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ABSTRACT 23 

This study investigates the potential of producing red coloured dry fermented sausages 24 

without addition of nitrite and/ or nitrate. Therefore, the formation of zinc protoporphyrin IX 25 

(Zn(II)PPIX) as naturally occurring pigment, and the interrelated protoporphyrin IX (PPIX) 26 

and heme content were evaluated during nitrite-free dry fermented sausage production at 27 

different pH conditions. Zn(II)PPIX was only able to form in dry fermented sausages at pH 28 

conditions higher than approximately 4.9. Additionally, the presence of Zn(II)PPIX increased 29 

drastically at the later phase of the production process (up to day 177), confirming that in 30 

addition to pH, time is also a crucial factor for its formation. Similarly, PPIX also 31 

accumulated in the meat products at increased pH conditions and production times. In 32 

contrast, a breakdown of heme was observed. This breakdown was more gradual and 33 

independent of pH and showed no clear relationship with the formed amounts of Zn(II)PPIX 34 

and PPIX. A statistically significant relationship between Zn(II)PPIX formation and product 35 

redness was established. 36 
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1. Introduction 41 

Myoglobin is a globular sarcoplasmic protein with a non-protein iron protoporphyrin IX 42 

(known as heme) macromolecule enclosed, and is considered as the major responsible for the 43 

colour in meat and meat products. Heme is formed in the mitochondria from protoporphyrin 44 

IX (PPIX) by ferrochelatase (FECH) as terminal enzymatic reaction step in the heme 45 

biosynthetic pathway. Hereby, FECH inserts ferrous iron into the protoporphyrin ring 46 

structure (Ajioka, Phillips, & Kushner, 2006). Depending on the redox state of the heme iron 47 

and the ligand bound to its sixth coordination place, colour changes may occur in meat, 48 

ranging from purplish red deoxymyoglobin (DMb) in anaerobic conditions and no ligand 49 

present, cherry red oxymyoglobin (OMb) whereby ferrous iron is bound to oxygen, to brown 50 

metmyoglobin (MMb) if ferrous iron is oxidized to ferric iron, having water as a ligand 51 

(Lindahl, 2005). 52 

Sodium nitrite is traditionally used in meat products for multiple purposes, such as 53 

antimicrobial, antioxidant and colour formation properties. The latter implies the appearance 54 

of the typical cured red (if uncooked) or pink (if cooked) colour of meat products in the form 55 

of nitrosylmyoglobin (NOMb) or nitrosylhemochromogen, respectively, with a, from nitrite 56 

reduced NO molecule coordinated to iron (Honikel, 2008). However, the use of nitrite is 57 

controversial due to its direct toxicity and its involvement in the formation of carcinogenic N-58 

nitrosamines (De Mey, 2014). 59 

When nitrite is omitted, the majority of the heme pigments oxidizes to MMb, resulting in the 60 

formation of an unacceptable dull brown colour of the meat products (Adamsen, Møller, 61 

Laursen, Olsen, & Skibsted, 2006). In Parma ham, a North Italian traditional dry cured ham 62 

made without the addition of nitrates or nitrites, zinc protoporphyrin IX (Zn(II)PPIX) is 63 

regarded as the major colour forming pigment instead of nitrosylheme, as was thought 64 



previously (Wakamatsu, Nishimura, & Hattori, 2004). Moreover, as nitrite distinctly inhibits 65 

its formation, Zn(II)PPIX can only be detected in dry cured meat products without addition of 66 

nitrite or nitrate (Adamsen et al., 2006; Wakamatsu, Hayashi, Nishimura, & Hattori, 2010). 67 

The formation mechanisms of this fluorescent pigment in meat products are not completely 68 

unraveled yet, however, it is generally ascribed to the interchange of heme iron and zinc. 69 

Three possible mechanisms for this metal substitution have been suggested: (1) a non-70 

enzymatic reaction; (2) an enzymatic reaction linked to the activity of endogenous FECH; and 71 

(3) an enzymatic reaction with FECH formed by bacteria (Adamsen et al., 2006; Becker, 72 

Westermann, Hansson, & Skibsted, 2012; Wakamatsu et al., 2004). It is known that FECH is 73 

not only responsible for the insertion of ferrous iron into the PPIX moiety, but also the 74 

removal of iron and the insertion of zinc belong to its capabilities (Chau, Ishigaki, Kataoka, & 75 

Taketani, 2010; Taketani, Ishigaki, Mizutani, Uebayashi, Numata, Ohgari, & Kitajima, 2007). 76 

On the contrary, Wakamatsu, Okui, Hayashi, Nishimura, and Hattori (2007) claimed that 77 

Zn(II)PPIX could be formed immediately from PPIX without any involvement of heme, with 78 

FECH inserting zinc directly into the PPIX ring. Becker et al. (2012) suggested that 79 

enzymatic formation of Zn(II)PPIX dominated initially during meat production, while the 80 

non-enzymatic substitution reactions mostly occurs in later stages of the production processes. 81 

In earlier studies, Zn(II)PPIX formation was already followed during production of meat 82 

products, in particular in dry cured hams. Parolari, Benedini, and Toscani (2009) noticed little 83 

or no formation of Zn(II)PPIX in Parma ham during the first 3 months of cold resting stage, 84 

whereas a gradual increase of fluorescence intensity, ascribed to the presence of Zn(II)PPIX, 85 

occurred during the further processing. Wakamatsu, Uemura, Odagiri, Okui, Hayashi, Hioki, 86 

