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PURPOSE. One of the difficulties in modeling visual field (VF) data is the sometimes large and
correlated measurement errors in the point-wise sensitivity estimates. As these errors affect all
locations of the same VF, we propose to model them as global visit effects (GVE). We evaluate
this model and show the effect it has on progression estimation and prediction.

METHODS. Visual field series (24-2 Full Threshold; 15 biannual VFs per patient) of 125 patients
with primary glaucoma were included in the analysis. The contribution of the GVE was
evaluated by comparing the fitting and predictive ability of a conventional model, which does
not contain GVE, to such a model that incorporates the GVE. Moreover, the GVE’s effect on
the estimated slopes was evaluated by determining the absolute difference between the
slopes of the models. Finally, the magnitude of the GVE was compared with that of other
measurement errors.

RESULTS. The GVE model showed a significant improvement in both the model fit and
predictive ability over the conventional model, especially when the number of VFs in a series
is limited. The average absolute difference in slopes between the models was 0.13 dB/y. Lastly,
the magnitude of the GVE was more than three times larger than the measureable factors
combined.

CONCLUSIONS. By incorporating the GVE in the longitudinal modeling of VF data, better
estimates may be obtained of the rate of progression as well as of predicted future
sensitivities.
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Evaluation of a longitudinal series of visual fields (VF), as
measured by standard automated perimetry (SAP), provides

a method to detect glaucoma, and to determine functional
deterioration.1 One of the difficulties in modeling VF data is the
large measurement variability of VFs, partially due to the
inherent subjective nature of such a test.2–4 This large
variability means that in clinical practice, repeated measure-
ments are performed to confirm real progression.

A learning effect, where the average mean defect signifi-
cantly decreases between exams, has been shown to be present
in VF testing.2,5–7 Furthermore, test–retest studies have shown
that variability is dependent on defect depth and test location.2

In glaucoma, variability is presumably related to fatigue
effects and response errors. A fatigue effect, whereby
sensitivity estimates decrease during an examination, has been
demonstrated. This effect has been shown to be different
between the inferior and superior hemifields within one eye.8

In addition, this effect may differ between the first and second
eye at the same visit. The number of false-negative answers
have been shown to be higher in eyes with field loss.9 It has
also been shown that there is an inverse relationship between
variability and sensitivity.10 That is, there is a large amount of
variability in eyes with severe damage.

A common approach to reduce measurement variability is to
average multiple measurements. For example, summary mea-
sures such as the mean deviation (MD) have less variability due
to the averaging over the point-wise sensitivity estimates. Other
errors, however, are spatially correlated and affect the whole
VF. One group of such errors are measurable factors, including
season, time of day and reliability indices, which have been
evaluated before.11,12 Although these factors are statistically
significant, they are rather small, and hence only explain a small
part of the observed global variation in VFs. Junoy Montolio et
al.11 modelled the visit effect with these known factors.
However, we speculate that other transient factors, such as
fatigue, lack of concentration, or delayed reaction time may
play a more important role. An example of the importance of
these factors can be seen in Figure 1, where all locations have a
drastic decrease in sensitivity in one of a series of visits. From
the longitudinal profiles, it is evident that this decrease is
caused by something that affected all VF measurements of that
visit, rather than by actual damage.

Because all these (as well as possibly other) factors, affect all
locations of the same VF, we propose to take them together and
to call and model them as global visit effects (GVE). In this way,
we can account for both the known and the unknown factors.
Hence, the GVE accounts for all factors that affect all
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measurements of the same eye at each visit. The GVE was
inspired by a similar phenomenon, namely, trend estimation of
sea levels for large numbers of monitoring stations.

We evaluated the GVE by determining the improvement of
the model fit due to incorporating the GVE in the VF model
and the effect of including the GVE on estimating the rate of
progression. Furthermore, we determined the improvement of
point-wise predictions for future measurements accounting for
the GVE. Finally, we investigated the magnitude and impor-
tance of the GVE by comparing it with influential factors that
have been discussed in the literature.

