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Metrology for structural and electrical analyses at device level has been identified as one of the

major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new

high mobility semiconductors, such as III–V compounds, are grown in narrow trenches on a Si sub-

strate. Probing the nature of the defects, the defect density, and the role of processing steps on the

surface of such structures are prime metrology requirements. In order to enable defect analysis on a

(III–V) surface, a proper sample preparation for oxide removal is of primary importance. In this

work, the effectiveness of different chemical cleanings and thermal annealing procedures is investi-

gated on both blanket InP and oxide embedded InP trenches by means of scanning probe micros-

copy techniques. It is found that the most effective approach is a combination of an HCl-based

chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free

surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred

method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution.

However, its application on oxide embedded structures is non-trivial. To perform STM on the

trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic

force microscopy and STM using the same conductive atomic force microscopy tip Our results

prove that with these procedures, it is possible to perform STM in narrow InP trenches showing

stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace

formation are also observed between the blanket and the oxide embedded InP. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936895]

I. INTRODUCTION

With the continuous downscaling within the nanoelec-

tronics industry, standard complementary metal-oxide semi-

conductor (CMOS) structures and Si based devices are facing

significant limitations in terms of speed, power dissipation,

and current leakage.1 In an attempt to overcome these limita-

tions, one solution being explored is through replacing the Si

channel used in CMOS devices with high carrier mobility

materials such as III–V compounds. However, for technical,

mechanical, and economic reasons, the main carrier must

remain a Si-wafer.1 The growth of III–V materials onto a Si

substrate leads to the formation of crystallographic defects

and anti-phase boundaries (APBs). The former are mostly

generated by stress relaxation induced by the lattice mis-

match, while the latter occur because of a combination of sin-

gle atomic steps on the Si surface and the polar nature of

III–V materials.2 It has been shown that the crystallographic

defect density can be reduced by growing the III–V material

within narrow trenches with an aspect ratio greater than two,

thereby confining the defects to the side wall, i.e., aspect-ratio

trapping (ART).3 Even with ART, one still depends on a

buffer layer, commonly InP, to ultimately achieve a defect

free high mobility channel layer. When properly engineered,

one would expect to find a higher defect density at the bottom

of the buffer layer and at the top a defect free material.4 On

the other hand, APBs can be limited by introducing a Ge layer

to control the double atomic step density at the buffer layer

interface5 or by growing the III–V buffer layer on a V-shaped

Si substrate with {111} facets.6 A typical III–V nMOS hetero-

structure is shown in Fig. 1(a). Note that the whole structure

is surrounded by oxide (shallow trench isolation—STI). A

barrier layer, typically InxAl1�xAs, is placed above the ART-

based InP (cf. Fig. 1(b)). This introduces a higher conduction

FIG. 1. (a) Typical hetero-structure for III–V nMOS applications on a Si

substrate. The buffer layer (InP) is used to compensate the lattice mismatch

between Si and the channel layer (InGaAs), whereas the barrier layer

(InAlAs) limits the leakage current. The channel layer is grown on top of the

barrier. (b) Band diagram of the different layers considering In0.53Ga0.47As

and In0.52Al0.48As.
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band offset between the high mobility channel (InGaAs in this

case) and the InP buffer layer, thereby reducing any leakage

current component present.7 Finally, on top of the barrier

layer a high mobility InxGa1�xAs channel is grown. The over-

all electrical properties of the channel are strongly influenced

by the quality of the underlying layers. Therefore, achieving

an InP buffer layer with an almost defect free surface is of pri-

mary importance. Besides, the identification and characteriza-

tion of the planar (stacking faults (SFs), twins, APBs) and

linear (dislocations) defects formed during the growth proc-

esses are fundamental to the material growth, device forma-

tion, and process optimization.

