperparameters were set to the default values in order to obtain
at least 50% sparsity. We set the T hyperparameter for all algorithms to the
total number of training points, such that we could work within the online
learning setting. There are 4 high-level categories: Economics, Commerce,
Medical, and Government (ECAT, CCAT, MCAT, GCAT), and multiple more
specific categories. We focus on training binary classifiers for each of these major
categories. Originally RCV1 data is split into the test and training counterparts.
We report our performance for both test and training data. One can find more
information on the datasets in Table 4.1.

Numerical results

In this subsection we will provide an outlook on the performance of l1-RDA
[134], adaptive l1-RDAada [44], our reweighted l1-RDAre [67] and l2-RDAre

5http://julialang.org/

www.esat.kuleuven.be/stadius/ADB/software.php
github.com/jumutc/SALSA.jl
http://julialang.org/
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Table 4.2: Generalization performance

Dataset Generalization (test) errors in % for UCI datasets
l1-RDAre [67] l2-RDAre [68] l1-RDAada [44] l1-RDA [134] Pegasos [107] Pegasosdrop

Pen Digits 6.3 (±2.1) 7.9 (±2.5) 6.9 (±2.3) 9.2 (±13) 6.3 (±1.9) 6.1 (±2.2)
Opt Digits 3.9 (±1.7) 4.8 (±2.1) 4.0 (±1.9) 4.4 (±1.9) 3.4 (±1.2) 5.3 (±6.4)
Shuttle 5.3 (±2.4) 6.9 (±2.7) 5.8 (±2.1) 5.6 (±2.0) 5.3 (±1.7) 4.7 (±1.4)
Spambase 11.0 (±3.0) 11.5 (±2.0) 10.8 (±1.7) 12.6 (±13) 10.0 (±1.7) 9.4 (±1.6)
Magic 22.7 (±2.4) 22.2 (±1.3) 22.4 (±1.7) 22.6 (±2.0) 22.2 (±1.1) 25.3 (±2.8)
Covertype 28.3 (±1.8) 27.0 (±1.4) 25.3 (±1.1) 26.6 (±2.6) 27.6 (±1.0) 28.2 (±2.6)
CNAE-9 2.0 (±1.4) 3.6 (±3.7) 1.9 (±1.4) 2.3 (±1.8) 1.2 (±1.1) 0.9 (±0.9)
Semeion 8.9 (±2.6) 13.3 (±18) 10.0 (±3.0) 11.6 (±13) 5.6 (±1.9) 5.3 (±1.8)
CT slices 5.6 (±1.4) 8.9 (±4.0) 8.4 (±2.8) 8.0 (±1.9) 5.0 (±0.7) 5.2 (±1.0)
URI 4.4 (±1.7) 5.2 (±3.0) 4.0 (±1.0) 4.8 (±2.5) 4.3 (±1.8) 8.4 (±6.0)

[68] methods as well as our novel Reweighted Dropout Pegasos algorithm
(Pegasosdrop) together with original Pegasos [107] itself. In Table 4.2 one can
see some generalization errors with standard deviations (in brackets) for all
datasets.

In Table 4.2 we have highlighted dominant performances of sparsity inducing
RDA-based algorithms and "non-sparse" Pegasos-based algorithms. Analyzing
Table 4.2 we can conclude that for the majority of UCI datasets we are doing
equally good w.r.t. the Adaptive l1-RDA method and significantly better w.r.t.
the original l1-RDA approach. This fact can be understood from the similar (but
different in theory) underlying principles of the reweighted and adaptive RDA
approaches. Indeed both approaches are relying on the importance and hence
accumulated information by the represented features. But in the adaptive RDA
method we are "reweighting" our closed form solution at round t by the norm
over historical subgradients while in the reweighted RDA approaches we are
explicitly maintaining diagonal matrix Θt which directly preserves the weights
and gives as in the limit the approximation for the l0-norm. In hindsight we can
evaluate performance of the competing approaches by taking a closer look at
the boxplot of test error distributions in Figure 4.3. Analyzing performance of
the Pegasos-based approaches we can see that for some datasets our Reweighted
Dropout approach outperforms Pegasos.
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Sparsity

In this subsection we will provide some of the findings which should highlight
the enhanced sparsity of the reweighted RDA approaches. In Table 4.3 one
can observe the evidence of an additional sparsity promoted by the reweighting
procedures which in some cases significantly reduce the number of non-zeros in
the obtained solution w.r.t. the adaptive and simple l1-RDA approaches.

By analyzing Table 4.3 it is not difficult to imply that for almost all datasets

Figure 4.3: Comparison of the test error distribution over 50 runs for different
UCI datasets.
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we were able to find a good trade-off between sparsity and generalization error.
For instance the Reweighted l2-RDA method was able to find more sparsified
solutions6 with only a small increase in the generalization error for such datasets
as Pen Digits, Spambase, Covertype or even better generalization, like for
the Magic dataset. On the other hand the Reweighted l1-RDA method was
better in generalization for sparse datasets, like Semeion and CT slices, but
less sparsifying than other RDA-based approaches. For one particular dataset
(CNAE-9) the Reweighted l1-RDA method was performing equally good in
terms of generalization and sparsity. In hindsight we can evaluate the attained
sparsity for different sparsity inducing methods and datasets over 50 trials in
Figure 4.4.

By analyzing these distributions it is easy to verify that for some datasets,
like (d) Semeion, most sparsity inducing methods are facing oversparsification
issues, which in turn imply a considerable decay in generalization. For other
presented datasets we are able to obtain more consistent performance w.r.t.
other RDA-based approaches.

RCV1 dataset results

We present our results for RCV1 dataset [79] separately because of the different
experimental setup and to concentrate on both training and test errors which are

6in comparison to other RDA-based approaches

Table 4.3: Sparsity
∑
i I(|w(i)| > 0)/d

Dataset Sparsity in % for UCI datasets
l1-RDAre [67] l2-RDAre [68] l1-RDAada [44] l1-RDA [134] Pegasos [107] Pegasosdrop

Pen Digits 98.6 (±4.6) 26.1 (±19) 48.3 (±18) 40.5 (±18) 100 (±0.0) 100 (±0.0)
Opt Digits 94.0 (±4.1) 33.4 (±18) 36.6 (±12) 32.5 (±10) 96.8 (±0.8) 94.8 (±13)
Shuttle 99.8 (±1.5) 50.0 (±24) 52.8 (±20) 51.3 (±15) 100 (±0.0) 100 (±0.0)
Spambase 98.2 (±3.8) 56.9 (±15) 57.7 (±17) 58.3 (±20) 100 (±0.0) 100 (±0.0)
Magic 93.2 (±12) 30.8 (±7.2) 32.8 (±11) 37.2 (±15) 100 (±0.0) 100 (±0.0)
Covertype 92.8 (±14) 8.0 (±5.4) 9.4 (±5.0) 12.4 (±7.1) 100 (±0.0) 98.1 (±14)
CNAE-9 1.42 (±0.8) 2.86 (±3.7) 1.74 (±1.3) 1.74 (±1.3) 17.9 (±2.1) 14.3 (±1.8)
Semeion 4.82 (±6.7) 6.20 (±20.2) 1.33 (±3.2) 0.11 (±0.8) 99.9 (±0.2) 99.8 (±0.2)
CT slices 84.7 (±18.7) 20.9 (±11.3) 14.0 (±3.4) 14.4 (±4.2) 98.9 (±0.5) 98.8 (±0.4)
URI 0.06 (±0.06) 0.1 (±0.06) 0.04 (±0.05) 0.03 (±.05) 1.4 (±0.07) 0.08 (±0.06)
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Figure 4.4: Comparison of the attained sparsity over 50 runs for different UCI
datasets.

of the same interest in the online learning setup. We present both generalization-
and sparsity-related performance in Table 4.4. Each row in the table represents
the test and training errors (sparsity is given in brackets) of four different
experiments in which we train our binary models w.r.t. one of the 4 major
high-level categories, i.e.: Economics, Commerce, Medical, and Government
(ECAT, CCAT, MCAT, GCAT respectively).

Numerical results are given only for l1-RDA based approaches because we are
interested in the comparison of sparsity-inducing methods within the same
follow-the-regularized-leader (FTRL) framework, i.e. the l1-norm regularization.
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This approach gives a clear reference (w.r.t. the original l1-RDA method) how
good we can perform using adaptive [44] and reweighted [68] reformulations.

By analyzing Table 4.4 it is easy to verify that at least two approaches are
performing equally good at each category w.r.t. the test error and there is no
distinct winner in this case. Our results are very different from [44] but our
experimental setup was slightly modified and we were using original TF-IDF
features from [79]. In contrast the obtained training error and sparsity gives
us more perspicuous outlook that the Reweighted l1-RDA approach delivers
better and faster learning rates in terms of generalization and sparsity while
being relatively inferior only for one category, i.e. MCAT.

