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Abstract

The quality of high-performance composite structures figadilt to predict or remains un-
known. Variability in the macroscopic performance is doated by the spatial random-
ness in the geometrical characteristics at the lower seafgecially for textile composites.
By identifying the irregularity in the tow reinforcement, anproved assessment of the
composites’ quality can be obtained. A roadmap consistinfree steps is provided for
generating realistic virtual textile specimens spanningfipie unit cells. First, the geomet-
rical variability in the reinforcement structure is expeentally quantified on the meso- and
macro-scale in terms of average trend, standard deviatidc@rrelation length. Next, each
reinforcement parameter is modelled as an average tretekndaed from experiments,
added with zero-mean deviations. Depending on the dedumeelation information for
each tow path parameter, these fluctuations are generatadvayced simulation tech-
nigues such as a Monte Carlo Markov Chain method, a crosslatauekarhunen-Léeve
Series Expansion technique or a Fourier Transform methadnmbination with a Markov
Chain algorithm. In a last step, a virtual model of the texgjgometry is represented in
geometrical modelling software, such at the commercialgilable WiseTex software.

The multi-scale framework is demonstrated on a carbone@éX twill woven com-

posite produced by resin transfer moulding. Simulated tewiations trends replicate the
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experimental observations and achieve the target statisti average.
Keywords: Textile composites, Multi-scale modelling, Non-deterimm, Probabilistic

methods

1. Introduction

Composite materials have excellent mechanical propeifggecially the combination
of a high strength and $finess with a low weight fiers advantages in energstieiency
for air, ground and water transport. However, the introauncof composites proceeds with
difficulty, particularly for safety critical components. One&gsen is the cost, while an-
other major obstacle remains the uncertain reliability qudlity of composite structures.
Sufficient instruments are available for the characterisatidhemechanical properties by
experiments and numerical simulation. Yet, there is a ldckderstanding of how and why
the mechanical properties vary across the composite proBue to the specific nature of
each composite with its specific manufacturing procesdtescean be very pronounced
which impedes a correct estimate of the quality of the con@asmponent. This variabil-
ity in the macroscopic performance is directly linked wittatter in the internal structure
and constituents at the lower scales.

Variability in the reinforcement structure is frequentignitted or only partially intro-
duced in simulations [1, 2, 3]. For the specific case of texddmposites, the reinforcement
is adequately modelled by exploiting the hierarchical gipte. Predictive models are con-
structed following a sequence from fibre, tow, textile, pref, to the final composite [4].
To represent its internal geometry, a periodic unit cell elasl considered where tow path
characteristics are computed based on deterministicsrgugh as fibre mechanics, topol-
ogy, tow dimensions (shape, width, height) and tow spacirigese unit cell descriptions
are considered to be repetitive along the entire structutfgowt any variation in the tow
position, shape and dimension. However, physical sampletow randomness in the geo-
metrical parameters within a single unit cell and betweeghi®uring unit cells; tow path

descriptors are spatially distributed across the comp{Bjt Realistic modelling of internal



geometry should permit the introduction of local varia@ong each individual tow path.
Depending on the response of interest, the variability ignatodeled might include all dif-
ferent scales, including the "fibre scale”, where fibres mittterior of tows are represented
as discrete randomly positioned entities, the "tow scalgiere tows are represented as ho-
mogenized entities (fibres smeared into a continuum) witidoan shape and orientation,
the "unit-cell scale”, representing the minimum group of teegments needed to establish
the repeating unit of a textile architecture, and the "sabysonent scale”, typifying a major
structural element and typically comprising?100° unit cells.

Among the diferent strategies for simulating the randomness in congmsising ap-
propriate scaling techniques [6, 7, 8, 9], those that ard hkedy to lead to accurate predic-
tions of the statistical distributions of composite prdsr are calibrated by experimental
guantification of the material variability. Charmpis et &] present an excellent discussion
of how stochastic finite element simulations (SFEM) [10, might be improved if experi-
mental data were to be used to define the random fields that@brated within element
properties. The desired modelling procedure for textilmposites consists of three main
steps: (i) collection of material data to define the stogbagtometry of tows (the step
of uncertainty quantification and characterisation),deneration of virtual specimens that
replicate the measured statistics of the stochastic towngay and (iii) formulation of a
stochastic multi-scale modelling scheme by which macnoisamaterial properties, and the
variability in those properties, are predicted from thecktstic tow properties. When the
first step is missing, analysts are forced to make assungptegarding the input informa-
tion for the second and third steps, leading to questioredilmates of the limits of material
properties. The more detail that is available in the charasztion of the stochastic mate-
rial microstructure, the higher the possible fidelity of glations of damage evolution. In
particular, not only are the distributions of material @weristics at any point important,
but data defining the correlations between material d®natat diferent points can also be
essential to complete prediction of the performance of apmrant [3, 7, 12].

This article describes a multi-scale framework to generaddistic representations of



the reinforcement geometry, in which the variability of &lositioning in a textile is char-
acterised on diierent scales and fused into virtual specimens that span orangells (typ-
ically 10°-1C° unit cells) while retaining details of stochastic variétgilof tow geometry
within a single unit cell. The article starts with a generagiwiew of existing uncertainty
modelling techniques applied to composites, before piogabhe multi-scale strategy in
section 3. Section 4 discusses the experimental framewlogksre defined to characterise
the scatter in the internal geometry over two scales: the-shoge, i.e. the unit-cell scale,
and the long-range, i.e. the sub-component scale, whidrpocates large numbers of unit
cells. Next, random instances of tow path parameters adpea using advanced simula-
tion techniques presented in section 5. Tow path featureshvare only correlated along
the length of that tow ("auto-correlation”) can be simuthtsing the relatively simple con-
cept of the Markov Chain [13] or a Series Expansion algorithd],[while properties that
are correlated both along one tow and betwedieiint tows ("cross-correlation”) are pro-
duced using a cross-correlated Series Expansion techfliglier a combination of Fourier
analysis and the Markov Chain algorithm [15]. In a final stégual models of the entire
composite geometry are constructed using the WiseTex adt{iL6], which is a geome-
try processor for textile fabrics (section 6). Each stepulhout the developed framework
is demonstrated for &2 twill woven carbon fibre reinforced epoxy composite for @i

experimental data are already reported in prior publicatid.7, 18].

2. Overview of existing smulation techniques for textile composites

Methods of simulating thefiects of random microstructure on composite properties can
generally be classified into "non-intrusive” and "intrusiapproaches, terminology which
we borrow from the field of spectral methods for uncertaintpmfification, with applica-
tions in, e.g., fluid dynamics [19]. In stochastic spectralgsis the unknown expansion
codficients, appearing in the spectral expansion of the desetian, might be computed
by adding variability to the output of a deterministic saltleat represents the system being

modelled, or the solver itself might be modified to incorgerstochastic character in the



definition of its kernel. The former case is called as a ndrugive method, the latter an
intrusive method.

In the context of simulating the performance of a composigemal with stochastic
reinforcement geometry, a non-intrusive method uses ardetestic representation of the
reinforcement geometry (e.g., perfectly regular plies tae laminate or perfectly regu-
lar, periodic tows in a textile composite) and adds stoatha$iaracter by assigning mate-
rial properties to individual material elements that arawdr from statistical distributions;
whereas an intrusive method uses representations of thi@nement geometry that are
themselves stochastic. Both non-intrusive and intrusivenfitations are often analyzed in
a Monte Carlo framework [20], in which instantiations of randmaterial properties (non-
intrusive method), or of a random reinforcement geometmyriysive method), are gener-
ated by invoking a pseudo-random number generator; marginspes are generated and
the scatter in composite properties are computed [21, 2Rludive methods can generally
be decomposed into three groups depending on the manneiich whrrelations between

deviations in the reinforcement geometry are treated, &slee below.

2.1. Non-intrusive simulation techniques

Non-intrusive simulation techniques introduce tlieets of variations in the reinforce-
ment geometry without changing the existing, idealizedfogcement model, but changing
local material properties instead.

In the approach of a non-intrusive SFEM [10, 11], the disttidns of material properties
are often determined by fitting predictions to distribusaf predicted lifetime and strength,
i.e., by curve-fitting the desired outcome. A more realigpproach seeks to determine the
distributions of material properties by independent asialpf how local properties will be
affected by measured material randomness, including stoclragiforcement geometry
and other defects. Examples of such work include studiet@fcompressive strength,
and fatigue life under compression-compression loadihgpao-crimp fabrics that contain
random misalignments of the nominally aligned tows (figui@)L Failure in compression

in both 3-D woven composites and triaxially braided comiassiunder loads aligned with

5



non-crimp warp or weft tows in the former or axial tows in tla¢tér, is mediated by kink
band formation. The fatal kink band forms where the misatignt angley, of the aligned
tows is greatest. The largest valuegaxpected in the gauge volume of a typical specimen
can be estimated as the 95th percentile of measured cuwveufabability distributions
(CPDs) ofyp, which have been determined by analyzing optical imagesasisesections of
the composites (e.g., figure 6 of [23] and figures 3 and 4 of)[12he value of the local

compressive stregs, at which the kink band will form is well approximated by [24]:

oo =28 1)
¢

wherer, is the critical shear stress at which the matrix within the fails, which can be
calibrated by independent tests (Appendix A of [25]; [2&pmbined with analysis of the
stress distribution in the composite made using non-stichidealisations of the reinforce-
ment geometry, the failure law of equation 1, which amoumis $tochastic assignment of
local material strength, because the valuga$ a random variable, successfully predicts
compressive strength (e.g., figure 1(a); see also figure [IPHt Combined with a law for
the degradation of. with elapsed fatigue cycles, the same approach succegspfelllicts
strength-life (S-N) curves for 3-D woven composites ungetic compressive loading [27].
While these studies used a single measure of the distribafigrio predict the most likely
compressive strength, a distribution of compressive gthenfor an ensemble of specimens
could be predicted by the same procedure by using the coenpleasured distribution gf
(see section 2.2.1).

Thus non-intrusive methods can keetive in a top-down engineering strategy for pre-
dicting the scatter in many engineering properties, predidelatively rich experimental
data are used to calibrate the embedded statistical disoits. However, in the absence
of detailed representations of stochastic reinforcemeannhtetry, the potential accuracy of

predictions of performance is limited.
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Figure 1: (a) non-intrusive model: stress analysis of casitpavith ideal reinforcement geometry is combined
with the measured CPD for the misalignment angl@lustrated in (b)) and the measured critical local shear
stressr¢ to correctly predict compressive strength for two group$-@ woven composites with ffering
degrees of irregularity (after [25]). (b) intrusive modeltlwuncorrelated deviations: reinforcement model
includes random misalignments of tows. Predictions ineltite global sfiness reductiort/Ey, computed
either using analytical orientation averaging formula&\"©r finite element methods "BM”; and CPDs for
the local axial shear stressorresponding to diierent assumed distributions @f represented by the second
momento,, computed using finite element methods. The shear stréisges kink formation in compression.
(c) intrusive model with auto-correlated deviations: etation length for auto-correlated deviations is related
to size of domain of extreme misalignment, which influenoesl stress at which kink band will form, plotted
in normalized form as a function of the ratigd, whered is the fibre diameter (after [28]). (d) intrusive model
with cross-correlated deviations: clustering of defeatslead to tow rupture events being concentrated in two
or more zones, which enables sustained, high pullout load$&h tensile fracture toughness.



