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Abstract

Present topological study focuses on the formation mechanism of clusters of vacancies in graphenic
layers. An original effect that explains both accumulation and self-healing of vacancies represents the
original outcome of our investigation whose results, based on the long-range topological properties of
the honeycomb lattices, are applicable to defective graphene sheets and general honeycomb lattices
when other elements other than carbon are present. Some speculations about the role of long-range
bondonic states in such a kind of lattices contribute to the understanding of electronic and transport
properties in graphenic nanomaterials
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1 Introduction

Defects in graphite single-layer (graphene) represent an important investigation topic since
2008 when Zettl and coworkers introduced an innovative method for transmission electron mi-
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croscopy measurements [1] allowing 1-Å resolution at an acceleration voltage of only 80 kV.
The first direct imaging of formation and annealing process of various defects of both natures,
topological (like Stone-Wales rotationdefectsm in short SW) and structural (single and dou-
ble vacancies, vacancy clusters, adatoms, grain boundaries, etc.), we have made immediately
clear the importance of exploring the dynamics of graphene imperfections which largely influ-
ence electronic, thermal and mechanical properties of hexagonal nanosystems. In particular,
reference [1] illustrated the fast elimination of a Schottky single-vacancy defects involving one
reconstructed pentagon, which returned to the pristine honeycomb status after the missing atom
was replaced by an extra-carbon atom diffusing on the surface of the graphene sheet surface.
Within the graphene basal plane, self-healing of vacancies is surely favored by the interactions
among π-π orbitals which stabilize the 2D-mesh of sp2 carbon atoms. Normally in fact, high
concentrations of vacancy defects in graphene occurs only when energy processes are involved,
such as neutron or ion bombardment, electronic irradiation, or after atomic-scale should help in
modeling graphene band-prperties such as the appearance of loxalized electron states near the
Dirac point in case of vacancies. Structural and topological defects, by altering in a profound
way graphene’s performances, prompt scientists for a detailed description of the mechanisms
governing their formation and evolution. Recently, theoretical instigations on the evolution of
multiple vacancies in graphene based on nonequilibrium molecular dynamics [5], provided strong
evidence system tendency toward large holes as the number of vacancies Nv increases. For lower
Nv, haeckelite-like structures are hoverer present, the number of pentagon–heptagon pairs grow-
ing linearly with Nv. Such a linear relationship has been interpreted as the consequence of the
(tentative) compensation of the missing area around the Nv missing atoms which preserves, at
the same time, the sp2 network. After self-healing, the percentage of non-hexagonal rings in the
graphenic sheet results six times the number of missing atoms, approximately. Other studies [5]
report about quantitative description, based on DFT calculations, of the formation mechanism
of amorphous graphene under electron irradiation, still confirming the importance played by
electronic processes leading to the reconstruction of lattice regions also when multiple vacancies
are initially present.

Present research mainly indicates that the self-healing featured by defective honeycomb networks,
corresponds to an universal topological feature arising from the topology of the 3-connectd hexag-
onal network treated as a whole — an agile technical definition of these concepts is provided by
following chapter – rather than an effect arising from the fine tuning of DFT detailed. somehow
arbitrary parametrizations. That topological property applies therefore to defective graphene
sheets and to general honeycomb lattices when other elements other than carbon are present.
Graphene, in interaction with various heteroatoms or molecules, offer infinite freedom to design
nano-devices [6]. Ab-initio characterization of vertical heterostructures made of graphene, metal
substrates and intercalated of heteroatoms evidenced for the first [7] time the crucial role of
non-local cooperative interactions between heteroatoms, graphene, and substrate. By combining
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scanning tunneling microscopy measures with density functional theory, the Si intercalation
process between graphene and Ru(0001) is described in [7] as a 4-steps mechanism involving
i) defects creation; ii) migration of heteroatoms; iii) honeycomb carbon network self-heal; iv)
growth of intercalated monolayers. Other combinations of heteroatoms (Ni, Pd, Pt) and sub-
strates (Ir(111) and SiC(0001)) have been also analyzed, supporting the generality of the study.
Theory and experiments both agree this 4-steps mechanism applies to different [hetero-atoms
— substrate] combinations, suggesting that it comes, more likely, from inherent topological
properties of honeycomb lattices.