Stability

To test the stability of our approach (and specifically the Reweighted l2-RDA
method, which is less stable than the Reweighted l1-RDA rival, due to the
enforced and possibly unstable sparsification by Sparsify(wt, ε) procedure in
the end of Algorithm 10) we perform several series of experiments with UCI
datasets to reveal the consistency and stability of our algorithm w.r.t. the
obtained sparsity patterns. For every dataset first we tune the hyperparameters
with all available data. We run our reweighted l2-RDA approach and l1-
RDA [134] method 100 times in order to collect frequencies of every feature
(dimension) being non-zero in the obtained solution. In Figure 4.5 we present the
corresponding histograms. As we can see our approach results in much sparser
solutions which are quite robust w.r.t. a sequence of random observations. l1-
RDA approach lacks these very important properties being relatively unstable
under the stochastic setting.

Additionally we adopt an experimental setup from [32] where we create a toy
dataset of sample size 10000, where every input vector a is drawn from a

Table 4.4: Performance on RCV1 dataset

Category Training error (sparsity) (in %) Test error in %
l1-RDAre l1-RDAada l1-RDA l1-RDAre l1-RDAada l1-RDA

CCAT 5.0 (32.7) 6.3 (47.5) 6.3 (15.2) 8.6 7.9 9.3
ECAT 3.5 (24.9) 7.9 (28.5) 4.1 (11.6) 6.5 9.3 6.7
GCAT 3.6 (10.3) 3.8 (40.0) 5.0 (11.7) 5.6 5.0 7.0
MCAT 6.6 (9.5) 3.8 (33.0) 2.7 (10.3) 7.9 5.2 4.7
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(a) Reweighted l2-RDA on OptDigits
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(b) l1-RDA on OptDigits
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(c) Reweighted l2-RDA on CNAE-9
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(d) l1-RDA on CNAE-9

Figure 4.5: Frequency of being non-zero for the features of Opt Digits and
CNAE-9 datasets. In the left subfigures (a,c) we present the results for the
reweighted l2-RDA approach, while the right subfigures (b,d) correspond to
l1-RDA method.

normal distribution N (0, Id×d) and the output label is calculated as follows
y = sign(〈w∗, a〉+ ε), where w(i)

∗ = 1 for 1 ≤ i ≤ bd/2c and 0 otherwise and the
noise is given by ε ∼ N (0, 1). We run each algorithm for 100 times and report
the mean F1-score reflecting the performance of sparsity recovery. F1-score is
defined as 2precision×recall

precision+recall , where

precision =
∑d

i=1
I(ŵ(i) 6=0,w(i)

∗ =1)∑d

i=1
I(ŵ(i) 6=0)

, recall =
∑d

i=1
I(ŵ(i) 6=0,w(i)

∗ =1)∑d

i=1
I(w(i)
∗ =1)

.

Figure 4.6 shows that the reweighted l2-RDA approach selects irrelevant features
much less frequently as in comparison to l1-RDA approach. As it was empirically
verified before for UCI datasets we perform better both in terms of the stability
of the selected set of features and the robustness to the stochasticity and
randomness.

The higher the F1-score is, the better the recovery of the sparsity pattern.
In Figure 4.7 we present an evaluation of our approach and l1-RDA method
w.r.t. to ability to identify the right sparsity pattern as the number of features
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(a) Reweighted l2-RDA
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(b) l1-RDA

Figure 4.6: Frequency of being non-zero for the features of our toy dataset
(d = 100). Only the first half of features do correspond to the encoded sparsity
pattern. In the left subfigure (a) we present the results for the reweighted
l2-RDA approach, while the right subfigure (b) corresponds to l1-RDA method.

increases. We clearly do outperform l1-RDA method in terms of F1-score
for d ≤ 300. In conclusion we want to point out some of the inconsistencies
discovered by comparing our F1-scores with [32]. Although the authors in [32]
use a batch-version of the accelerated l1-RDA method and a quadratic loss
function they obtain very low F1-score (0.67) for the feature vector of size 100.
In our experiments all F1-scores were above 0.7. For the dimension of size 100
our method obtains F1-score ≈ 0.95 while authors in [32] have only 0.87.

4.1.5 Conclusion

In this paper we studied reweighted stochastic learning in the context of dual
averaging schemes and solvers for linear SVMs. We have presented two different
directions for applying reweighting at each round t. The first approach helps
to approximate very efficient l0-type of a penalty using a reliable and proven
dual averaging scheme [94]. We applied the reweighting procedure to different
norms and elaborated two versions of the Regularized Dual Averaging method
[134], namely Reweighted l1- and l2-RDA. The second approach stems from
the Pegasos algorithm [107] and applies regularization based on resampling
from the Bernoulli distribution where any success probability for any feature i
depends upon the weighted value of the previous iterate w(i)

t−1.

Our methods are suitable both for online and stochastic learning, while
our numerical and theoretical results consider only the stochastic setting.
We provided theoretical guarantees of the boundedness for the regret under
different conditions. Experimental results validate the usefulness and promising
capabilities of the proposed approaches in obtaining sparser, consistent and more
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Figure 4.7: F1-score as the function of the number of features. We ranged the
number of features from 20 to 500 with the step size of 20.

stable solutions while keeping the regret rates of the follow-the-regularized-leader
methods at hand.

For the future we consider to improve our algorithms in terms of the accelerated
convergence rate discussed in [32], [94] and develop some further extensions
towards online and stochastic coordinate descent methods applied to the huge-
scale7 data.

4.2 Regularized and Sparse Stochastic K-Means for
Distributed Large-Scale Clustering

4.2.1 Introduction

Clustering is considered as one of the cornerstones in the machine learning field.
Many practical problems and applications of clustering are embedded into our
daily lives and support decision making in various business domains. On the
other hand the proliferation of data sources and exponentially growing data

7both in terms of dimensions and number of samples
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volume are gaining more and more importance amid the greatest challenges in
the machine learning and data governance fields [46, 2].

The K-Means algorithm [83] can be considered as one of the simplest and most
scalable approaches which has been implemented and parallelized [34, 52] in
numerous Big Data frameworks, like Mahout [98], Spark [137] etc. Despite its
simplicity and obvious advantages it is known to be prone to instability due
to the randomness in initialization [8]. One of the evident choices to stabilize
performance of the K-Means algorithm is to apply stochastic learning paradigm.
In this direction the interested reader can find only a few examples [73]. This
particular scenario imposes stochasticity on the level of the re-current draw of
some specific random variable which determines the segmentation and cluster
memberships. In this setting one relies on the probabilistic measures dependent
upon the distribution of per-sample distances to the centroids. Another way of
approaching the same problem is a combination of stochastic gradient descent
(SGD) and the K-Means optimization objective [21]. In the latter setting one
seeks to find a new cluster centroid by observing one (or a small mini-batch)
sample at iterate t and calculating the corresponding gradient descent step.

Another promising direction is the regularization with different norms. Recent
developments [118, 132] indicate that this approach might be useful when one
deals with high-dimensional datasets and seeks for a compressed (sparsified)
solution. In [118] the authors propose to use an adaptive group Lasso penalty
(variation of l1-norm) [9] but obtain a solution per centroid in a conventional
closed-form. To the best of our knowledge we are not aware of any K-Means
algorithm combining together ideas of stochastic optimization with l1-norm
induced regularization applied to centroids through the dual averaging [93,
94, 68] scheme. In this paper we try to bridge the gap between regularized
stochastic optimization and algorithmic schemes stemmed from the well-known
and well-established K-Means approach. Additionally we devise an inherently
distributed learning strategy where one finds a solution per prototype vector in
parallel. This strategy requires only a limited number of outer synchronizations
(iterations) to re-assign cluster memberships according to the proximity measure
w.r.t. the prototype vectors (centroids).

This paper is structured as follows. Section 4.2.2 presents a problem statement
for the regularized stochastic K-Means approach. Section 4.2.3 presents a
stochastic strategy based on the Adaptive Dual Averaging [44] scheme. Section
4.2.4 refers the interested reader to the implementation details involving Big
Data frameworks and concepts. Section 4.2.5 presents our numerical results
while Section 4.2.6 concludes the paper.
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4.2.2 Problem Statement and Proposed Method

To approach the well-established classical K-Means problem through the
stochastic learning paradigm we approximate the K-Means optimization
objective f(w(i)) = 1

2Ex∈Si‖w
(i) − x‖22 w.r.t. the i-th cluster (i = 1, . . . , k)

by using a finite set of independent observations Si = {xj}1≤j≤N belonging to
this cluster. We add an additional regularization term ψ(w(i)) as well. Under
this setting one minimizes the following optimization objective for any i-th
cluster with :

min
w(i)

f(w(i)) , 1
2N

N∑
j=1
‖w(i) − xj‖22 + λψ(w(i)), (4.18)

where ψ(w(i)) represents a regularization term, λ is the trade-off hyperparameter
and expectation is taken w.r.t. the set Si with any xj ∈ Si. The above
optimization problem in Eq.(4.18) is a decoupled term of the global optimization
objective involving all k clusters:

min
w(1),...,w(k)

k∑
i=1

[ 1
2Ni

∑
x∈Si

‖w(i) − x‖22 + λψ(w(i))], (4.19)

where Ni = |Si| is the cardinality of the corresponding set Si. An entire
superset Ŝ = {Si}1≤i≤k encompasses all samples from all k clusters encountered
in Eq.(4.19). Si subsets are disjoint and correspond to the individual
non-overlapping clusters. We can implement Eq.(4.19) by the sequence of
disjoint parallel optimization objectives learned via the stochastic optimization
paradigm.