Nishimura, and Hattori (2009b) also observed the formation of Zn(II)PPIX in Parma ham, but 87 

only after ca. 40 weeks of maturation. The latter ascribed this delay in Zn(II)PPIX formation 88 

to the processing conditions of dry cured ham, including temperature, salt concentrations, or 89 



free zinc content. Grossi, do Nascimento, Cardoso, and Skibsted (2014) concluded eventually 90 

that the delayed formation of Zn(II)PPIX in dry cured hams is concomitant with the globin 91 

denaturation due to proteolytic activities. They suggested that after globin denaturation 92 

ferrous iron is removed from heme, oxidized to the ferric ion forming non heme colloidal 93 

complexes, whereby the insertion reaction of zinc into the PPIX ring can take place. 94 

Until now, no studies could be found about the formation of Zn(II)PPIX during the 95 

production process of dry fermented sausages. In contrast to the relatively high pH values in 96 

dry cured hams, the pH decline during fermentation of dry fermented meat products is 97 

expected to be a potential problem for Zn(II)PPIX formation, mostly related to the optimal pH 98 

values of FECH. These optima vary from pH 5.5 to 8.0 depending on the origin of FECH, 99 

including bacteria, yeast, or mammalian FECH (Camadro & Labbe, 1982; Hansson & 100 

Hederstedt, 1994; Nunn, Norris, Hawk, & Cox, 1988; Ishikawa, Yoshihara, Baba, 101 

Kawabuchi, Sato, Numata, & Matsumoto, 2006). The enzyme activity of porcine heart extract 102 

exhibits an optimum pH of 5.5 (Ishikawa et al., 2006). Moreover, Wakamatsu et al. (2007) 103 

found in a porcine meat based in vitro model also an optimum pH of 5.5. The optimum pH for 104 

Zn(II)PPIX formation differs depending on various internal organs, with pH optima of 105 

porcine heart, liver and kidney of 5.0–5.5, 4.5 and 5.5–6.0, respectively (Wakamatsu, 106 

Murakami, & Nishimura, 2015). The pH optima also vary according to the function of FECH, 107 

ranging from pH 5.5 – 6.0 for iron removal activities to pH 7.5 – 8.0 for zinc insertion 108 

activities investigated using an in vitro model with porcine mitochondria (Chau et al., 2010). 109 

Semi-dry fermented Northern type sausages normally have an end-pH of 4.8 – 5.0 and are 110 

ready to eat after a few weeks drying, reaching approx. 20% weight loss (Toldra, 2008). As 111 

these conditions are not preferable for optimal Zn(II)PPIX formation, our hypothesis that 112 

Zn(II)PPIX formation might improve in sausages with a higher pH and a longer ripening 113 

time, was investigated in this study. The general objective was to evaluate the potential of 114 



producing red coloured dry fermented sausages without addition of the undesirable nitrite 115 

and/ or nitrate. However, it is generally known that, next to the lack of colour formation, 116 

omission of nitrite in dry fermented sausages leads to reduced microbial safety, especially 117 

with regard to Clostridium botulinum which can cause food poisoning, and antioxidant 118 

conditions. Moreover, an increasing pH will require the reorienting of the custom hurdles 119 

(Leistner & Gorris, 1995) to ensure food safety. Therefore, a sufficiently low water activity 120 

(aw), obtained by a prolonged drying period, was aspired in this study, however, further 121 

investigation on food safety was outside the scope of this work. 122 

123 



2. Material and methods 124 

2.1. Dry fermented sausage preparation 125 

Different preparations of nitrite-free dry fermented sausages were made using pork shoulder 126 

meat (69.6 %), Italian pork back fat (26.8 %), sodium chloride (2.8 %), sodium ascorbate 127 

(0.05 %), spices (white pepper and nutmeg) and a commercial starter culture Texel SA306, 128 

containing Lactobacillus sakei, Staphylococcus xylosus and S. carnosus (Danisco, Dangé-129 

Saint-Romain, France). The meat and fat fractions were purchased at local meat wholesale 130 

suppliers, all other ingredients and additives were bought at Solina Group Belgium (Eke-131 

Nazareth, Belgium). The meat batter was prepared by cutting a portion of frozen pork meat, 132 

equally inoculated with the starter culture, and frozen backfat into a bowl cutter (Kilia, 133 

Neumünster, Germany) until particles of ca. 3 mm were achieved. The meat-fat fraction was 134 

seasoned with sodium ascorbate and spices. Finally the binding was achieved by mixing a 135 

portion of refrigerated meat and sodium chloride into the meat batter. After the cutting and 136 

mixing process, the meat batter was stuffed in collagen casings with 90 mm diameter 137 

(Naturin, Weinheim, Germany) using a sausage stuffing machine (Industrial Fuerpla, 138 

Valencia, Spain). The sausages were fermented for 3 days (24 °C/ 95RH %) and subsequently 139 

dried (14 °C/ 87RH %) until day 21, 45, 64 and 177 in a climate chamber (Kerres 140 

Anlagensysteme GmbH, Backnang, Germany). 141 

In total, 4 pH variations were made in triplicate, by adding different concentrations of 142 

dextrose simultaneously with the seasonings to the meat batter, i.e., 0.00 % (1), 0.25 % (2), 143 

0.50 % (3) and 0.75 % (4). The latter concentration is normally used for the production of 144 

Northern type dry fermented sausages. 145 

Core samples of sausages of each pH variation, derived from the 3 individually prepared 146 

batches, were taken at different points of time during the production process, more 147 



specifically at day 0 (production day of the meat batter), day 3 (after the fermentation 148 

process), day 21 (after the initial drying period, characterised by a weight loss of approx. 20 149 