Intriguingly, authors claim [7] that “We find that heteroatoms, graphene, and substrate need
to be considered as a whole in order to understand the intercalation process”, that is exactly
what arises from present topological simulations:

• Topology therefore emerges like the driving force guiding the cooperative evolution of honey-
comb systems with structural defects toward stable configurations.

Whereas topo-thermodynamic investigations have been already applied to determine the evo-
lution of topological potentials in defective graphenic and metallic systems [8,9], this work
provides more details about the non-local mechanisms which promotes the probability of for-
mation of clusters of vacancies in graphenic lattices with NC carbon atoms and Nv vacancies.
Our topological modeling (TM) techniques reveal in fact the existence of a peculiar topolog-
ical cooperative accumulation of vacancies in honeycomb lattices, by exhibiting a ladder-like
behavior which dominates, in a nontrivial way, both genesis and evolution of vacancies clusters
and appears to be of critical importance in the effort to establish the proper design-rules for
graphene-based new materials.

Next paragraphs are devoted to elucidate the essence of the TM approach, with a short di-
gression on the concept of topological efficiency, the lattice descriptors that allows detailed and
methods for simulating periodic graphenic systems with NC carbon atoms and Nv vacancies
mutually interacting being the number N of hexagonal sites N = NC +Nv precisely conserved.
TM results will be then presented and discussed in details, and a comparison with literature
finding about self-healing mechanisms in graphene will be finally reported.

2 The topological picture

In graphene, long-range interactions basically derive from the delocalized nature of the π-
electron belonging to the tree-folded sp2 hybrid orbitals of the carbon atoms constituting the
honeycomb mesh. In turn, the changes in the electronic structure strongly depend on detailed

3



characteristics of the defects, like the presence of dandling bonds, and possible saturation or re-
construction in the case of vacancies [10]. The stabilizing role played by long-range potentials has
an indubitable topological origin as demonstrated by previous simulations on graphenic lattices
featuring the presence of sequences of Stone-Wales linear defects, or SW waves [11]. Original
results in [11] also suggest the topological origin at the basis of the inherent anisotropy exhibited
in graphene fragments by many physical effects connected to electronic transport properties.
According to the topological picture adopted here, the long-range nature of the topological
potentials Ξ is originated by the dependence on the (N2−N)/2 independent elements {dij} of

the symmetric, zero-diagonal, distance matrix D̂(G)

D̂(G) =



0 d12 · · · d1N

d21
. . .

...
...

. . . dN−1,N

dN1 · · · dN,N−1 0


(1)

Operator D̂ fully represents honeycomb system under study which is depicted as a 3-connected
chemical graph G with N vertices and number of pristine bonds scaling like 3N/2.

Any topological potential Ξ constructed on the {dij} set behaves as a long-range potential and
may be usefully applied for simulating chemical structures in which every atom interacts with
all the remaining ones. In this way, long-range interactions induced by ı-orbitals are theoreti-
cally investigated by adopting a topological potential Ξ which represents a valid alternative to
parametrized DFT methods for preliminary fast simulations of graphenic systems with vacan-
cies. TM techniques simply rely on schematic representations of molecules and lattices in terms
of the so-called chemical graph G(N,E) with N nodes (atoms) connected by E edges (chemical
bonds). As stated above, topological graphs are completely described by the information stored
in their distance matrix Eq(1) or, more precisely, in their adjacency matrices Â, that is still a
N ×N symmetric operator just counting chemical bonds, being aij 6= 0 only if atoms i and j
are connected, in which case aij = 1. These sparse matrices have exactly 2E entries equal to 1.

The 3-connected graphene sheet is conveniently described by a planar cubic (trivalent) graph
with N -vertices covering a certain number of hexagonal carbon rings. Following TM approach,
a given chemical system evolves in such a way certain distance-based topological invariants Ξ
to reach their minimum. By sorting the chemical distances dij the following definition of its
Wiener-weight wi is derived:

wi =
1

2

N∑
j=1

dij =
1

2

Mi∑
k=1

kbik. (2)
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In (2) bi1 is the number of the k-shell of node i. In a general nodes exhibit different eccentric-
ities Mi being graph diameter M = max{dij} = max{Mi} and graph radius m = min{Mi},
normalization constraint N − 1 =