The core idea of the stochastic optimization paradigm is to optimize objective
in Eq.(4.18) by the gradient descent step observing and taking at any step t
some gradient gt ∈ ∂f(w(i)

t ) w.r.t. only one sample xt from Si and the current
iterate w(i)

t at hand. One usually draws a random sample from Si until some
ε-tolerance criterion is met or the total number of iterations is exceeded. It is
common to acknowledge Eq.(4.18) as an online learning problem if N →∞.

In the above setting one deals with a simple clustering model c(x) =
arg mini ‖w(i) − x‖2 and updates cluster memberships of the entire superset
(dataset) Ŝ after individual solutions w(i) (centroids) are found. We denote this
update as an outer iteration (synchronization) and use it to fix Si for learning
each individual prototype vector w(i) in parallel.
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4.2.3 l1-Regularized Stochastic K-Means

Method

In this section we present a learning scheme induced by the l1-norm
regularization and corresponding dual averaging approaches [134] with adaptive
primal-dual iterate updates [44]. This scheme allows sparsification of the
prototype vectors and selection of the most important set of features. We begin
with redefining our optimization objective in Eq.(4.18) in terms of a new ψ(w(i))
function:

min
w(i)

f(w(i)) , 1
2N

N∑
j=1
‖w(i) − xj‖22 + λ‖w(i)‖1. (4.20)

By using a simple dual averaging scheme [94] and adaptive strategy from [44]
we can solve our non-smooth problem effectively by the following sequence of
iterates w(i)

t+1 :

w
(i)
t+1 = arg min

w(i)
{η
t

t∑
τ=1
〈gτ , w(i)〉+ ηλ‖w(i)‖1 + 1

t
h(w(i))}, (4.21)

where ht(w(i)) is an adaptive strongly convex proximal term, gt represents a
gradient of the ‖w(i)−xt‖2 term w.r.t. only one randomly drawn sample xt ∈ Si
and current iterate w(i)

t while η is a fixed step-size.

In the regularized Adaptive Dual Averaging (ADA) scheme [44] one is interested
in finding a corresponding step-size for each coordinate which is inversely
proportional to the time-based norm of the coordinate in the sequence {gt}t≥1
of gradients. This needs a careful design of an auxiliary adaptive term ht(w(i)) =
〈w(i), Htw

(i)〉, where Ht depends on the aforementioned norm across each q-th
coordinate in {gt}t≥1 sequence.

We can summarize a coordinate-wise update of the w(i)
t iterate in the adaptive

dual averaging scheme as:

w
(i)
t+1,q = sign(−ĝt,q)

ηt

Ht,qq
[|ĝt,q| − λ]+, (4.22)

where ĝt,q = 1
t

∑t
τ=1 gτ,q is the coordinate-wise mean across {gt}t≥1 sequence,

Ht,qq = ρ+ ‖g1:t,q‖2 is the time-based norm of the q-th coordinate across the
same sequence and [x]+ = max(0, x).

Analyzing Eq.(4.22) we can find two crucial hyperparameters. The first one is
λ and it trades off the importance of l1-norm regularization in Eq.(4.20) while
the second one (η) is necessary only for the proper convergence of the entire
sequence of w(i)

t iterates.
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Algorithm 12: l1-Regularized Stochastic K-Means
Data: Ŝ, λ > 0, η > 0, ρ > 0, T ≥ 1, Tout ≥ 1, k ≥ 2, ε > 0

1 Initialize W0 randomly for all clusters (1 ≤ i ≤ k)
2 for p← 1 to Tout do
3 Initialize empty matrix Wp

4 Partition Ŝ by c(x) = arg mini ‖W(i)
p−1 − x‖2

5 for Si ⊂ Ŝ in parallel do
6 Initialize w(i)

1 randomly, ĝ0 = 0
7 for t← 1 to T do
8 Draw a sample xt ∈ Si
9 Calculate gradient gt = w

(i)
t − xt

10 Find the average ĝt = t−1
t ĝt−1 + 1

t gt
11 Calculate Ht,qq = ρ+ ‖g1:t,q‖2
12 w

(i)
t+1,q = sign(−ĝt,q) ηt

Ht,qq
[|ĝt,q| − λ]+

13 if ‖w(i)
t − w

(i)
t+1‖2 ≤ ε then

14 Append(w(i)
t+1, Wp)

15 return
16 end
17 end
18 Append(w(i)

T+1, Wp)
19 end
20 end
21 return Ŝ partitioned by c(x) = arg mini ‖W(i)

Tout
− x‖2

Algorithm

In this section we present an outline of our distributed stochastic l1-regularized
K-Means algorithm. Carefully going line by line we can notice that at the
first line we start with initialization of a random matrix8 W0 which serves
as a proxy for the first partitioning of Ŝ. After initialization we perform Tout
outer synchronization iterations where based on previously learned individual
prototype vectors w(i) we recompute cluster memberships and re-partition Ŝ
(line 4).

After partitioning is done we run in parallel the Adaptive RDA scheme for our l1-
regularized optimization objective in Eq.(4.20) and concatenate the result with
Wp by the Append function. When we exceed the total number of outer iterations

8of size d× k, where d is the input dimension and k is the number of clusters.
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Tout we exit with the final partitioning of Ŝ by c(x) = arg mini ‖W(i)
Tout
− x‖2

where i denotes the i-th column of WTout .

In Algorithm 12 the iterate w(i)
t has a closed form solution and depends on

the dual average (and the sequence of gradients {gt}t≥1). Another important
notice is the presence of some additional hyperparameters: the fixed step-
size η and the additive constant ρ for making Ht,qq term non-zero. Bringing
additional degrees of freedom to the algorithm might be beneficial from the
generalization perspective but it is compensated by the increased computational
cost of cross-validation needed to estimate these degrees (hyperparameters).

4.2.4 Implementation Details

Learning of Prototype Vectors

In this subsection we will give a brief outlook on the implementation details
of our Algorithm 12 involving Big Data frameworks and concepts like a Map-
Reduce scheme [40]. Using the suggested architecture it is easy to extend our
approach to the terascale data. In Figure 4.8 we show a schematic visualization
of the Map-Reduce scheme for Algorithm 12. As we can notice the Map-Reduce
scheme is needed to parallelize learning of individual centroids (prototype
vectors) using our RDA-based approach in Algorithm 12. Each outer p-th
iteration we Reduce() all learned centroids to the matrix Wp and re-partition
the data again with Map(). After we reach Tout iterations we stop and re-
partition the data according to the final solution and proximity to the prototype
vectors.

Parallel Computing

We have implemented all our routines in Julia technical computing language9.
In this subsection we will explain briefly how Julia is performing parallel
computing and how we seamlessly managed to distribute computational
burden without involving actual cluster setup and explicit usage of any MPI
(Message Passing Interface) routines. An interested user may refer to Julia
documentation10 but in short Julia relies on the built-in routines defined in the
base implementation of the language itself. Corresponding routines ensure that
Julia workers instantiated at each node will communicate and pass messages
to each other through the SSH connection (multiple options are supported).

9See http://julialang.org/
10See http://julia.readthedocs.org/en/latest/manual/parallel-computing/

http://julialang.org/
http://julia.readthedocs.org/en/latest/manual/parallel-computing/
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Figure 4.8: Schematic visualization of the Map-Reduce scheme for Algorithm
12.

Because of the independent learning of individual prototype vectors we used
internal @parallel (op) macro command embedded into Julia language. This
mechanism manages for loop in parallel and applies the reduce op operation
to fold the results into a single output.
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4.2.5 Experiments

Experimental Setup

In this section we describe our experimental setup. For all methods in our
experiments we use UCI datasets [49] and datasets in [50]. Description of these
datasets the interested user can find in Table 4.5. We compare our Stochastic
Regularized K-means clustering with the randomized K-Means approach [83]
and Proximal Plane Clustering (PPC) [109]. For all methods we know an
exact number of clusters and set it as an input to all methods. In this setting
K-Means approach does not require any tuning and for our approach and
PPC we experiment with the range of {10i|i = −2,−1, ..., 2} for the trade-off
hyperparameter11.