2.2. Intrusive simulation techniques

2.2.1. Methods based on spatially uncorrelated deviations

The first group of intrusive methods introduces random dmna into the positions or
shapes of tows, thus creating a stochastic reinforcememgey, but treats the deviations
at different locations as statistically uncorrelated (figure)L(b)

One example is a study of non-crimp 3-D woven composites hithvthe positions of
nominally straight warp or weft tows were varied in a stotitageometrical model of the
composite according to statistical distributions deteedi by analyzing images of speci-
mens, as described above [23, 12]. Predictions were madtie ote at which macroscopic
stiffness would decline as the average tow deviation increasedicions made by finite
element (FE) analysis (using the Binary Model formulationwihich tows are represented
a 1-D elements embedded in a 3-feetive medium) agree almost exactly with predictions
made using orientation averaging [29, 30], an analyticahoe derived by assuming isos-
train conditions (figure 3 of [31]). Furthermore, when thecsiastic reinforcement model
is calibrated using measured distributions of misaligntmieoth methods of analysis agree
well with experiments [23], implying that spatial corretats of alignment deviations may
have little éfect on macroscopic elasticity.

FE analyses executed within a Monte Carlo framework alsalypeédictions of the
statistical distribution of the local stresses that arisdeu far-field loads in the presence
of populations of random local tow deviations. With the gaiGe in local stress conditions
computed, more accurate predictions can be made of thststalidistribution of the global
stress at which kink bands occur than are possible usingaiivemrusive method discussed
in section 2.1 (e.g., figure 7 of [31]). The extent to whichtgpaorrelations among the
deviations in tow alignment might change the predictedithstions of local stress remains
to be examined.

Instead of using experimental data, the amplitude of dewiatin tow positions, in mod-
els in which spatial correlations have been neglected, lseebeen calibrated by matching

predicted macroscopic mechanical behaviour with expertedeesults [32, 33]; and com-



puted by simulating theffect of disruptive mechanical loads on an initially idealfpren.

2.2.2. Methods including correlations between the dewustiat pairs of points along a
single tow

In the second group of intrusive methods, spatial cori@tatare introduced among the
deviations from ideal tow geometry that exist at pairs ohpgibut only for points residing
on the same tow. We refer to this class of correlations a”aatrelations”. Given this
restriction, stochastic geometrical parameters can bsidered asandom fieldggenerated
by a stochastic process, terminology that implies the mesef a single continuous inde-
pendent variable, which, in the present application, igtbstion along a tow. In statistical
physics, the single variable would often be a time varialtflehe stochastic process is a
stationary process, i.e., is governed by statistics thatodwary along the tow, and is char-
acterised by Gaussian distributions, it is fully defined g first two moments of the data
and their auto-correlations. Thredtdrent treatments of such models in the literature can

be distinguished:

¢ In cases where correlation data are lacking, assumptioed tte be made on the
properties of the stochastic process. Examples of such limgdef tow paths in
textiles is found in [34] and [35], where parametric trigamgtric functions are used
to represent the amplitude, wavelength /angbhase of the tow path parameters that

are varied randomly from point to point on a grid with a fixetenval.

e Where experimental correlation information is availablee stochastic fields can
be calibrated to reproduce the correlation data. Realisaid such random fields
for textile features are obtained by decomposition of theetation matrix by the
Cholesky factorisation [36] or using Principal Component isis [37, 38], in com-
bination with a vector of independent standard Gaussiatiorarvariables. Of these
approaches, the Principal Component Analysis is méteient for highly correlated

vectors [39], and minimizes the dimensionality of repreéatons.



e Auto-correlated deviations can also be produced for toviBiwitextiles without de-
composing the correlation matrix by using the Monte Carlohmoeétto instantiate a
Markov Chain model [40, 41]. Tow deviations are generated axcimng sequentially
from grid point to grid point along a tow path, using a proliigpiransition matrix
that can be calibrated using experimental data for towssiegi A post-processing
operation is required to remove unphysical spikes in theegegad tow path, which

arise from the discreteness of the representation.

Simulations of composite performance that might investighe possible influence of
auto-correlations among tow deviations upon macroscapiegsties have not yet appeared.
Properties that are likely to be influenced include compwvesiilure due to kink band
formation: the critical stress for a kink band event depemushe size of the domain of
misaligned fibres in a composite, falling from high valuesheessdomain size increases until
it reaches a plateau value above a critical domain size [B8.textile composite, the size
of a misalignment domain is related to the correlation lerfgt tow alignment deviations

along a single tow (figure 1(c)).

2.2.3. Methods including correlations between the dewunstiat pairs of points on gerent
tows

In the third group of intrusive methods, spatial correlati@re introduced among the
deviations from ideal tow geometry that exist at pairs ofnp®ion diferent tows. We re-
fer to this class of correlations as "cross-correlatiomsthe presence of cross-correlations,
stochastic processes, whether analyzed by correlatianesor the Markov Chain method-
ology, are no longer an adequate representation. Technigeeneeded that accurately
simulate the correlations in all directions: along the towl &etween neighbouring tows.

The simultaneous reproduction of the auto- and cross4eioe structure of a single
uncertain parameter demands more advanced generationgeeh developed in the field

of stochastic mechanics. An overview of extensions to tleeipus procedures is:
e To acquire realisations of cross-correlated stochastctians using the Cholesky
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decomposition, an anisotropic correlation matrix must éned that represents the
correlation information both along and between the towdlioms. This is determined
by defining a multi-dimensional normal distribution whicancbe described by e.g.
a two-dimensional (2-D) extension of the Ornstein-Uhlexkygrocess, calibrated to

mach the required covariance matrix [36].

e A methodology developed by Yechovsk [38] permits realisations of cross-correlated
random fields based on the Karhunereke (K-L) Series Expansion. The proce-
dure was originally used to model correlated material priggin concrete, but is
generally applicable for modelling of a set of stochastitdfghat share an identi-
cal auto-correlation function and of which the cross-datien can be defined by
a cross-correlation céiécient. When applied to textile structures, each tow can be

represented by a single random field [14].

e Analysis of cross-correlations in textile structures his® deen demonstrated by
combining discrete Fourier Transform analysis with the kéarChain algorithm.
Tow packing density deviations (deviations that vary reédy rapidly perpendicular
to the tow direction) are generated using random valueseo&thplitude and phase
of each Fourier component taken from experimental didfiobs. Relatively slow
variations of the Fourier cdigcients along the tow direction are then analyzed using
the Markov Chain algorithm for amplitudes and a random-wék@thm for phases.
An inverse Fourier transform provides a virtual specimemegator, recreating corre-

sponding deviation values at all grid points [15, 42].

As will be demonstrated below, cross-correlations among deviations over long
gauge-lengths (the sub-component scale) imply variatiotige tow packing density, which
will influence load distribution in a textile component ametefore global sfiness and ul-
timate load. Over shorter gauge lengths, cross-corratio tow deviations have been
shown to have a potentially stronffect on fracture toughness under tensile loads. Under

loads that are aligned with the warp direction, non-crimp @:ven composites occasion-
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ally exhibit anomalously high toughness, which arises bseigh loads continue to be
sustained even after all the aligned tows in the test specihmaee failed [43]. Load transfer
Is sustained by frictionféects during the pull-out of the broken tow ends across the fra
ture plane. However, simulations show that a pre-requisitattaining the high measured
toughness values is the presence of preferred planes oh widiwvidual tows rupture (fig-
ure 1(d)) [43]. A reasonable surmise is that the rupture site spatially correlated because
defects in the tow geometry are correlated (defects in tommgdry tend to weaken the
tow). The correlations desired for achieving high fractioneghness are cross-correlations,

referring to deviations on neighboring tows.

2.3. Relation of geometrical structure to the material prdpes

The above examples reinforce the expectation that texiieposite properties, and es-
pecially the scatter in properties, are related to theiligion of geometrical imperfections
in the reinforcing tows. In the following, we review recemvances in quantifying such
imperfections on the scale of the tow and the scale of thecentpponent. Imperfections on
the scale of the individual fibre within a single tow will no¢ lzsonsidered here, although
recent experimental analyses have appeared elsewhedb[#4K]. The new analyses have
benefited greatly from the advent of rapid 3-D imaging teghes, especially those based
on high-resolution computed tomography but also thosedaseautomated sectioning,
and advanced 2-D digital correlation image analysis, whields data over large fields of
view. The description of stochastic variability in tow geetny is far more complete than
was possible in the era in which the examples of figure 1 wenergéed and will justify

much more ambitious empirically-grounded analyses of ausite performance.

3. Multi-scale strategy for representing reinforcement variability

We address the measurement and theoretical descripticariability in the geometry
of textile reinforcement over fferent scales, culminating in algorithms that generateadrt
woven specimens that replicate the statistics of expetimheamples. We do not pursue the

guestion of how such virtual specimens can be used in higitficsimulations to explore
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the role of material randomness in damage evolution, betr ribie reader to a survey of
recent work on this topic in which the damage is represensech@tiple discrete cracks
[42]. We further restrict consideration to nominally peliotextiles. The question of how
the techniques developed for periodic cases might be adlaptquantify randomness in
non-periodic textile preforms, such as developed for iratigrwoven structures [47, 48]
with symmetry-breaking features (sandwiches, heat exgdran airfoils, etc.) is left for
future work. The presence of nominal periodicity simplifeeglysis and greatly increases
the information content of a given specimen.

In this work, randomness in the numerical models is consitlat the meso-scale (or the
unit-cell scale) and macro-level (or the sub-componenrggcscatter in the matrix and fibre
properties is not considered here, but we note that fibragtinemay be correlated with
geometrical imperfections, because the latter indicadé ttie reinforcement has fered
some local deformation. The variability of each tow pathefirted for the centroid coordi-
nates k, Y, z), tow aspect rati®\R, tow areaA and tow orientatiom of a tow’s cross-section
which experience showster a reasonably complete description of woven tows in a numbe
of cases that have been studied. Figure 2 presents an averiilee multi-scale framework,

where three main steps can be distinguished in obtainindpranmepresentations:

1. Collection and statistical analysis of experimental data
(a) Characterisation of the short-range variability (msesale) using samples close
in size to the unit cell.
(b) Characterisation of the long-range variability (masoale) using samples span-
ning many unit cells.
(c) Statistical analysis of the tow path and shape parasateterms of average
trends, standard deviation and correlation lengths.
2. Generating instantiations of stochastic textile reinforcement using multi-scale
modelling
(a) Replication of average trends in the experimental data.

(b) Generation of zero-mean deviations that match measived- and long-range

13



correlations along each tow path.

(c) Generation of zero-mean deviations that match measimed- and long-range
correlations between pairs of tows.

3. Construction of virtual specimensin a geometrical modelling software

(a) Generation of non-stochastic geometrical model of the drchitecture using
topological ordering rules and tow characteristics sugaphby the preform man-
ufacturer.

(b) Superposition of stochastic tow path and shape denstio the non-stochastic
geometric model.

(c) Meshing of the geometrical model for use in FE calculaiand attribution of
material properties to each computational element thatlarsed from fibre

and matrix properties supplied by the manufacturer.