∑
k bik being valid for any atom i. In fullerenes and peri-

odic nanographene fragments all nodes show bi1 = 3 the signature of ideal sp2 hybridization.
The sum of all Wiener-weights produces the Wiener index W that measures of the topological
compactness of the structure:

W =
N∑
i=1

wi (3)

Symmetry equivalent atoms share the same set {bik} (the converse is not true). For example
C60 − Ih fullerene atoms share the invariants {bij} = {3, 6, 8, 10, 10, 10, 8, 3, 1}, M = 9 and
wi = 139. Eq(2,3)yield to W = 8340 for Buckminsterfullerene (see original computation in
1992 article [13]). Invariants in (2) are instrumental to expresses the long-range effects induced
on atom i by overall topological structure of the graph.

For graphene, Figure 1 gives the periodic super-cell adopted in the following having N (0) = 800
atoms nx × ny = 200 cells, with nx = 10 and ny = 20. Also this pristine graph G(0) is
highly symmetrical, being all nodes symmetry-equivalent with 40 coordination shells (M (0) =

40), {b(0)k } = {3 6 9 12 15 18 21 24 27 29 29 28 27 26 25 24 23 22 21 20 20 20 20 20 20
20 20 20 20 2020 20 20 20 20 20 20 20 20 10}; wi = 8, 330 with W (0) = 6.664, 000. For
an open (e.g. non periodic) fragment, carbon atoms along the edges show higher wi values
suggesting the approximate proportionality between wi value and relative reactivity. Focusing on
this property of the Wiener-weights Eq(2), specific topological invariants targeting the measure
of the topological efficiency of G have been introduced [16,17], showing a pivotal role in selecting
stable configurations of the chemical system also in presence of defects [14-18].

Topological efficiency descriptors may be defined starting from the properties of the so-called
minimal V and maximal vertices V of the G featuring w and maximal w. Heuristically one may
assign to V or V the role of the most or less stable atoms in the chemical graph respectively.
Minimal w and maximal w are computed according to the following definitions

w = min{wi}, w = max{wi}, i = 1, 2, . . . , N − 1, N. (4)

Minimal (maximal) vertices provide the lowest (highest) contributions to Wiener index (3).
Minimal nodes furthermore correspond to the nodes with the deepest embedding in G, highly
contributing in such a way to the topological compactness of G. The graph G is topologically
efficient when the remaining atoms behave in a comparable way, e.g. when terms wj have
values closed to w. Two recent invariants rank very well the topological efficiency (also called
topological roundness) of a set of a similar structures like isomers or defective lattices; they are
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Fig. 1. (A) The super-cell G(0) considered in this work includes nx × ny unit cells (nx = 10, ny = 20)
with N = 800 honeycomb sites; unit cell has 4 atoms (black); periodic conditions are indicated by
shaded balls. (B) region with a vacant hexagonal ring with 6 dandling bonds. (ZZ) linear vacancies
forming a reactive region.

defined as follows:

ρ = W/Nw, ρ > 1 (5)

ρE = w/w, ρE ≥ 1. (6)
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Above topological indices are known as topological efficiency index ρ (5) and extreme topological
efficiency index ρE (6) respectively [16,17], and both tend to favor chemical networks with a
compact structure built around their minimal sites. TM simulations based on the minimization
of topological potential Ξρ = ρ and ΞρE = ρE show good correlations with molecular stability
data, as demonstrated by extensive studies on C28, C50, C66 fullerenes and defective honeycomb
layers [11,14-18].

In this paper the extreme topological efficiency invariant ρE(G) has been chosen as lattice
topological potential Ξ(G):

Ξ(G) = ρE(G). (7)

Topological potential (7) is able to simulate long-range interactions in graphenic systems at a
very low computational cost. Moreover, obeying to the minimum-principle mentioned above,
it drives the evolution of the graph G with vacancies evidencing remarkable effects on the
concentration of the vacancies itself as the next paragraph will show.

3 Toplological modelling results

Considering the periodic pristine honeycomb G(0) with N (0) = 800 atoms of in Figure 1A,
the evolution of the graphenic layer is simulated by computing the topological potential Ξ(G)
(7) as a function of the growing number Nv of vacancies randomly placed in the mesh. The
concentration of vacancies is indicated by the symbol cv = Nb/N

(0). In order to define the
correct scope of topological simulations, it is important to remembering that:

• TM approximate methods are aimed to compare chemical structures made with similar build-
ing units, in this case this condition is assured by limiting vacancies concentration cv < 15%.
• The periodic conditions applied on G(0) make this system perfect for modeling vacancy effects

on graphene basal plane.

