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Abstract

The quality of high-performance composite structures is difficult to predict or remains un-

known. Variability in the macroscopic performance is dominated by the spatial random-

ness in the geometrical characteristics at the lower scale,especially for textile composites.

By identifying the irregularity in the tow reinforcement, animproved assessment of the

composites’ quality can be obtained. A roadmap consisting of three steps is provided for

generating realistic virtual textile specimens spanning multiple unit cells. First, the geomet-

rical variability in the reinforcement structure is experimentally quantified on the meso- and

macro-scale in terms of average trend, standard deviation and correlation length. Next, each

reinforcement parameter is modelled as an average trend, determined from experiments,

added with zero-mean deviations. Depending on the deduced correlation information for

each tow path parameter, these fluctuations are generated byadvanced simulation tech-

niques such as a Monte Carlo Markov Chain method, a cross-correlated Karhunen-Lòeve

Series Expansion technique or a Fourier Transform method incombination with a Markov

Chain algorithm. In a last step, a virtual model of the textilegeometry is represented in

geometrical modelling software, such at the commercially available WiseTex software.

The multi-scale framework is demonstrated on a carbon-epoxy 2/2 twill woven com-

posite produced by resin transfer moulding. Simulated tow deviations trends replicate the
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experimental observations and achieve the target statistics on average.

Keywords: Textile composites, Multi-scale modelling, Non-determinism, Probabilistic

methods

1. Introduction

Composite materials have excellent mechanical properties.Especially the combination

of a high strength and stiffness with a low weight offers advantages in energy efficiency

for air, ground and water transport. However, the introduction of composites proceeds with

difficulty, particularly for safety critical components. One reason is the cost, while an-

other major obstacle remains the uncertain reliability andquality of composite structures.

Sufficient instruments are available for the characterisation of the mechanical properties by

experiments and numerical simulation. Yet, there is a lack of understanding of how and why

the mechanical properties vary across the composite product. Due to the specific nature of

each composite with its specific manufacturing process, scatter can be very pronounced

which impedes a correct estimate of the quality of the composite component. This variabil-

ity in the macroscopic performance is directly linked with scatter in the internal structure

and constituents at the lower scales.

Variability in the reinforcement structure is frequently omitted or only partially intro-

duced in simulations [1, 2, 3]. For the specific case of textile composites, the reinforcement

is adequately modelled by exploiting the hierarchical principle. Predictive models are con-

structed following a sequence from fibre, tow, textile, preform, to the final composite [4].

To represent its internal geometry, a periodic unit cell model is considered where tow path

characteristics are computed based on deterministic inputs such as fibre mechanics, topol-

ogy, tow dimensions (shape, width, height) and tow spacing.These unit cell descriptions

are considered to be repetitive along the entire structure without any variation in the tow

position, shape and dimension. However, physical samples do show randomness in the geo-

metrical parameters within a single unit cell and between neighbouring unit cells; tow path

descriptors are spatially distributed across the composite [5]. Realistic modelling of internal
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geometry should permit the introduction of local variations along each individual tow path.

Depending on the response of interest, the variability thatis modeled might include all dif-

ferent scales, including the ”fibre scale”, where fibres in the interior of tows are represented

as discrete randomly positioned entities, the ”tow scale”,where tows are represented as ho-

mogenized entities (fibres smeared into a continuum) with random shape and orientation,

the ”unit-cell scale”, representing the minimum group of tow segments needed to establish

the repeating unit of a textile architecture, and the ”sub-component scale”, typifying a major

structural element and typically comprising 102 103 unit cells.