In this paper, we detail the execution of these three stefisyé stop short of present-
ing simulations of textile composite performance; simolas of damage evolution, along
with the definition of the experimental and analytical teges that can be used to cali-
brate failure criteria and fracture laws, can be found eltsae [42]. All statistical analysis
described below has been implemented in the Matlab apilicaihe non-stochastic ge-
ometrical model of the preform (Step 3a) was generated ubmgommercially available
WiseTex software package [16]. The examples describ® andll weave of orthogonal
warp and weft tows, which is a two-dimensional textile in femse that it comprises a sin-
gle relatively thin layer. When other topologies are congdeadditional parameters enter
the statistical analysis, e.g. the braid angle for braidktha distortion of the Z-yarn in case

of three-dimensional non-crimp fabrics (e.g., angle otk or orthogonal interlock).
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Figure 2: Multi-scale framework.
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4. Collection and statistical analysis of experimental data (step 1)

4.1. Experimental framework

4.1.1. Experimental quantification of variation in geonyetr

Analysis of the experimental data yields statistical nestrivhich become the targets
for reconstruction algorithms that generate stochasttaal specimens: a large ensemble
of instantiations of virtual specimens must have stasstiat match the experimentally
determined targets.

Geometrical variability arises within a single unit celh¢st-range or meso-scale) and
over many unit cells (long-range or macro-scale). Over lizgtsange, 3-D geometrical in-
formation, including tow position and shape sampled ovenicithat is dense compared to
the unit cell, can be collected using micron-resolutiona-computed tomography (micro-
CT). Over the long range, where much larger samples must litendtrg geometrical infor-
mation is commonly restricted to positional measuremesatsipled over a relatively coarse
grid, with spacing comparable to the tow width or to the ueil size. Long-range posi-
tional measurements can be acquired for all tows usingvelgtiow-resolution X-ray CT,
or, for those tows that appear on the surface of the specinsémg optical imaging.

Information about a tow’s position is stored as the locuséentroid, which is defined
as a 2-D vector of positional coordinates perpendiculah&rtominal tow direction: one
component lies in the through-thickness directisnand the other in the orthogonal in-
plane directionp. The tows are assumed inextensible, an excellent appraximir the
magnitudes of loads that arise before a composite is calaetl, and therefore positional
deviations along the tow’s axis are not independent vaggabhd need not be quantified
(they are implied by the lateral deviations). A minimal séirdormation about a tow’s
shape comprises the aspect raB, the areaA, and the orientatio® of the axis along
which the shape has its maximum moment, measured on a segokecwss-sections [49,
40, 17, 13]. Information obtained by micro-CT at the unitteehle is relatively complete:
for each tow in a sample, the tow path centroigs ) and shape parameteAfk A, and

0 are available. Long-range data are restricted to positiori@rmation, although low-
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resolution CT may yield approximate data for tow shapes. nfjloange data are acquired
by analysing single optical images, they are restrictetiéan-plane centroid coordinaie,
[18], but, if they are acquired using 3-D digital image ctatien (DIC), they can include
bothp and the out-of-plane deflecti@{15].

Data for textiles can be separated according to the typeemdy’ of the tow to which
they refer, where tows of the same genus are nominally elgmit/according to the definition
of the textile architecture. For example, in th@ 2will weave analysed in section 4.2 and
presented in figure 3, warp tows all belong to one genus, wigfetows belong to a second.

In a 3-D weave, several distinct genuses of either warp ot teefs may exist [49, 40, 50].

Warp tow
reference period

Figure 3: lllustrative WiseTex model of the weave architieef built as elliptical cross-sections following
undulating pathways that match th& 2will cross-over pattern, but not yet informed by expernitadly de-
termined geometrical characteristics. The x-axis andig-afthe coordinate system are respectively parallel
to the warp and weft direction. The marked lattice vect@ndb are used for collating data from tows
of the same genus. For example, warp tow collation for laagge data is done by shifting warp tgwwith

j =2, .., Nwarp andNyarp the number of warp tows in the specimen, through the veotmtuld j, 4]Ja+(j - 1)b,

so that it lies over warp toyy = 1.

For woven textiles, we define a global coordinate system iichvivarp tows lie nomi-
nally in thex-direction, weft tows lie nominally in thg-direction, and the-direction is the
through-thickness direction (figures 3 and 4). The diredtiof the coordinate axes are de-
termined by finding the best fit of parallel straight lineshe tlata for all warp tows and all
weft tows, subject to the restrictions that the set of lings§ warp and weft tows must be
orthogonal and the spacing for warp or weft tows of any genustrequall,/Ng or Ay/N,
respectively, wherel, and A, are dimensions of the unit cell in warp and weft direction,

respectively, andNy the number of tows of a particular genus per unit cell. Thisrapon
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results in a hypothetical perfect lattice of straight, lagy spaced tows, which is an evident
choice for textiles consisting of continuous tows. Nexg #ttual position of any tow in a
real or virtual specimen is defined relative to the correspanstraight line in the regular
lattice. The lattice is discretised with uniform spacingetidiffers for either short-range or
long-range data (figure 4). To analyse both the short- angttange data, a system of four
discrete rectangular 2-D lattices is generated, comgyisire pair of relatively sparse grids
for generating long-range positional variations for wangl aveft tows (figure 5, and one
pair of relatively dense grids for generating short-rangsitppnal variations for warp and
weft tows (figure 4). The spacing of rows is set to the expemniaéy determined spacing
for either warp or weft tows. The grid spacing along rows te&i commensurate with the
unit cell size (grids for long-range variations) or much #erahan the unit cell size (grids
for short-range variations). It is convenient, althoughmexessary, to define grid locations
so that the grid for long-range variations coincides withubset of the grid for short-range
variations.

For the 22 twill weave in figure 3, four tows of each genus occupy eactoet (Ng = 4
for both warp and weft tows) and the spacing of the tows of #imeesgenus is uniform within
the unit cell. For 3-D weaves where more than one genus of aaweft tows is present,
the dfset of one genus from the other is allowed to vary in the fitpngcedure and tows
of different genus may not be uniformly spaced within the unit &tl].[ However they are

each separately uniform in their spacing over many uniscell

4.1.2. Statistical analysis at the unit cell scale

In analyzing short-range experimental data (the uniteedlle), advantage is taken of
the expected periodicity of the textile. Each tow paramel@racterizing position or shape
for each tow genus can be decomposed into systematic, nohastic variations, which
describe the average positional and shape variations edpos a tow by the interlacing
pattern of the weave over the domain of the unit cell, andhststic deviations, which

describe random departures from this average behaviompd&ametek € {p,z AR A, 6},
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with p = y or x for warp and weft tows, respectively, we write

gi(j’tﬁs) =< gi(Lt’S) > +EI(Jvt’S) (2)

whereeltd

(i = 1..N;) along the towj (j = 1..Ny) of tow genug in ply s. The labels refers to the ply

is the zero-mean deviation from the systematic vatug ¥ > at locationi

number, for cases where a laminate of stacked plies is cemresid

The systematic trends are identified using the method o&fesfce period collation”
(figure 4) [49, 40]. For each tow genus, a reference periodselength equals one dimen-
sion of the unit cell {4 or 4y), is defined such that any point on any tow of that genus can be
mapped onto the reference period by translation througtcri/N; a + |/N; b, where
llall = Ax and||b]| = Ay are lattice vectorsN;, andN;, chosen equal to the total number
of warp and weft tows, respectively, per unit cell, dndnd| are integers [49]. For 3-D
weaves, collation could involve more complicated tramstavectors in general, but would
be entirely analogous. An example can be found in [50]. Eguk(b) and 4(c) present
this collation of all data for the tow genus onto a single refiee period to determine the
mean trend. Deviations in the short-range data are thenedkliy comparing the data for
any tow at any location with the systematic trend curve at plesition, which is created
by translating the trend defined on the reference periodigiréhe appropriate lattice vec-
tor (figures 4(d)). While figure 4 exemplifies reference pegotlation for one positional

coordinate, an exactly similar procedure can be definedrpt@wv characteristic.

4.1.3. Statistical analysis at the sub-component scale

The few high-quality long-range data sets that have beelighglol to date for woven
textiles share the characteristic that the largest ang@itieviations in the positions of tows
have wavelengths that are comparable to, or slightly grelase, the specimen size. Since
the amplitude tends to be much larger than that of deviatigtiisshorter wavelengths, down
to the unit cell size, we conjecture that they may havefaint source. Since, furthermore,

the wavelength is consistent with that expected if the spegiwere to be gripped near its
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Figure 4: Reference period collation for short-range dexamplified for the out-of-plane positional coordi-
nate of tows. (a) Data collected for a specimen whose sidgylgly larger than the unit cell, which contains
two warp tows with staggered phases in the weave. (b) Coflaif data onto a single "reference period”,
by shifting data for segments of tows through lattice vex{®rN;ya, I/N;,b). (c) Averaging of the collated
data defines the systematic trend for the positional paem({retd curve). (d) When the systematic trend curve
defined on the reference period is translated by a latticevégN;a, | /N; xb), the deviation of the positional
parameter from the systematic trend can be found for anypgiiat, as illustrated for two grid points.

periphery and subjected to distorting loads, we conjedhatethe largest wavelength devi-
ations were created by handling of the fabric after it hatlthed loom, whereas deviations
characterized by shorter wavelengths are believed to hese penerated by randomness in
the actions of the weaving loom. We will refer to the longeat@length deviations in tow
positioning as "handling-induced trends”.

Data for the subject/2 twill weave in this paper reveal handling-induced treridg aire
pure shear deformations (no dilation or compression,dtenge in the separation of tows),
with the shear approximately uniform over the specimeneGihis, the handling-induced
trends were deduced as illustrated in figures 5(a) and 5¢@ procedure analogous to ref-
erence period collation, but with the reference period sgal to a specimen dimension.
With handling-induced trends thus defined to be uniform tiverspecimen, andtectively

deterministic for that particular specimen, one may defioehastic deviations using an
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analogue of equation 2, i.e., decompose positional vanatinto a systematic trend (the
handling-induced trend) and stochastic deviations. Thimitlen of the stochastic devia-

tions for long-range data is illustrated in figure 5(c).

idealized tow locus

one unit cell
measured tow locus
Aé@w
./(_X\.---.A
Fle o|e e e o o o "
2% o o 90 0 0 o o e v oo o0 o 0 o o5
y % y le oo wle o o o o o s
oo o L ———
§;:;>.Q!!!!!. ././.—.\A-------
- e e s o s e o o o e e st e oVe eilie _s—
_— _—
X X
(@) (b)

(©

Figure 5: Handling-induced trends in long-range data. ¢hegatic of long-wavelength positional variations
for warp tows found in long-range data for a specimen mudlelathan the unit-cell size. (b) The positional
data for each tow are translated in tpdirection so that they approximately coincide; and the mefathe
superposed data is computed as the mean handling-indueredl fred curve). (c) The deviations in tow
position due to machine noise are computed translatinguhgdor the mean handling-induced trend back
to the nominal position of any toy;, and the diference between the data curve for that tow and the mean
handling-induced trend at any grid poixtis recorded as the deviation in the tow position at grid p&nt

yi)-

The assignment of long-range positional deviations as dlagrinduced trends” or

"machine-induced stochastic deviations” has so far beenstibjective interpretation of
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long-range data for single specimens of a 3-D interlock \wga®] or one pair of speci-
mens of a twill weave [18]. In the analysis of the 3-D inteKageave, handling-induced
trends were defined to include variations in tow spacing dsaseshear distortions, which
appeared justified by those data [15]. Handling-inducettisenight generally be expected
to be stochastic, fiering from specimen to specimen, unless the handling donditvere
to be repeatable for some reason. Yet, curiously, in theyaisabf the pair of 2 twill
weave specimens, the handling-induced trends were foubel nearly identical for the two
specimens. Many more specimens need to be analyzed bedorbdhacteristics and origin
of so-called handling induced trends will be clarified. Irsthaper, in considering data for
a single specimen, they play an analogous role in analysigeteystematic trends defined

for short-range data.