Periodic graphene G(0) features a highly symmetric configuration ρE = 1 being all nodes in-
terchangeable w(0) = wi = 8, 330. When the first vacancy is placed in the lattice (Figure 2),
topological invariants show typical variations which are unaffected by the specific selection of
the removed atom: the Wiener index of the defective lattice G(1) with Nv = 1 and N = 799
decreases to value W (1) = 6, 648, 716 as the lattice loses the initial honeycomb symmetry, with
a “cascade” of different wi entries produced by Eq.(2), which is able to differentiate the N (1)

atoms on the basis of the populations in their coordination shells {bik}. Three nodes in G(1)

present one dandling bonds and for this reason have the highest value wi; they are grouped
in 2 sets, named A and B in Figure 2, with topological descriptors as follows. Atom A has
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Fig. 2. Monovacancy in graphene: atoms with dandling bonds b1 = 2, two A and B, and high-
est Wiener-weights wA = 8382.5 and wB = 8637.5 are topologically the most reactive sites of the
nanographenic layer; A-B bond reconstruction is an allowed mechanism from both chemical and topo-
logical rationals.

wA = 8382.5, {bAk} = {2 4 7 11 14 17 20 23 26 29 30 29 28 27 26 25 24 23 22 21 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 10} keeping 40 coordination shells like for the atoms of
the pristine graphene G(0). Atom B represents the maximal node of G(1) with wB = w = 8637.5
showing an extra 41th–coordination shell with 10 atoms in its string {bBk} = { 2 4 7 11 14 17
20 23 26 28 28 27 26 25 24 23 22 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 10}. A and B share the same number bA1 = bB1 = 2 of first-neighbors and similar
populations on the first 10-coordination shells. For k ≥ 11, entries are different bAk 6= bBk and
the two sites become topologically distinct, violating in such way the local triangular symmetry
some researchers quote [19].
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According with TM, the highest wi is the reactivity of the i-atom, then carbon atoms A and
B are topologically (and chemically) the most reactive ones with w = wB > wA. Bond re-
construction inside the hole caused by the monovacancy in Figure 2 should then go — for
pure topological reasons — from atom B to A, being this topological prediction confirmed by
ab-initio calculations based on density functional theory [20]. Although the presence of mono-
vacancy Nv = 1 does not change the structure of the defective lattice G(1) too much, both the
minimal and maximal Wiener-weights are quite sensible lattice descriptors assuming the new
values w = 8310 and w = 8637.5 respectively. From Eq.(6), the topological efficiency value
ρE = 1, 0394 is computed for G(1); this value is greater than ρE = 1 of pristine G(0), stating
in such a way that the network topology and the topological potential Ξ(G) (7), obstacle the
creation of a monovacancy.

Fig. 3. The curve for ρE in graphene with Nv vacant atoms; characteristic steps evidence the formation
of vacancy clusters: first vacancy formation Nv = 1 (A) ; 6-ring looses 3 (or 4 or 5) bonds with typical
barriers (B or C or E); the curve jumps also when other 6-ring looses 5 bonds (D) or during the
formations of extended linear defects (F). Dashed inset evidences a flat ρE region in which vacancy
clusters are therefore generated without topological obstacles.
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When the number of vacancies increases up to Nv = 114, their concentration varies in the
0% ≤ cv ≤ 14.25% interval, the variations of the topological potential ρE are easily computed
and some very interesting mechanism often emerge from random topological simulations.

Figure 3 illustrates the typical ladder-like curve describing the evolution of ρE in the defective
honeycomb lattice for 0 ≤ Nv ≤ 114. In pristine graphene at ambient temperature, the for-
mation energy Ef of a single Schottky vacancy Ef = 7.9eV and the energy 4.9eV of a single
bond C −C (1.42Å) both contribute to determine the equilibrium vacancy [20]. Ef value, cor-
responding to the first step in the ρE curve, may be used to determine the energy scale of the
ρE curve itself (Figure 3A). As mentioned, the three dangling bonds surrounding the vacancy
tends to form one reconstructed bond with length of 2.07Å (Figure 2) that has to be compared
to the 2nd-neighbors distance 2.46Å in pristine honeycomb [20]. These forms of reconstructed
structures are not considered in the current TM study.