All experiments were repeated 20 times (iterations) on a multicore machine12.
We use Variation of Information (VI), Rand index and Adjusted Rand Index
(ARI) as our performance measures for the comparison w.r.t. the ground truth.
For our approach and PPC at each iteration we collect an average and the
best measure across the aforementioned range of the hyperparameters. In the
end for all measures we report an average, standard deviation and the best
attained value across all 20 iterations. We report an average execution time for
each method as well. For sparse datasets we additionally calculate sparsity as∑
ij I(|W(ij)

Tout
| > 0)/(dk), where d is the input dimension, k is the total number

of clusters and W(ij)
Tout

refers to the i-th column and j-th row of WTout which
was explained in Section 21

For all presented stochastic algorithms we set Tout = 20, T = 10000, ε = 10−5.
For Algorithm 12 we fixed η = 1 and ρ = 0.1. For PPC and randomized
K-Means we set the number of outer iterations Tout = 20 to be the same
as for our methods. All datasets are normalized. K-Means implementation
was taken from github.com/JuliaStats/Clustering.jl. All methods were
implemented in Julia technical computing language. Corresponding software
can be found online at www.esat.kuleuven.be/stadius/ADB/software.php
and github.com/jumutc/SALSA.jl.

Numerical Results

We present an exhaustive comparison with various algorithms in Table 4.6.
All competitive algorithms have different modelling assumptions but we

11for our method in Eq.(4.20): λ, for PPC: c
1220 cores were used to parallelize computations

github.com/JuliaStats/Clustering.jl
www.esat.kuleuven.be/stadius/ADB/software.php
github.com/jumutc/SALSA.jl
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Table 4.5: Datasets

Dataset # attributes # clusters # data points

Magic 11 2 19020
Shuttle 9 2 58000
Skin 4 2 245057
Covertype 54 7 581012
Poker Hand 11 10 1025010
Higgs 28 2 11000000

have selected K-Means and PPC for a main comparison because of a small
computational burden. For K-Means the time complexity is of order O(dNTout)
while for PPC it is of order O(d3NTout) if we distribute learning of individual
prototype vectors or proximal hyperplanes. In the Proximal Plane Clustering
approach we have to perform eigendecomposition of the linear combination of
two co-variance matrices [109] so our cost is dominated by d if d� N .

If we compare execution times of all approaches we can notice that our methods
are not the fastest ones because of the absence of a closed-form solution at
hand. Instead our stochastic approaches utilize a fixed-size budget for learning
individual prototype vectors. This budget is defined as follows: B = Tout × T .
The latter implies the time complexity of order O(dB).

In Figure 4.9 we present a clustering visualization for the K-Means algorithm
(left) and our l1-Regularized Stochastic K-Means method (right) learned with
Algorithm 12 as a qualitative example. As we can easily notice there is much less
ambiguity for the bottom-right cluster in the case of l1-Regularized Stochastic
K-Means approach than for the classical K-Means algorithm. Additionally we
can see slightly smaller number of different clusters merged together.

By analyzing Table 4.6 it is easy to verify that our l1-Regularized Stochastic
K-Means algorithm outperforms other approaches in terms of the scored
performance metrics (VI, Rand index and ARI) especially for the best achievable
scores. On average l1-norm regularization helps to implicitly apply feature
selection procedure while learning prototype vectors (centroids). In Table 4.7
we provide the obtained sparsity

∑
ij I(|W(i)

Tout
| > 0)/(dk) of the l1-Regularized

Stochastic K-Means approach on various datasets. We can observe that for
some datasets like Covertype or Shuttle we can get quite sparsified results while
for other datasets (Skin) the effective reduction is zero.
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Table 4.6: Performance for large-scale datasets

Dataset l1-Regularized K-Means K-Means [83] PPC [109]
VI Rand index ARI VI Rand index ARI VI Rand index ARI

Magic average 1.302 0.511 0.017 1.322 0.505 0.006 1.234 0.512 0.009
std 0.051 0.016 0.026 0.000 0.000 0.000 0.188 0.016 0.017
best 1.077 0.588 0.154 1.322 0.505 0.007 0.728 0.545 0.075
time 22.515 0.040 0.032

Shuttle average1.325 0.581 0.212 1.477 0.538 0.206 1.491 0.558 0.125
std 0.296 0.065 0.114 0.133 0.041 0.056 0.275 0.056 0.136
best 0.668 0.709 0.440 1.183 0.648 0.359 0.800 0.684 0.401
time 38.843 0.181 0.442 -

Skin average 1.089 0.527 0.018 1.128 0.505 -0.030 1.016 0.561 0.033
std 0.144 0.073 0.150 0.000 0.000 0.000 0.172 0.060 0.087
best 0.350 0.897 0.776 1.128 0.505 -0.030 0.682 0.687 0.350
time 145.724 0.283 0.220

Covertype average 2.336 0.568 0.056 2.334 0.588 0.066 2.361 0.554 0.048
std 0.451 0.076 0.027 0.129 0.015 0.024 0.463 0.067 0.030
best 1.363 0.620 0.115 2.137 0.607 0.098 1.263 0.603 0.143
time 214.742 3.790 14.133

Poker Handaverage3.220 0.552 0.00029 3.282 0.554 0.00017 3.275 0.554 0.00015
std 0.135 0.005 0.001 0.001 0.000 0.000 0.020 0.001 0.000
best 2.630 0.555 0.003 3.278 0.554 0.001 3.144 0.554 0.002
time 245.969 4.036 14.027

Higgs average 1.202 0.504 0.006 1.156 0.505 0.008 1.321 0.501 0.002
std 0.088 0.002 0.003 0.002 0.000 0.000 0.098 0.001 0.002
best 1.132 0.505 0.008 1.153 0.505 0.008 0.867 0.505 0.010
time 268.148 3.237 1.916

4.2.6 Conclusion

In this paper we presented a novel clustering approach based on the well-
established methods of K-Means and regularized stochastic optimization. We
devised a distributed algorithm where individual prototype vectors (centroids)
are regularized and learned in parallel by the Adaptive Dual Averaging (ADA)
scheme. In this scheme one needs to set carefully the step-size related to
the smoothness and Lipschitz continuity of the optimization objective. Our
comprehensive experimental studies with different large-scale datasets indicate
the usefulness of the proposed methods for learning better prototype vectors
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Figure 4.9: Clustering visualization for the (a, left) K-Means algorithm and (b,
right) l1-Regularized Stochastic K-Means algorithm on S1 dataset [50].

Table 4.7: Attained sparsity of the l1-Regularized Stochastic K-Means

Dataset average std minimum

Magic 0.762 0.299 0.050
Shuttle 0.651 0.253 0.111
Skin 1.000 0.000 1.000
Covertype 0.650 0.388 0.026
Poker Hand 0.812 0.276 0.230

while being able to perform feature selection by l1-norm minimization at
hand. In hindsight we have successfully applied the MapReduce scheme to
distribute learning of individual prototype vectors. We have implemented all
our routines in the inherently parallel and distributed Julia language which fits
the requirements of the high-level and high-performance scientific computing
applied to Big Data.
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5.1 SALSA: Software Lab for Advanced Machine
Learning with Stochastic Algorithms

5.1.1 Introduction

Stochastic algorithms can be considered as one of the cornerstones in learning
from large data samples [108, 107]. Stochastic Gradient Descent (SGD) has
pioneered and inspired a series of innovative machine learning (ML) methods
applicable to datasets with millions and billions of instances [1]. The stochastic
learning paradigm provides a theoretically well-grounded and reliable way of
reaching an optimal solution within a fixed computational budget, for instance
total number of iterations.

Many modern technological startups and mainstream companies utilize
distributed and complex MapReduce eco-systems, like Hadoop1 or Spark2,
to apply inherently sequential stochastic algorithms to their terascale data
sources. This can be achieved by inherent parallelism at the cross-validation
level or averaging schemes [1]. Nevertheless learning and understanding of
low-level instrumentation and implementation details of the aforementioned
eco-systems takes a lot of time. The latter prevents immediate and successful
adaptation by the out-of-field scientists and practitioners. On the other hand the
Julia language3 is designed to address the requirements of high-performance
numerical and scientific computing and can be easily launched and adapted
by everyone who is familiar with Matlab4 or any other scientific computing
language. The Julia eco-system also features out-of-box cluster setup routines
to seamlessly launch parallel computations5. In Figure 5.1 we present a logo of
the Julia technical and scientific computing language.

In order to offer the scientific community a machine learning tool which is easy
to learn and apply to any-scale data we have devised and implemented SALSA.
In comparison to existing software packages, like LIBLINEAR [47] or Vowpal
Wabbit [76], which are written in pure C++ and oriented to high-performance
and high-throughput operations, SALSA embraces high-performance features
of the Julia eco-system with the interpretability and flexibility of the language
itself. We provide users of various technical and mathematical backgrounds
with interfaces and APIs to find the easiest learning curve to their data.

1See http://hadoop.apache.org
2See http://spark.apache.org
3See http://julialang.org
4See http://mathworks.com/products/matlab
5See http://julia.readthedocs.org/en/latest/manual/parallel-computing

http://hadoop.apache.org
http://spark.apache.org
http://julialang.org
http://mathworks.com/products/matlab
http://julia.readthedocs.org/en/latest/manual/parallel-computing


SALSA.JL SOFTWARE LAB 123

Figure 5.1: Julia language logo.