4.1.4. The data structure of deviations

For both scales, the random deviatiq%’s) are computed for every data point on the
grid as the departure from the mean behavior expected fogtlthpoint for the systematic
or handling-induced trends. The deviations constituteaadom field”, defined over a 2-D
spatial grid. Consider a tow parametet {p, z, AR A, 6}, with p = y or x for warp and weft
tows, that has been evaluated for one tow genus at each gnd(figure 4). The field of

deviations ine over the entire specimen can be written a¢ & N; random matrix-:
H = {[HY]T[H?7..[HY]) ©)

with
H = [eieée,{ll] 4)

Each row inH corresponds to the tow path deviations of a single tow whrehdefined

at equidistant positions along its length. For the examplih® warp tows, presented in
figure 6, thex-direction containN; grid locations, corresponding to the number of columns
in H, and they-direction containg; grid locations, corresponding to the number of rows in
H.
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Figure 6: In-plane positional deviations of six adjacentpvtows after removal of either the systematic
or handling-induced trend. Deviations are defined on a ngetiar grid, with the row spacing matched to
the tow spacing. The auto-correlation matrix is constridig computing the covariance of deviations at
two positions along one tow. The cross-correlation masixanstructed by computing the covariance of
deviations at two positions onftiérent tows. The red ellipses indicate relative positiomsafdgo-correlation
and cross-correlation for a spacing of 1 unit in the corietatmatrix.

4.1.5. Correlation information and matrix representatidircorrelations

For both short-range and long-range data, correlatiomnmétion is determined by com-
puting Pearsons moment correlation fméent for pairs of zero-mean deviation data (fig-
ure 6). In the following, we discuss the structure of cofreladata involving a single tow
parameter (e.g., one of the §ptz A, AR 6} defined for short-range data) and a single tow
type (warp or weft). Such analysis is valid wheffféient types of tow parameters are un-
correlated. If correlations between the deviations ifiedént tow parameters, or between
warp and weft, are also considered, the data structure nsrsanilar in form, but becomes
much larger. Remarks on the size of correlation data setsappsection 4.1.7.

First, we distinguish two categories of correlations, whiecognize the fact that the
magnitude of some correlations will be strongly influencgthe continuity of tows. "Auto-
correlation” is determined by computing Pearson’s coti@tecodticient C,,o(K) for pairs

of data found for all grid points andi’ that have the same spacikg= i’ — i sampled on
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the same tow, repeated for all tows of the same genus. "Csslation” is determined
by computing Pearson’s correlation gdaentCe,s{K, k') for pairs of data found at all grid
points {, j) and {’, j’) that have the same vector spacikgk() = (i, j) — (', }’) sampled on
different towsj and j’, repeated for all pairs of tows of the same dfelient genus.

The correlation matriRy summarizes the Pearson’s moment correlatioiment in-
formation (auto- and cross-correlation) of any tow parameMost generally, one might
define the correlation matrix as a square matrix of dimenbigy) x N;N;, whereN; is the
number of grid points along a single tow (e.g., alonig figure 6) and\; is the number of
tows in the sample (e.g., number of grid points algrig figure 6), withN; andN; taking
the same values in each of an ensemble of equally sized, afyngguivalent specimens.
To reflect the distinction of auto-correlations and crosgeations, the correlation matrix
Ry can be written as an array bf x N; blocks with each block a submatii; where the
subscripts identify one of thlr tows of warp or weft type in the data set (e.g. tows 1 till

tow 6 in figure 6)):
R11 R12 e R1NF

Rt Rz -+ R
Re=| = | - ®)

| RN|::|. RN|:2 e RN;:NF ]
Each submatrix entry is constructed from selecting one@R{x N; correlation data avail-

able for towsH; andH;. SubmatrixR;j. is represented as:

(X, Xa) (X X2) -+ (X, Xny)
i (X2, X1)  Fjjr(%e, X2) -+ (X, Xn;)

Rjj = . . o (6)
| Fj O X)) T (R X2) oo T (X X)) |

with r;.(x;, X-) the Pearson’s correlation value between deviation vati&scationsx; and
location x;; on tow j and tow |’ respectively. Figure 6 presents in tRalirection one set

of the pair of points needed to computg(Xs, X4), and in they-direction one set of pair

24



of points needed to computex(Xs, X3). The submatrices at the diagonalRf thus repre-
sent the auto-correlation matrices, while tHediagonal entries are the cross-correlations

between the dierent tow paths.

4.1.6. Estimated size of correlation matrices

The correlation matrix so defined for a single tow parameteypically very large.
For example, consider a plain-weave specimen in which {acgée stochasticity is being
studied and which contains 100 warp tows and 100 weft tows. téwes that are 1 mm
wide, such a specimen will be 160100 mn?, a relatively modest size. Assume that grid
points are located at the nominal intersections of each w&adoweft pair. Then the rank
of the correlation matrix for a single tow parameter, e.ge of {p,zZ A, AR 6} for either
warp or weft tows will be 1. On the other hand, if a tow parameter for warp tows is
assumed to be significantly correlated with the same townpeter for weft tows, then the
matrix of all possible correlations for that parameter sise rank 2x 10*. If significant
correlations exist among any two of the five tow parameterd eetween any pair of warp
and weft tows, then the rank of the matrix of all correlatisises again to 10 Such a
matrix is still comfortably manageable in computationd, Ifua data-rich world generates
data either for larger specimens or on a finer grid, the ma#nk may become an issue.
Partly for this reason, we also consider how the representat the correlation information
can be reduced to far fewer degrees of freedom by certaimggns about its plausible
structure. The assumptions allow a second, at least equatlgrtant advantage: when
certain relationships exist among correlations, staafiif significant information can be

obtained even from data for a single specimen.

4.1.7. Simplified representations of correlation
As well as assuming the absence of correlations betwegsreit tow parameters, or
between warp and weft pairs, a number of other assumptiang #ie nature of correlations

are suggested by data that have been acquired to date [488]17,
e Trandational invariance
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It is often attractive to assume that the correlation bebwbe deviations at a pair of
grid points depends only on their vector separatipa |x—X/|. If this is the case, then
the number of degrees of freedom in the correlation maRix,is greatly reduced. In
particular, all the block matrices on any diagonaRpf whether the leading diagonal
(auto-correlations) or anfiadiagonal (cross-correlations) become identical; and the
elements on any row within any block matrix take values tregieshd only on the
distance of that element from the lead diagonal of the bloakim regardless of row.

The block matrixR;;- is now represented as:

ri(0) rp@ e (N - 1) |
(1 (0 oo 1 (N =2
R = fu.( ) r”'( ) rij( . ) @)
| rp(Ni=1) rp(Ni=2) -+ 1j.(0)

with r;;-(k) the Pearson’s correlation value between deviation valbigsv j and tow

J” which are separated by a veci@rover the grid k = 0..N; — 1).

e Seriesexpansionsand correlation lengths
Further simplification of the correlation data matrix carelsieved by analyzing the
manner in which correlations decay as the distance betwaegrid points increases,
i.e., the rate of decay of the magnitude of elements of anjhefldock matrices,
R;j-, with distance of the element from the lead diagonaRef The most complete
analysis of this decay is performed using a Series Expansethod. The Series
Expansion method uses a modest number of degrees of freedieadribe the decay.
In the simplest possible analysis, the decay is defined byglesparameter, such as
the correlation length. Both the Series Expansion methodtlaadiefinition of the

correlation length are described fully in section 5.

The question of how the functiori, (k) andCeosdk, k') depend on the point separations

k andk’, and whether cross-correlatioBs.s{k, k') are significant, determine the preferred
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method and the complexity of generating virtual specimens.

4.2. lllustrative data from a/2 twill weave

4.2.1. Material description

Data for a 22 twill woven carbon fibre Hexcel fabric (G0986 injectex) [5inpregnated
with epoxy resin using a resin transfer moulding (RTM) pretihn process [17], show
gualitative characteristics that prove to be similar tosthdound for a number of other
weaves (3-D interlock weaves) for which data have been aedlyo date. In the twill
weave, each unit cell of the reinforcement consists of fauadly spaced warp and weft
tows with periodic lengths of the warp (x-axis) and weft §isy tows that are nominally
identical: A, = 4,=11.43 mm. Warp tows are represented by one genus and wefaowas

second. Figure 3 shows a numerical model of the textile geyme

4.2.2. Short-range information

Short-range variations are identified in [17] from a sevBngample of dimensions
comparable to one unit cell using laboratory X-ray micro-Giformation about the tow
path centroidsd, z) with p=y for the warp tows ang=x for the weft tows, tow aspect ratio
AR tow areaA and tow orientatiom in cross-section are extracted. Statistical information
(o, &auto) Of all tow path parameters, combined from all seven plies,given in tables 1
and 2.

Auto-correlationsC,o(k) in the short-range data are characterized by a singlerscala
parameter, the correlation lengthwhich "measures the distance of twdfdrent stochas-
tic field locations over which the correlation between thepextive random variables ap-
proaches zero or a practically very small value” [3]. Theueabf¢ is determined using
linear regression of only the first fidevalues, because highkwalues are noisy due to the
small specimen size that can be analyzed by micro-CT. Crasstations in the short-range
data are found by statistical analysis to be negligible,thérebetween tows of the same or

different genuses [13].
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4.2.3. Long-range information

The short-range data for tow paths hint at possible longeasorrelations for the in-
plane component of the positional deviations for any towdifidnal data were therefore
acquired for the deviation of the centroid of each tow, saudly optical imaging for a
few locations per unit cell position in large one-ply sanspdé size 13x 13 unit cells [18],
from which a region of 1 10 unit cells is inspected. The long-range in-plane dewmgsti
were expressed in terms of their standard deviations anchtfielation lengthg for decay
along the tow and between tows (tables 1 and 2). The cowal&hgth was evaluated for
warp tows by fitting an exponential correlation functiogy, = exp(—%) to the data, while
the correlation length between weft tows was evaluated bpdita squared exponential

correlation functiorCsgexp = exp(—g—g) to the data.

4.2.4. Multi-scale character implied by systematic treadd correlation information

Systematic trends in short-range data, whether for thebptane centroid coordinate
z (figure 7(a)), the aspect rat®dR (figure 7(c)), or the cross-sectional arkdfigure 7(d)),
exhibit periodic variations consistent with the known lteas of crossovers between warp
and weft tows. In contrast, systematic trends in the ingl@entroid positiop = yorp = X
for the long-range data show aperiodic behavior with spai@aelength approximating the
specimen dimensions (figure 7(b)). Because the wavelengttodmates the specimen
dimensions, we interpret the systematic trends in long@atata as the result of handling
of the fabric after its removal from the loom, i.e., handtinguced trends.

In contrast to the systematic trends, the deviations in th@tlong-range and short-range
data we interpret as generated during fabrication of theléesn the loom, arising from
chatter in the motion of loom components. A similar distioctwas suggested by analysis
of statistical data for 3-D interlock weaves [15]. The rafedecay of auto-correlations
Cauto(K) With point separatiork is substantially dterent for short-range and long-range
data, indicating the probable presence of distinct meshasfor their origin.