Among the different strategies for simulating the randomness in composites using ap-

propriate scaling techniques [6, 7, 8, 9], those that are most likely to lead to accurate predic-

tions of the statistical distributions of composite properties are calibrated by experimental

quantification of the material variability. Charmpis et al. [3] present an excellent discussion

of how stochastic finite element simulations (SFEM) [10, 11]might be improved if experi-

mental data were to be used to define the random fields that are incorporated within element

properties. The desired modelling procedure for textile composites consists of three main

steps: (i) collection of material data to define the stochastic geometry of tows (the step

of uncertainty quantification and characterisation), (ii)generation of virtual specimens that

replicate the measured statistics of the stochastic tow geometry and (iii) formulation of a

stochastic multi-scale modelling scheme by which macroscopic material properties, and the

variability in those properties, are predicted from the stochastic tow properties. When the

first step is missing, analysts are forced to make assumptions regarding the input informa-

tion for the second and third steps, leading to questionableestimates of the limits of material

properties. The more detail that is available in the characterisation of the stochastic mate-

rial microstructure, the higher the possible fidelity of simulations of damage evolution. In

particular, not only are the distributions of material characteristics at any point important,

but data defining the correlations between material deviations at different points can also be

essential to complete prediction of the performance of a component [3, 7, 12].

This article describes a multi-scale framework to generaterealistic representations of

3



the reinforcement geometry, in which the variability of fibre positioning in a textile is char-

acterised on different scales and fused into virtual specimens that span manyunit cells (typ-

ically 103-105 unit cells) while retaining details of stochastic variability of tow geometry

within a single unit cell. The article starts with a general overview of existing uncertainty

modelling techniques applied to composites, before proposing the multi-scale strategy in

section 3. Section 4 discusses the experimental frameworksthat are defined to characterise

the scatter in the internal geometry over two scales: the short-range, i.e. the unit-cell scale,

and the long-range, i.e. the sub-component scale, which incorporates large numbers of unit

cells. Next, random instances of tow path parameters are produced using advanced simula-

tion techniques presented in section 5. Tow path features which are only correlated along

the length of that tow (”auto-correlation”) can be simulated using the relatively simple con-

cept of the Markov Chain [13] or a Series Expansion algorithm [14], while properties that

are correlated both along one tow and between different tows (”cross-correlation”) are pro-

duced using a cross-correlated Series Expansion technique[14] or a combination of Fourier

analysis and the Markov Chain algorithm [15]. In a final step, virtual models of the entire

composite geometry are constructed using the WiseTex software [16], which is a geome-

try processor for textile fabrics (section 6). Each step throughout the developed framework

is demonstrated for a 2/2 twill woven carbon fibre reinforced epoxy composite for which

experimental data are already reported in prior publications [17, 18].

2. Overview of existing simulation techniques for textile composites

Methods of simulating the effects of random microstructure on composite properties can

generally be classified into ”non-intrusive” and ”intrusive” approaches, terminology which

we borrow from the field of spectral methods for uncertainty quantification, with applica-

tions in, e.g., fluid dynamics [19]. In stochastic spectral analysis the unknown expansion

coefficients, appearing in the spectral expansion of the desired solution, might be computed

by adding variability to the output of a deterministic solver that represents the system being

modelled, or the solver itself might be modified to incorporate stochastic character in the
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definition of its kernel. The former case is called as a non-intrusive method, the latter an

intrusive method.

In the context of simulating the performance of a composite material with stochastic

reinforcement geometry, a non-intrusive method uses a deterministic representation of the

reinforcement geometry (e.g., perfectly regular plies in atape laminate or perfectly regu-

lar, periodic tows in a textile composite) and adds stochastic character by assigning mate-

rial properties to individual material elements that are drawn from statistical distributions;

whereas an intrusive method uses representations of the reinforcement geometry that are

themselves stochastic. Both non-intrusive and intrusive formulations are often analyzed in

a Monte Carlo framework [20], in which instantiations of random material properties (non-

intrusive method), or of a random reinforcement geometry (intrusive method), are gener-

ated by invoking a pseudo-random number generator; many specimens are generated and

the scatter in composite properties are computed [21, 22]. Intrusive methods can generally

be decomposed into three groups depending on the manner in which correlations between

deviations in the reinforcement geometry are treated, as detailed below.

2.1. Non-intrusive simulation techniques

Non-intrusive simulation techniques introduce the effects of variations in the reinforce-

ment geometry without changing the existing, idealized reinforcement model, but changing

local material properties instead.