% as normally applied for semi-dry Northern type dry fermented sausages), day 45, 64 and at 150 

day 177 (extended drying process). General analyses for process monitoring, by means of 151 

weight losses, pH, dry matter (DM) and aw, were performed immediately at each sampling 152 

day. Also immediately after sampling, colour was measured and Zn(II)PPIX and/ or PPIX 153 

formation was screened. Other samples were frozen at -24°C until quantitative analysis was 154 

performed of PPIX, Zn(II)PPIX and total heme.  155 

2.2. General analyses 156 

Weight losses (%) were calculated as percentages of differences in weight of the whole 157 

sausages between day 0 and at each sampling day. The pH in the sausage samples was 158 

measured by inserting the glass pH electrode in the meat portion (Knick Portamess₢, Houston, 159 

USA), the aw was determined using a dewpoint hygrometer (AquaLab, Decagon Devices, 160 

Pullman, USA). DM (%) was determined by drying a homogenized test portion to constant 161 

mass at 103°C (ISO 1442, 1997). 162 

2.3. Colour measurements 163 

The instrumental colour analysis was based on the 3-dimensional CIELAB colour scale 164 

recommended by CIE (1976). A Miniscan EZ 4500L 45°/0° (Hunterlab, Murnau, Germany) 165 

with 8 mm viewing area size, illuminant D65 and 10° standard observer was used to register 166 

the L* (lightness), a* (redness), and b* (yellowness) values, whith one channel for lightness 167 

(L*) and two colour channels (a*), going from red (a*+) to green (a*-), and (b*), going from 168 

yellow (b*+) to blue (b*-). The brightness varies from black (L* = 0) to white (L* = 100). 169 



2.4. Screening method for a fast detection of zinc protoporphyrin IX and/or protoporphyrin 170 

IX formation 171 

A screening method, for the fast detection of the fluorescent Zn(II)PPIX and/or PPIX on 172 

transverse slices of meat products was assessed according to Wakamatsu, Odagiri, Nishimura, 173 

and Hattori (2006) with some modifications. This screening method offers the opportunity to 174 

easily assess the formation of the two natural pigments qualitatively prior to the more time 175 

consuming and expensive quantitative HPLC method. 176 

Summarized, 12 light-emitting diodes (LEDs) of 420 nm (Roithner Lasertechnik, Vienna, 177 

Austria) were connected in a well-sealed darkened room (44×44×30 cm). On top a macro 178 

convertor (Olympus MCON-P01, Tokyo, Japan) and a Kodak Wratten Colour Gelatin Filter 179 

No.12 (Edmund Optics Inc, Barrington, USA), allowing to transmit only wavelengths higher 180 

than 500 nm, were fixed. As such, the fluorescence emission of Zn(II)PPIX (590 nm) and/or 181 

PPIX (630 nm) is transmitted while avoiding the interference of the irradiated purple LED 182 

light (420 nm). 183 

Meat slices (12mm) were put on the bottom of the darkened room immediately after slicing. 184 

RAW images were taken with a digital camera (Olympus PEN E-PL3, Tokyo, Japan), 185 

connected externally on the macro converter. Image analysis was performed on all RAW 186 

pictures, using OlympusViewerII for the RAW development and ImageJ (image processing 187 

program, http://imagej.net) for splitting the RGB colour channels. The fluorescence emission 188 

in the R(red) channel is regarded as autofluorescence of Zn(II)PPIX and/ or PPIX. Inversed 189 

pictures are obtained with Gimp2.8 (GNU image manipulation program, http://www. gimp. 190 

org) for better visibility. 191 



2.5. Determination of total heme pigments by spectrophotometry 192 

Total heme content was determined based on the method described by Lombardi-Boccia, 193 

Martinez-Dominguez, and Aguzzi (2002) with minor modifications, using an acidified 194 

acetone solution that extracts heme from all heme proteins in the form of hemin. An aliquot  195 

(4 g) of thawed and minced meat samples was weighted in 50 ml centrifuge tubes with the 196 

addition of 25 ml 75% v/v acidified acetone solution (3.15% v/v HCl). Subsequently, the 197 

mixture was vigorously mixed for 5 min using an ultra-turrax T25 homogenizer (IKA®, 198 

Staufen, Germany), continuously shaken for 1 hour (nutating mixer, VWR International, West 199 

Chester, PA, USA), centrifuged for 10 min at 557 g (Hettich₢ Universal 320R, Sigma 200 

Aldrich, Diegem, Belgium) and filtered through filter paper (Machery-Nagel MN 616, Filter 201 

Service, Eupen, Belgium). Absorbances were measured at 640 nm via spectrophotometry 202 

(Cary 100 Bio, Agilent Technologies, CA, US). Hemin (Sigma Aldrich, Diegem, Belgium) 203 

was used as a standard. Data are expressed as nmol/g DM. All reagents were appropriate for 204 

analytical use. 205 

2.6. Determination of protoporphyrin IX and zinc protoporphyrin IX by high performance 206 

liquid chromatography with fluorescence detection 207 

After thawing and mincing, 1 g of meat sample was accurately weighted into a 14 ml 208 

centrifuge tube. Extraction was carried out by adding 5 volumes of the extraction solvent 209 

(75% v/v acetone solution) and homogenizing it for 1 min using an ultra turrax T18 210 

homogenizer (IKA®, Staufen, Germany). The meat sample was centrifuged (Heraeus 211 

Labofuge 200, Fisher Scientific, Tournai, Belgium) for 5 min at 2697 g. This extraction was 212 

repeated 5 times. After each extraction the supernatant was filtered and collected into dark 213 

volumetric flasks. The resulting volume was diluted up to 25 ml with 75% v/v acetone 214 

solution. The obtained solution was filtered using a syringe filter with 0.20 µm pore size 215 