5.1.2 Description

SALSA (Software lab for Advanced machine Learning with
Stochastic Algorithms) is a native Julia implementation of the well-
known stochastic algorithms [134, 107, 44] for Regularized Empirical Risk
minimization [124] and sparse linear modelling [53]. It aims at bridging a gap
between sophisticated machine learning concepts and user-friendly environment
with API which guides the user through many intermediate selection steps. The
API features low- and high-level routines for both an experienced and a novice
user. SALSA is managed and versioned by the package manager embedded in
Julia.

The SALSA software package can be used as a framework and a library. As a
framework it embraces all steps of creating a valid ML model, such as cross-
validation and hyperparameter tuning. As a library it can be used for embedding
separate core algorithmic and preprocessing routines into other frameworks as
well. Nice interoperability between the Julia eco-system and other languages
(such as C/C++, Python etc.) ensures seamless and quick integration.

In comparison to other frameworks [47, 76] the SALSA package features most
of the underlying functionality, including several loss functions (hinge loss,
logistic loss, least squares loss etc.) and various regularization schemes (l2-norm,
elastic-net regularization etc.), and in the meanwhile complements some unique
features related to l0 regularization [70], Nyström approximation of feature
maps [129] and cross-validation with different criteria. SALSA features also
a separate clustering sub-routine which implements a Regularized Stochastic
K-Means approach [69].

The package is intended to be helpful both in research and real-life applications.
To foster a quick knowledge transfer we have devised a separate question and
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answer (Q&A) table which guides and helps a novice user to select an appropriate
machine learning model which fits a given dataset (see Listing 5.2).

The SALSA software library embraces many of our previously presented methods
in Chapters 3–4 such as the Reweighted l1- and l2-Regularized Dual Averaging
[68, 67, 70], regularized stochastic K-Means approach [69] as well as different
versions of the Pegasos algorithm [107] enhanced by different loss functions and
the Nytröm approximation [63].

5.1.3 API usage

In this section we present a brief outlook on SALSA’s available API and
possible use cases. In Listing 5.1 we present the most basic machine learning
classification example. It suffices to load the data or to define an appropriate
file wrapper6 and then execute one of SALSA’s many interface aliases. The
resulting model and model.output contains a lot of useful information and a
summary of the obtained hyperparameters, estimated linear model and cross-
validation score. For the detailed and more exhaustive examples please refer to
http://salsajl.readthedocs.org/en/latest/examples.html.

Listing 5.1: Basic classification example
# load packages
using SALSA , MAT
# Load Ripley data
data = matread ( joinpath (Pkg.dir(" SALSA "),"data"," ripley .mat"))
# Train and cross - validate a classification model
model = salsa (data["X"], data["Y"], data["Xt"])
# Evaluate a prediction for data [" Xt "]
@printf " Accuracy : %.2f" mean( model . output . Ytest .== data["Yt"])
# Or map ( normalize ) data beforehand and make a prediction
prediction = map_predict (model , data["Xt"])
@printf " Accuracy : %.2f" mean( prediction .== data["Yt"])

In Listing 5.2 we present another interesting and promising use-case. In this
example we guide a novice user or any other out-of-field researcher/practitioner
through many intermediate steps to select an appropriate machine learning
model which fits any type of the dataset provided to salsa_qa(. . . ) routine.
In this example we suggest a default choice which is appropriate in the given
context. Listing 5.2 presents only a small snippet of the selection process and
the entire Q&A graph is not given for brevity.

6See documentation at http://salsajl.readthedocs.org

http://salsajl.readthedocs.org/en/latest/examples.html
http://salsajl.readthedocs.org
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Listing 5.2: Q&A example
using SALSA

model = salsa_qa( readcsv ( joinpath (Pkg.dir(" SALSA "),"data","iris.data.csv")))

Do you have any target variable of interest in X (or ENTER for default ’yes ’)? [y/n]:

Please provide the column number of your target variable (or ENTER for default last column ):

Is your problem of the classification type (or ENTER for default ’yes ’)? [y/n]:

Please select a loss function from options (or ENTER for default )

1 : SALSA . PINBALL ( Pinball ( quantile ) Loss , i.e. l(y, p) =
{

1− yp, ifyp ≤ 1,
τ(yp− 1), otherwise )

2 : SALSA . HINGE ( Hinge Loss , i.e. l(y, p) = max(0, 1− yp)) ( default )
3 : SALSA . LEAST_SQUARES ( Squared Loss , i.e. l(y, p) = 1

2 (p− y)2 )
4 : SALSA . LOGISTIC ( Logistic Loss , i.e. l(y, p) = log(1 + exp(−yp)))

5 : SALSA . MODIFIED_HUBER ( Modified Huber Loss , i.e. l(y, p) =
{
−4yp, if yp < −1
max(0, 1− yp)2, otherwise )

6 : SALSA . SQUARED_HINGE ( Squared Hinge Loss , i.e. l(y, p) = max(0, 1− yp)2 )

Please select a cross - validation (CV) criterion from options (or ENTER for default )
1 : SALSA .AUC (Area Under ROC Curve with 100 thresholds )
2 : SALSA . MISCLASS ( Misclassification Rate) ( default )
3 : SALSA .MSE (Mean Squared Error )

5.1.4 Benchmark tests

In this section we present a benchmark test for the SALSA package and
a comparison of our platform with other state-of-the-art libraries, such as
LIBLINEAR [47] and Vowpal Wabbit (VW) [76]. In Table 5.1 we report
training and test errors (misclassification rates) for two UCI datasets7 taken
from the LIBSVM repository8. For the RCV1 dataset we report a test error
while for Covtype a training error. In brackets an interested reader can find
execution times. All experiments were performed on a single thread of a
multi-core machine with the Core i7 processor and 8GB of RAM. We present
results for different regularization schemes9 applied jointly with the logistic loss
function. For Vowpal Wabbit (VW) and SALSA we present the evaluation in
the online learning setting as well. For LIBLINEAR an online learning option
is not provided and only specific solvers are available (for instance Conjugate
Gradient (CG) solver). We report only the best achievable misclassification
rate within the regularization path of the trade-off hyperparameter. The range
of the hyperparameter was fixed to [10−7 . . . 102].

7See http://archive.ics.uci.edu/ml
8See http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
9‖w‖1 stands for l1-norm regularization, ‖w‖2 represents l2-norm regularization

http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 5.1: Benchmark tests

Dataset VW (online) VW (CG) LIBLINEAR SALSA (online) SALSA (stoch.)
‖w‖1 ‖w‖2 ‖w‖1 ‖w‖2 ‖w‖1 ‖w‖2 ‖w‖1 ‖w‖2 ‖w‖1 ‖w‖2

RCV1 error 0.041 0.041 0.519 0.519 0.041 0.038 0.039 0.049 0.041 0.046
time (0.3s) (0.4s) (7.7s) (8.1s) (0.6s) (0.9s) (43.7s) (15.3s) (11.6s) (5.3s)

Covtype error 0.396 0.445 0.245 0.245 0.243 0.244 0.487 0.398 0.253 0.253
time (1.2s) (1.2s) (7.6s) (7.5s) (19.8s) (3.4s) (18.4s) (8.5s) (6.6s) (6.6s)

As we can figure out from Table 5.1 the obtained misclassification rates are
very similar for all approaches. Another observation is that Vowpal Wabbit
library completely fails for the entire regularization path in the online case for
the Covtype dataset, and with the CG solver for RCV1 dataset.

In comparison to dedicated and performance oriented libraries, like LIBLINEAR
or VW, SALSA’s timing results might not be very impressive because we
take into account completely different learning and optimization approaches
as a reference point here. In the SALSA package we bounce into the fixed
computational budget in case of not reaching a termination threshold for
subsequent iterates. For particularly big datasets stochastic approaches might
significantly reduce computational burden bringing desired levels of accuracy
within a fixed and constrained budget.

5.1.5 Conclusion

SALSA is an open source platform and a library for stochastic learning applied
to the most common machine learning problems such as classification, clustering,
and regression. It also provides an API for developers and practitioners which
alleviates understanding of stochastic algorithms while simplifying the use
of machine learning methods for large-scale problems. SALSA source code
is hosted on GitHub. Full documentation which includes an API reference,
use-cases and mathematical background can be found at http://salsajl.
readthedocs.org. SALSA contains a runnable test suite on each commit to
the GitHub repository via a continuous integration server. Finally, SALSA is
released under the GNU General Public License version 3.0.

http://salsajl.readthedocs.org
http://salsajl.readthedocs.org


Chapter 6

Conclusions and Future Work

6.1 General Conclusions

In this thesis we have explored many different aspects of the machine learning
field applied in the context of modern software design principles and the
development of open source software. We have devised and explored a novel
machine learning methodology which is applicable in various domains and can
be effectively implemented using an emerging technical computing language
Julia.

