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ABSTRACT

Context. Suprathermal populations are ubiquitous in the solar wind, indicating plasma states out of thermal equilibrium, and an excess
of free energy expected to enhance the kinetic instabilities. However, recent endeavors to disclose the effects of these populations on
the electromagnetic instabilities driven by the temperature anisotropy do not confirm this expectation, but mainly show that these
instabilities are inhibited by the suprathermals.
Aims. In an attempt to clarify the effect of the suprathermals, we propose to revisit the existing models for the anisotropic veloc-
ity distributions of plasma particles and to provide an alternative comparative analysis that unveils the destabilizing effects of the
suprathermal populations.
Methods. Suprathermal tails of the observed distributions are best fitted by the Kappa power laws (with the bi-Kappa variant to
model temperature anisotropies), which are nearly Maxwellian at low speeds (thermal core) and decrease as a power law at high
speeds (suprathermal halo). To unveil the destabilizing effects of the suprathermal populations, the existing methods (A) compare
Kappa and Maxwellian distributions of the same effective temperature, while the alternative comparative method (B) proposed in this
paper allows for an increase of the effective temperature with increasing the suprathermal populations. Both of these two methods
are invoked here to quantify and compare the effects of suprathermal electrons on the electromagnetic electron-cyclotron (EMEC)
instability, driven by the temperature anisotropy Te,⊥ > Te,‖ of the electrons (where ‖,⊥ are directions with respect to the magnetic
field).
Results. Only the Maxwellian limit of lower effective temperature shapes the Kappa model at low energies (method B), enabling a
realistic comparison between the Maxwellian core and the global best-fitting Kappa, which incorporates both the core and suprather-
mal tails. In this case, the EMEC instability is found to be markedly and systematically enhanced by the suprathermal populations for
any level of the temperature anisotropy. The results of the present study may provide valuable premises for a realistic description of
the suprathermal populations and their destabilizing effects for the whole spectrum of kinetic instabilities in the solar wind.
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1. Introduction

Largely extended in space, most astrophysical plasmas are di-
lute and low-collisional (see, e.g., Table 8.1 in the textbook by
Schlickeiser 2002), and the plasma particles are expected to
be out of thermal (Maxwellian) equilibrium in these systems.
Direct in-situ measurements of the solar wind plasma confirm
this hypothesis, providing evidence for the existence of depar-
tures from thermal equilibrium, as well as clues for their origin
(Marsch 2006). Described by the velocity distribution functions
(VDFs) of plasma particles (electrons, protons, heavier ions),
nonequilibrium plasma states are indicated by the anisotropy of
the distribution (for instance, in the solar wind the anisotropy
is measured with respect to the uniform magnetic field), and
especially by the suprathermal populations, which enhance the
high-energy tails of the distributions and are ubiquitous in space
plasmas (see the reviews by Pierrard & Lazar 2010; and Lazar
et al. 2012). More pronounced in the electron distributions, the
suprathermal populations (also known as the halo component)
are reported for all species of plasma particles observed in the
solar wind. The existence of suprathermal particles is not condi-
tioned (maybe not directly) by the uniform magnetic field, but it
seems to be well explained by a certain level of wave turbulence
that keeps these populations energized and in a quasi-stationary
equilibrium with the main thermal component (the core) of the
solar wind particles.

Functional models, used for decades to describe the
anisotropic distributions of plasma particles in the solar wind
and supporting waves and fluctuations, were limited to standard
bi-Maxwellians (see textbooks by Gary 1993; and Treumann
& Baumjohann 1997). Bi-Maxwellians offer a simple descrip-
tion of the gyrotropic distributions (with a bi-axis temperature
anisotropy), and are supported by the solar wind observations,
as the best-fitting models for the core (low-energy) components
of the distribution, representing roughly 90−95% of the total
density. However, the suprathermal (halo) components are less
dense but much hotter than the core, and, in general, highly
anisotropic, such that their kinetic effects, especially those lead-
ing to instabilities and fluctuations cannot be ignored. According
to the observations, the suprathermal tails of the distribution are
best described by power laws. Of these, the best known is the
Kappa VDF with its bi-Kappa variant to model the anisotropic
temperature. To keep the analysis straightforward with a re-
duced number of parameters, the anisotropic Kappas are ap-
plied as “global” models, incorporating both the core and halo
components (Summers & Thorne 1992; Fichtner & Sreenivasan
1993; Hellberg et al. 2005; Pierrard & Lazar 2010), mainly
based on the fact that a Kappa is nearly Maxwellian at low en-
ergies and decreases smoothly as a power law at high energies.
Although the core can be less anisotropic or much different than
the halo, these two components cannot be decoupled, but are in
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fact interconnected. For that reason, a global bi-Kappa may be a
convenient starting basis for studying the anisotropic suprather-
mal populations and their instabilities.