(Machery-Nagel Cromafil₢ RC-20/15 MS, Filter Service, Eupen, Belgium) and was 216 

transferred into dark vials. During all extraction operations, direct contact with light was 217 

avoided as much as possible. 218 

The chromatographic method was based on Wakamatsu, Odagiri, Nishimura, and Hattori 219 

(2009a) with some modifications. The fluorescence properties of PPIX (ex./em. 410/630 nm) 220 

and Zn(II)PPIX (ex./em. 420/590 nm) were used for their determination, using a Hitachi 221 

LaChrom Elite₢ high performance liquid chromatograph (HPLC) equipped with a model 222 

L2200 autosampler, a model L 2485 fluorescence detector (VWR International, Leuven, 223 

Belgium). Using an AltimaTM C18 5 µm, 150 mm × 4,6 mm chromatographic column (Grace 224 

Davision Discovery Sciences, Lokeren, Belgium), the porphyrins were separated by isocratic 225 

elution using methanol/ammonium acetate (80:20, v/v, pH = 5.16) at a flow rate of 1 ml/min 226 

at 35°C. Forty microliters of each sample was injected. PPIX and Zn(II)PPIX (Sigma Aldrich, 227 

Diegem, Belgium) were used as standards. Data are expressed as nmol/g DM. All reagents 228 

were appropriate for analytical use. 229 

2.7. Statistical analysis 230 

Differences in pH, weight losses and aw between the different pH variations at each sampling 231 

day were assessed using a one-way ANOVA at a significance level of P < 0.05. Post-hoc 232 

pairwise testing between all pH variations was performed using a Tukey correction to account 233 

for multiple testing (IBM SPSS Statistics 21.0, Chicago, USA). 234 

Zn(II)PPIX, PPIX and total heme were analyzed using a linear mixed model that included 235 

factors for pH variation, time and their interaction. Correlations between the different 236 

measurements are taken into account using random intercepts for the batch effect and batch 237 

by pH effect. At each sampling day, an F-test (P < 0.05) was performed to assess whether 238 

there was an overall effect of pH variation. Post-hoc pairwise testing between all pH 239 



variations was performed using a Tukey correction to account for multiple testing. Similar 240 

analyses were performed for each pH variation to assess differences between the sampling 241 

days. 242 

For the analyses of L*, a* and b*, a random intercept for the batch effect was added to the 243 

model. In addition, an unstructured variance-covariance matrix was used to model 244 

correlations between the sampling days and a compound-symmetry matrix was used to 245 

account for correlations between the repeated measurements on each day. Analyses for L*, a* 246 

and b* were adjusted for Zn(II)PPIX, PPIX, total heme and for all three simultaneously. Only 247 

models in which the pigments (Zn(II)PPIX, PPIX, total heme) showed significant effects, 248 

were included in the discussion of the results. If deviations from the linearity assumption were 249 

observed for these variables, they were included using restricted cubic splines. 250 

Model assumptions of normality and constant variance of the residuals were assessed using 251 

visual inspection of residual plots. All these analyses were performed with SAS version 9.4 252 

with SAS/STAT 13.2. 253 

254 



3. Results 255 

3.1. Evolution of pH, weight losses and water activity in nitrite-free dry fermented sausages 256 

at different pH conditions 257 

Lactic acid bacteria present in the starter culture are able to acidify the sausages during the 258 

fermentation process, by the production of lactic acid, whereby dextrose is acting as the 259 

power supply for a better growth of these bacteria (Toldra, 2008). In order to achieve different 260 

pH conditions during processing, different concentrations of dextrose were added to the meat 261 

batter: 0.00% (1), 0.25% (2), 0.50% (3) and 0.75% (4). This approach was successful as, after 262 

fermentation, significantly different pH values were obtained between the different dextrose 263 

variations. At day 3, pH values of 5.32 ± 0.02, 4.932 ± 0.004, 4.75 ± 0.01 and 4.55 ± 0.01 264 

were achieved for variations 1, 2, 3 and 4, respectively (Table 1). The re-increase of pH 265 

during further manufacturing is probably related to the generation of biogenic amines and 266 

ammonia as a result of proteolysis (Toldra, 2008). However, the significant differences in pH 267 

between the 4 dextrose variations were maintained, even during the further extensive drying 268 

period. In the following, dextrose variations will be interpreted in terms of pH conditions. 269 

In addition to pH, weight losses and aw are also shown in Table 1. As a function of time, the 270 

weight losses of the sausages increased and aw decreased due to the continuous drying 271 

conditions, whereby the weight losses were more pronounced during the initial drying period 272 

while the aw decrease was more obvious at the later stage of the processing. The negative 273 

values of weight losses at day 3 indicate a slight increase of weight in the sausages due to the 274 

high relative humidity conditions (95 % RH) during fermentation. Significant differences in 275 

weight losses were observed between the 4 pH variations, with lower values in dry fermented 276 

sausages with higher pH levels. This can be explained by the coagulation of meat proteins at 277 

lower pH which encourages drying and weight loss of the product (Ockerman & Basu, 2008). 278 



However, with exception of day 64, no significant differences in aw were observed between 279 

the 4 pH variations, or, the different pH conditions had no influence on the aw-decline during 280 

drying. 281 

3.2. Changes in zinc protoporphyrin IX, protoporphyrin IX and total heme content in nitrite-282 

free dry fermented sausages at different pH conditions 283 

3.2.1. Sreening of zinc protoporphyrin IX and/or protoporphyrin IX formation 284 

Fig. 1 shows the evolution of the red fluorescence emission, ascribed to the formation of 285 

Zn(II)PPIX and/ or PPIX, of the 4 pH variations at different stages of the production process. 286 