Fig. 4. Left: vacancy cluster surrounding a benzenoids ring H with 4 dandling bonds forming a large
topologically reactive region corresponding to Figure 3C configuration. Atom with black ball has the
largest topological reactivity with w = 9355; for some atoms wi/w ratio is reported to measure relative
reactivity. Right: the region after the insertion of other vacancies around a second benzenoids R, just
before cutting a 5th R bond by removing the arrowed node causing Figure 3D jump (1nm bar is
reported for convenience).

After the first repulsive jump that corresponding to the creation of the first vacancy (Fig-
ure 3A), of the topological potential Ξ(G) (7) corresponding to the creation of the first vacancy
(Figure 3A), the systems admits the creation of new vacancies keeping the topological potential
(7) curve substantially flat. The situation varies, with a sharp increase in ρE, when one of the
hexagonal ring loses 3 (and then 4) bonds connecting it to the lattice, creating respectively the
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arrowed steps B and C in the ρE curve. The random generation of vacancies creates typical de-
fective cluster like the ones depicted in Figure 4 with just 2 edges bridging the pruned hexagon
H to the rest of the honeycomb graph. In these highly defective regions the reactivity hierarchy
of the involved atoms is again effectively ranked by the wi atomic entries: atoms belonging to
the benzenoid H are the most reactive ones, including the 2 vertices in Figure 4 still with 3
bonds and relative Wiener-weight of 0.918 and 0.916 respectively. It is worth to evidence once
more the ability of TM to produce fast and accurate reactivity maps of the graphenic atoms.

ρE descriptor encounters then a forth step Figure 3D when a second ring R, close to H, re-
mains with just one bond connecting it to the graphenic layer. It’s very interesting to observe
that the graphenic system, after each ρE step in Figure 3, is allowed by the topological po-
tential ΞρE (7) to accumulate new vacancies keeping the topological potential practically con-
stant in certain ranges of vacancy concentration, leading to a ladder-like, typical process of
vacancy accumulation. See for example in Figure 3 the 3C-3D plateau corresponding to the
24 ≤ Nnv ≤ 47 interval in which the topological potential ΞρE remains flat, approximately
at the ρE(Nv=24) = 1.1621 level although vacancy concentration almost doubles by passing from
3% to 5.9%, forming nanometric-sized defective regions in the lattice (see Figure 4). Accord-
ing to [21], such a kind of large randomly oriented clusters of vacancies may lead to graphene
amorphization and largely influenced by the electronic features of the carbon atoms and the
chemical dopants possibly present. Lattice descriptor ρE sharply grows when also hexagon H
remains with a single dandling bonds (Figure 3E step) and new multiple vacancies (Figure 3F
step) are distributed along quasi-linear configurations in the layer. According to the present
model, quasi-linear configuration of vacancies are disfavored by the topological potential ΞρE

barrier and appear for such a reason topologically less stable than the typical cluster-like de-
fects represented in Figure 4. Similar clusters have been experimentally documented [7], by
STM high-resolution images concerning Si-intercalated graphene grown on Ru(0001) confirm-
ing the morphological predictions of TM computations which are able to simulate such kinds
of nano-sized clusters like the one represented in Figure 5. In [7] authors introduce cooperative
interactions between heteroatoms, graphene, and substrate, involving creation of vacancies, het-
eroatoms migration, graphene self-healing. These cooperative mechanisms are proposed having
a crucial role in driving the growth of vertical heterostructures including the observed self-
reconstruction of the pristine honeycomb carbon lattice, with the removal of vacancies in the
temperature range 300-800◦C. Present results, based on numerical simulations of the topolog-
ical potential ΞρE provide more insights on the roots of cooperative interactions in graphenic
systems, by highlighting as a key factor the long-distance topological structure of the honey-
comb lattice itself. Self-repair of the graphene lattice is confirmed y several studies of multiple
vacancies in graphene and graphene nanoribbons explored by quantum calculations predicting
hole annihilation [22,23,24]. Being the ΞρE curve totally reversible in the quasi-flat regions rep-
resented in in Figure 3, the possibility to close the holes at zero-cost in topological energy is an
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Fig. 5. Typical cluster-like accumulation of vacancies in graphene as pictures by STM data; here 4
vacant atoms generate holes in a quite dense configuration (one of vacant node is represented with a
circle).