METHODS

Patients and Data

The analysis was performed on a subset of VF data of
individuals from an ongoing study conducted at the
Rotterdam Eye Hospital, The Netherlands; a full description
of the data was provided earlier.13,14 All data is available
through the Rotterdam Ophthalmic Data Repository at
http://rod-rep.com. In brief, the patients were followed up
approximately twice per year. The VFs were tested by using
the Humphrey Field Analyzer (Carl Zeiss Meditec, Dublin,
CA, USA) with the 24-2, white-on-white test strategy by
means of the Full Threshold algorithm. The response
variables of interest were the sensitivity estimates from the
52 VF points (excluding the 2 points that correspond to the
blind spot). All patients gave their written informed consent
for participation. The research procedures followed the
tenets set forth in the Declaration of Helsinki. We excluded
VFs with unknown reliability as indicated by the instrument.
Additionally, to simplify the evaluation of the statistical
models, we excluded individuals with less than 15 measure-
ments (in either eye). For those individuals with more than
15 measurements, only the first 15 measurements were
included in the analysis. The resulting data set consisted of
250 eyes from 125 individuals, resulting in 3750 VFs and
195,000 location-specific sensitivity estimates. Descriptive
statistics can be found in Table 1.

Statistical Modeling

Bayesian models have many advantages over frequentist
approaches, such as taking into account the uncertainty in all
parameters. Combined with Markov chain Monte Carlo
computations, they also allow for greater flexibility by relaxing
the strong parametric assumptions commonly used in
frequentist models. A hierarchical model is able to take into
account both the within subject and between subject
variability. Moreover, because both eyes were included in the
analysis, we are able to capitalize on the common features
within each eye by taking into account the correlation
between measurements belonging to the same eye. In addition,
any correlation of VF measurements within the inferior and
superior hemifields, separated by the horizontal meridian, was
expected to be higher than between hemifields.15 Hence, the
analysis was done by using a Bayesian hierarchical mixed-
effects model.16–18 We modeled the hierarchical structure of
the data using four levels, namely, (1) the individual, (2) the
eye, (3) the hemisphere, and (4) the location. An example of
the mixed-effects model for the four level data structure can be
seen in Figure 2A. Furthermore, censoring was taken into
account at 0 dB,19 due to the limitation of the device.20 We will
refer to this model as the conventional model. To account for
the visit-dependent offset at all locations, or GVE, we included
a parameter in the model to capture the offset at every visit for
each eye within each individual. Hence, this effect accounts for
factors that affect all measurements belonging to the same eye
at each visit. The impact of this additional parameter is
demonstrated in Figure 2B. This model will be referred to as
the GVE model.

TABLE 1. Descriptive Statistics of the Study Sample

Mean Median

Interquartile

Range

Baseline age, y 59.7 61.3 53.2; 67.1

Baseline MD, dB �7.8 �5.7 �11.7; �2.3

Average change in MD, dB/y �0.07 �0.04 �0.19; 0.13

Follow-up time, y 7.7 7.6 7.2; 8.1

FIGURE 1. Retinal sensitivity estimates over time for each location of the visual field in the left eye of a single glaucoma patient. A decrease in the
sensitivity estimates can be seen in all locations at around 1 year. The longitudinal profile of the MD values over time are shown on the right. The
visit-dependent decrease is also clear at around 1 year for the MD.
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In classical, one-stage Bayesian hierarchical models, all
parameters are estimated simultaneously. For complex models,
obtaining results using this approach can be difficult or even
impossible due to computational issues. In our case, problems
were encountered regarding the running time and computer
memory limitations. Thus, the analysis was done by using a
recently proposed two-stage approach,21 which allowed us to
simplify the computation by splitting the hierarchical model at
the individual level. Hence, individuals were analyzed inde-
pendently before combining them at the population level.
Figure 3 illustrates the hierarchical structure divided into the
two stages. A full description of the models and the
computational procedure is given by Bryan et al.22

Model Evaluation

Our aim was to investigate different aspects of the GVE.
Namely, how including the GVE affects the model fit, the
estimated progression rate, the prediction of future measure-
ments and the magnitude and importance of the GVE. To do
this, we compared the conventional model with the GVE
model. The models were compared by determining the error
for each sensitivity estimate (predicted minus observed) and
by combining these errors into summary error measures,
namely, the root mean squared error (RMSE) and mean
absolute error (MAE) for each model. The 95th percentile of
the absolute errors, which is the value below which 95% of
the absolute prediction errors may be found, was also
computed to compare the models. Nonparametric Wilcoxon
(matched paired when applicable) tests were performed to
determine whether the differences between the models were
significant.

Model Fit

We evaluated the contribution of the GVE by comparing the
model fits, for the conventional model and the GVE model,
using the RMSE, the MAE and the 95th percentile of the
absolute errors. An example of the fits for one eye can be seen
in Figure 4.