In Chapter 2 we have presented two related kernel-based techniques which extend
concepts of unsupervised and semi-supervised learning within the classification
and novelty detection domain. First we presented the problem of finding a
support of unknown high-dimensional distributions in the presence of labeling
information, called Supervised Novelty Detection. The One-Class Support
Vector Machine is a widely used kernel-based technique to address this problem.
However with the latter approach it is difficult to model a mixture of distributions
from which the support might be constituted. We addressed this issue by
presenting a new class of SVM-like algorithms which helped to approach multi-
class classification and novelty detection from a new perspective. We introduced
a new coupling term between classes which leverages the problem of finding a
good decision boundary while preserving the compactness of a support with the
l2-norm penalty. We presented our optimization objective in the primal and
then derived a dual Quadratic Programming (QP) formulation of the problem.
Next we proposed a Least-Squares formulation which resulted in a linear system
which drastically reduced computational costs. Finally we have derived a
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Pegasos-based formulation which can effectively cope with large datasets that
cannot be handled by many existing QP solvers. We validated the usefulness
and practical importance of the proposed methods both in classification and
novelty detection settings. The second part of Chapter 2 is devoted to a novel
semi-supervised classification approach which combines bilinear formulation
for non-parallel binary classifiers based upon Kernel Spectral Clustering. The
cornerstone of our approach is a bilinear term introduced into the primal
formulation of semi-supervised classification problem. In addition we performed
separate manifold regularization for each individual classifier. The latter relates
to the Kernel Spectral Clustering unsupervised counterpart which helps to
obtain more precise and generalizable classification boundaries. We derived
the dual problem which can be effectively translated into a linear system of
equations and then solved without introducing extra costs. We showed the
usefulness and reported considerable improvements in performance with respect
to other semi-supervised approaches, like Laplacian SVMs and other KSC-based
models.

In Chapter 3 we presented a stochastic learning setting for learning linear
Support Vector Machines in primal. First we extended a widely acknowledged
algorithm for learning linear SVMs, namely Pegasos. It utilizes properties
of hinge loss and theory of strongly convex optimization problems for fast
convergence rates and lower computational and memory costs. We have adopted
the recently proposed pinball loss for the Pegasos algorithm and emphasized
some advantages of using it in a variety of classification problems. We presented
a derivation of the Pegasos optimization objective with respect to pinball loss
and analyzed its properties and convergence rates. Additionally we presented
extensions of the Pegasos algorithm applied to the kernel-induced and Nyström
approximated feature maps which introduce non-linearity in the input space.
This was done using a Fixed-Size kernel method approach. We gave experimental
results for publicly available UCI datasets to justify the advantages and the
importance of pinball loss for achieving a better classification accuracy and
greater numerical stability in the partially or fully stochastic setting. Secondly
in Chapter 3 we devised a new weighted formulation of the Pegasos algorithm
which favored from the different coordinate-wise λi regularization parameters.
Together with the proposed extension we gave a brief theoretical justification of
its convergence to an optimal solution and analysed at a glance its computational
costs. We demonstrated the merits and the importance of our approach for
achieving a better classification accuracy and convergence rates in the partially
or fully stochastic setting.

In Chapter 4 we presented an extension to the Regularized Empirical Risk
Minimization framework which bears upon ideas of sparser norms and
regularization based on the reweighted algorithmic schemes. First we studied



GENERAL CONCLUSIONS 129

reweighted schemes for stochastic learning (specifically in the context of
classification problems) based on linear SVMs and dual averaging methods
with primal-dual iterate updates. All these methods favour properties of a
convex and composite optimization objective. The latter consists of a convex
regularization term and loss function with Lipschitz continuous subgradients,
e.g. l1-norm ball together with hinge loss. Some approaches approximate in
a limit the l0-type of a penalty. In our analysis we focused on a regret and
convergence criteria of such an approximation. We derived our results in terms
of a sequence of convex and strongly convex optimization objectives. These
objectives are obtained via the smoothing of a generic sub-differential and
possibly non-smooth composite function by the global proximal operator. We
reported an extended evaluation and comparison of the reweighted schemes
against different state-of-the-art techniques and solvers for linear SVMs. We
have shown that reweighted schemes can outperform state-of-the-art traditional
approaches in terms of generalization error as well. The second part of Chapter
4 is devoted to a novel clustering approach based on the stochastic learning
paradigm and regularization with l1-norms. Our approach is an extension of the
widely acknowledged K-Means algorithm. We introduced a simple regularized
dual averaging scheme for learning prototype vectors (centroids) with l1-norms
in a stochastic mode. In our approach we distributed the learning of individual
prototype vectors for each cluster, and the re-assignment of cluster memberships
is performed only for a fixed number of outer iterations. The latter approach is
exactly the same as in original K-Means algorithm and aims at re-shuffling the
pool of samples per cluster according to the learned centroids. We reported an
extended evaluation and comparison of our approach with respect to various
clustering techniques like randomized K-Means and Proximal Plane Clustering.
Our experimental studies have indicated the usefulness of the proposed methods
for obtaining better prototype vectors and corresponding cluster memberships
while being able to perform feature selection by l1-norm minimization.

Finally in Chapter 5 we presented SALSA (Software lab for Advanced
machine Learning with Stochastic Algorithms) which is an implemen-
tation of the well-known and presented in Chapters 3– 4 stochastic algorithms
for Machine Learning developed in the high-level technical computing language
Julia. The SALSA software package is designed to address challenges
in sparse linear modelling, linear and non-linear Support Vector Machines
applied to large data samples with user-centric and user-friendly emphasis. We
implemented SALSA to alleviate and enhance user experience with ubiquitous
Machine Learning problems including classification, regression and clustering.
We provided users with different levels of the technical and mathematical
background with various interfaces and APIs to find the most suitable way
of learning from their data. SALSA is an open source project available at
http://github.com/jumutc/SALSA.jl under the GNU General Public License

http://github.com/jumutc/SALSA.jl
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version 3.0. It is freely accessible online for collaborative development and
support, issue tracking and further modifications.

Thus, in summary we proposed several novel kernel-based and linear machine
learning approaches suitable for classification, regression and clustering problems.
In the end we aggregated and implemented most of them in a novel machine
learning library, namely SALSA. We demostrated that machine learning
problems and methodology can be effectively tackled by flexible software design
principles embedded into the high-level technical computing language Julia.

6.2 Future Work

Some possible future research directions may consider extending the ideas of
unsupervised and semi-supervised learning delivered by the Kernel Spectral
Clustering framework into the Deep Learning [15, 77] domain. We hope for
interesting and promising extensions of Deep Learning architectures which could
be applied for learning cluster memberships immediately by feeding the data to
the neural network or creating the corresponding pre-trained instance of the
network.

Another possible direction of research can be originated in Big Data applications
and research. This is an emerging field with a lot of difficult challenges and
problems deserving a very careful attention. For instance semi-supervised
learning within the Big Data field is quite unexplored and possesses a huge
potential benefit if tackled correctly. As we can see an implicit manifold
regularization and clustering principles play an important role in semi-supervised
learning. One of the obvious research directions would be to explore these
principles in Deep Artificial Neural Networks.

Another interesting research direction can be devoted to devising better
optimization strategies for stochastic learning approaches when dealing with
novel loss functions or regularization schemes. Group LASSO [10], graph-based
LASSO [60] and other types of more specific LASSO regularization schemes [53]
deserve better theoretical and empirical verification in the stochastic learning
domain.

Finally implementation of scientific and machine learning software libraries
implies another promising research direction. From the theoretical Computer
Science perspective we opt for more elaborate, flexible and user- as well as
developer-oriented and friendly application programming interfaces (APIs) and
modules!



Appendix A

Proofs and theorems

A.1 Proofs for the Reweighted l1-RDA method

A.1.1 Proof of Theorem 4

We start with redefining the conjugate-type functions Vt(s) and Ut(s) in [134]
by replacing ψ(w) in each of them with the sum of our reweighted l1 functions
ψl1,t(w) , λ‖Θtw‖1, such that:

Ut(s) = max
w∈FD

{〈s, w − w0〉 −
t∑

τ=1
ψl1,τ (w)}, (A.1)

Vt(s) = max
w
{〈s, w − w0〉 −

t∑
τ=1

ψl1,τ (w)− βthl1(w)}, (A.2)

where we define the domain of any ψl1,τ (w) function to be identical and set as
FD = {w ∈ domψl1 |hl1(w) ≤ D} (i.e. the domain of a simple non-reweighted
l1-norm as in [134]), {βt}t≥1 is a non-negative and non-decreasing sequence and
hl1(w) is a 1-strongly convex function defined in Eq.(4.5).

Next we refer to the important Lemma 9 in [134], as for any s ∈ E∗ and t ≥ 0
we have: Ut(s) ≤ Vt(s) +βtD, because using the definition of FD we can bound
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Ut(s) as follows:

Ut(s) = max
w∈FD

{〈s, w − w0〉 −
t∑

τ=1
ψl1,τ (w)}

= max
w

min
β≥0
{〈s, w − w0〉 −

t∑
τ=1

ψl1,τ (w) + β(D − hl1(w))}

≤ min
β≥0

max
w
{〈s, w − w0〉 −

t∑
τ=1

ψl1,τ (w) + β(D − hl1(w))}

≤ max
w
{〈s, w − w0〉 −

t∑
τ=1

ψl1,τ (w) + βt(D − hl1(w))}

= Vt(s) + βtD. (A.3)

�

We will need this lemma to bound the regret as it will be shown below. Before
bounding the regret we need to adjust one more lemma from [134]:

Lemma 3. For each t ≥ 1 we have Vt(−st) + ψl1,t(wt) ≤ Vt−1(−st).