immediate consequence of the present model, making also the self-healing a mechanism which
is allowed by long-range topological structure of the honeycomb lattices. Self-healing mecha-
nisms of vacancy defects in hexagonal planes different from graphene and therefore possible,
from a topological perspective, also in chemical structures with a lack of sp2 interacting or-
bitals, like silicone. Recent studied on silicene using first-principles calculations [25] confirm
the reconstruction of the single vacancy through the (nonmagnetic) sp3 coordination of atoms
surrounding the vacancy. In general, for honeycomb lattices made of elements (like Si, Ge, etc)
other than carbon, one has to define which kind of long-range electronic interactions may take
the place of the sp2 orbital interactions. A possible answer to this question is related to the
presence in the honeycomb lattice of bondons B, the bosonic relativistic quasi-particles dually
connected to the chemical bond fields. As reported in the innovative study [1]) on graphenic
1D nanoribbons, at the typical space-scale of 15–30 Å, long-range bonding interactions arise
from the action of these new particles, which are then able of inducing cooperative phase-
transitions in hexagonal systems with low dimensionality. The role of Stone-Wales topological
defects in healing silicene vacancy is also evidenced [25] confirming in such a way previous topo-
logical simulations [26] about the effects of Stone-Wales topological isomerisations on bondonic
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states in 1D honeycomb nanoribbons made of Si, Ge (germanene), Sn (stannene) and hetero-
combinations of Group-IV elements. It’s worth noticing that [25] provide a correct ab-initio
descriptions of the asymmetric reconstruction of the single vacancy in graphene driven by the
magnetization acquired during dangling bons rebonding. Bondons induce phase-transitions on
low-dimensions systems, with specific space-, time- and bond energy-scale, providing in such
a way a peculiar form of long-range inter-atomic interaction which is universally present in
honeycomb structures [26]. Bondons may help in fully understanding electronic and transport
properties of honeycombs with vacancies, as shown in Figure 6 for nanoribbons. One may in
fact firstly consider the correspondence among the topological levels of Figure 3 and the respec-
tive band-energy levels of the nanostructure in which a vacancy, being surrounded by dangling
bonds which obstacle the circulation of the electronic charges, behaves as a positive charge
carrier. Accordingly, the nanostructure with more vacancies will therefore possess a more dis-
tinguished p-type semiconductor behavior. Since part of the electronic bonds are cancelled in
nanostructures with vacancies, bondons as the quantum pairs of electrons, and the respective
bondoles (bonding-of-holes) constitute a network of quantum particles interacting, through the
honeycomb mesh, with vacancies; as a note, standard excitions (electron-hole pairs) may be
now generalized by so-called bondots (bonding-of-dots), particles arising from the interaction
of bondons and bondoles.

Apart from these speculations on quantum exotic particles in honeycomb nanostructures with
vacancies, we remain with the basic idea that honeycomb structures with certain concentrations
of vacancies may be approached like p-semiconductor nanosystems; consequently, gradients in
the local populations of vacancies in nanoribbons will create n-p homojunctions with associated
photovoltaic effects and specific absorption coefficients. For the graphenic systems considered
in this paper, it’s also possible to identify the Nv values making the system more conductive
(Figures 3 and 6). Our preliminary results indicate in fact that defective layers with configura-
tion type A and D, having number of vacancies varying between 5-15 and 50-85 respectively, are
excellent candidates for producing nanosystems with controlled (constant) thermal conduction.