At day 0, almost no red fluorescence was observed for all variations. At day 21, clear 287 

fluorescence appeared in variations 1 and 2, and its intensity remained similar during the 288 

longer drying period up to 64 days. Only after 177 days the sampling reveiled a remarkable 289 

increase of red fluorescence. Grossi et al. (2014) claimed that the formation of Zn(II)PPIX in 290 

Parma ham occurs when myoglobin denatures due to proteolytic activities, which is most 291 

pronounced at the end of the maturation process. It is assumed that also in this study the factor 292 

time, related to myoglobin denaturation, plays an important role in the formation of 293 

Zn(II)PPIX and/ or PPIX. 294 

In pH variations 1 and 2, the red fluorescence intensity is much higher than in pH variations 3 295 

and 4. Based on these results, it can be concluded that the formation of Zn(II)PPIX and/ or 296 

PPIX is more pronounced in circumstances with higher pH levels, and more specifically equal 297 

to or higher than approximately 4.9. It seems that this pH level acts as a treshold for the 298 

formation of the natural pigments, dividing the variations into 2 groups. When the pH 299 

decreased to lower pH values during the production process, fluorescence formation was 300 

reduced to a minimum. In variation 1 and 2, the pH remained above 4.9 uninteruptedly. As for 301 

variations 3 and 4, the pH was only exceeding 4.9 at day 45 and 64, respectively (see Table 1). 302 



Despite the pH increase during processing, resulting in more optimal pH conditions for 303 

Zn(II)PPIX and/ or PPIX formation in variations 3 and 4, their delay in pigment formation 304 

could not be catched up with respect to variations 1 and 2. The influence of pH can be 305 

explained by the pH dependence of porcine FECH activity, with pH optima around 5.5 306 

(Ishikawa et al., 2006; Wakamatsu et al., 2007). 307 

This screening method offers the opportunity to easily assess the formation of Zn(II)PPIX 308 

and/ or PPIX qualitatively. But in order to gain more insight into the formation of the 309 

individual components in dry fermented meat products at different pH conditions, 310 

Zn(II)PPIX, PPIX and additionally also total heme were quantified. 311 

3.2.2. Evolution of zinc protoporphyrin IX, protoporphyrin IX and total heme content 312 

The concentrations of Zn(II)PPIX, PPIX and total heme as a function of production time and 313 

varying pH conditions in nitrite-free dry fermented sausages, are presented in Table 2.  314 

Only small amounts of Zn(II)PPIX and PPIX were measured in the fresh meat batters. 315 

Zn(II)PPIX formation occured during the first 21 days of processing for pH variation 1 and 2, 316 

but then stabilized. For pH variation 3 and 4, however, no significant Zn(II)PPIX formation 317 

was seen during this initial phase. But for all pH variations, a significant increase of 318 

Zn(II)PPIX formation was observed after the longer drying period of 177 days. As for PPIX, 319 

formation started in the first 2 pH variations somewhat later during processing, between day 320 

21 and 45, again followed by a stabilization and a significant increase at day 177. For pH 321 

variation 3, significant PPIX formation was only seen at day 177. For pH variation 4, no PPIX 322 

formation was seen at all. 323 

Significant differences in Zn(II)PPIX and PPIX formation between the 4 pH variations were 324 

observed starting from day 21 and day 45, respectively, with increased pigment formation at 325 

higher pH values. The pH variations can be divided into 2 groups with significantly more 326 



Zn(II)PPIX formation in variations 1 and 2, exhibiting pH levels equal to or higher than 327 

approx. 4.9. However, this treshold was not seen for PPIX formation.  328 

These results are in accordance to the observed fluorescence intensities assessed with the fast 329 

screening method, with time and pH as crucial factors concerning the formation of PPIX and 330 

Zn(II)PPIX. The delayed formation of PPIX and Zn(II)PPIX can be assigned to globin 331 

denaturation as also suggested to occur during the production of Parma ham (Grossi et al., 332 

2014). Influence of pH can be explained by the pH dependence of porcine FECH activity 333 

(Ishikawa et al., 2006; Wakamatsu et al., 2007). 334 

The total heme content decreased significantly during processing, regardless of the pH 335 

variation. Reductions between 35 % and 45 % are recorded between day 0 and 177. 336 

Decreasing total heme concentrations were already observed by Wakamatsu et al. (2009b) in 337 

dry cured ham and by Chasco, Lizaso, and Biriain (1996) in nitrite-cured dry fermented 338 

sausages. This could partly be explained by increasing salt concentrations due to the 339 

dehydratation of the product, as Sakata and Nagata (1992) found in minced porcine skeletal 340 

muscle during refrigerated storage a decreased heme protein content of 50% and 80% with 341 

increasing salt concentrations of 2% and 10%, respectively. Besides the known thermal 342 

degradation of heme (Garcia, Martinez-Torres, Leets, Tropper, Raminez, & Layrisse, 1996; 343 

Gomez-Basauri, & Regenstein, 1992; Lombardi-Boccia et al., 2002; Turhan, Ustun, & 344 

Altunkaynak, 2004), Estevez and Cava (2004) also observed a significant increase in non 345 

heme iron in liver paste during refrigeration storage. These results suggest that some 346 

disruption of the porphyrin ring could have occurred during storage which led to the release 347 

of iron (Gomez-Basauri et al., 1992; Miller, Gomez-Basauri, Smith, Kanner, & Miller, 1994). 348 