In the approach of a non-intrusive SFEM [10, 11], the distributions of material properties

are often determined by fitting predictions to distributions of predicted lifetime and strength,

i.e., by curve-fitting the desired outcome. A more realisticapproach seeks to determine the

distributions of material properties by independent analysis of how local properties will be

affected by measured material randomness, including stochastic reinforcement geometry

and other defects. Examples of such work include studies of the compressive strength,

and fatigue life under compression-compression loading, of non-crimp fabrics that contain

random misalignments of the nominally aligned tows (figure 1(a)). Failure in compression

in both 3-D woven composites and triaxially braided composites, under loads aligned with
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non-crimp warp or weft tows in the former or axial tows in the latter, is mediated by kink

band formation. The fatal kink band forms where the misalignment angle,ϕ, of the aligned

tows is greatest. The largest values ofϕ expected in the gauge volume of a typical specimen

can be estimated as the 95th percentile of measured cumulative probability distributions

(CPDs) ofϕ, which have been determined by analyzing optical images of cross-sections of

the composites (e.g., figure 6 of [23] and figures 3 and 4 of [12]). The value of the local

compressive stressσc at which the kink band will form is well approximated by [24]:

σc =
τc

ϕ
(1)

whereτc is the critical shear stress at which the matrix within the tow fails, which can be

calibrated by independent tests (Appendix A of [25]; [26]).Combined with analysis of the

stress distribution in the composite made using non-stochastic idealisations of the reinforce-

ment geometry, the failure law of equation 1, which amounts to a stochastic assignment of

local material strength, because the value ofϕ is a random variable, successfully predicts

compressive strength (e.g., figure 1(a); see also figure 11 of[12]). Combined with a law for

the degradation ofτc with elapsed fatigue cycles, the same approach successfully predicts

strength-life (S-N) curves for 3-D woven composites under cyclic compressive loading [27].

While these studies used a single measure of the distributionof φ to predict the most likely

compressive strength, a distribution of compressive strengths for an ensemble of specimens

could be predicted by the same procedure by using the complete measured distribution ofϕ

(see section 2.2.1).

Thus non-intrusive methods can be effective in a top-down engineering strategy for pre-

dicting the scatter in many engineering properties, provided relatively rich experimental

data are used to calibrate the embedded statistical distributions. However, in the absence

of detailed representations of stochastic reinforcement geometry, the potential accuracy of

predictions of performance is limited.
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Figure 1: (a) non-intrusive model: stress analysis of composite with ideal reinforcement geometry is combined
with the measured CPD for the misalignment angleϕ (illustrated in (b)) and the measured critical local shear
stressτc to correctly predict compressive strength for two groups of3-D woven composites with differing
degrees of irregularity (after [25]). (b) intrusive model with uncorrelated deviations: reinforcement model
includes random misalignments of tows. Predictions include the global stiffness reductionE/E0, computed
either using analytical orientation averaging formulae ”OA” or finite element methods ”BM”; and CPDs for
the local axial shear stressτ corresponding to different assumed distributions ofϕ, represented by the second
momentσϕ, computed using finite element methods. The shear stressτ drives kink formation in compression.
(c) intrusive model with auto-correlated deviations: correlation length for auto-correlated deviations is related
to size of domain of extreme misalignment, which influences local stress at which kink band will form, plotted
in normalized form as a function of the ratioω/d, whered is the fibre diameter (after [28]). (d) intrusive model
with cross-correlated deviations: clustering of defects can lead to tow rupture events being concentrated in two
or more zones, which enables sustained, high pullout loads and high tensile fracture toughness.
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2.2. Intrusive simulation techniques

2.2.1. Methods based on spatially uncorrelated deviations

The first group of intrusive methods introduces random deviations into the positions or

shapes of tows, thus creating a stochastic reinforcement geometry, but treats the deviations

at different locations as statistically uncorrelated (figure 1(b))