Effect on Estimated Progression Rate

To compare the estimated progression rate, or slope, of the
conventional model and the GVE model, we first needed to
correct for the GVE in the latter model. An example of this is
shown in Figure 5. The evaluation of the change in slopes was

then done by calculating the mean absolute difference of the
slopes between the conventional and the GVE model.
Additionally, the distribution as well as the 95% confidence
interval (CI) of the difference between the slopes of the two
models was determined.

Prediction of Future Visual Fields

To assess the predictive ability of the model, we performed a 5-
fold cross validation. In each fold, the training set included 100
individuals while the testing set contained 25 individuals.
Future measurements were then predicted for each location in
the VF for each individual in the testing set. The number of
measurements used for the estimation of the individual-specific
effects was varied (3, 6, and 9 measurements), each time
predicting the sensitivity estimate six measurements (~3 years)
ahead. An example of this can be seen in Figure 6. In each of
the examples, the GVE model gave a better prediction for the
future measurement. The GVE model also appeared to be more
robust over the number of measurements included. The
models were evaluated by using the RMSE and the 95th
percentile of the absolute errors.

FIGURE 2. (A) The lines represent the estimated evolutions for each of the levels using a hierarchical mixed effects model. In this example, only the
intercept varies, but the model includes slopes in a similar way. (B) The GVE works as an offset for all locations belonging to the same VF. This offset
is visible at around 2 years and 6 years in this example.

FIGURE 3. Illustration of the hierarchical structure of the data divided
into the first and second stages as done in the two-stage approach.
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Magnitude of the GVE

Junoy Montolio11 showed that the time of day, season,
reliability indices (number of fixation losses, false negatives,
and false positive), technical experience, and follow-up
period have a clinically relevant influence on the MD test
results. To determine the magnitude and importance of the
GVE, we compared it with these factors. We excluded
technical experience and follow-up period due to the lack of
data on these factors. Hence, we focussed on the time of
day, season, and the reliability indices. For time of day, the
tests were stratified into four categories: performed before
10 AM, between 10 AM and 12 PM, between 12 PM and 2
PM, and after 2 PM. For season, the tests were also stratified
into four categories, of 3 months each (March–May, June–
August, September–November, December–February), based
on the annual variation of retinal sensitivity.11 The reliability

indices were treated as continuous variables. Reliability
indices include the percentage of fixation losses, the
proportion of false positives, as well as the proportion of
false negatives. We will refer to this model as the fixed-factor
model. An example of the model fits for one location can be
seen in Figure 7. We compared the model fits using the
RMSE, MAE, and 95th percentile of the absolute errors.
Furthermore, we determined the magnitude of the GVE
compared with the factors by calculating their absolute
means. A limitation of the two-stage approach occurs when
there is sparse data, such as the season or time of day.
Because each individual was analyzed separately, information
could not be borrowed from the data set as a whole as done
in the classical one-stage approach. Due to this limitation,
we used the classical one-stage approach including 50
randomly selected individuals for this analysis.

FIGURE 4. Scatter plot representing the retinal sensitivity estimates over time for each location of the VF in an example (left) eye. The lines
represent the model fits for the conventional model (orange) and GVE model (green).

FIGURE 5. A real example showing how the GVE can influence the estimated rate of progression. The open circles represent the retinal sensitivity
estimates over time for 1 location in the VF. (A) The crosses represent the fitted data using the GVE model, with the transparent green line showing
the model fit over time. The solid green line indicated the slope of the GVE model. (B) The orange line shows the fit for the conventional model.
The green line shows the fit for the GVE model after correcting for the GVE estimates.
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RESULTS

Model Fit

Table 2 lists the RMSEs, MAEs, and 95th percentile of the
absolute errors for the models, showing that by incorporating
the GVE there is an improvement in the model fit. Both the
squared errors and absolute errors were significantly smaller
for the GVE model than for the conventional model (P < 0.001,
matched paired).

Effect on Slopes

When comparing the rate of progression between the
conventional model and the GVE model, the mean absolute
difference was found to be 0.13 dB/y (P < 0.001, matched
paired). Figure 8 shows the distribution of the differences,
including the mean and 95% CI.

Prediction of Future Visual Fields

Table 3 lists the RMSE by using 3, 6, and 9 measurements to
predict VF sensitivities approximately 3 years ahead (9th, 12th,
and 15th measurement, respectively). The GVE model showed
a significant improvement in the predictions compared with
the conventional model, irrespective of how many measure-

ments were used (P < 0.001, matched paired). However, the
difference between the models predictive abilities decreased as
more measurements were included. For the conventional
model, there was a significant difference between including
three and six measurements (P < 0.001) and between
including six and nine measurements (P < 0.001). For the
GVE model, these differences were not significant (P ¼ 0.08
and P ¼ 0.47, respectively).