The metrology required for the structural and electrical

analysis at a device level today has been identified as one of

the major challenges to be resolved by the ITRS roadmap,8

especially for the next technology nodes. Hence, developing

the metrology to be able to probe the nature of the defects

and their electrical behavior within very confined volumes is

required. Among the scanning probe microscopy (SPM)

based techniques, scanning tunneling microscopy (STM) is

well known for its sub-nm spatial resolution for topographic

analysis and its ability to evaluate the electrical properties of

(semi-)conducting materials over a very localized area.9,10

Therefore, STM should in principle be suitable for the inves-

tigation of the crystalline properties and the presence of any

defects in (III–V) semiconductors. However, since STM uses

the tunneling current as a feedback signal to control the

height of the tip, only conductive surfaces can be probed.

This means that when STM has to be performed on a small

device surrounded by oxide, the tip needs to be positioned

very precisely above the narrow trench in order to avoid the

tip colliding with the oxide. In this work, we overcome the

STM-tip positioning by using a combination of non-contact

atomic force microscopy (nc-AFM) and STM in subsequent

scans. Despite the fact that the combination of nc-AFM and

STM with the same tip has already been demonstrated,11–14

in most of the existing literature the tip is scanned in constant

height mode such that tunneling current and shift of the reso-

nant frequency can be recorded at the same time. Only in

very few cases, nc-AFM and STM are performed in subse-

quent scans by using their respective feedback mecha-

nisms.15 An important point to note is that in all previously

reported works, the sample surfaces were almost atomically

flat. Contrary to this, our material grown in trenches includes

steps higher than 10–15 nm at the interface with the STI.

This makes the study of such a structure non-trivial preclud-

ing, for instance, the possibility to perform simultaneous nc-

AFM and STM measurements.

Another challenge arises from the fact that when dealing

with structures prepared on a 300 mm wafer in a standard

(industrial) CMOS processing line, structures have undergone

(surface roughening) processes like chemical mechanical pol-

ishing (CMP) and they are exposed to the (oxidizing) ambient.

As such, these surfaces differ significantly from in-situ grown

and characterized surfaces. To enable defect characterization at

an atomic scale by STM, oxide free and atomically flat surfaces

are fundamental requirements. The standard approaches for

(native) oxide removal typically involve a high temperature

anneal which, in the case of InP, leads to surface degradation

due to P desorption and In nucleation.16,17 Wet chemical clean-

ings for oxide removal are efficient but do not provide a proper

surface passivation18–21 and cannot prevent some III–V re-

oxidation during and after the rinsing bath. Finally, for sputter-

ing approaches it is still not clear whether the surface is

affected by implantation and/or roughening.22,23

The work presented herein focuses on the analysis of

epitaxial InP grown on a InP substrate (2-in. wafer) and InP

grown on V-shaped Si trenches.24 We have investigated the

effectiveness of thermal annealing and chemical cleanings

(HF and HCl) for native oxide removal and terrace formation

on the blanket samples. Furthermore, we have subsequently

explored the combination of nc-AFM and STM, using the

same conductive atomic force microscopy (AFM) tip, to suc-

cessfully analyze the InP embedded in an oxide matrix.

II. EXPERIMENTAL

The 2-in. InP (100) blanket wafers adopted for this

work were doped with zinc to a carrier concentration of

1� 1018 cm�3 (wafers provided by AXT Inc.). Patterned

samples were produced in house using our standard process

as described in more detail within Ref. 24. They are based

on the creation of narrow trenches with oxide isolation

(STI), epitaxial growth on V-shaped Si trenches, and a final

CMP step for the removal of any overgrown material. The

samples were subsequently treated ex-situ and under dark

conditions (to avoid photo-stimulated etching) in either a HF

2% or 0.25 M H2O2/1 M HCl and 2 M HCl solutions. After

the chemical treatment, the samples were rinsed in deionized

water and exposed to air for about 3–5 min. Once inside the

load lock of the UHV chamber, a pressure of 3� 10�7 Torr

was reached in �5 min. To desorb any hydrocarbons on the

sample surface, the load lock was baked (160 �C for 6 h)

with the sample inside. After transferring the sample into the

UHV-SPM chamber, a further thermal anneal was performed

using radiative heating from a W filament underneath the

sample. In this case, the heating rate was initially 5 �C/min

but was lowered to 4 �C/min and 3 �C/min reaching 220 �C
and 280 �C, respectively. The cooling process followed

the reverse trend. STM and nc-AFM were performed in

the UHV system equipped with a scanning electron micro-

scope (RHK 3500 HT). All the measurements were carried

out at room temperature under a vacuum of �5� 10�10 Torr.