The bi-Kappa model is a generalization of the more ideal-
ized bi-Maxwellian approach, which is recovered in the limit of
a very high power index κ → ∞. The comparison with a bi-
Maxwellian becomes then possible, enabling us to quantify the
effects of suprathermal populations. However, one major conclu-
sion that emerges from the existing comparative studies is very
intriguing: the excess of free energy stored by a nonequilibrium
bi-Kappa plasma is not reflected in the effects on the kinetic in-
stabilities. Precisely, in comparison with bi-Maxwellians, in bi-
Kappa plasmas with the same temperatures and the same tem-
perature anisotropy, the resulting instabilities are not enhanced.
Contrary to expectations, the instability growth rates are inhib-
ited by the increase of suprathermal populations, i.e., decreasing
kappa index (Xue et al. 1996; Lazar & Poedts 2009; Mace &
Sydora 2010; Lazar et al. 2011, 2013; Lazar 2012). An enhanc-
ing effect of the growth rates may also be apparent, but only for
low values of the temperature anisotropy close to the marginal
condition of stability where the growth rates Im(ω) ≡ γ → 0
(Summers & Thorne 1992; Xue et al. 1993; Mace 1998).

In this paper we revisit these two approaches: namely, the
bi-Kappa and bi-Maxwellian models, and we propose to iden-
tify a method of comparative analysis that unveils the destabi-
lizing effects of suprathermal populations. As an application, we
analyze the electromagnetic electron cyclotron (EMEC) insta-
bility, also known as the whistler instability. The EMEC modes
(whistlers) are right-handed (RH) circularly polarized modes
with frequencies between the proton and electron gyrofrequen-
cies (Ωp < ω < |Ωe|). These modes are destabilized by an ex-
cess of the electron perpendicular temperature, e.g., Te,⊥ > Te,‖,
where ‖,⊥ indicate directions with respect to the magnetic field
direction. The observations have shown whistlers induced in at-
mospherics for the first time (Helliwell 1956), and later their
existence was also proven in terrestrial magnetospheres (Cattell
et al. 2008; Breneman et al. 2011) and the solar wind (Lacombe
et al. 2014).

In the next section (Sect. 2), we introduce the bi-Maxwellian
and bi-Kappa distribution functions to model the thermal core
and global distribution, respectively. Basic concepts of compara-
tive analysis are contrasted to depict a realistic method of charac-
terization of the suprathermal populations and their destabilizing
effects. In Sect. 3 this method is particularized to the EMEC in-
stability, making a detailed comparison with the previous results,
and showing major differences for the effects of suprathermal
populations on this instability. Our results and their implications
are concluded in Sect. 4.

2. Models for the VDFs

The anisotropic plasma systems are assumed to be collisionless
and spatially homogeneous. To describe the initially unperturbed
plasma, we first introduce the standard bi-Maxwellian model
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using polar coordinates (vx, vy, vz) = (v⊥ cos φ, v⊥ sin φ, v‖) in the
velocity space. This VDF is normalized to unity,
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For the anisotropic distributions with suprathermal tails, we in-
voke a bi-Kappa distribution function
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which is normalized to unity
∫

d3v Fκ = 1, and describes a tem-
perature anisotropy T K

‖
, T K

⊥ in terms of the equivalent thermal
velocities θ‖,⊥ defined by
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for a spectral index κ > 3/2. To compare with a bi-Maxwellian,
the bi-Kappa model may be built in two ways:

(A) Firstly, we can keep the temperature constant T K
‖,⊥ = T M

‖,⊥,
and only let the power-index κ > 3/2 vary. In this case,
θ becomes κ-dependent by