Additionally, it must be noted that the heme breakdown mechanisms are also pH dependent, 349 

with optima at more alkaline pH values around 8 (Ukpabi, 2012). In this study however, the 350 



different (acid) pH conditions within the 4 variations did not have a determining influence on 351 

the total heme content in the nitrite-free dry fermented sausages. 352 

By determining the total heme concentration as a function of production time and pH, an 353 

attempt was made to gain better insight into the formation mechanisms of Zn(II)PPIX in 354 

nitrite-free dry fermented sausages. However, no clear relationship could be seen between the 355 

breakdown of the heme pigments and the formation of Zn(II)PPIX and PPIX. The total heme 356 

breakdown is independent of pH and is more gradually decreasing during production, whereas 357 

the formation of Zn(II)PPIX has proved to be influenced by pH and is formed drastically at 358 

the later stage of the production process. Based on these results, no conclusion could be 359 

drawn concerning the possible substitution reactions within the different metalloporphyrins. 360 

In comparison with Parma ham (Wakamatsu et al., 2009b), similar or even higher 361 

concentrations of Zn(II)PPIX could be measured in the dry fermented sausages with limited 362 

pH declines (variation 1 and 2) and whereby an extensive drying period of more than 64 days 363 

or at least 177 days was carried out. In Parma ham, Zn(II)PPIX amounts of 27.7 – 47.0 µg/ g 364 

or 104.11 – 176.65 nmol/g DM (calculated with 42.5% DM, as reported by Adamsen et al., 365 

2006) were found in the different muscles.  366 

In contradiction to the delayed formation of Zn(II)PPIX in Parma ham, the formation of 367 

Zn(II)PPIX in the dry fermented sausages with limited pH declines started immediately and 368 

continued up to day 21. Probably, the ambient temperature of 24°C during fermentation is 369 

determinative (Wakamatsu et al., 2007), but also the addition of salt and additives, such as 370 

sodium ascorbate, in combination with the greatly enhanced direct contact of these 371 

constituents with the meat due to severe mincing, could play an important role. Sodium 372 

chloride concentrations up to 3% increase Zn(II)PPIX formation due to the increased 373 

solubility of the proteins. With higher concentrations of sodium chloride inhibition of 374 

Zn(II)PPIX formation was observed, although FECH has been shown to be active in fresh 375 



meat extracts at sodium chloride concentrations up to 8% (Becker et al., 2012). Due to its 376 

reducing capacities, sodium ascorbate also promotes Zn(II)PPIX formation (Ishikawa et al., 377 

2006). After day 21 however, the formation rate decreased and stabilized during the further 378 

processing. In the later phase of the drying process, the rate increased again as was also seen 379 

during the production process of Parma ham (Parolari et al, 2009; Wakamatsu et al., 2009b). 380 

PPIX on the other hand was present in much higher amounts in the dry fermented sausages 381 

with higher pH (up to 83.73 ± 15.02 nmol/ g DM in variation 1) in comparison to Parma ham 382 

(0.4 – 1.1 µg/ g, or 1.67 - 4.60 nmol/g DM). The accumulation of PPIX during the production 383 

of meat products has never been described before. Some possible causes could be the absence 384 

of free zinc ions (Ishikawa, Kawabuchi, Kawakami, Sato, Numata, & Matsumoto, 2007) or 385 

the presence of chelating constituents (Benedini, Raja, Parolari, 2008), which are able to 386 

inhibit Zn(II)PPIX formation. Although this can be an important factor for better 387 

understanding the formation mechanisms of the natural pigments, no clarification can be 388 

given based on the results obtained in this study. 389 

3.3. Colour formation in nitrite-free dry fermented sausages at different pH conditions 390 

L*, a* and b* values as a function of production time and pH in nitrite-free dry fermented 391 

sausages are shown in Table 3. 392 

A significant decrease of L* was observed during the production process, and was most 393 

pronounced during the extensive drying period. This can be attributed to the strong decrease 394 

in moisture content, resulting in a darker product. No clear differences, however, could be 395 

observed for L* between the different pH conditions within each sampling day. 396 

In contrast to L*, the results on the colour scales a* and b* were drastically influenced by the 397 

fermentation process, whereby the sausages evolved to a less red (decrease of a*) and yellow 398 

(decrease of b*) colour, probably related to the formation of higher concentrations of MMb 399 



(Adamsen et al., 2006). During the further production process, a* gradually increased again, 400 

which corresponds with an increase of the redness, while b* remained more or less stable as a 401 

function of time (only in exception of day 64 for pH variation 3 and 4). As for variation 1, the 402 

decrease of a* immediately after fermentation was more limited in comparison with the other 403 

variations. Also during the further processing, significantly higher a* values were observed 404 

for pH variation 1. Also b* was higher for the batches with higher pH immediately after 405 

fermentation, but during the further processing the differences between the b* values became 406 

smaller and even negligible after extensive drying. 407 

As presented in the material and methods section, analyses for L*, a* and b* were adjusted 408 

for Zn(II)PPIX, PPIX, total heme and for all three simultaneously. Interestingly, Zn(II)PPIX 409 

had a highly significant effect (P < 0.0001) on a* values. The fact that the redness of the 410 

sausages (a*) is significantly related to the content of the natural red pigment Zn(II)PPIX, 411 

may indicate a causal connection. However, other underlying simultaneous reactions during 412 

the production process may play a role, complicating the relationship between Zn(II)PPIX 413 

and colour formation. 414 

Additionally, Zn(II)PPIX was found to have a significant effect (P = 0,0439) on L* and both 415 

PPIX and Zn(II)PPIX had a significant effect (P = 0.0054 and P = 0.0456, respectively) on 416 

b*. Nevertheless, the decrease of L* will probably mainly be attributed to the dehydration of 417 

the meat products as a function of time. Since b* is more or less stable as a function of time 418 

and no clear differences could be observed between the different pH variations, the significant 419 

effect of PPIX and Zn(II)PPIX on b* is also difficult to explain. In all cases, total heme 420 

showed no significant effect on the instrumental colour parameters. 421 

Also in earlier studies, it was not evident for researchers to correlate Zn(II)PPIX formation 422 

with instrumental colour measurements during production of meat products. Parolari et al. 423 