Commercial Pt/Ir STM tips and Pt/Ir coated AFM tips with a

cantilever spring constant of 42 N/m (nominal value) were

used for the measurements. All the data were analyzed with

the WSxM software.25

III. RESULTS AND DISCUSSION

A. Preparation of an oxide free, undamaged InP
surface

In order to analyze the InP surface at atomic level, the

native oxide has to be removed and the surface should

ideally exhibit atomically flat regions. Although such an ox-

ide can be removed by a simple thermal anneal, phosphorus

evaporation and indium nucleation are phenomena that have

been previously observed when InP is raised to a temperature

225304-2 Mannarino et al. J. Appl. Phys. 118, 225304 (2015)
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suitable for the oxide removal. In many published works,

this problem is tackled by annealing the sample under P2
26,27

or by Arþ sputtering in combination with a thermal anneal-

ing step.28,29 As these approaches are not applicable here

because they would degrade the material integrity, to avoid

topographic and/or compositional changes (e.g., implanta-

tion),22,23 we only made use of controlled thermal annealing

within the UHV chamber. During our experiments, we did

observe InP decomposition when we reached �400 �C.

Figure S1 of the supplementary material30 shows an optical

image of a sample annealed at 400 �C. Different morphologi-

cal shapes of the indium metallic clusters are seen to co-exist

on the same sample, i.e., h011i oriented, merged, and ran-

domly distributed. As the change from one shape to another

requires only a few tens of �C,16 their co-existence is not sur-

prising because it is believed to be driven by their formation

kinetics. For example, by keeping a constant temperature of

375 �C, the surface starts to degrade after �15 min, whereas

at �400 �C, the degradation is immediate. By optimizing the

annealing temperature and the heating rate, it is therefore

possible to remove the oxide layer and to limit, up to a cer-

tain extent, the surface degradation. As one might expect, at

375 �C it is much easier to limit the morphological changes

compared to 400 �C. Figure 2(a) shows an STM analysis

done on an InP sample annealed at 375 �C for 15 min. Two

atomically flat terraces are identified. The surface consists of

a 4� 2 reconstruction with a distance of �1.6 nm between

the atomic rows along the [011] direction. The 4� 2 recon-

struction is also an In-rich surface,31,32 in agreement with

that expected since phosphorus is evaporating during the

annealing process. The height of the measured steps is

�0.85 nm corresponding to 3 atomic steps (0.293 nm) and

therefore it may be created by the movement of an In droplet

on the surface. Since such a droplet creates tracks and at the

same time releases some material during its movement (cf.

Figs. 2(c), 2(d), and S1 of the supplementary material30), the

small visible protrusion observed in Fig. 2(a) may be linked

to an In-cluster. Very straight h011i oriented terraces, char-

acteristic of a moving droplet, are also observed on the same

sample (cf. Fig. S2 of the supplementary material30). Further

analysis of the same sample with a larger field of view such

as using an optical microscope and tapping mode AFM

clearly shows droplets of 1–2 lm in size as well as clean

areas up to 30 lm in length. From the optical image of

Fig. 2(c), we identify two different mechanisms of indium

nucleation. One is a “walking” process whereby the particle

collects material by moving over the surface leaving a

track behind due to the removed material. The other is an

“agglomeration” process whereby the particle collects mate-

rial from the surrounding area creating a depleted zone

around it. The latter process is easily identifiable in the tap-

ping AFM image of Fig. 2(d) where a quantitative evaluation

of the particle formation is obtained. The height of the par-

ticles is a few hundred nm, while their geometry appears

independent of the nucleation mechanism following the crys-

tallographic orientation. However for the moving particles,

the edges are clearly seen to be rounded. The track created

by the move of the droplet and the depression created by the

standing one are both �5–10 nm in depth.