One example is a study of non-crimp 3-D woven composites, in which the positions of

nominally straight warp or weft tows were varied in a stochastic geometrical model of the

composite according to statistical distributions determined by analyzing images of speci-

mens, as described above [23, 12]. Predictions were made of the rate at which macroscopic

stiffness would decline as the average tow deviation increased; predictions made by finite

element (FE) analysis (using the Binary Model formulation, in which tows are represented

a 1-D elements embedded in a 3-D effective medium) agree almost exactly with predictions

made using orientation averaging [29, 30], an analytical method derived by assuming isos-

train conditions (figure 3 of [31]). Furthermore, when the stochastic reinforcement model

is calibrated using measured distributions of misalignment, both methods of analysis agree

well with experiments [23], implying that spatial correlations of alignment deviations may

have little effect on macroscopic elasticity.

FE analyses executed within a Monte Carlo framework also yield predictions of the

statistical distribution of the local stresses that arise under far-field loads in the presence

of populations of random local tow deviations. With the variance in local stress conditions

computed, more accurate predictions can be made of the statistical distribution of the global

stress at which kink bands occur than are possible using the non-intrusive method discussed

in section 2.1 (e.g., figure 7 of [31]). The extent to which spatial correlations among the

deviations in tow alignment might change the predicted distributions of local stress remains

to be examined.

Instead of using experimental data, the amplitude of deviations in tow positions, in mod-

els in which spatial correlations have been neglected, havealso been calibrated by matching

predicted macroscopic mechanical behaviour with experimental results [32, 33]; and com-
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puted by simulating the effect of disruptive mechanical loads on an initially ideal preform.

2.2.2. Methods including correlations between the deviations at pairs of points along a

single tow

In the second group of intrusive methods, spatial correlations are introduced among the

deviations from ideal tow geometry that exist at pairs of points, but only for points residing

on the same tow. We refer to this class of correlations as ”auto-correlations”. Given this

restriction, stochastic geometrical parameters can be considered asrandom fieldsgenerated

by a stochastic process, terminology that implies the presence of a single continuous inde-

pendent variable, which, in the present application, is theposition along a tow. In statistical

physics, the single variable would often be a time variable.If the stochastic process is a

stationary process, i.e., is governed by statistics that donot vary along the tow, and is char-

acterised by Gaussian distributions, it is fully defined by the first two moments of the data

and their auto-correlations. Three different treatments of such models in the literature can

be distinguished:

• In cases where correlation data are lacking, assumptions need to be made on the

properties of the stochastic process. Examples of such modelling of tow paths in

textiles is found in [34] and [35], where parametric trigonometric functions are used

to represent the amplitude, wavelength and/or phase of the tow path parameters that

are varied randomly from point to point on a grid with a fixed interval.

• Where experimental correlation information is available, the stochastic fields can

be calibrated to reproduce the correlation data. Realisations of such random fields

for textile features are obtained by decomposition of the correlation matrix by the

Cholesky factorisation [36] or using Principal Component Analysis [37, 38], in com-

bination with a vector of independent standard Gaussian random variables. Of these

approaches, the Principal Component Analysis is more efficient for highly correlated

vectors [39], and minimizes the dimensionality of representations.
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• Auto-correlated deviations can also be produced for tows within textiles without de-

composing the correlation matrix by using the Monte Carlo method to instantiate a

Markov Chain model [40, 41]. Tow deviations are generated by marching sequentially

from grid point to grid point along a tow path, using a probability transition matrix

that can be calibrated using experimental data for tow statistics. A post-processing

operation is required to remove unphysical spikes in the generated tow path, which

arise from the discreteness of the representation.

Simulations of composite performance that might investigate the possible influence of

auto-correlations among tow deviations upon macroscopic properties have not yet appeared.

Properties that are likely to be influenced include compressive failure due to kink band

formation: the critical stress for a kink band event dependson the size of the domain of

misaligned fibres in a composite, falling from high values asthe domain size increases until

it reaches a plateau value above a critical domain size [28].In a textile composite, the size

of a misalignment domain is related to the correlation length for tow alignment deviations

along a single tow (figure 1(c)).