(2009) for instance reported that the colour heterogeneity between muscles of green hams 424 



disappeared with paler muscles becoming more red and vice versa during the production of 425 

dry cured meat products, in spite of increasing Zn(II)PPIX formation. However, it was 426 

generally stated that the redness of nitrite-free dry cured hams is attributed to Zn(II)PPIX 427 

formation during processing, with Zn(II)PPIX accounting for 60% - 70% of all porphyrins 428 

measured (Wakamatsu et al., 2004; Wakamatsu et al., 2009a). 429 

430 



4. Conclusion 431 

In this study, the formation of the naturally occurring pigments Zn(II)PPIX and PPIX was 432 

demonstrated in nitrite-free dry fermented sausages with higher pH values (pH > 4.9) and a 433 

longer production time (up to 177 days). Zn(II)PPIX formation was already described in 434 

Parma ham like products, but the accumulation of PPIX was never observed before and could 435 

be a determining factor concerning the further elucidation of the formation mechanisms of 436 

Zn(II)PPIX in meat products. The total heme content decreased more gradually, irrespective 437 

of the different pH conditions. As such, no clear conclusion about the relation between total 438 

heme breakdown and Zn(II)PPIX formation could be drawn.  439 

Interestingly, a statistically significant relationship between Zn(II)PPIX formation and 440 

product redness was established. Additionally, an effect of Zn(II)PPIX on L* and an effect of 441 

both PPIX and Zn(II)PPIX on b* were seen. Total heme, however, did not play any 442 

significant role in the instrumental colour parameters.  443 

These results are promising for producing red coloured dry fermented sausages without 444 

addition of undesirable nitrite and/ or nitrate. However, it is important to stress that nitrite 445 

omission in meat products raises concern with regard to food safety. This issue still needs 446 

further study. 447 
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 551 

Table 1 pH (n = 9), weight losses (n=3) and aw (n = 6) during the production of nitrite-free dry fermented sausages. Different pH conditions are obtained by adding 552 

different concentrations of dextrose to the meat batter, 0.00% (1), 0.25% (2), 0.50% (3) and 0.75% (4). 553 

  Day 0 Day 3 Day 21 Day 45 Day 64 Day 177 

 dextrose meat batter after  

fermentation 

after initinal  

drying period 

extensive drying period 

pH 1) 0.00% 5.69±0.01ab 5.32±0.02d 5.33±0.01d 5.49±0.01d 5.647±0.003d 5.63±0.00d 

(-) 2) 0.25% 5.66±0.01a 4.932±0.004c 4.956±0.002c 5.20±0.01c 5.30±0.01c 5.44±0.01c 

 3) 0.50% 5.70±0.01b 4.75±0.01b 4.83±0.02b 4.94±0.03b 5.01±0.01b 5.197±0.003b 

 4) 0.75% 5.72±0.01b 4.55±0.01a 4.66±0.01a 4.73±0.01a 4.913±0.003a 5.13±0.01a 

Weight  1) 0.00% 0.00±0.00a -0.63±0.55ab 17.74±0.40a 23.71±0.55a 26.18±0.34a 55.43** 

losses 2) 0.25% 0.00±0.00a -1.54±0.11a 18.70±0.30b 24.83±0.25ab 26.85±0.35ab 39.49* 

(%) 3) 0.50% 0.00±0.00a -0.00±0.26b 18.56±0.44ab 25.62±0.30b 27.79±0.26b 48.17* 

 4) 0.75% 000±0.00a -1.04±0.08ab 20.86±0.43c 27.85±0.81c 30.10±0.39c 40.52** 

aw 1) 0.00% 0.963±0.002a 0.964±0.002a 0.956±0.002a 0.930±0.006a 0.894±0.005a 0.843±0.005a 

(-) 2) 0.25% 0.961±0.001a 0.970±0.002a 0.958±0.004a 0.933±0.009a 0.926±0.007b 0.857±0.005a 

 3) 0.50% 0.960±0.002a 0.966±0.001a 0.957±0.002a 0.915±0.003a 0.898±0.005a 0.852±0.002a 

 4) 0.75% 0.964±0.001a 0.966±0.001a 0.955±0.003a 0.919±0.004a 0.905±0.007ab 0.862±0.006a 

Data are expressed as means ± SE. Different letters indicate significant differences (P < 0.05) between pH variations within sampling day. 554 
NOTE: * based on only 1 measurement, ** based on only 2 measurements 555 

 556 

 557 

 558 



Table 2 Zn(II)PPIX, PPIX and total heme evolution (n = 3) during the production of nitrite-free dry fermented sausages. Different pH conditions are obtained by 559 

adding different concentrations of dextrose to the meat batter, 0.00% (1), 0.25% (2), 0.50% (3) and 0.75% (4). 560 

  Day 0 Day 3 Day 21 Day 45 Day 64 Day 177 

  meat batter after  

fermentation 

after initinal  

drying period 

extensive drying period 

Zn(II)PPIX 1) 0.00% 1.31±0.03a,1 7.28±0.98a,12 13.15±4.13b,23 15.28±1.02b,3 16.49±1.35b,3 125.69±5.66b,4 

(nmol/g DM) 2) 0.25% 1.307±0.003a,1 5.87±0.72a,1 12.79±1.25b,2 13.80±3.36b,2 16.60±1.08b,2 113.83±24.85b,3 

 3) 0.50% 1.31±0.01a,1 4.82±0.21a,1 5.66±0.77a,1 5.18±0.31a,1 4.45±0.21a,1 35.11±4.42a,2 