The results presented thus far show that by thermal

annealing alone, it is not possible to remove the oxide layer

without generating surface damage. Moreover, lowering the

temperature does not lead to an oxide-free surface. Targeting

InP native oxide removal from the sample surface, we have

explored different chemical cleanings. Among the several

recipes available in the literature, we focused on HF and HCl

based cleanings because they have been shown to provide

the best results in terms of surface morphology and passiva-

tion. HF removes the native oxide19 while at the same time it

has no etching effect on the InP. Therefore, no surface mor-

phological changes are expected. HCl has a smoothening

effect in combination with a distinct terrace formation.36

Therefore, large (>100 nm) atomically flat areas are

expected after the HCl dip. Although H2SO4 has been shown

to act in a similar way to HCl,36 it was not adopted here

because the chemisorbed sulfur cannot be completely

removed at a temperature lower than the decomposition tem-

perature of InP.33

HF cleaning partially terminates the surface with fluo-

rine.21 Since such a surface is hydrophilic and re-oxidizes

when rinsed in water and/or exposed to air, an annealing step

was required. Fluorine is known to desorb at �230 �C21 but

FIG. 2. (a) STM on an InP blanket wa-

fer after thermal annealing at 375 �C.

Two atomically flat terraces are visible.

The measured step between them is

�0.85 nm. The surface consists of a

4� 2 reconstruction with a distance of

�1.6 nm between the atomic rows along

the [011] direction. The bright spot

probably reflects an indium droplet.

Scan area¼ 60� 60 nm2; Vs¼ 3.00 V;

Iset¼ 160 pA. (b) The inset shows a

cross section line taken across the two

terraces. (c) Optical image of the InP

surface where two different mechanisms

of indium nucleation are visible. (d)

Topographic analysis of the highlighted

area by tapping AFM. Cross section

lines taken in the AFM image show the

depth (e) of the track and (f) of the

depleted area.
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to remove the oxide a higher temperature is required.

Therefore, after a dip in a 2% aqueous HF solution for

1.5 min, the sample was annealed at 340 �C within the UHV

chamber. An STM image of the sample surface is shown in

Fig. 3. Although we can evaluate the morphological quality

of the surface, it was not possible to identify atomic-scale

crystallographic defects because no distinguishable atomi-

cally flat terraces are observed. Additionally, no surface

reconstruction can be observed even in small scan areas. An

InP (001) oxide-free surface implies the presence of dangling

bonds and a rearrangement of the atoms on the surface in

order to minimize their surface energy. However, a regular

and ordered surface, as observed for instance in Fig. 2(a), is

only possible within atomically flat areas. It should be noted

that the investigated sample did undergo a CMP step which

gives rise to surface roughness which cannot be recovered by

our current HF cleaning and annealing processes. A higher

temperature thermal anneal could provide enough energy to

induce an atomic rearrangement of the top surface. However,

this would probably lead, as in the case of the simple thermal

annealing, to a degradation of the surface.

The second recipe investigated in this work is based on

H2O2 and HCl. It consists of an etching step and an oxide re-

moval step.34,35 In particular, for the etching we used 0.25 M

H2O2/1 M HCl for 5 min, while the oxide removal was car-

ried out using 2 M HCl for 5 min. During the etching pro-

cess, a few nanometers of the top surface are removed by an

oxide formation/oxide dissolution process.34 In this work,

we are mostly interested in planar and linear defects arising

from the lower region of the buffer layer which form during

growth. Therefore, even if a few nanometers are removed

from the top surface, the defects and their distribution are

not affected. Through the second step, the HCl dip, the oxide

layer is removed producing a partially passivated sur-

face.18,21 This cleaning process allows to achieve very

smooth surfaces with distinct atomically flat terraces.34–36

Figure 4(a) shows the STM analysis of the InP surface after

the cleaning and the insertion into the UHV chamber.

Elongated terraces up to �100 nm in length are observed. As

atoms are less stable at the step edges, they are removed dur-

ing the HCl dip. Therefore, atomically flat terraces are gener-

ated and enlarged. The step height between the terraces is

�0.3 nm (single atomic step). However, when reducing the

scan area and focusing on one single atomic flat terrace, the

images became significantly noisy and blurry (not shown).