2.2.3. Methods including correlations between the deviations at pairs of points on different

tows

In the third group of intrusive methods, spatial correlations are introduced among the

deviations from ideal tow geometry that exist at pairs of points on different tows. We re-

fer to this class of correlations as ”cross-correlations”.In the presence of cross-correlations,

stochastic processes, whether analyzed by correlation matrices or the Markov Chain method-

ology, are no longer an adequate representation. Techniques are needed that accurately

simulate the correlations in all directions: along the tow and between neighbouring tows.

The simultaneous reproduction of the auto- and cross-correlation structure of a single

uncertain parameter demands more advanced generation techniques developed in the field

of stochastic mechanics. An overview of extensions to the previous procedures is:

• To acquire realisations of cross-correlated stochastic functions using the Cholesky
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decomposition, an anisotropic correlation matrix must be defined that represents the

correlation information both along and between the tow directions. This is determined

by defining a multi-dimensional normal distribution which can be described by e.g.

a two-dimensional (2-D) extension of the Ornstein-Uhlenbeck process, calibrated to

mach the required covariance matrix [36].

• A methodology developed by Vor̆echovsḱy [38] permits realisations of cross-correlated

random fields based on the Karhunen-Loève (K-L) Series Expansion. The proce-

dure was originally used to model correlated material properties in concrete, but is

generally applicable for modelling of a set of stochastic fields that share an identi-

cal auto-correlation function and of which the cross-correlation can be defined by

a cross-correlation coefficient. When applied to textile structures, each tow can be

represented by a single random field [14].

• Analysis of cross-correlations in textile structures has also been demonstrated by

combining discrete Fourier Transform analysis with the Markov Chain algorithm.

Tow packing density deviations (deviations that vary relatively rapidly perpendicular

to the tow direction) are generated using random values of the amplitude and phase

of each Fourier component taken from experimental distributions. Relatively slow

variations of the Fourier coefficients along the tow direction are then analyzed using

the Markov Chain algorithm for amplitudes and a random-walk algorithm for phases.

An inverse Fourier transform provides a virtual specimen generator, recreating corre-

sponding deviation values at all grid points [15, 42].

As will be demonstrated below, cross-correlations among tow deviations over long

gauge-lengths (the sub-component scale) imply variationsin the tow packing density, which

will influence load distribution in a textile component and therefore global stiffness and ul-

timate load. Over shorter gauge lengths, cross-correlations in tow deviations have been

shown to have a potentially strong effect on fracture toughness under tensile loads. Under

loads that are aligned with the warp direction, non-crimp 3-D woven composites occasion-
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ally exhibit anomalously high toughness, which arises because high loads continue to be

sustained even after all the aligned tows in the test specimen have failed [43]. Load transfer

is sustained by friction effects during the pull-out of the broken tow ends across the frac-

ture plane. However, simulations show that a pre-requisitefor attaining the high measured

toughness values is the presence of preferred planes on which individual tows rupture (fig-

ure 1(d)) [43]. A reasonable surmise is that the rupture sites are spatially correlated because

defects in the tow geometry are correlated (defects in tow geometry tend to weaken the

tow). The correlations desired for achieving high fracturetoughness are cross-correlations,

referring to deviations on neighboring tows.

2.3. Relation of geometrical structure to the material properties

The above examples reinforce the expectation that textile composite properties, and es-

pecially the scatter in properties, are related to the distribution of geometrical imperfections

in the reinforcing tows. In the following, we review recent advances in quantifying such

imperfections on the scale of the tow and the scale of the sub-component. Imperfections on

the scale of the individual fibre within a single tow will not be considered here, although

recent experimental analyses have appeared elsewhere [44,45, 46]. The new analyses have

benefited greatly from the advent of rapid 3-D imaging techniques, especially those based

on high-resolution computed tomography but also those based on automated sectioning,

and advanced 2-D digital correlation image analysis, whichyields data over large fields of

view. The description of stochastic variability in tow geometry is far more complete than

was possible in the era in which the examples of figure 1 were generated and will justify

much more ambitious empirically-grounded analyses of composite performance.