θ‖,⊥ =

√
1 −

3
2κ

u‖,⊥, (7)

but the temperature anisotropy is also constant AK ≡

T K
⊥ /T

K
‖

= AM ≡ T M
⊥ /T

M
‖

. This method of comparison
has been extensively used to evaluate the effects of the
suprathermal populations on the kinetic instabilities (Xue
et al. 1993, 1996; Mace 1998; Hellberg et al. 2005; Xiao
et al. 2006; Lazar & Poedts 2009; Mace & Sydora 2010;
Lazar et al. 2011, 2013; Mace et al. 2011; Lazar 2012), and
contrary to the expectations, the results indicate a suppres-
sion of the instability with the increase of suprathermal pop-
ulations for a wide range of plasma parameters and a wide
spectrum of eigenmodes (e.g., the high-frequency electron
cyclotron instability and low-frequency proton cyclotron in-
stability). Moreover, in contrast to the Maxwellian limit, the
Kappa model shows a pronounced (excentrical) peak (see
Fig. 1a), making their comparison inappropriate to provide
a plausible characterization of the suprathermal populations
and their effects.

(B) Alternatively, we can assume θ‖,⊥ = u‖,⊥, implying higher
Kappa temperatures
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‖,⊥ > T M
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Fig. 1. Models of VDFs: bi-Maxwellian from Eq. (1) with u⊥/c =
2u‖/c = 0.02 (solid lines), and bi-Kappa from Eq. (4) with κ = 2
and θ‖,⊥ provided by Eq. (7) (dash-dotted lines) or with θ‖,⊥ = u‖,⊥
(dashed lines). Parallel cuts F(v‖) are shown in panel a), and isocon-
tours at 10−3 in panel b) and 10−2 in panel c), corresponding to dotted
lines in panel a). Note the enhanced high-energy tails shown by the
hotter Kappa with dashed lines. (Color online.)

(equality satisfied only for κ → ∞), but equal temperature
anisotropies AK ≡ T K

⊥ /T
K
‖

= AM ≡ T M
⊥ /T

M
‖

. To our knowl-
edge, this comparative method was only invoked to analyze
a hypothetical presence of suprathermal ions in the solar

corona by their effects as seeds for solar energetic particle
(SEP) production and the initiation of coronal mass ejec-
tions (CMEs; Laming et al. 2013). This method is fully
motivated, however, by the particle distributions measured
in-situ in the solar wind plasma. Thus, the first attempts to
describe fluxes of electrons measured in the solar wind pro-
posed a Kappa model, see Vasyliunas (1968) after an origi-
nal idea by Olbert (1968),

fκ(v) =
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where N is the total number density, κ is the same power-
index, and w0 is the most probable speed defined by a
measurable quantity, the energy E0 = mw2

0/2 correspond-
ing to the peak in the differential flux (∼v2 f (v)/m). Here
E0 can be related to the average thermal energy by E0 =
kBT (1 − 1.5/κ), and the two are identical only for κ → ∞
(Baumjohann & Treumann 1997). On the other hand, in this
case the Kappa model at low energies is well shaped (see
Fig. 1a) by the Maxwellian limit
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enabling a realistic comparison between a global best-fitting
Kappa, which incorporates both the core and suprathermal
tails, and the Maxwellian core.

Figure 1 shows parallel cuts (panel a) and contour plots (panels b
and c) of these models, bi-Kappa variants A and B, and their
bi-Maxwellian limit. The bi-Maxwellian model from Eq. (1) is
plotted with solid lines for u⊥/c = 2u‖/c = 0.02. The bi-Kappa
model (κ = 2) from Eq. (4) is shown for both cases: (A) when
T K
‖,⊥ = T M

‖,⊥ and θ‖,⊥ is provided by Eq. (7) (dash-dotted lines);
and (B) for θ‖,⊥ = u‖,⊥, when T K

‖,⊥ > T M
‖,⊥ (dashed lines). Both

variants A and B of the bi-Kappa distribution function approach
the same bi-Maxwellian in the limit of a very high power in-
dex κ → ∞, while for low values of κ → 1.5 the difference
between these two variants becomes significant, the hotter bi-
Kappa (variant B) showing pronounced high-energy tails and a
potential excess of free energy. This is the second feature show-
ing a significant contrast between the variants A and B of the
bi-Kappa model, and indicating the new variant B as a more ap-
propriate choice to include the suprathermal populations in the
analysis and realistically predict their destabilizing effects.