This is due to the partial surface passivation combined with a

thin oxide layer formed during the sample mounting.18,21 In

order to obtain a completely clean surface, this chemical

treatment was combined with a thermal annealing inside the

UHV chamber. After annealing at 300 �C, an oxide-free and

reconstructed (4� 2) InP surface was obtained, as shown in

Fig. 4(c). The required temperature was �70 �C lower than

FIG. 3. STM on InP after HF dip and thermal annealing at 340 �C. No

surface reconstruction nor atomic terraces are visible. Scan area¼ 300

� 300 nm2, Vs¼ 3.00 V, Iset¼ 100 pA.

FIG. 4. (a) STM on InP (100) blanket

after an HCl-based wet cleaning. Atomic

terraces in the order of 100 nm long are

generated during the HCl dip. Scan

area¼ 400� 400 nm2, Vs¼ 2.80 V, Iset

¼ 150 pA. (b) A cross section line taken

across the terraces shows a step height

of �0.3 nm. (c) STM after wet cleaning

and thermal annealing at 300 �C.

Terrace borders show a different mor-

phology compared to the non-annealed

sample. Scan area¼ 400� 400 nm2, Vs

¼ 2.80 V, Iset¼ 150 pA. In the inset a

smaller scan area shows a 4� 2 recon-

structed surface. (d) A cross section line

taken across two terraces in the inset of

(c), an atomic step and the reconstruc-

tion profile are identifiable.
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that without chemical treatment which has the added advant-

age of limiting the surface from degrading. Moreover, con-

sidering that all the steps of the InP growth are generally

done at temperatures higher than 400 �C,24 it minimizes any

effect on the original crystallographic defect distribution.

The lower thermal budget to achieve oxide evaporation is

because the regrown oxide is only 0.2–0.3 nm as shown by

van Dorp et al.,35 which is substantially thinner than the

native oxide. Another feature of interest after thermal

annealing is the shape of the edges of the terraces. Compared

to the non-annealed sample, where the borders are straight

over long distances, here they appear jagged while the ter-

race size is smaller. This can be explained because atoms at

the step edges are chemically less stable; thus, they evapo-

rate and/or move more easily due to the energy acquired

during the thermal treatment. This process therefore reduces

the terrace size and induces a more random orientation.

However, the most important result of Fig. 4(c) is that

the surface quality achieved is suitable for STM

characterization.

B. STM measurements in narrow trenches embedded
in oxides

To targeting high quality material for the device fabrica-

tion, the III–Vs are grown in trenches with widths below

20 nm. Classical measurement techniques must therefore be

modified to perform a proper characterization when dealing

with such small dimensions. When dealing with relatively

large trenches (>300–500 nm), the STM tip can readily be

positioned above the trench by guiding it with a scanning

electron microscopy (SEM) image generated simultaneously.

This allows to land the STM tip exactly above the InP.