Proof.

Vt−1(−st) = max
w
{〈st, w − w0〉 −

t−1∑
τ=1

ψl1,τ (w)− βt−1hl1(w)}

≥ 〈st, wt+1 − w0〉 −
t−1∑
τ=1

ψl1,τ (wt+1)− βt−1hl1(wt+1)

≥ {〈st, wt+1 − w0〉 −
t∑

τ=1
ψl1,τ (wt+1)− βthl1(wt+1)}+ ψl1,t(wt+1)

= Vt(−st) + ψl1,t(wt+1) ≥ Vt(−st) + ψl1,t(wt).

In this proof the first line follows from the definition of Vt(s). The second line is
immediately implied by the maximization objective. On the third line we used
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the main property of {βt}t≥1 sequence to be non-decreasing and non-negative.
We derived an equality on the final line by noticing that the expression in
curly brackets is exactly Vt(−st) (i.e. the solution of the maximization problem
defined in Vt−1(−st) is exactly wt+1 by our algorithmic design in Eq.(4.2). And
the final inequality follows from our assumption ψl1,t(wt) ≤ ψl1,t(wt+1).

In the next part we will finally bound our regret function defined in Eq.(4.7).
From [94] and [134] we know that if we consider ∆ψl1,τ = ψl1,τ (wτ )− ψl1,τ (w)
the following gap sequence δt:

δt = max
w
{

t∑
τ=1

(〈gτ , wτ−w〉+∆ψl1,τ )} ≥
t∑

τ=1
(f(wτ , ξτ )−f(w, ξτ )+∆ψl1,τ ) = Rt(w)

(A.4)
bounds the regret function from above due to the convexity of f [22]. Next
we can derive an upper bound on δt using the properties of the conjugate-type
functions Vt(s) and Ut(s).

If we add and subtract the
∑t
τ=1〈gτ , w0〉 term from the definition in Eq.(A.4)1

then for any w ∈ Rn we get:

δt =
t∑

τ=1
(〈gτ , wτ − w0〉 + ψl1,τ (wτ )) + max

w
{〈st, w0 − w〉 −

t∑
τ=1

ψl1,τ (w)}

≤
t∑

τ=1
(〈gτ , wτ − w0〉 + ψl1,τ (wτ )) + Vt(−st) + βtD, (A.5)

where st =
∑t
τ=1 gτ . The last maximization term in Eq.(A.5) is exactly Ut(−st)

so it can be bounded by Eq.(A.3).

Applying well-known results on the boundedness of the conjugate-type functions
from [93, 94] for any τ ≥ 1 and in view of Lemma 3 we have:

Vτ (−sτ ) + ψl1,τ (wτ ) ≤ Vτ−1(−sτ )

= Vτ−1(−sτ−1 − gτ )

≤ Vτ−1(−sτ−1) + 〈−gτ ,∇Vτ−1(−sτ−1)〉+ ‖gτ‖
2
∗

2βτ−1

= Vτ−1(−sτ−1) + 〈−gτ , ŵτ − w0〉+ ‖gτ‖
2
∗

2βτ−1
, (A.6)

1for derivations below we have to substitute general index t with the running index τ ∈ 1, t
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where ‖ · ‖∗ is a dual norm, second inequality is due to the result of [93]:
Vβ(s + g) ≤ Vβ(s) + 〈g,∇Vβ(s)〉 + ‖g‖∗/2σβ, ∀s, g ∈ E∗, the fact that σ = 1
for hl1(w) and

∇Vτ−1(−sτ−1) = ŵτ − w0, ∀τ ≥ 1

where ŵτ , arg minw{〈sτ−1, w〉+
∑τ−1
κ=1 ψl1,κ(w) + βτ−1hl1(w)}, ∀τ ≥ 1.

Next we rearrange and sum up everything w.r.t. the index τ :

t∑
τ=1

(〈gτ , ŵτ − w0〉+ ψl1,τ (wτ )) + Vt(−st) ≤ V0(−s0) +
t∑

τ=1

‖gτ‖2∗
2βτ−1

. (A.7)

We can further simplify this equation by assuming V0(−s0) = V0(0) = 0 and
from the first-order optimality conditions of the function f as follows:

0 ≤ 〈gτ , ŵτ − wτ 〉 =⇒ 〈gτ , wτ 〉 ≤ 〈gτ , ŵτ 〉.

Substituting all of above into Eq.(A.7) and taking into account Eq.(A.5) we
get:

Rt(w) ≤ δt ≤ βtD +
t∑

τ=1

‖gτ‖2∗
2βτ−1

. (A.8)

To obtain bound in Theorem 4 we assume ‖gt‖∗ ≤ G and set βt = γ
√
t, while

keeping β0 = β1 = γ:

Rt(w) ≤ γ
√
tD + G2

2γ (1 +
t−1∑
τ=1

1√
τ

) ≤ (γD + G2

γ
)
√
t, (A.9)

where
∑t−1
τ=1 τ

− 1
2 ≤ 1 +

∫ t
1 τ
− 1

2 dτ = 2
√
t− 1.

�

A.1.2 Proof of Theorem 5

The main part of the proof is exactly the same as for Theorem 4. We will refer
to the parts of the proof of Theorem 4 as we will need them.

First we need to adjust Lemma 1 and introduce the dependency on the sufficient
conditions of Theorem 5.

Lemma 4. For each t ≥ 1 we have Vt(−st) + ψl1,t(wt) ≤ Vt−1(−st) + ν/t.
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Proof.

Vt−1(−st) = max
w
{〈st, w − w0〉 −

t−1∑
τ=1

ψl1,τ (w)− βt−1hl1(w)}

≥ 〈st, wt+1 − w0〉 −
t−1∑
τ=1

ψl1,τ (wt+1)− βt−1hl1(wt+1)

≥ {〈st, wt+1 − w0〉 −
t∑

τ=1
ψl1,τ (wt+1)− βthl1(wt+1)}+ ψl1,t(wt+1)

= Vt(−st) + ψl1,t(wt+1).

And to get the final result we use our assumption in Theorem 5 that we have
ψl1,t(wt)− ψl1,t(wt+1) ≤ ν/t for any t ≥ 1, ν ≥ 0, hence:

Vt−1(−st) ≥ Vt(−st) + ψl1,t(wt+1) =⇒ Vt−1(−st) + ν/t ≥ Vt(−st) + ψl1,t(wt).

Finally to derive our bound in Theorem 5 we note that Eq.(A.6) in view of
Lemma 4 is given as follows:

Vτ (−sτ ) + ψl1,τ (wτ ) ≤ Vτ−1(−sτ−1) + ν/τ + 〈−gτ , ŵτ − w0〉+ ‖gτ‖
2
∗

2βτ−1
.

(A.10)
Next we rearrange and sum up everything w.r.t. the index τ :

t∑
τ=1

(〈gτ , ŵτ−w0〉+ψl1,τ (wτ ))+Vt(−st) ≤ V0(−s0)+ν log t+
t∑

τ=1

‖gτ‖2∗
2βτ−1

, (A.11)

where we used
∑t
τ=1

1
τ ≤

∫ t
1 τ
−1dτ = log t to sum up ν/τ term. Next keeping

in mind our initial bound on Ut(s) ≤ Vt(s) + βtD and taking into account
Eq.(A.5), V0(−s0) = V0(0) = 0 and the first-order optimality conditions of the
function f we get:

Rt(w) ≤ δt ≤ ν(1 + log t) + βtD +
t∑

τ=1

‖gτ‖2∗
2βτ−1

, (A.12)

where one part of the right-hand side of inequality is exactly the same as in
Eq.(A.8). So we can immediately substitute it with the right-hand side of
Eq.(A.9) and get:

Rt(w) ≤ ν log +(γD + G2

γ
)
√
t. (A.13)
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�

A.2 Proofs for the Reweighted l2-RDA method

A.2.1 Proof of Theorem 6

We stem our result from the proof of the Theorem 4 by redefining the conjugate-
type functions Vt(s) and Ut(s) in [134] by replacing ψ(w) in each of them with
the sum of our reweighted l2 functions ψl2,t(w) , ‖Θ1/2

t w‖22 +λ‖w‖22, such that:

Ut(s) = max
w∈FD

{〈s, w − w0〉 −
t∑

τ=1
ψl2,τ (w)},

Vt(s) = max
w
{〈s, w − w0〉 −

t∑
τ=1

ψl2,τ (w)− βth(w)}, (A.14)

where we define the domain of ψl2,τ (w) as FD = {w ∈ domψl2 |h(w) ≤ D}
(i.e. the domain of a simple non-reweighted l2-norm as in [134]), {βt}t≥1 is
a non-negative and non-decreasing sequence and h(w) is a 1-strongly convex
function (i.e. smoothing term).