3. EMEC instability

The EMEC mode is destabilized by the electrons with an excess
of perpendicular temperature (T⊥ > T‖, where ‖,⊥ are directions
with respect to the magnetic field), leading to an instability of fi-
nite frequency Re(ω) ≡ ωr , 0, and growth rate Im(ω) ≡ γ > 0.
We propose to describe the effects of suprathermal populations
on this instability through a comparative analysis of the bi-
Maxwellian and bi-Kappa models A and B, invoked here to
parameterize the temperature anisotropy (A = T⊥/T‖ > 1) of
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the electrons. The analysis is restricted to the parallel propaga-
tion (k = k‖) of the EMEC modes because in parallel direction
these modes exhibit maximum growth rates and decouple from
the electrostatic modes (Kennel & Petschek 1966). The parallel
electromagnetic modes with RH polarization are described by
the general dispersion relation (Gary 1993)

0 = 1 −
k2c2

ω2 +
π

ω2

∑
a

ω2
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∫ ∞

−∞

dv‖
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∂v⊥
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∂Fa
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]
, (11)

where Ωa = qaB0/(mac) is the (nonrelativistic) gyrofrequency,
and ωp,a = (4πnae2/ma)1/2 is the plasma frequency for particles
of sort a. For a standard bi-Maxwellian the dispersion relation
simplifies to

k2c2

ω2
p

+ 1 = AM +
AM (ω −Ω) + Ω

ku‖
Z

(
ω −Ω

ku‖

)
, (12)

in terms of the plasma dispersion function (Fried & Conte 1961)

Z( f ) =
1
π1/2

∫ +∞

−∞

dx
exp(−x2)

x − f
, =( f ) > 0. (13)

At high frequencies of the EMEC modes only electrons re-
act (ion contribution can be neglected), and for simplicity, we
omit the subscript “e” for all symbols, e.g., ωp = ωp,e, Ω =
|Ωe|. Moreover, the EMEC modes are subluminal, such that
ω2 � k2c2.

For a bi-Kappa model in Eq. (4) the dispersion relation (11)
becomes (Lazar et al. 2013)
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p

+ 1 = AK +
AK (ω −Ω) + Ω

kθ‖
Zκ

(
ω −Ω

kθ‖

)
, (14)

this time written in terms of the modified (Kappa) plasma dis-
persion function (Lazar et al. 2008)
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Γ[κ]
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∫ +∞
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dx
(1 + x2/κ)−κ

x − f
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(15)

3.1. The instability thresholds

By specifying the plasma parameters, the instability thresh-
olds are derived from dispersion relations (12) and (14) for
sufficiently low levels of the maximum growth rate γm/Ω =
10−2, 10−3, such that the effects of the suprathermal populations
shown for the lowest level (γm/Ω = 10−3) are relevant for all
the other lower thresholds, down to the marginal limit of stabil-
ity (γm → 0). After the normalization of the wave frequency
ωr/Ω, growth rate γ/Ω and wave number kc/ωp only two pa-
rameters remain to describe the dispersion relation (12) for bi-
Maxwellian plasmas: namely, the anisotropy AM = AK = A and
the parallel plasma beta βM

‖
, while the power index κ emerges

as an additional parameter for the bi-Kappa dispersion Eq. (14).
The anisotropy thresholds are computed numerically for an ex-
tended range of the plasma beta parameter 0.01 6 β‖ 6 10, rel-
evant for the solar wind conditions (Stverak et al. 2008). The
plasma beta parameter β = 8πnkBT/B2

0 is defined by the ratio of
the thermal pressure (energy) to the magnetic pressure (energy).
Contours of the maximum growth rates (in units of Ω) are shown

Fig. 2. Thresholds of the EMEC instability for two levels of the maxi-
mum growth rates γm/Ω = 10−2 and 10−3.

Table 1. Electron temperature anisotropy fitting parameters from
Eq. (14).