Magnitude of the GVE

The fits for the conventional and the fixed-factor model were
very similar. This can be seen in Table 4, which lists the RMSE,
MAE, and 95th percentile of the absolute errors for each
model. By including the factors, the model fit was slightly
improved compared with the conventional model (P < 0.001,
matched paired). The improvement in the fit was much larger
for the GVE model compared with both the conventional (P <
0.001, matched paired) and the fixed-factor model (P < 0.001,
matched paired).

The mean absolute value of each of the factors is shown in
Table 5, with the most influential factor being season (0.13 dB).
The combined value of all factors was found to be 0.23 dB. In
contrast, the GVE was found to be 0.85 dB.

DISCUSSION

In this study, we proposed to model measurement errors that
affect the point-wise sensitivity estimates within the same VF as
GVEs. By correcting for the GVEs, we accounted for all
measureable factors, both known and unknown, that affect all
measurements of the same eye at each visit. Furthermore, we
evaluated this model and showed the magnitude of the
correction for the GVE on progression estimation and
prediction of future measurements.

FIGURE 6. Scatterplots represents the retinal sensitivity estimates over time for 1 location of the VF. The predictions were done by using (A) 3, (B)
6, and (C) 9 measurements, which are shown as points in the blue portion of each plot. In each example, the sensitivity estimate 6 measurements
ahead, represented by a cross, was predicted. The lines represent the predictions using 3, 6, and 9 measurements to predict 6 measurements ahead
for the conventional model (orange) and GVE model (green).

FIGURE 7. Scatterplots representing the retinal sensitivity estimates
over time for 1 location of the VF. The lines correspond to the fits of
the 3 models, with much larger effects for the GVE (green) than for
known, fixed factors (blue).

TABLE 2. Comparison of the Fitting Ability of the Models Using the
RMSE, MAE, and the 95th Percentile of the Absolute Error

Model RMSE, dB MAE, dB

95th

Percentile, dB

Conventional model 3.23 2.08 7.01

GVE model 2.97 1.91 6.43
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The GVE model showed a highly significant improvement in
the model fit compared with the conventional model. Hence,
by taking the GVE into account, we were able to remove a
large systematic component that would otherwise be inter-
preted as noise and obtain better estimates of the true rate of
progression. The mean absolute difference between the rates
of progression estimated by the conventional model and the
GVE model was shown to be 0.13 dB/y. The distribution was
slightly positively skewed. By correcting for the GVE with our
model, we found a predominantly higher rate of progression.
In other words, ignoring the GVE may obscure the true, most
often higher, rate of progression. In this analysis, all
measurements were included to determine the difference
between the progression rates of the two models.

For this model to be of clinical use, its prediction of future
measurements should be better than of the conventional
model. By incorporating the GVE in the model, we indeed
found significant improvements in the predictions. The GVE
model provided more robust predictions than the conventional
model, especially when fewer measurements were included.
This could be explained by the fact that the GVE model takes
factors into account that may either decrease or increase the
sensitivity estimates. The GVE has less effect on the estimated
slopes when more measurements are included. Thus, the
conventional model and the GVE model become more similar
as more measurements are included. In clinical practice, the
number of VFs is typically quite small, especially when
resources are limited and robust approaches, such as the
GVE, are therefore needed to accurately predict glaucomatous
progression.

The importance of the GVE was compared with factors
described in the literature that have been shown to be
significant. The magnitude of the GVE, however, was shown

to be more than three times larger than that of the other factors
combined (0.85 vs. 0.23 dB). Our results on those factors were
consistent with those found by Junoy Montolio et al.11 Of the
known factors, we found season to have the largest effect, with
a mean absolute value of 0.13 dB. In agreement with our
results, Junoy Montolio et al.11 concluded that the number of
false positive answers has the largest, or most severe, effect out
of the reliability indices. In their study, the MD was determined
to be overestimated by 1 dB per 10% of false positive answers.
Time of day was found to have a mean absolute value of 0.09
dB. It has, however, been shown that the 24-hour IOP rhythm
differs between eyes in glaucoma patients.23 Because the
patient’s IOP may affect each eye differently at the same time
of day, and will vary between individuals, it may be of more
interest to determine this factor at an eye-specific level, as done
with the GVE. Although the GVE takes both measureable and
unmeasurable factors into account, including the known
factors allows for some explanation of the variation. Hence, a
combination of both the GVE and the known factors may be
beneficial in the modeling of VF data.