 4) 0.75% 1.30±0.04a,1 4.32±1.47a,1 5.47±0.23a,1 4.79±0.26a,1 4.84±0.35a,1 26.58±0.00a,2 

PPIX 1) 0.00% 0.76±0.03a,1 1.65±0.18a,1 5.42±2.66a,1 16.77±2.18c,2 17.07±2.52b,2 83.73±8.67d,3 

(nmol/g DM) 2) 0.25% 0.76±0.04a,1 1.90±0.05a,1 4.88±1.10a,12 9.04±4.00b,23 14.31±3.73b,3 45.04±8.12c,4 

 3) 0.50% 0.77±0.03a,1 1.70±0.11a,1 2.45±0.46a,1 2.42±0.23a,1 2.50±0.16a,1 15.35±1.06b,2 

 4) 0.75% 0.81±0.02a,1 3.69±1.97a,1 1.82±0.06a,1 1.58±0.04a,1 1.81±0.06a,1 4.84±0.00a,1 

Total heme 1) 0.00% 181.33±10.52a,3 180.23±3.36a,3 154.38±11.76a,2 128.48±6.94a,1 127.06±9.90a,1 114.51±24.30a,12 

(nmol/g DM) 2) 0.25% 186.50±1.56a,2 173.63±3.30a,2 178.07±10.71b,2 139.30±6.94ab,1 132.56±1.32ab,1 121.32±5.11a,1 

 3) 0.50% 189.58±4.71a,3 188.54±10.88a,3 177.46±4.00b,3 165.92±4.26c,23 149.28±1.90b,2 112.50±12.38a,1 

 4) 0.75% 217.82±10.53b,4 194.22±4.16a,34 188.69±6.34b,3 159.41±4.27bc,2 145.09±3.50ab,12 120.90±15.82a,1 

Data are expressed as means ± SE. Different letters indicate significant differences (P < 0.05) between pH variations within sampling day. Different numbers indicate significant 561 
differences (P < 0.05) between sampling days within pH variation. 562 
 563 

 564 

 565 



Table 3 Changes in L*, a* and b* (n = 18) during the production of nitrite-free dry fermented sausages. Different pH conditions are obtained by adding different 566 

concentrations of dextrose to the meat batter, 0.00% (1), 0.25% (2), 0.50% (3) and 0.75% (4). 567 

  Day 0 Day 3 Day 21 Day 45 Day 64 Day 177 

  meat batter after  

fermentation 

after initinal  

drying period 

extensive drying period 

L* 1) 0.00% 61.73±0.60a,34 61.62±0.18a,4 60.48±0.27a,4 59.19±0.28a,3 58.08±0.25a,2 55.84±0.34a,1 

(-) 2) 0.25% 63.04±0.29a,23 60.89±0.12a,3 61.22±0.25a,3 61.08±030b,3 59.75±0.17b,12 55.41±0.19a,1 

 3) 0.50% 62.77±0.20a,234 62.21±0.23a,4 61.15±0.13a,34 60.31±0.17b,3 58.77±0.22ab,2 55.01±0.25a,1 

 4) 0.75% 61.56±0.32a,234 61.34±0.22a,4 61.31±0.20a,4 59.69±0.20ab,3 58.00±0.24ab,2 52.63±0.39a,1 

a* 1) 0.00% 16.24±0.21a,4 8.61±0.23b,12 7.75±0.15b,1 9.15±0.08b,23 9.61±0.09b,3 13.03±0.19c,4 

(-) 2) 0.25% 16.19±0.17a,5 5.45±0.09a,1 6.72±0.19a,2 7.93±0.08a,3 9.04±0.08ab,4 9.93±0.27ab,234 

 3) 0.50% 16.37±0.14a,5 5.10±0.09a,1 6.21±0.09a,2 7.62±0.09a,3 9.60±0.10b,4 10.30±0.13b,4 

 4) 0.75% 17.31±0.19a,4 4.93±0.23a,1 6.07±0.07a,1 6.96±0.08a,2 8.20±0.15a,3 8.96±0.21a,3 

b* 1) 0.00% 24.82±0.23a,4 16.21±0.19d,3 13.47±0.11c,2 12.45±0.07a,1 12.15±0.08b,1 11.55±0.10a,12 

(-) 2) 0.25% 25.10±0.16ab,4 12.47±0.08c,3 12.05±0.12b,23 11.65±0.12a,12 11.60±0.09b,1 12.06±0.19a,123 

 3) 0.50% 25.27±0.14ab,3 11.50±0.13b,2 11.74±0.11ab,2 11.42±0.16a,2 7.60±0.06a,1 12.10±0.12a,2 

 4) 0.75% 25.82±0.18b,3 10.85±0.10a,2 10.97±0.09a,2 11.20±0.10a,2 6.96±0.12a,1 12.13±0.15a,2 

Data are expressed as means ± SE. Different letters indicate significant differences (P < 0.05) between pH variations within sampling day. Different numbers indicate significant 568 
differences (P < 0.05) between sampling days within pH variation. 569 
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 580 

Figure 1 Evolution of (zinc) protoporphyrin IX during the production of nitrite-free dry fermented 581 

sausages using a fast screening method (red fluorescence is visualized as inversed red channels via image 582 

analysis after irradiation with purple LED light). Different pH conditions are obtained by adding 583 

different concentrations of dextrose to the meat batter, 0.00% (1), 0.25% (2), 0.50% (3) and 0.75% (4). 584 

 585 

 586 

1 

0.00% 
dextrose 

        day 0                     day 21                            day 45                    day 64                  day 177 

                   initial drying                                                            extensive drying 

0.25% 
dextrose 

0.50% 
dextrose 

0.75% 
dextrose 