γ/Ω = 10−2 γ/Ω = 10−3

Model a b a b
Kappa: A 0.416 0.493 0.157 0.522
Kapppa: B 0.210 0.493 0.076 0.522
Maxwellian 0.402 0.482 0.253 0.498

in Fig. 2 for both bi-Kappa models (κ = 2), case A (dash-dotted
lines) and case B (dashed lines), and for the bi-Maxwellian limit
(solid lines). An inverse correlation law between the temperature
anisotropy, A = T⊥/T‖, and the plasma beta, β‖, is obtained by
fitting the anisotropy thresholds with (Gary & Wang 1996)

A = 1 +
a
βb
‖

, (16)

where a and b are fitting parameters with values given in Table 1.
In case A, the comparison between different Kappa plas-

mas, including the Maxwellian limit κ → ∞ is straightforward
because all these systems are characterized by the same tem-
perature, T K

‖,⊥ = T M
‖,⊥, and implicitly by the same plasma beta

βK
‖,⊥ = βM

‖,⊥. It is probably for this reason that previous compar-
ative studies have preferentially chosen method A to investigate
the destabilizing effects of suprathermal populations in Kappa
distributed plasmas. With the new method B we compare plasma
systems with different temperatures, see Eq. (8), and implicitly
with different plasma betas

βK
‖,⊥ =

2κ
2κ − 3

βM
‖,⊥ > β

M
‖,⊥. (17)

Whether in case A or B, for a bi-Kappa plasma the instability
thresholds are derived with the same dispersion relation (14),
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Fig. 3. Unstable solutions derived for a bi-Maxwellian (solid lines) and
a bi-Kappa, case A (dot-dashed lines) and case B (dashed lines): the
wave frequency in panel a) and the growth rates in panel b). Plasma
parameters: A = 4, βM

‖
= 0.1 and κ = 2.

such that, for the comparison in Fig. 2, the same instability
threshold derived in case A (dot-dashed lines) may also be used
in case B (dashed lines). However, the instability threshold must
appear translated to the left, i.e., to lower values of β‖, by the
corresponding increase of β‖ in Eq. (17).

The anisotropy thresholds decrease with plasma beta as for
hotter or less magnetized plasmas we need lower anisotropies
to ignite the instability. The same argument applies in the new
case B, where the Kappa plasma becomes hotter with the in-
crease of suprathermal populations yielding instability thresh-
olds (dashed lines) markedly lower than those predicted in
case A (dash-dotted lines) as well as for a bi-Maxwellian plasma
(solid lines). This result indicates that suprathermal populations
present in the solar wind facilitate the conditions favorable to
the EMEC instability. The same effect was previously shown
with method A, but less pronounced and only for sufficiently low
anisotropies (bottom panel in Fig. 2), while for higher tempera-
ture anisotropies the instability appeared to be inhibited by the
suprathermals (top panel in Fig. 2). For higher anisotropies (far
from marginal stability), in the next section we check whether
the new method B reveals a stimulation or an inhibition of the
instability in the presence of suprathermals.

3.2. Unstable solutions

We calculated the unstable EMEC solutions for an extended
range of plasma parameters relevant for conditions in the solar
wind and terrestrial magnetosphere (i.e., 0.01 < β < 10), as well
as for small or large deviations from isotropy. Representative
for all these cases, Figs. 3−6 show the unstable solutions,

Fig. 4. Unstable solutions derived for a bi-Maxwellian (solid lines) and
a bi-Kappa, case A (dot-dashed lines) and case B (dashed lines): the
wave frequency in panel a) and the growth rates in panel b). Plasma
parameters: A = 4, βM

‖
= 1 and κ = 2.

i.e., the normalized wave frequency ωr/Ω (top panels) and
growth rate γ/Ω (bottom panels) vs. the normalized wave num-
ber (kc/ωp), covering plasma regimes of low β‖ = 0.1 (Figs. 3
and 5) or moderately high β‖ = 1 (Figs. 4 and 6).