Finally, interesting considerations on {bik} populations are also derived by TM computations
(see Figure 7). In pristine graphene G(0) the number of atoms on the M (0) = 40 coordination
shells characterizing pristine G(0) shows peaks in correspondence of k = 10, 11 both with 29
atoms providing in such a way the characteristic shape Figure 7A) In the left part of the
histogram for k = 1, 2, ...8, 9 populations bk are multiples of 3, followed by a linear descent and
by an extended region including M (0)/2 coordination shells (k = M (0)/2,M (0)/2+1, ....M (0)/2−
2,M (0)/2 − 1) with a constant number of 20 neighbors. In the fairest shell k = M(0) = 40
the population suddenly drops to 10. The histogram in Figure 5 represents then the topological
fingerprint of the ideal graphene lattice G(0) without vacancies. In order to determine analogous
histogram for ny/2× ny honeycomb lattices with different sizes (present size being ny = 20) it
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Fig. 6. The correspondence of the nanoribbons with vacancies of Figure 3 with the paradigmatic
p-semiconductor, with successive intermediate layers of acceptor levels, along the bondonic forming
as driven by the topological efficiency of the structures with larger and larger vacancies, paralleling
the increase of p-doped character (p < p> < p2> · · · ), and the associate bondonic (B) signal in
defect-to-pristine honeycomb lattices [26], respectively, for the IV group’s nanostructures.
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is worth noticing that M (0) = 2ny, and scale the results accordingly.

Viewed from the minimal node of G(48) lattice (Fig.7B), lattice G(48) which corresponds to the
graphene layer with Nv = 48 vacancies just before the step-barrier in Figure 3D, the lattice
keeps its graphenic nature only for the first k = 1, 2, 3 coordination shells and for a few other
cases like k = 40. The vacancy concentration of about cv = 6% forces the lattice adjust also its
topological diameter (the longest chemical path) that increases from M (0) = 40 to M (48) = 41.
This phenomenon gets enhanced in G(49) (Fig. 7C) after the insertion of an extra-vacancy
which causes a sharp elongation of the diameter M (49) = 43 and the connected sharp step in
Figure 3D. The system is in fact forced to find longest paths to connect all atoms, increasing
in such a way the importance of the coordination shells of higher orders.

Summarizing, present theoretical work on graphene vacancies specifically demonstrates that
defect-generation and annihilation are both largely influenced by the long-range topological
properties of the original hexagonal mesh; in particular Figure 3 shows that:

• Vacancies accumulation effect may be described — for certain vacancy concentration intervals
— as an inherent topological property of the honeycomb networks mainly depending from the
ladder-type behavior of ρE, the extreme topological efficiency descriptor defined by Eq(6);
• Within the concentration intervals in which index ρE remains quasi-flat, reversible holefilling

is allowed, providing pure topological roots to the graphene self-heal effect experimentally
reported;
• Moreover, the general presence of bondons in honeycomb networks, provides a long-range

inter-atomic interactions generally applicable to graphene layers ad other hetero-combinations
of Group-IV elements.

Future work will be devoted to correlate the influence of lattice point defects (like chemical im-
purities and vacancies) and bondonic states on the electronic transport properties of graphenic
systems and PAH’s.

4 Conclusion

Topological efficiency invariants evidence the importance of long-range topological interactions
in explaining the properties of graphenic layers; in particular present results establish in great
details some interesting [topology / defects] correlations, which appear to be of some importance
for the novel graphene nanoscale science. The lack of (topological) energy barrier in augmenting
the number of vacancies at certain vacancies concentrations values and the typical ladder-
like curve (Figure 3 has been derived here showing that in certain condition, the long-range
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Fig. 7. The populations {bik} of the coordination shells of the minimal nodes for graphene lattice G(0)

(A) and defective layers G(48) (B), G(49) (C). In G(0) all nodes have the same set {bik} = {b(0)k }; differ-

ences b
(48)
k − b(0)k are instead represented for the minimal nodes of G(48) and G(49) graphs. Topological

diameters are M (0) = 40, M (48) = 41 and M (49) = 43.
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connectivity features of the honeycomb networks allow vacancy accumulation and annihilation
in nanographene and, more in general, in honeycomb structures.

Furthermore, the presence of delocalized bondonic states provide universal long-range electronic
interactions able to guarantee the appearance of vacancy accumulation and self-healing effects
in graphene and non-carbon honeycomb systems. Remarkably, the bondonic predicts the level of
vacancy concentration that allows to acquire a semiconductor-like effect that may be detected
via thermo-conductivity and photovoltaic measurements. Further topological, bondonic and
experimental studies will carried out to provide more details on the theoretical mechanisms
proposed here, involving single- and multiple-layers of graphene, graphene-silicene combina-
tions, heterojunctions with photovoltaics materials with possible applications in domains sich
as nanoelectronics, thermal and electrical high-conductivity devices and renewable energies.
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