3. Multi-scale strategy for representing reinforcement variability

We address the measurement and theoretical description of variability in the geometry

of textile reinforcement over different scales, culminating in algorithms that generate virtual

woven specimens that replicate the statistics of experimental samples. We do not pursue the

question of how such virtual specimens can be used in high-fidelity simulations to explore
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the role of material randomness in damage evolution, but refer the reader to a survey of

recent work on this topic in which the damage is represented as multiple discrete cracks

[42]. We further restrict consideration to nominally periodic textiles. The question of how

the techniques developed for periodic cases might be adapted to quantify randomness in

non-periodic textile preforms, such as developed for integrally-woven structures [47, 48]

with symmetry-breaking features (sandwiches, heat exchangers, airfoils, etc.) is left for

future work. The presence of nominal periodicity simplifiesanalysis and greatly increases

the information content of a given specimen.

In this work, randomness in the numerical models is considered at the meso-scale (or the

unit-cell scale) and macro-level (or the sub-component scale); scatter in the matrix and fibre

properties is not considered here, but we note that fibre strength may be correlated with

geometrical imperfections, because the latter indicate that the reinforcement has suffered

some local deformation. The variability of each tow path is defined for the centroid coordi-

nates (x, y, z), tow aspect ratioAR, tow areaA and tow orientationθ of a tow’s cross-section

which experience shows offer a reasonably complete description of woven tows in a number

of cases that have been studied. Figure 2 presents an overview of the multi-scale framework,

where three main steps can be distinguished in obtaining random representations:

1. Collection and statistical analysis of experimental data

(a) Characterisation of the short-range variability (meso-scale) using samples close

in size to the unit cell.

(b) Characterisation of the long-range variability (macro-scale) using samples span-

ning many unit cells.

(c) Statistical analysis of the tow path and shape parameters in terms of average

trends, standard deviation and correlation lengths.

2. Generating instantiations of stochastic textile reinforcement using multi-scale

modelling

(a) Replication of average trends in the experimental data.

(b) Generation of zero-mean deviations that match measuredshort- and long-range
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correlations along each tow path.

(c) Generation of zero-mean deviations that match measuredshort- and long-range

correlations between pairs of tows.

3. Construction of virtual specimens in a geometrical modelling software

(a) Generation of non-stochastic geometrical model of the tow architecture using

topological ordering rules and tow characteristics supplied by the preform man-

ufacturer.

(b) Superposition of stochastic tow path and shape deviations on the non-stochastic

geometric model.

(c) Meshing of the geometrical model for use in FE calculations and attribution of

material properties to each computational element that arederived from fibre

and matrix properties supplied by the manufacturer.

In this paper, we detail the execution of these three steps, but we stop short of present-

ing simulations of textile composite performance; simulations of damage evolution, along

with the definition of the experimental and analytical techniques that can be used to cali-

brate failure criteria and fracture laws, can be found elsewhere [42]. All statistical analysis

described below has been implemented in the Matlab application. The non-stochastic ge-

ometrical model of the preform (Step 3a) was generated usingthe commercially available

WiseTex software package [16]. The examples describe a 2/2 twill weave of orthogonal

warp and weft tows, which is a two-dimensional textile in thesense that it comprises a sin-

gle relatively thin layer. When other topologies are considered, additional parameters enter

the statistical analysis, e.g. the braid angle for braids and the distortion of the Z-yarn in case

of three-dimensional non-crimp fabrics (e.g., angle interlock or orthogonal interlock).
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Figure 2: Multi-scale framework.
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4. Collection and statistical analysis of experimental data (step 1)

4.1. Experimental framework

4.1.1. Experimental quantification of variation in geometry

Analysis of the experimental data yields statistical metrics, which become the targets

for reconstruction algorithms that generate stochastic virtual specimens: a large ensemble

of instantiations of virtual specimens must have statistics that match the experimentally

determined targets.