As illustrated by the data for thg2twill weave and for data for a 3-D interlock com-

posite [49], the number of parameters needed to describataas at the meso-scale (unit-
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Figure 7: Periodic average and handling trends after t@#insl of all tows per tow path parameter to their
reference period, with the warp genuses defined along xamdsthe weft genuses along y-axis. Periodic
trends are represented for one unit cell distance, whildamelling €fect is shown over a distance of ten unit
cells.

cell scale) is usually greater than needed at the macre-sé¢ar example, the/2 twill
composite is represented by five parameters at the mes®{gca) AR 6} and one at the
macro-scaldp}. Positional variations and shape distortions of tows atutmécell scale,
where tows are influenced by crossovers with variable sgaeire more complex than the

gradual drift in tow position that manifests over many ueiis

4.2.5. Summary of statistical data

Standard deviations and correlation lengths for the staone deviations and long-
range deviations (in-plane position coordinate only) apmorted in tables 1 and 2. These,
as well as more complete records of correlations, will beluse multi-scale strategy for

generating virtual specimens.
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5. Generating instantiations of stochastic textilereinforcement using multi-scale mod-

elling (step 2)

5.1. Generation strategy

The strategy for generating instantiations of stochasfitiles, or stochastic virtual spec-
imens, fits within the overarching strategy depicted in f&getrthe reconstruction step repli-
cates target statistics that have been determined by exgetrito create virtual specimens
that can be used in predictions of performance and lifetiffilee reconstruction process

yields ensembles of instantiations of stochastic virtpalcgmens, by executing the follow-
ing steps:

1. A system of four discrete rectangular 2-D lattices is tmased for generating long-
range positional variations and short-range positionahtians for warp and weft
tows, which is the same as were used to analyse data in sdclidnbut is not nec-
essary. In general, where archived statistics are beind tasealibrate the virtual
specimen generator, the grid used to analyse data may nobevienown. It is also
convenient to define the grid locations of the long-rangeckato coincide with a
subset of the grid locations for the short-range variatidgt@vever, the grid spacing
in the grid for generating short-range variations shoulddpgal to or smaller than the
shortest correlation length identified by experimentallysis; and, if the &ects of
all components of long-range deviations are to be analyzetjwirtual specimens
in virtual tests, then the overall dimensions of the virtspécimen generated (i.e.,

the total number of grid points) should exceed the longesetaiion length iden-

Table 1: Standard deviation of the tow path parameters ff@short-range [17] and long-range characteri-
sation [18], respectively indicated sy andlr.

Ir Ir

oy ay oy o on oy fopd oy
[mm] [mm] [mm] [] [mm? [ [mm] [mm]
o - 0.113 0.014 1.774 0.023 0.797 - 0.106
o"eft 0.063 - 0.015 1.440 0.024 0.833 0.615 -
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Table 2: Correlation lengths of the tow path parameters fiteenshort-range [17] and long-range character-
isation [18], respectively indicated tsr andlr. Only for the in-plane position a cross-correlation lenigth
defined.

Sr sr Sr sr Sr sr Ir Ir
X &y z AR A 9 X &y
[mMm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
veb . 2289 1.78 7.26 253 456 - 114.89
tross - - - - - - - 4.49
£l 9.42 - 162 5.48 1.01 3.49 52.89 -
gl - - - - ; . 1316 -

tified by experimental analysis. The following steps arentherated for each tow

characteristic.

2. Long-range, handling-induced trends (figure 5) are gaadrfor warp and weft tows
at the grid locations of the sparser grid for long-rangeateons. Values at the grid
locations of the finer grid for short-range variations amentigenerated by interpola-
tion.

3. Short-range, deterministic trends are generated fop wad weft tows at the grid
locations of the finer grid for short-range variations. ®itlce virtual specimen is
generally much larger than one unit cell, whereas the glamige, deterministic trends
are recorded over a single reference period, the shorerategerministic trends for
the whole virtual specimen must be generated using the sewal the process of
reference period collation (figure 4) [40]: values at anydgroint are set equal to
the value at the corresponding point in the reference pevitich is shifted from
the grid point in question by a lattice vect&fN; a + | /N;«b, wherek andl integers
(section 4.1.2).

4. The long-range handling-induced trends and the shogera@eterministic trends are
combined at all locations on the finer grid by linear supeitpms Linear superposi-
tion is valid because the spatial gradient in the long-rdrayedling-induced trends is
generally small over gauge lengths commensurate with theeihand therefore the

long-range handling-induced trends will not have influehttee deduction of short-
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10.

range deterministic trends from experimental data.

Long-range stochastic deviations are generated at @titms of the sparser grid
using Monte Carlo Markov Chain methods or Series Expansidmiques. Values

of long-range stochastic deviations are then generatddatations on the finer grid

by interpolation.

Short-range stochastic deviations are generated atcallibns of the finer grid using

Monte Carlo Markov Chain methods.

. The long-range deviations and the short-range devetiomcombined at all locations

on the finer grid by linear superposition. The validity ofngsiinear superposition
rests on whether the short-range and long-range deviaiensncorrelated. Because
the characteristic wavelength of significant spectral conegmts of the short-range
deviations tends to be less than the shortest charaateniatielength of long-range
deviations, their correlation is likely to be weak. Howevaoof of this assumption

awaits richer data sets.

. The deterministic trends resulting from step (4) are doeib with the stochastic

deviations resulting from step (7) to create the completxifipation of one tow
characteristic throughout a single stochastic virtuatspen.

Steps (2) through (8) are repeated for all tow charatiesjsand for both warp and
weft tows, to create a single virtual specimen.

Steps (2) through (9) are iterated to generate an ensavhbtochastic virtual speci-

mens.

The above scheme implicitly assumes that deviations on tdvastferent type (warp

and weft) are uncorrelated. This is a valid assumption farralver of data sets gathered to

date. Elaborations of the process to treat correlationsd®t tows of dierent type appear
in [52].

We will illustrate this procedure, for a single ply of fabviith tow parameters consisting

of the set{p, z, A, AR 6}. However, the procedure would remain the same for any type of

periodic textile, including 3-D weaves, except that, if & numbers of tow genuses were
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present, the procedure would be based on an appropriatetyed lattice.

5.2. Reconstruction algorithms

A number of algorithms have been developed to solve the staartion problem, i.e.,
to generate instantiations of the stochastic textile cgg@ment whose statistics match those
derived from experimental data (standard deviation ancetairon data). The algorithms
were all developed to take advantage of the fact that statistata for textiles tend, like
the textiles themselves, to be highly anisotropic, usuadityh slow variations along the
length of tows but rapid variations in the orthogonal dil@ct But even given this common
condition, diferent algorithms are warranted depending on the richneasaifable data

and diferences in the magnitudes of certain correlations.

e A Markov chain algorithm deals with either short-range angeange deviations
along a single tow when auto-correlations decay in a sim@amar or the experi-

mental data are relatively sparse.

e A Series Expansion algorithm deals with either short-ramgleng-range deviations
along a single tow when auto-correlations exhibit more dempehavior and the

experimental data are relatively rich.

e A combination of Fourier analysis and the Markov Chain aldponi and a random
walk model deals with long-range deviations data in whicbssfcorrelations are
strong and complex (not well represented by a single cdroalé&ength), auto-correlations
are strong but relatively simple (can be represented bygesgorrelation length for

each amplitude and phase), and data are relatively rich.

e A matrix cross-correlated Series Expansion method dedls either short-range or
long-range deviations when deviations exhibit signifiaaoss-correlations between

tows and identical, relatively complex auto-correlatie@havior along each tow, and
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data are relatively richt.

In the following, we briefly describe the Markov Chain algbnit [40, 41, 17], the Series
Expansion technique [38, 14], and the Fourier Transformhoee{15]. In section 5.4, we
illustrate the advantages of the first two reconstructigo@ihms (Markov Chain & Series

Expansion) by their application to data from th@ Bwill weave described in section 4.2.

5.2.1. The Monte Carlo Markov Chain method for reconstrucangp-correlated devia-
tions

The Monte Carlo Markov Chain methodfers a simple and fast method of reconstruct-
ing tow parameters for textile structures [40]. The aldortis applicable when cross-
correlations of deviations on fiierent tows are negligible. The Markov Chain generator
acts for each tow parameter separately and is calibratetliebgdrresponding experimen-
tally determined standard deviation and auto-correldgogth.

First, the deviations of the considered parametare discretised on an interval with
grid spacinga (a is chosen independently from lattice spacingand number of intervals
2m+1: {-ma-(m-1)a,...,0,...,(m - 1)a, ma that satisfies the relatioma = 30.. The
parametemmust be chosen not too low to avoid discontinuity errors dube discreteness
of the representation and not too high to minimize comporeati time. The probability of
occurrence of the discrete valueseafonstitutes the distribution vect®f for locationi:

T
Pi=| ph p, .. p0 . p® . P, (8)
with T denoting the transpose operation. The Markov process gesethe distribution

vectorPs . of the particular parameterat the next grid location+ 1 using the probability

i+1

transition matrixA;, .

I:)i€+1 = AtfransPiE (9)

1The requirement of identical auto-correlation behavisurat mandatory, but considerably simplifies the
analysis
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To begin, a tri-diagonal probability transition matrix (MT is constructed containing two

independent parametersandg and a third dependent paramejet 1 — a — -

a v O 0
l-a aa y O
0 B «a
0 vy O
B« % 0
Awranso = 0B a B O (10)
0 1;2" a B
0 vy 0
a B O
0Oy aa 1-a

0 0O v «a

The parametew is given an arbitrary fixed value of 0.9, whikis chosen to match the
target standard deviatiam®© (figure 8(a)): the mor@ exceedsy, the more likely is each
application of the PTM to move the value ©&way from its mean. Next, the target correla-
tion length (information of the nearest neighboki1) is matched by constructing the new
PTM Afans = Alncor

The parametel, is calibrated from the graph shown in figure 8(b), which waitt bor the

which is the iterative re-application of the tri-diagofatm Ay anso-

choice ofa = 0.9, m=10 and a particular choice gf

The Markovian procedure is the core computation within thenhd Carlo based scheme
which is repeated for all parameters [40], with &elient (2n+1) by (2n+1) probability
transition matrixA;,, s for each tow parameter. A sequence of deviation values a@oog is
initiated by mapping a uniform random number onto the cutiudgrobability distribution
of the vectorP of equation 8 that represents the expected distributioi,gf. Subsequent
values in the sequence are generated by mapping furthesmandmbers onto the row of

Avrans that corresponds to the value of the deviatéaat the previous grid location.
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Figure 8: Graphs used to calibrate the probability tramsitinatrix: (a) ratioo./omax Whereomax is the
variance generated by the PTManso in the cased = y and (b) the numbel, of iterative application of
Aqanso required to reproduce the target correlation length.

The generated deviations possess high-amplitude lorgerammvelength fluctuations,
according to the auto-correlation length, combined with-bomplitude short-range wave-
length variations. The latter are numerical noise assediatith the discreteness of the
Markov Chain and are not observed in experiments. A postgssing smoothing oper-
ation reduces the short-range noise withdiié@ing the statistics of the deviations to an
unacceptable degree. The smoothing is a modified versidmeahbving box average that
conserves the standard deviation [40]. However, when tdexamwith diferent signs are
present in the averaging interval, the conventional moaweraging rule must be applied
which does not conserve the standard deviation. Deviatabmeg are typically smoothed

using information ovet-2 neighbouring grid points.