In our model, we determined the GVE for each VF. Thus, the
GVE differs per eye for each individual at every visit. In this
way, we can take factors into account that affect the two eyes
(of the same individual) differently, such as, for example, the
fatigue effect. Because the patient has VF tests done on both
eyes sequentially, the second eye could be more affected by the
lengthy test. Our model can be extended to take the
correlation of the GVE between eyes into account. In that
way, we could determine the patient-dependent, as well as the
eye-dependent GVE. Furthermore, the model may be extended
to accommodate that some locations may be affected
differently by some of the factors. Although we have shown
the effect of the GVE using an advanced Bayesian two-stage
model, it is important to note that the GVE can be
implemented as a random effect in any point-wise longitudinal
model.

In comparison to conventional robust regression which is
applied at the location level, the GVE model can be considered
a robust approach applied at the VF level. Hence, while the
GVE model is able to distinguish between within- and between-
field errors, the conventional robust model is not able to do so,
because both errors are combined in a single error term. By
modelling the visit effect explicitly, we exploit the entire VF
structure. Hence, the GVE allows us to obtain important

TABLE 3. Comparison of the Predictive Ability of the Models Using the
RMSE, Varying the Number of Measurements Included for the
Estimation

Model

3 Measure-

ments, dB

6 Measure-

ments, dB

9 Measure-

ments, dB

Conventional model 5.63 5.31 4.92

GVE model 4.58 4.65 4.67

TABLE 4. Comparison of the Fitting Ability of the Models Using the
RMSE, MAE, and the 95th Percentile of the Absolute Error

Model RMSE, dB MAE, dB

95th

Percentile, dB

Conventional model 3.33 2.14 7.21

Fixed-factor model 3.32 2.14 7.18

GVE model 3.07 1.97 6.67

TABLE 5. Comparison of the Magnitudes of the Different Factors and
the GVE Using the MAE

Factor MAE, dB

Season 0.13

Time of day 0.09

% Fixation losses 0.00

% False positives 0.10

% False negatives 0.02

Combined 0.23

Global visit effect 0.85

FIGURE 8. Histogram showing the distribution of the differences
between the slopes for the conventional model and the slopes for the
GVE model. Positive values represent more progression (or smaller
slopes) for the GVE model.
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additional information, which is needed in order to make any
conclusions on the instrument, operator, and so on. In this
way, we also allow for ‘real’ progression to still affect the slope
of the model rather than attributing the entire measurement to
error as done with the conventional robust model.

An approach that is related to the GVE is the pattern
deviation, which uses the cumulative distribution to compute a
correction.20 The 85th percentile is used to compensate for
effects by for instance cataract, which would lead to a general
reduction of retinal sensitivity throughout the VF. Hence, the
entire VF height is adjusted to the 85th percentile. However,
with diffuse loss, the entire VF height tends to be overcorrect-
ed whenever the 85th percentile becomes significantly
affected.24 The two approaches differ in how the visit effects
are expressed. Namely, the percentile correction is treated as a
fixed term, while the GVE is treated as a random effect.
Because we treat the GVE as a random effect, which has a
distribution with mean zero, it is forced to fluctuate around
zero. The fixed term of the percentile model does not impose
any constraint, and hence accounts for both the visit effect and
the rate of progression/slope. Hence, in contrast to pattern
deviation analysis, the GVE model allows us to estimate the
visit effect without disrupting the estimation of the progres-
sion.

In clinical practice it is known that one single VF may not
be reliable and confirmation is sought in the results from future
tests. Clustered VF testing has been shown to identify more
rapid progression than evenly spaced follow-up approaches,
allowing the clinician to be more confident that the
progression is real.25 Our model is in line with these findings
and confirms that results, which deviate from what is expected
may be due to unknown factors that affect the VF measure-
ments on that specific visit rather than representing actual
damage.

In conclusion, the GVE has a substantial effect on the point-
wise VF sensitivities. In longitudinal VF series, correcting for
the GVE provided better estimates of the true rates of
progression, which were predominantly higher than with
conventional progression analysis. In addition, shorter VF
series were required to arrive at relatively accurate VF
predictions than with conventional modeling. Implementing
progression models that incorporate the GVE in clinical care
may therefore improve the clinical management of glaucoma.
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