For all these four cases, the EMEC growth rates predicted
for a bi-Kappa plasma by method B are always higher than
those predicted by method A or for a bi-Maxwellian limit, con-
firming an important stimulation of the EMEC instability by
the suprathermal populations. This effect remains valid for the
whole range of the unstable wave numbers, which extends to
very low values in the presence of suprathermals. This reduces
the inhibiting effect of the magnetic field (for bi-Maxwellian dis-
tributed plasmas there is a minimum cutoff wave number, which
increases with the magnetic field strength). The maximum cut-
off of the unstable wave numbers does not change in the pres-
ence of suprathermals, as it only depends on the temperature
anisotropy. This cutoff coincides with a particular value of the
wave frequency common to all dispersion curves (top panels of
Figs. 3−6), where all electron thermal effects, and hence all κ de-
pendencies vanish (Mace & Sydora 2010). Differences shown
by the wave frequency of the EMEC modes, as predicted for
a bi-Kappa with methods A and B and for the bi-Maxwellian
limit, only become significant for sufficiently large anisotropies
(Figs. 3 and 4).

4. Discussions and conclusions
Suprathermal populations present in the solar wind indicate
plasma states out of thermal equilibrium and an excess of
free energy expected to enhance the kinetic instabilities. The
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Fig. 5. Unstable solutions derived for a bi-Maxwellian (solid lines) and
a bi-Kappa, case A (dot-dashed lines) and case B (dashed lines): the
wave frequency in panel a) and the growth rates in panel b). Plasma
parameters: A = 1.8, βM

‖
= 0.1 and κ = 2.

potential destabilizing effect of the suprathermal populations
can only be unveiled by a comparison with the effects of the
Maxwellian core. The existing theories, which compare Kappa
and Maxwellian distribution models with the same effective tem-
perature, do not reveal this effect, which should stimulate ki-
netic instabilities. These instabilities, including the EMEC in-
stability studied in the present paper, are in general inhibited by
the suprathermal populations (e.g., decreasing the power-index
κ → 1.5), with the exception of very small wave numbers or
low temperature anisotropies (close to the marginal condition of
stability). Profiles of the velocity distribution functions shown in
Fig. 1 may be relevant for the origin of these nonmonotonous ef-
fects. Thus, the main inhibiting effect seems to be well explained
by the depression shown by the Kappa model (variant A) at ener-
gies about the mean kinetic energy of plasma particles, with val-
ues lower than the Maxwellian limit over an extended velocity
range (see panels a and b in Fig. 1). Otherwise, at lower energies
the same Kappa model exhibits a pronounced eccentrical peak
(enhanced fraction of particles at low speeds) in comparison to
its Maxwellian limit (panel a), providing a plausible explanation
for the marginal stimulating effect on the low wave numbers of
the instability. However, this eccentrical peak makes these two
models inappropriate to be used for a plausible comparison be-
tween the Maxwellian core and the global best-fitting Kappa,
incorporating both the core and suprathermal tails.

The method we propose compares Kappa distribution func-
tions with the effective temperature naturally increasing with
the increase of the suprathermal populations. In this case, the
high-energy tails of the Kappa model (variant B) are markedly

Fig. 6. Unstable solutions derived for a bi-Maxwellian (solid lines) and
a bi-Kappa, case A (dot-dashed lines) and case B (dashed lines): the
wave frequency in panel a) and the growth rates in panel b). Plasma
parameters: A = 1.8, βM

‖
= 1 and κ = 2.

enhanced, see Fig. 1, indicating an important surplus of free
energy. Moreover, at low energies the Kappa model is well
shaped by the Maxwellian limit (with the lowest temperature)
enabling a realistic comparison between the Maxwellian core
and the global Kappa (see panel a in Fig. 1). The reliability of
the new method to unveil the potential destabilizing effects of the
suprathermal populations present in the solar wind is demon-
strated by investigations on the EMEC instability driven by a
temperature anisotropy of electrons. We have compared the in-
stability thresholds, growth rates, and wave frequencies with
the previous calculations. The new method reveals an impor-
tant stimulation of this instability in the presence of suprathermal
populations by a significant lowering of the threshold conditions
(and implicitly of the marginal stability) as well as a systematic
and significant increase of the growth rates for any level of the
temperature anisotropy. We can conclude pointing out that the
results of our present study provide valuable premises for a real-
istic re-evaluation of the whole spectrum of kinetic instabilities
driven by the temperature anisotropies in the solar wind.
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