5.2.2. The cross-correlated Karhunen-Loeve Series Expatschnique for reconstructing
auto- and cross-correlated deviations

The K-L Series Expansion [11, 53] is a common technique tordisse and generate

realisations of finite deviations representedrasdom fields This method involves the

spectral representation of the correlation maix described in section 4.1.5, in a form of

principal component analysis [54].
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This section describes (1) the general case, in whidlerént tows of the same type
may have dierent auto-correlation behaviour and cross-correlateiween diferent tows
of the same type are not necessarily spatially homogenengs for warp tows, cross-
correlations for a pair of points that have the saeordinate on two dierent tows may
vary whenx is varied), and (2) a simplified approach, for a specimen ircwvall different
tows of the same type share the same auto-correlation lmehaand cross-correlations
between dierent tows of the same type are spatially homogeneous sesed by a single
codficient (e.g., for warp tows, cross-correlations for a paipaihts that have the same
coordinate on two dierent warp tows are independent®f The latter method is especially
interesting for standard weave structures.

Both algorithms are calibrated with the experimental steshdaviation, and auto-correlation
and cross-correlation statistics. Truncation of the ppalccomponent analysis in each cor-
relation direction is dferent and related to how rapidly the variations occur: raprthtions
in the direction normal to the tows and a much slower vanmeéitong the tow path, is the

common case for long tows of continuous fibres.

In the general case (algorithm 1), a single realisation oftao zero-mean tow path
deviations{%ij ,i = L.N;j,j = 1.N;j} in the same format absl and represented bEA is

generated by performing the Karhunenelve Series Expansion [55, 11, 53]:

N;N;
A = D, VA3 (11)
z=1

with {,,z = 1..N;N;} a set of centred orthonormal random variables ahde,,z =

1..N;N;} the eigenvalues and eigenvectors obtained by solving gemeguation oRy:

Ri® = AD (12)

with A a diagonal matrix with thé;N; eigenvectors on its diagonal aRthi the eigenvector

matrix that has as dimensiof§N; x N;N;. In practice, a truncation of the series is per-
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formed. The number of K-L terms in the series is defined by rindethe eigenvalues in

a descending series and considering only the larger eiyess/avhich correspond to the
most influential variations. The number of eigenvaluesimethis determined by testing for
adequate representation of the experimentally measunedmaness. Since these generated
set of deviations are standardised Gaussian random fieldsrealisation step to the exper-
imental standard deviation should be performed which cadifierent for each individual
field that represent deviations of a single tow path sincestaedard deviation is flerent

for tows belonging to a dierent genusH!o-j(j = 1..N;).

The general approach requires the solution of a high-dimneakeigenvalue problem
of the correlation matriRy (orderN;N;). Vofechovsly (algorithm 2) proposes a significant
reduction in this dimension for a set of deviatio{rﬁ#,i = 1.N;, j = 1.Nj}, in which the
auto-correlation and cross-correlation structures aagéd as separable: the individual 1-D
fields (tow paths) share the same auto-correlation, asstontsghend only on the separation
of points in the tow direction, while the cross-correlasdretween the 1-D fields (tow paths)
are represented by the so called "cross-correlatiofffictents”. For each certain distance
between two tows, a fferent cross-correlation ciient is computed (totdll; — 1 scalars)
by using the Pearson’s correlation @d@entCe,s{k, k') for pairs of data found at all grid
points {, j) and { + 1, j’), where and j’ have a fixed spacing and with a vector spacing
(k, k) = (1, ))-(1+1, ") repeated for all pairs of points along each set of two tovgsi(é 6).
The methodology requires only the information of this onalacto reconstruct its cross-
correlation structure by multiplication of the subject ssecorrelation cd@cient with the
entire auto-correlation structure. This approach wittssroorrelation cdécient depending
only on the separation of two tows, is specifically valid irsedhe auto-correlation is the
same for the tows for which the cross-correlation is evaldiatvith the auto-correlation
only depending on the separation of points. Under theseittonsl the approach yields
identically good results as if the generation of deviatismmuld be performed with the

general correlation matriRy [38].
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In summary, the correlation information 8§ can be fully represented by two sepa-
rate correlation matrices: an auto-correlation maRixof orderN;, which is identical for
all individual tow paths, and a cross-correlation matfx of order N; which describes
all the cross-correlation cfiecients between the fierent tow paths. Both matrices are
constructed similarly as for the submatiy, 4, in section 4.1.5 while assuming that the
correlation between the deviations at a pair of grid poiejsethds only on their vector sep-
arationty = [x — X'| (section 4.1.7). Instead of performing a normalisatiorhefgenerated
random fields to the experimental standard deviation, the-earrelation matrix is already
multiplied by the square of the standard deviation beforéopming its eigendecomposi-
tion. Such an approach can save considerable computaéfiogl!for largeRy since now
the eigendecomposition of the auto-correlation matrix emegs-correlation matrix, which
are of much smaller dimensions, can be performed separately

The approach of M@chovsk based orRy andR: and using the Karhunen-kwe Series
Expansion consists of subsequent steps to acdjyjrerealisations of cross-correlated tow
paths (10 specimens) [14, 38]:

1. Perform eigendecomposition of the auto-correlationrimd®, = [PA][AA[DA]T
and apply truncationi?, A(x) with i = 1..Nyar (Nyar < N)).
Truncation is applied by ordering the eigenvalu@sn a descending series and con-
sidering only theN, larger eigenvalues and corresponding eigenvectgryx) that
capture most of the randomness.

2. Perform eigendecomposition of the cross-correlatiotrim#&: = [OC][AC][D]T
and apply truncationd®, ¢(x) with i = 1..N¢, (N¢, < N;).
Truncation is applied by ordering the eigenvalugsn a descending series and con-
sidering only theNs, larger eigenvalueg® and corresponding eigenvectgigx) that
capture most of the randomness.

3. Generat®; x Nsim (Nr = Nyar - N¢ ) Gaussian uncorrelated random variabjessing

Latin Hypercube Sampling (LHS).
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4. Construct the block sample matgiX (N; x Naim):

x° = [¢° A T2 (13)

with x® consisting ofj blocks ( = 1.Nj): x® = | {217 D" --- xR !
where the elements of each block deliver tig, standard Gaussian uncorrelated
random variables used in the next step to gendﬁq(g), while the diferent blocks
are mutually cross-correlated.

5. Simulate a single realisation of the deviations of eashgathH; and apply trunca-
tion [38]:

Nvar

Fi09 = D APt (14)
i=1

Combination of the individual tow path realisations resintsi (x) (N; X Ngim).

This approach expands all cross-correlated fields (towspatithin a single specimen using
the same spectrum of eigenvaluésand -vectors!(x), deduced from the auto-correlation
matrix, but the sets of uncorrelated random variables usethé expansion of each field
are now cross-correlated with neighbouring fields.

The introduction of cross-correlation for the random \alea in step 4 is crucial in the
procedure and reproduces the cross-correlation infoomdietween the eierentN; tow
paths using the matrix decomposition method of equationTil% eigenvaluea® and -
vectors¢® in equation 13 are solutions of the eigenvalue problem (aimais equation 12)

of a block cross-correlation matr of dimensionNya Ns; X NyarNs -

| Cisl Cusl -+ Cinl |
| Cpsl -+ Copl
D=| : & I .. Capl (15)
sym :
|
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This matrix possesses squared blodMg,(- Nya) Of unit matrices on its diagonal, while
off-diagonal blocks represent the cross-correlation betwaeh two sets of random fields
using the entries of the cross-correlation maRgx

In addition to this framework, M@chovsk proposes an improvement of the accuracy
of the simulated auto-correlation by (i) applying correlatcontrol techniques [56] and (ii)
the anticipation of additional grid locations on the sideisdach field. This first operation
encounters the problem of spurious correlation which isetones introduced along the
random variablegj[?i of a single field. The fect of such techniques needs to be assessed
for each new topology to determine if this computationalexgive procedure is required
or not. Furthermore, extra side points can be considerdeeindse disturbances are present

in the generated values at the edges of the field.

5.2.3. The Fourier Transform method for reconstructingoaw@nd cross-correlated devia-
tions

In many cases, long-range deviations of a tow parametexaexted to be statistically
homogeneous over a sample, but anisotropic, having raglccamplex variations in the
direction perpendicular to the tow direction and slow awias parallel to the tow direction.
For such cases, a method of Fourier analysis was developedattes advantage of the
anisotropy to yield a relatively simple formulation withpid execution [15].

Experimental data are of the type illustrated in sectionfdr2ong-range variations for
the twill weave, i.e., they consist of a 2-D grid of stochagtosition values for one type
of tow (warp or weft). The data are partitioned into a seqearicscan lines, oriented per-
pendicular to the nominal tow direction (figure 9). The positvalues along each scan
line are subjected to discrete Fourier analysis, yieldingaplitude and phase value for
each frequency in a finite series. When the Fourier spectralf@can lines are assem-
bled, variations of the amplitude and phase of each spemmponent along the nominal
tow direction can be collated. For each amplitude, the tianaalong the tow direction is
characterized by its standard deviation and correlatiogtle For each phase, the variation

along the tow direction is modeled as a random walk and ctexiaed by a mean path
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length. Thus the stochastic data for a given tow parametefudlly characterized by the
standard deviation and correlation length of the amplitate the random walk mean path
length, for each of a series of Fourier wavelengths. The mumob Fourier components

depends on the specimen size, but is typically 10, to orderagfnitude.

0.02

0.01

scan lines

-0.02

unit cell

Figure 9: Data for positional variations of warp and weftséawa 3-D angle interlock weave (from [15]). The
images show spatial derivatives of the lateral positiomalations of tows, which are dimensionless. Some
representative scan lines are indicated (but not all),gaanich FFT analyses of the positional variations were
performed. Variations of the Fourier dfieients from one scan line to the next can be described quitgli

The generation of instantiations of the full 2-D field is extsxl by forming inverse
Fourier transforms along each of the scan lines. The andglitor each Fourier component
to be used at each scan line in the sequence of scan linesasaggth using the Markov
Chain procedure of section 5.2.1, with the transition maix,s calibrated by the experi-
mentally determined standard deviation and correlatiogtlefor that amplitude. The phase
for each Fourier component to be used at each scan line ietheeace of scan lines is gen-
erated by a random walk generator, calibrated by the expetaiy determined mean path
length for that phase.

When the Fourier analysis method was applied to data for 3ddlotk weaves, handling-

induced deformation was revealed, similar to that desdribesection 4.2 for data for the
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twill weave. A simple way of filtering such long-wavelengtends out of the Fourier anal-
ysis was demonstrated: if the Fourier analysis is appliethéospatial derivative of the
position field, rather than to the field itself, the Fourieesfpa are dominated by the shorter-

wavelength spatial variations; the long-wavelength hiagdrends are filtered out.

5.3. Further remarks on the integration of scales

Because dierent numbers of parameters and grids witffieslent spacings are used to
represent short-range and long-range stochastic beh#veoshort-range and long-range
characteristics of instantiations (virtual specimensg) most conveniently generated sepa-
rately. The instantiations must then be integrated ontavacon grid. The integration of the
short-range and long-range deviations for paramgtdenoteds” ande'", respectively, can
be achieved by simple superposition and numerical intatjwol provided the short-range
and long-range deviations are statistically independ€his integration of long-range de-
viations and short-range deviations, as described in gBp® (10) in section 5.1, must
deal with the fact that complete 3-D descriptions of the t@thpare available at the unit-
cell scale, whereas incomplete 2-D surface informatiorvalable at the sub-component
scale, typically one or a few points per unit cell and oftestrieted to in-plane positional
variations. Where data on long-range variations are abgengntire virtual specimen will
be generated using short-range variations only. Furthieenvihe two scales are combined
onto a dense grid spanning the macro-scale, the number ofekegf freedom (DOFS) in
the entire composite model becomes very large. Howevempakential benefits of high-
fidelity studies of the #ects of stochastic microstructure on sub-components nmtifyju

very large computations.