Geometrical variability arises within a single unit cell (short-range or meso-scale) and

over many unit cells (long-range or macro-scale). Over the short range, 3-D geometrical in-

formation, including tow position and shape sampled over a grid that is dense compared to

the unit cell, can be collected using micron-resolution X-ray computed tomography (micro-

CT). Over the long range, where much larger samples must be dealt with, geometrical infor-

mation is commonly restricted to positional measurements,sampled over a relatively coarse

grid, with spacing comparable to the tow width or to the unit cell size. Long-range posi-

tional measurements can be acquired for all tows using relatively low-resolution X-ray CT,

or, for those tows that appear on the surface of the specimen,using optical imaging.

Information about a tow’s position is stored as the locus of its centroid, which is defined

as a 2-D vector of positional coordinates perpendicular to the nominal tow direction: one

component lies in the through-thickness direction,z, and the other in the orthogonal in-

plane direction,ρ. The tows are assumed inextensible, an excellent approximation for the

magnitudes of loads that arise before a composite is consolidated, and therefore positional

deviations along the tow’s axis are not independent variables and need not be quantified

(they are implied by the lateral deviations). A minimal set of information about a tow’s

shape comprises the aspect ratioAR, the areaA, and the orientationθ of the axis along

which the shape has its maximum moment, measured on a sequence of cross-sections [49,

40, 17, 13]. Information obtained by micro-CT at the unit-cell scale is relatively complete:

for each tow in a sample, the tow path centroids ((ρ, z)) and shape parametersAR, A, and

θ are available. Long-range data are restricted to positional information, although low-
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resolution CT may yield approximate data for tow shapes. If long-range data are acquired

by analysing single optical images, they are restricted to the in-plane centroid coordinate,ρ

[18], but, if they are acquired using 3-D digital image correlation (DIC), they can include

bothρ and the out-of-plane deflectionz [15].

Data for textiles can be separated according to the type or ”genus” of the tow to which

they refer, where tows of the same genus are nominally equivalent according to the definition

of the textile architecture. For example, in the 2/2 twill weave analysed in section 4.2 and

presented in figure 3, warp tows all belong to one genus, whileweft tows belong to a second.

In a 3-D weave, several distinct genuses of either warp or weft tows may exist [49, 40, 50].

yx

z

a
b

Warp tow
reference period

Figure 3: Illustrative WiseTex model of the weave architecture, built as elliptical cross-sections following
undulating pathways that match the 2/2 twill cross-over pattern, but not yet informed by experimentally de-
termined geometrical characteristics. The x-axis and y-axis of the coordinate system are respectively parallel
to the warp and weft direction. The marked lattice vectorsa and b are used for collating data from tows
of the same genus. For example, warp tow collation for long-range data is done by shifting warp towj, with
j = 2, ..,Nwarp andNwarp the number of warp tows in the specimen, through the vectormodulo[ j,4]a+( j−1)b,
so that it lies over warp towj = 1.

For woven textiles, we define a global coordinate system in which warp tows lie nomi-

nally in thex-direction, weft tows lie nominally in they-direction, and thez-direction is the

through-thickness direction (figures 3 and 4). The directions of the coordinate axes are de-

termined by finding the best fit of parallel straight lines to the data for all warp tows and all

weft tows, subject to the restrictions that the set of lines fitting warp and weft tows must be

orthogonal and the spacing for warp or weft tows of any genus must equalλx/Ng or λy/Ng,

respectively, whereλx andλy are dimensions of the unit cell in warp and weft direction,

respectively, andNg the number of tows of a particular genus per unit cell. This operation
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results in a hypothetical perfect lattice of straight, regularly spaced tows, which is an evident

choice for textiles consisting of continuous tows. Next, the actual position of any tow in a

real or virtual specimen is defined relative to the corresponding straight line in the regular

lattice. The lattice is discretised with uniform spacing which differs for either short-range or

long-range data (figure 4). To analyse both the short- and long-range data, a system of four

discrete rectangular 2-D lattices is generated, comprising one pair of relatively sparse grids

for generating long-range positional variations for warp and weft tows (figure 5, and one

pair of relatively dense grids for generating short-range positional variations for warp and

weft tows (figure 4). The spacing of rows is set to the experimentally determined spacing

for either warp or weft tows. The grid spacing along rows is either commensurate with the

unit cell size (grids for long-range variations) or much smaller than the unit cell size (grids

for short-range variations). It is convenient, although not necessary, to define grid locations

so that the grid for long-range variations coincides with a subset of the grid for short-range

variations.