Next we refer to the important Lemma 9 in [134], as for any s ∈ E∗ and t ≥ 0
we have: Ut(s) ≤ Vt(s) +βtD, because using the definition of FD we can bound
Ut(s) as follows:

Ut(s) = max
w∈FD

{〈s, w − w0〉 − tψl2,1(w)}

= max
w

min
β≥0
{〈s, w − w0〉 − tψl2,1(w) + β(D − h(w))}

≤ min
β≥0

max
w
{〈s, w − w0〉 − tψl2,1(w) + β(D − h(w))}

≤ max
w
{〈s, w − w0〉 − tψl2,1(w) + βt(D − h(w))}

= Vt(s) + βtD.

We will need this lemma to bound the regret as it will be shown below.

Lemma 5. For each t ≥ 1 in Algorithm 10 we have Vt(−st) + ψl2,t(wt) ≤
Vt−1(−st).
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Proof.

Vt−1(−st) = max
w
{〈st, w − w0〉 −

t−1∑
τ=1

ψl2,τ (w)− βt−1h(w)}

≥ 〈st, wt+1 − w0〉 −
t−1∑
τ=1

ψl2,τ (wt+1)− βt−1h(wt+1)

≥ {〈st, wt+1 − w0〉 −
t∑

τ=1
ψl2,τ (wt+1)− βth(wt+1)}+ ψl2,t(wt+1)

= Vt(−st) + ψl2,t(wt+1) ≥ Vt(−st) + ψl2,t(wt).

In the above proof we used the same evidence as for Lemma 3 but with respect
to ψl2,1(w). The final inequality follows from our assumption ψl2,t(wt) ≤
ψl2,t(wt+1).

In the next part we will finally bound our regret function defined in Eq.(4.7)
but with respect to ψl2,t(w). From [94] and [134] we know that if we consider
∆ψl2,τ = ψl2,τ (wτ )− ψl2,τ (w) the following gap sequence δt:

δt = max
w
{

t∑
τ=1

(〈gτ , wτ − w〉 + ∆ψl2,τ )}

≥
t∑

τ=1
(f(wτ , ξτ )− f(w, ξτ ) + ∆ψl2,τ ) = Rt(w) (A.15)

bounds the regret function from above due to the convexity of f [22]. Next
we can derive an upper bound on δt using the properties of the conjugate-type
functions Vt(s) and Ut(s).

If we add and subtract
∑t
τ=1〈gτ , w0〉 term from the definition in Eq.(A.15) then

for any w ∈ Rn we get:

δt =
t∑

τ=1
(〈gτ , wτ − w0〉 + ψl2,τ (wτ )) + max

w
{〈st, w0 − w〉 −

t∑
τ=1

ψl2,τ (w)}

≤
t∑

τ=1
(〈gτ , wτ − w0〉 + ψl2,τ (wτ )) + Vt(−st) + βtD, (A.16)



138 PROOFS AND THEOREMS

where st =
∑t
τ=1 gτ . The last maximization term on the first line in Eq.(A.16)

is exactly Ut(−st), which was bounded earlier.

Using the well-known results on the boundedness of the conjugate support-type
functions from [93, 94] for any τ ≥ 1 we have:

Vτ (−sτ ) + ψl2,τ (wτ ) ≤ Vτ−1(−sτ )

= Vτ−1(−sτ−1 − gτ )

≤ Vτ−1(−sτ−1) + 〈−gτ ,∇Vτ−1(−sτ−1)〉

+ ‖gτ‖2∗
2(βτ−1 + λ(τ − 1))

= Vτ−1(−sτ−1) + 〈−gτ , ŵτ − w0〉

+ ‖gτ‖2∗
2(βτ−1 + λ(τ − 1)) , (A.17)

where ‖ · ‖∗ is a dual norm, the second inequality is due to the result of
[93]: Vβ(s + g) ≤ Vβ(s) + 〈g,∇Vβ(s)〉 + ‖g‖∗/(2σβ), ∀s, g ∈ E∗, where σβ
term refers to the smoothing part, which is quite different in case of Vt(s) in
Eq.(A.14). Based on the result in [93] and Lemma 1 in [94], the fact that
σ = 1 in h(w) and our particular choice of the smoothing strongly-convex term∑t
τ=1 ψl2,τ (w) +βth(w) in Eq.(A.14) we have the Lipschitz continuous gradient

of Vt(s) with constant 1
βt+λt , such that:

‖∇Vt(s1)−∇Vt(s2)‖ ≤ 1
βt + λt

‖s1 − s2‖∗, ∀s1, s2 ∈ E∗ (A.18)

On the other hand we know a closed form for such a gradient in case of Eq.(A.17)
and in view of conjugate support-type function Vt(s) in Eq.(A.14):

∇Vτ−1(−sτ−1) = ŵτ − w0, ∀τ ≥ 1

where ŵτ , arg minw{〈sτ−1, w〉+
∑τ−1
κ=1 ψl2,κ(w) + βτ−1h(w)} for ∀τ ≥ 1.

Next we rearrange and sum up everything w.r.t. index τ :
t∑

τ=1
(〈gτ , ŵτ − w0〉+ ψl2,τ (wτ )) + Vt(−st)

≤ V0(−s0) +
t∑

τ=1

‖gτ‖2∗
2(βτ−1 + λ(τ − 1)) . (A.19)
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We can further simplify this equation by assuming V0(−s0) = V0(0) = 0 and by
using the first-order optimality conditions of the function f as follows:

0 ≤ 〈gτ , ŵτ − wτ 〉 =⇒ 〈gτ , wτ 〉 ≤ 〈gτ , ŵτ 〉.

Substituting all of above into Eq.(A.19) and taking into account Eq.(A.16) we
get:

Rt(w) ≤ δt ≤ βtD +
t∑

τ=1

‖gτ‖2∗
2(βτ−1 + λ(τ − 1)) . (A.20)

To obtain the bound in Theorem 6 we assume ‖gt‖∗ ≤ G and set βt≥1 = 0,
while keeping β0 = λ:

Rt(w) ≤ ‖g1‖2∗
2λ +

t−1∑
τ=1

‖gτ+1‖2∗
2λτ ≤ G2

2λ (1 +
∫ t

1
τ−1dτ) = G2

2λ (1 + log t). (A.21)

�

A.2.2 Proof of Theorem 7

The main part of the proof is exactly the same as for Theorem 6. We will refer
to the parts of the proof of Theorem 6 as we will need them.

First we need to adjust Lemma 5 and introduce the dependency on the sufficient
conditions of Theorem 6.

Lemma 6. For each t ≥ 1 in Algorithm 10 assuming that ψl2,t(wt) ≤
ψl2,t(wt+1) +ν/t for some ν ≥ 0 we have Vt(−st) +ψl2,t(wt) ≤ Vt−1(−st) +ν/t.

Proof.

Vt−1(−st) = max
w
{〈st, w − w0〉 −

t−1∑
τ=1

ψl2,τ (w)− βt−1h(w)}

≥ 〈st, wt+1 − w0〉 −
t−1∑
τ=1

ψl2,τ (wt+1)− βt−1h(wt+1)

≥ {〈st, wt+1 − w0〉 −
t∑

τ=1
ψl2,τ (wt+1)− βth(wt+1)}+ ψl2,t(wt+1)

= Vt(−st) + ψl2,t(wt+1),
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and to get the final result we use our assumption:

Vt−1(−st) ≥ Vt(−st) + ψl2,t(w1) =⇒ Vt−1(−st) + ν/t ≥ Vt(−st) + ψl2,t(wt).

In the above proof we used the same evidence as for Lemma 4 but with respect
to ψl2,1(w).

Finally to derive our bound in Theorem 7 we note that Eq.(A.17) in view of
Lemma 6 is given as follows:

Vτ (−sτ ) + ψl2,τ (wτ ) ≤ ν/τ + Vτ−1(−sτ−1)

+〈−gτ , ŵτ − w0〉+ ‖gτ‖2∗
2(βτ−1 + λ(τ − 1)) . (A.22)

Next we rearrange and sum up everything w.r.t. index τ :

t∑
τ=1

(〈gτ , ŵτ − w0〉+ ψl2,τ (wτ )) + Vt(−st) ≤ ν log t

+V0(−s0) +
t∑

τ=1

‖gτ‖2∗
2(βτ−1 + λ(τ − 1)) . (A.23)

The inequality above is almost the same as Eq.(A.19) except for an additional
ν log t term. Next keeping in mind our initial bound on Ut(s) ≤ Vt(s) + βtD
and taking into account Eq.(A.16), V0(−s0) = V0(0) = 0 and the first-order
optimality conditions of the function f we get:

Rt(w) ≤ δt ≤ ν log t+ βtD +
t∑

τ=1

‖gτ‖2∗
2(βτ−1 + λ(τ − 1)) , (A.24)

where one part of the right-hand side of inequality is exactly the same as in
Eq.(A.20), so that we can immediately substitute it with the right-hand side of
Eq.(A.21) and get:

Rt(w) ≤ G2

2λ + G2 + 2λν
2λ log t. (A.25)

�
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