5.4. Application to a woven textile composite

5.4.1. Overview
Virtual models are generated for thg2awill woven textile spanning a region of ten
by ten unit cells, and thus containing each forty warp antyfareft tows. The model is

representative of one ply within a laminate. Each tow isréised in 320 equidistant points

43



such that the information of one unit cell is defined over @ @i thirty-two points. This
procedure is shown in figure 10 for the out-of-plane centcoidrdinate. A total of 4« 10*
warp and weft tows, with lengths equal to ten times the uritperiods, are simulated to
create 18 virtual specimens. Comparison with the experimental targktes is performed
by analysing histograms of the statistics and evaluatingrenalised diferenceA from the
target values, defined as

UEXP _ 4,Sim

A=|———|-100% (16)

UEXP

with v equal to the standard deviation, auto-correlation lengtrass-correlation length.

Parameter value
at grid location 5

Figure 10: Procedure of generating a discretised tow reptason, demonstrated for the out-of-plane centroid
position.

The modelling procedure is based on several assumptions:

e Deviations are assumed to be normally distributed

e The cross-section of a tow is approximated by an ellipse

e Short-range and long-range deviations are statisticatlgpendent of each other

¢ In-plane long-range deviations, characterised from aaipty sample, are also rep-

resentative of a multi-ply sample

e Short-range deviations do not have any repetitive longeadtfect exceeding the unit

cell size
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The first and second assumptions are validated by the linex@erimental data for
the twill weave, as well as data for 3-D woven ceramic matamposites [49, 40, 15, 46].
Validation for other materials, and for richer databasabeimaterials studied so far, awaits
future experiments. A more realistic geometrical shape wwain cross-section can be
acquired using moment analysis (see appendix A of [17]) imep[57]. The lack of cross-
correlation between short-range parameters and the Emggerin-plane centroid permits the
independent generation of short- and long-range devitidhe fourth hypothesis supposes
that inter-ply €fects have a limitedféect on the in-plane centroid path. The last assumption
refers to the out-of-plane centroid, tow area and tow agpict that are quantified from a
unit cell sample. Although invalidation of this assumptiwauld be surprising, additional
guantification over longer-range samples would be reasguri

For the subject /22 twill textile composite, the generation of short-rangeidtons
{z, A, AR 6} are exemplified by the Markov Chain algorithm since for eachhese tow
path parameters no cross-correlation is observed whilddkeon correlation are not very
rich and does not necessarily need a more elaborated méthedong-range deviations of
{p} are produced using the cross-correlated Series Expangthoohsince significant cross-
correlation between sets of tows are found with much mo@imétion collected about the

correlation structure.

5.4.2. Average trends

An average reinforcement description of the textile is @&eglby (i) interpolation of the
individual average periodic and handling trends of eachpatth parameter to the equidis-
tant grid locations over which the specimen is defined anadinbination of the dierent
tendencies. Periodicity is exploited to construct the tiépe systematic trend of the short-
range parameters along the entire lattice. Figure 11 displee average reinforcement of

the 22 twill woven composite.
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Figure 11: The average reinforcement description predeiotethe centroid coordinates at the short- and
long-range, obtained by combining the average trends frgundi7 for all tow paths within the specimen.

5.4.3. Simulation of auto-correlated deviations by the Mdbarlo Markov Chain method

The Monte Carlo Markov Chain method has already been used &rajerzero-mean
tow centroid fluctuations of unit cells in [13], using the gh@nge data of tables 1 and 2
including the in-plane centroid position. The generaisabf the method for multiple unit
cell structures is easily performed.

All short-range deviations of the subjectet® 2will woven compositgz A, AR 6} are
produced using this approach. Any tow parameter of thissgenerated over the grid
of 320 points, as discussed in section 5.1. Based on thetsttimformation of these
path parameters, it is flicient to discretise the experimental deviations in tweneces
(m = 10) with corresponding distribution vector. As a post-g@sging step, a smoothing
operation is performed using information-62 neighbouring grid points. The procedure is
able to reproduce the wavelengths of fluctuations as demadedtin figure 12 for the warp
out-of-plane centroid coordinate.

A total of 4 x 10* warp and weft tows were created by the Markov Chain algorithm
to construct 1®long-range specimens. Reproduction of the experimentidtital data is
demonstrated for the warp tows using the (i) combined ddfaskecting the deviations of
all 4 x 10* tows, and the (ii) data sets that represent tow data of singtecells. No addi-

tional comparison of the single tow statistics is perforrdeé to the lack of experimental
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information of individual tows with a length spanning tentwells.

Figure 13 presents the auto-correlation graph of the exygerial and simulated warp
z-centroid for the combined data set. Calibratiodgf,,s using only the nearest neighbours
(k = 1) results in an exponential correlation course with minactthations that crosses the
zero-correlation boundary for large point spacings. Téia contrast with the experimental
correlation information that is typified by data that fludeiaround a trend, a discrepancy

that is mainly attributed to the limited size of the expenntad data set. When the correlation
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Figure 12: Warp out-of-plane centroid deviations trendZ8mwarp tows: (a) experimental vs. (b) smoothed
deviations obtained from simulations.
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Figure 13: Correlation graph showing the experimental amdisted data of the warpcentroid coordinate.
A linear approximation of the first lag data is performed tdulee the correlation length.
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length is approximated by a linear fit to the five nearest pspacings K < 5), better
agreement results in higher correlation lengths for thelpced deviations, especially for
tow parameters with a correlation length smaller thanThe simulated standard deviation
and correlation length for generatedentroids and aspect ratkR are shown by means of
example in table 3. Standard deviations of all parametersiarulated with high accuracy
(A < 0.12%), while the correlation length of the tow path paransetrthe z-centroid
show significant normalised errors from the target data-(73%). Some but not all of
the normalised errok arises in the smoothing operation to remove short-wavéhemgjse:
correlation lengths are slightly increased after the simagtstep, because neighbouring
values are made more dependent.

Table 3: Standard deviation and auto-correlation lengtlhfe combined data set of war@mnd AR deviations
produced with the Markov Chain algorithm. Smoothed resarésindicated bysm

Oz O AR &2 EAR
[mm]  [] [mm]  [mm]
Warp genus 0.014 1.772 3.08 8.77
Awarp 0.11% 0.12% 73.16% 20.90%
Warp genus sm 0.013 1.755 3.65 10.86
Awarp-sm 5.84% 1.09% 104.79% 49.61%

In addition, the generated and experimental average ulistaadard deviation and
auto-correlation length are compared. Unit cell staséicre computed by identification of
tows belonging to a single unit cell in the virtual specim@e Markov Chain permits a
good comparison in average values for all short-range petersias presented in table 4.
The generated unit cell standard deviations and autodatioe lengths are centred around
the target values, for both warp and weft tows. This is dermated for the warg-centroid
coordinate in figure 14. Similar to the results in [13], snimog has limited &ect on the
unit cell standard deviation, while a high variance is obsdrfor the non-smoothed and
smoothed correlation lengths. The sensitive calculatioth@® correlation length as linear

approximation of the first lags in the auto-correlation ¢grapd the relatively small number

48



of data points (128 per unit cell) are likely sources of thectkpancy between generated
and experimental correlation lengths. As indicated indahlthe normalised fferenceA
increases substantially for the smoothed statistics toretd0% for the standard deviation
and from 50% till 73% for the correlation lengthsodnd AR

The modest errors in generated standard deviations anauter lerrors in generated

correlation lengths can be reduced to acceptably smallsldyea simple expedient [40]:
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Figure 14: The unit cell statistics of the generated ouplafie warp centroid positions (a) without and (b)

with smoothing. Simulated data achieve the target stegisin average. When smoothing is applied, the
simulated standard deviations are slightffeated, while all correlation lengths are increased.
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if the target values used to calibrate the Markov Chain geéoeeae shifted by a suitable
amount, the generated statistics can be made to match ted desired target statistics very
well. The required shift can usually be found in a singleatem, because each generated
variance or correlation length is approximately propardico the value used for calibration
of the Markov Chain.

Table 4: Mean of the standard deviation and auto-correldgiogth of the warg andARdeviations belonging
to single unit cells, produced with the Markov Chain algormt Smoothed results are indicateddm

<0z> <O0OprR> <§Z> <§AR>

[mm] [-] [mm]  [mm]
Target [17] 0.014 1.774 2.27 6.84
Warp tows 0.013 1.569 2.15 7.00
Awarp 429% 11.56% 5.29% 2.32%
Warp tows sm 0.013 1.540 3.45 11.82
Awarp-sm 10.71% 13.22% 51.78% 72.82%

5.4.4. Simulation of auto- and cross-correlated deviatiby the cross-correlated Karhunen-
Loeve Series Expansion

This technique is employed to simulate the in-plane cedifpoisition{p}, which is the
only tow path parameter in the considerg# ®vill woven composite that is cross-correlated
with adjacent tows. It is also the only parameter which pssselong-range trend. The
Series Expansion is performed separately for warp and vesfug with forty individual
tows per genus in one specime; (= 40), equidistantly spaced over ten times the periodic
length iny-direction for the warp genus or ixdirection for the weft genus. Each set of
long-range tow path deviatiorhi;j(x) is described over a sparse equidistant grid of forty-one
points (\; = 41) that span at least ten times the periodic length of itsdivection.

The auto-correlation and cross-correlation matrices anstcucted from the fitted cor-
relation functions to the computed Pearson’s correlatadones for diferent point spacings,
deduced in section 4.2 and summarised in table 5. Autodetioa is obtained by pro-

jecting the auto-correlation functions onto the grid oftyeone points representing the tow
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length, while the cross-correlation functions are pradainto the grid of forty points rep-
resenting the in-plane positions of each individual towhp#t this procedure, it is assumed
that the auto-correlation data only depend on the separafipoints in the tow direction,
while cross-correlation data depend only on the separafipoints in the direction normal
to the tows. In a last step, the generated long-range dengtdefined on a sparse grid of

forty-one points, are interpolated at all locations on therfigrid of 320 points.

Table 5: Input correlation functions and applied trunaafior simulating the in-plane fluctuations.

Warp tows Weft tows
. 2
Auto-correlationCauto a@aexp(—ﬁ) afveexp(— WTexﬁz)
: fauto
H X Tg(
Cross-correlatiof¢oss exp(—éiz) exp(— Weﬂz)
) Cross
Nyar 33 4
Nf’r 40 13

Realisationdd j(x) of the in-plane centroids of warp and weft tows are computgdg
the truncated series of equation 14. After sorting the eigleles, only theN,, or Ng,
largest eigenvalues and corresponding eigenvectors asgdaved in the procedure instead

of respectivelyN; andN;. An appropriate measure of the captured variability is gilg

y [mm]
y [mm]

(a) Experiment (b) Simulation

Figure 15: Warp in-plane centroid deviations trend for 80pMaws: (a) experimental vs. (b) simulated
deviations.
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the normalised sum (or truncation errgnvhich is fixed to minimum 0.9975:

LA
i’\il Ai

> 0.9975 (17)

with N,eg equal toNy,r or N¢,. The applied truncation for warp and weft deviations is re-
lated to wavelength of the variations in each direction angiven in table 5. Throughout
the procedure, no correlation control techniques are densd to reduce possible spurious
correlation between the random varial:;@g A sensitivity analysis concluded that this ad-
ditional operation does not add in significant accuracylenesulting statistics. Additional
side points to the considered grid of the random field areoreskeen since no disturbance
in the produced deviation values are observed at the begjramd end of the field.