However, for smaller dimensions, the resolution limits of the

SEM and the physical dimensions of the STM tip require an

alternative approach. The approach we have adopted is based

on the combination of nc-AFM and STM while using the

same conductive AFM probe. The tip is first utilized in nc-

AFM mode to locate the narrow trench of interest and, once

in place, its operation mode is switched to STM (cf. Fig. S3

of the supplementary material30). In principle, this approach

should not have any limitation with respect to the downscal-

ing of the trench. A shifted probing point could only be

linked to the different tip-sample interaction area of the two

modes. Considering a typical tip radius <30 nm, a shift

larger than a few nanometers seems unlikely. One of the key

challenges in this approach is to match the tip and cantilever

requirements for the nc-AFM, which uses the cantilever as a

force sensor in oscillation mode, to that of the STM which

relies on the tunneling current to control the tip height oper-

ating in non-oscillation mode. First and foremost the tip

must be sharp and have a metallic behavior to reach atomic

resolution and enable extraction of electrical information

such as I–V spectroscopy. Moreover, a certain cantilever

stiffness to avoid snap-in due to the electrostatic forces and

low noise in the z-direction is also a requirement of this

approach. According to the simulations done by Ozcan and

Sitti,37 an AFM-cantilever must have a minimum spring con-

stant of 15 N/m for use in STM-mode, although this is just

an indicative value since tip radius/shape and bias affect

the electrostatic forces. We have screened various tips and

the best results are obtained using relatively stiff Pt/Ir coated

tips with a nominal spring constant of 42 N/m. Effective

stiffness was evaluated by thermal tune38 and was found to

be 29 6 3 N/m. Figure 5 shows an STM analysis performed

on a blanket InP sample using this tip and exhibiting atomic

corrugation.

Based on these results we tested the proposed localiza-

tion approach on a 500 nm wide InP trench. Figure 6(a)

shows a topography image using the nc-AFM mode before

switching to STM. As the sample was treated with HF, the

InP-trench material is easily identified. Since the HF not

only attacks the native oxide on the InP but also etches the

surrounding oxide, the trench emerges as a small hillock

with respect to the STI. The STI is �12 nm lower than InP.

Comparing the original surface topography (not shown),

where some material removal (�13 nm) in the trench region

is observed after the CMP-step, the vertical etch of the STI

was determined to be �25 nm. The protrusions at the edges

of the InP originate from the CMP process which has a lower

removal rate at the interface with the STI. Once the trench is

centered within the scan area, it is possible to switch to the

FIG. 5. Surface reconstruction imaged using STM with a Pt/Ir coated AFM

tip 42 N/m on an InP(100) blanket sample. Scan area¼ 80 � 60 nm2,

Vs¼�2.8 V, Iset¼�100 pA.

FIG. 6. (a) nc-AFM on a patterned InP sample after HF dip and thermal

annealing at 370 �C. The well-shaped InP with the (110) sidewalls is visible.

The STI is �12 nm lower than the InP. Scan area¼ 1� 1 lm2, Df¼�2 Hz.

(b) STM on top of the InP by using the same AFM tip. The surface appears

rough but with small atomically flat areas. Locally the small terraces show

a 4� 2 surface reconstruction. Scan area¼ 60� 30 nm2, Vs¼�3.00 V,

Iset¼�130 pA, z-scale¼ 1.4 nm. (c) A cross section line taken in the high-

lighted area shows a distance of 1.6 nm between the atomic rows.
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STM-mode. Figure 6(b) shows the STM image of the

top InP surface. Compared to the blanket sample, a rougher

surface with smaller atomically flat areas is visible.

Nevertheless, the terraces are still observed and have a 4� 2

surface reconstruction. The surface reconstruction implies

that the oxide layer is completely removed, while the sur-

rounding protrusions can be linked to an initial degradation

process activated by the thermal annealing. In this specific

case, the sample was annealed at 370 �C for 10 min. The

proposed localization approach has been used on trench

width down to 200 nm (see Fig. S4 of the supplementary ma-

terial30) and no fundamental limitations have as yet been

encountered.

C. Oxide removal and STM analysis of InP grown
in trenches

The HCl-based cleaning when combined with a low

(�300 �C) thermal annealing leads to, certainly on a blanket

InP sample, a surface suitable for STM analysis and defect

characterization. Targeting similar surface properties on InP

grown in trenches, we have used the same optimized sample

preparation procedure developed for blanket samples. A large

scale analysis shows a morphological degradation of the

{110} sidewalls and a considerable anisotropic etching at the

defect location (cf. Fig. S5 of the supplementary material30).

According to van Dorp et al., an etch rate of 1.3 nm/min

is expected for a blanket {110} surface using 2 M HCl.35

However, the evaluated etch rate for our patterned sample is

found to be �10 times faster. The reason for such a discrep-

ancy is at present unclear but could be linked to the higher

defect density and to Fermi level pinning on the electrochem-

ical etching.39 At a smaller scale, Fig. 7(a) shows an STM

measurement carried out on top of a 500 nm wide trench after

the chemical cleaning but prior to any thermal annealing.