In-plane centroid fluctuations are generated for #0* tows of each genus. The short
wavelength of the experimental warp deviations and longalemgth of the measured weft
variations are reproduced by the simulations. The cormdgace for the warp in-plane
deviation trend is demonstrated in figure 15. In contrash&odeviations produced with
the Markov Chain algorithm in section 5.4.3, no additionabsthing operation is needed.
Quantification of the spikes in the produced fluctuationsctares a less spiked path than
observed in the experiments. This is not only attributedh&oSeries Expansion technique,
but also to the normality assumption of the in-plane deoretiwhich diminishes the pres-
ence of larger spikes in the simulated path.

The conformity between the experimental and simulatedsstat is validated for the
warp tows using data of thousand generated virtual speamelnis information is inves-
tigated for the (i) combined data set, (ii) individual speens consisting of hundred unit
cells and (iii) individual 1-D fields, each representing ¢mw with a length of ten unit cells.

Statistics of the combined data set are precisely repratiwdd normalised dierences
A for standard deviation and correlation length&,uo, £cross Which are less than 1% (ta-
ble 6). Target correlation functions (table 5) and simuaterrelation functions perfectly

overlap with small dierences for the largest lag spacings, shown in figure 16 éowtrp
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auto- and cross-correlation graph.

When the statistical data per specimend >, < &uo >, < &cross >) are considered,
again good correspondence is obtained as indicated in @&blehe produced auto- and
cross-correlation lengths for the warp tows of all thouseeidforcement descriptions are
shown in figure 17. All generated correlation lengths havenatised errors\ which are

less than 3.48% for the standard deviation and maximum 1fé2%ae correlation lengths.

Table 6: Standard deviation and correlation lengths fofijh@mbined data set of in-plane positions and (ii)
mean of the individual specimens, generated with the cros®lated Series Expansion technique.

comb spec comb spec comb Spec
o <o > auto < €auto ~ cross < &cross >

[mm]  [mm]  [mm]  [mm]  [mm]  [mm]

Warp tows 0.106 0.103 115.81 114.00 4.54 4.42
Awarp 0.09% 3.48% 0.80% 0.78% 1.03% 1.72%

An overview of the individual warp field statistics, in terrasstandard deviation and
auto-correlation length, is presented in table 7. The expatal information of the individ-
ual tow standard deviation and correlation informationomputed from arranging the data
in [14]. While the generated standard deviation is obtaingtim3% error, the produced

auto-correlation length only approximates the targetevaith similar order of magnitude.

1®
xz T 05©
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3 5 |°
o I N
E ol § ol “““NeEEEEREEEEEE BECGOE B0 CARAREORAR DI
O  Target correlation O  Target correlation
Generated correlation - Generated correlation
-0.5 : ‘ : : : -0.5 : : . . :
20 40 60 80 100 120 0 20 40 60 80 100 120
distance [mm] distance [mm]
(a) Auto-correlation (b) Cross-correlation

Figure 16: Comparison of the warp input and simulated (a)-aotrelation and (b) cross-correlation func-
tions. A perfect fit is obtained with minor fluctuations foethighest point spacings.
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Figure 17: Simulated (a) auto- and (b) cross-correlatiogties of the warp in-plane centroids. The experi-
mental value is simulated on average.

Latin Hypercube sampling of the independent deviatignsnsures a good similarity with
the target mean and standard deviation. TiEedBnce in target and simulated correlation
length is due to the normality assumption of the deviatiassitution and the ideal fitted
input correlation functions. These provoke the duplicatd the statistical information on

the individual tow level.

Table 7: Standard deviation and correlation lengths fawiddal 1-D random fields, representing the in-plane
centroid, produced with the cross-correlated Series Esipartechnique.

target 1D target 1D
g o auto auto

[mMm] [mm] [mm] [mm]

Warp tows -mean 0.051 0.053 20.69 32.06
- 2.93% - 54.93%

Awarp;mean

6. Construction of virtual specimensin a geometrical modelling software (step 3)

The last step of the multi-scale framework (figure 2) creaiesial specimens with
random geometry that possesses both long-range and shge-deviations with the appro-
priate auto- and cross-correlations. In this paper, we ek@nthis step by using the com-

mercially available WiseTex software [16]. The tow pathatgsion of a nominal WiseTex
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model is overwritten by the stochastic tow path realisajovhich are built as combination
of the average trend with the generated zero-mean devsatioreach tow path parameter.
The WiseTex XML-structure is used to overwrite the tow pafoimation since it permits
scripting of local reinforcement information without theed of understanding the internal
computational procedure [58]. In addition to the tow pathadgtion, other path informa-
tion of the nominal model is updated such as the path lengthtanorientation vectors that
fix each cross-section along the path in space [13, 59, 4].

Figure 18 compares a nominal model with a generated staclsgsicimen of the /2
twill woven composite. A substantially flierent reinforcement description is observed.
In contrast to the nominal model where warp and weft tows alleviing straight paths,
the random model shows a significanftdience in the in-plane centroid mobility for the
warp and weft tows: weft tows are more variable and possesteting behaviour between
neighbouring tows. This results in spatial distributioriled open space between two neigh-
bouring tows which varies locally. The detailed image of dnteary unit cell shows the

variation in the out-of-plane centroid position and towss-@ectional variations.

7. Discussion

Generally, the statistics of a stochastic textile can beencompletely replicated using
methods that use all available auto-correlation infororaéind incorporate cross-correlations
as well, such as the Series Expansion technique and the stBdurier transform detailed
above. These methods calibrate the generation proceduratohing the variation of cor-
relations between pairs of points whose separation riges #tectively zero to the span
of the data. In contrast, the Markov Chain method targets thdyinitial, approximately
linear decrease in the correlation between data from papsiots as the separation of the
pair increases from zero. It is used when data are nicgntly rich to support the more
detailed analysis of the Series Expansion or modified Foorethods, and combined with
the simple iteration described in section 5.4.3 to reduc@&due to the discreteness of the

representation or smoothing operations, the Markov Chaitnadeis reasonably accurate
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Figure 18: WiseTex representation of a nominal and stohestual specimen. Warp and weft tows are
respectively oriented horizontally and vertically.

and expedient. For data analyzed to date, the simple contdipe transition matrix that
underlies the Markov chain procedure has proven very apaitegfor the spatially limited
data available from micro-CT experiments [49, 40, 17, 13]exehcorrelation information
is only reliably defined for pairs of data points with smalpagations. In contrast, the
data acquired using optical imaging or digital image catieh cover much larger spatial
ranges [14, 15], supporting the detail required by the Sdfigpansion or modified Fourier
methods.

The proposed methodology is devoted to typify the spatiahggrical randomness at
the meso- and macro-scale of high-performance composii@s]y used in aerospace ap-

plications. Fluctuations at the micro-level, such as fibséridbution and resin content inside
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a single tow, remain to be included. Fibre-scale variatltmse been identified using micro-
CT imaging [44, 45, 46] and may well be related to those at highales, since the spatial
structure of stochastic fibre bundles may be implicated encibnstitutive behavior of the
bundles [46], which will influence the bundle (or tow) shapeew woven into preforms.

In future work, the virtual specimens demonstrated herelmemployed to predict
the dfect of geometrical variability on the macroscopic mechanproperties. The pre-
cise description of geometrical variability over the comip® allows one to (i) predict its
mechanical performance, such adfstiss, to define a quantitative measure of the spatial
variation over the structure, (ii) perform damage simolagi with a higher fidelity, or (iii)
precisely simulate the resin impregnation of componezg-&brics. The random speci-
mens in the WiseTex format, without any adjustments, arectlir compatible with tools
for micromechanical analysis such adfstss evaluation [22, 4] and permeability simula-
tions [60]. Other simulations, especially damage investoy, require the FE representa-
tion of the random specimens. However, when transformieg/MseTex model into a FE
model, small adaptations are required of the tow path dasami since limited interpene-
tration appears in the virtual specimens. Within these nspdews need to be translated
until the interpenetration is removed, but such that togiclal rules stay satisfied [59, 41]

and statistical information is not altered.

8. Conclusions

A generic multi-scale framework is developed to generaaégstic virtual textile speci-
mens. The aim of this approach is to deliver large textile ei@d.e. consisting of multiple
unit cells, with a reinforcement structure that possesBessame statistical information
as quantified from the experimental samples. First, an @xeeatal methodology is pre-
sented to characterise the geometrical variability in seahthe centroid coordinates and
cross-sectional parameters on the short-range (mese}suad long-range (macro-scale).
Non-destructive state-of-the-art inspection technigeigsh as X-ray micro-computed to-

mography, optical imaging or digital image correlation applied to measure the fabric
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architecture in a reliable andfient way across the composite volume. The inherent scat-
ter of each tow path parameter in each tow direction is gfiadtin terms of an average
trend, standard deviation and correlation information jpglang the reference period col-
lation method. Secondly, a stochastic multi-scale maugliapproach is developed to re-
produce the measured variation in the tow reinforcemerttivithe unit cell and between
neighbouring unit cells. Random instances of tow paths ageised by combining the
deduced average trends with generated zero-mean flustsgossessing the experimental
standard deviation and correlation lengths on averageo-#&an auto-correlated devi-
ations are produced by the Monte Carlo Markov Chain for teditectures or a Series
Expansion technique, while uncertain quantities that apeddent along and between tow
paths (auto- & cross-correlated) are generated using &-carselated Series Expansion
method or a Fourier Transform method in combination with akda Chain algorithm. In
the last step, virtual composite specimens with random fbchitecture are created in ge-
ometrical modelling software, such as the commerciallylaloke WiseTex software, using
an intrusive approach. Nominal tow path descriptions asswkitten with realistic tow rep-
resentations obtained from the previous step, while pvesgthe original fibre mechanics
and matrix properties. Concepts and procedures of this fnamnkeare developed for wo-
ven composites, but only minor modifications are requiredfber textile topologies than
woven structures.

The entire roadmap is demonstrated on a carbon-ep@xal woven composite pro-
duced by RTM. Virtual specimens are simulated that spaniamegf ten by ten unit cells
and are representative for a ply within a laminate. The mledexperimental characterisa-
tion concludes that the geometrical variability of thishgerformance textile is significant
with substantial dferences for warp and weft direction attributed to the mastufang pro-
cess of the weave. The in-plane coordinate is subjectecettathest variation exceeding
the unit cell dimensions and is the only property of the towhpahich is cross-correlated
with neighbouring tows of the same type. Based on this infétiona deviations of the

out-of-plane centroid, aspect raticAR and areaA are produced using the Monte Carlo
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Markov Chain method, while the cross-correlated in-plangitfm p is generated by the
cross-correlated Series Expansion procedure. A good ausopan terms of wavelengths
and extreme values is obtained between the experimentadiandated deviations trends
for all properties. Further, all simulated tow deviatiorhiave the target statistics on av-
erage. The acquired virtual models in the WiseTex softwarehe further exploited for

studies on the reliability and quality of composites.
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