Two parallel lines, which are due to the presence of SFs/

twins, are identified. These planar defects lying in the {111}

plane create cuts perpendicular to the trench when reaching

the top surface. Obviously, their topography is enhanced

(defect decoration) by the anisotropy of the cleaning step. At

a defect location, the etching process can either be stopped or

vertically activated, hence modifying the topography. A

sketch of these cuts is shown in Fig. 7(b). An equivalent

structure was analyzed by transmission electron microscope

(TEM) showing very clearly the presence of SFs/twins in the

cross section image (Fig. 7(c)). The spatial distribution of

these defects is comparable to what is observed in the STM

image; i.e., they can be as close as 20 nm but also hundreds

of nm apart. Figure 7(d) shows the sample after chemical

cleaning and thermal annealing. The surface shows small

atomically flat areas, almost equally distributed, among pro-

trusions of the order of 3–5 nm high. Comparing InP grown

in trenches with the blanket sample, the terrace size appears

about one order of magnitude smaller. Although HCl, in the

concentration used here, is known to have a smoothing effect

by removing atoms at the step edges and enlarging terraces,36

the small etch depth is obviously unable to induce a large

smoothening effect. The equivalent etch for a blanket sample

using HCl was found to be �0.5 nm.35 Therefore, an initial

roughness higher than a few nanometers becomes difficult

to smooth. Moreover, the CMP step which the sample did

undergo may also create cracks in the top atomic layers of

the material affecting the terrace formation process. Larger

atomically flat areas may be obtained by refining the HCl

concentration and dip time. On the other hand, the anisotropy

of the etching process needs to be taken into account since

longer etching times can increase the surface roughness, espe-

cially at defect locations and at the {110} sidewalls.

IV. CONCLUSIONS

In this work, we have investigated different sample

preparation and metrology approaches to enable STM sur-

face and defect analysis of InP grown in narrow trenches. In

order to reveal defects and measure accurately their proper-

ties, the native oxide must be removed and atomically flat

surfaces need to be induced. It has been shown that a simple

thermal treatment on InP cannot remove the native oxide

without generating different surface modifications induced

by the indium nucleation process. The effectiveness of HF

and HCl based chemical cleanings has been investigated on

blanket samples. The method based on HCl when combined

FIG. 7. (a) STM on a 500 nm trench after wet cleaning. The two lines, per-

pendicular to the trench, reveal the presence of SFs/twins reaching the top

surface. The topography along the defect is enhanced by the wet cleaning

step. Scan area¼ 200 � 200 nm2, Vs¼ 3.00 V, Iset¼ 150 pA. (b) Sketch of

planar defects reaching the top surface and creating cuts. (c) TEM image of

InP grown on a Si substrate which shows the presence of SFs and twins

(cross section in parallel view). (d) STM on a 500 nm trench after wet clean-

ing and thermal annealing. The surface appears rough but with small atomi-

cally flat areas (some indicated by the arrows). Scan area¼ 180 � 180 nm2,

Vs¼�2.95 V, Iset¼�130 pA.
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with a low-temperature thermal annealing produces a better

surface quality which is suitable for STM analysis and defect

characterization. It allows to remove the native oxide layer,

to avoid surface degradation, and to generate atomically flat

terraces. Oxide-free InP surfaces were confirmed by STM

analysis showing a 4� 2 surface reconstruction.

For patterned samples, it has been identified that a higher

defect density, roughness due to process steps (e.g., CMP),

and the presence of different surface planes have a strong

impact in the terrace formation process. Moreover, we have

successfully performed STM analysis on InP trenches embed-

ded in an oxide matrix using a combination of nc-AFM and

STM. The chosen approach uses the same conductive AFM

tip to perform nc-AFM to localize the trench and then to per-

form STM in the selected trench area. A proper selection of

the AFM probe allows to obtain sub-nm resolution in STM

mode. With this combined approach, trenches were easily

identified and an STM surface analysis could be performed.

Observation of surface reconstruction and stacking faults/

twins defects reaching the top surface has been shown.
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