For the 2/2 twill weave in figure 3, four tows of each genus occupy each unit cell (Ng = 4

for both warp and weft tows) and the spacing of the tows of the same genus is uniform within

the unit cell. For 3-D weaves where more than one genus of warpor weft tows is present,

the offset of one genus from the other is allowed to vary in the fittingprocedure and tows

of different genus may not be uniformly spaced within the unit cell [50]. However they are

each separately uniform in their spacing over many unit cells.

4.1.2. Statistical analysis at the unit cell scale

In analyzing short-range experimental data (the unit-cellscale), advantage is taken of

the expected periodicity of the textile. Each tow parametercharacterizing position or shape

for each tow genus can be decomposed into systematic, non-stochastic variations, which

describe the average positional and shape variations imposed on a tow by the interlacing

pattern of the weave over the domain of the unit cell, and stochastic deviations, which

describe random departures from this average behavior. Forparameterε ∈ {ρ, z,AR,A, θ},
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with ρ = y or x for warp and weft tows, respectively, we write

ε
( j,t,s)
i =< ε

( j,t,s)
i > +ǫ

( j,t,s)
i (2)

whereǫ( j,t,s)
i is the zero-mean deviation from the systematic value< ε( j,t,s)

i > at locationi

(i = 1..Ni) along the towj ( j = 1..Ng) of tow genust in ply s. The labels refers to the ply

number, for cases where a laminate of stacked plies is considered.

The systematic trends are identified using the method of ”reference period collation”

(figure 4) [49, 40]. For each tow genus, a reference period, whose length equals one dimen-

sion of the unit cell (λx or λy), is defined such that any point on any tow of that genus can be

mapped onto the reference period by translation through a vector k/N j,ya + l/N j,xb, where

||a|| = λx and ||b|| = λy are lattice vectors,N j,x andN j,y chosen equal to the total number

of warp and weft tows, respectively, per unit cell, andk and l are integers [49]. For 3-D

weaves, collation could involve more complicated translation vectors in general, but would

be entirely analogous. An example can be found in [50]. Figures 4(b) and 4(c) present

this collation of all data for the tow genus onto a single reference period to determine the

mean trend. Deviations in the short-range data are then defined by comparing the data for

any tow at any location with the systematic trend curve at that position, which is created

by translating the trend defined on the reference period through the appropriate lattice vec-

tor (figures 4(d)). While figure 4 exemplifies reference periodcollation for one positional

coordinate, an exactly similar procedure can be defined for any tow characteristic.

4.1.3. Statistical analysis at the sub-component scale

The few high-quality long-range data sets that have been published to date for woven

textiles share the characteristic that the largest amplitude deviations in the positions of tows

have wavelengths that are comparable to, or slightly greater than, the specimen size. Since

the amplitude tends to be much larger than that of deviationswith shorter wavelengths, down

to the unit cell size, we conjecture that they may have a different source. Since, furthermore,

the wavelength is consistent with that expected if the specimen were to be gripped near its
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Figure 4: Reference period collation for short-range data,exemplified for the out-of-plane positional coordi-
nate of tows. (a) Data collected for a specimen whose size is slightly larger than the unit cell, which contains
two warp tows with staggered phases in the weave. (b) Collation of data onto a single ”reference period”,
by shifting data for segments of tows through lattice vectors (k/N j,ya, l/N j,xb). (c) Averaging of the collated
data defines the systematic trend for the positional parameter (red curve). (d) When the systematic trend curve
defined on the reference period is translated by a lattice vector (k/N j,ya, l/N j,xb), the deviation of the positional
parameter from the systematic trend can be found for any gridpoint, as illustrated for two grid points.

periphery and subjected to distorting loads, we conjecturethat the largest wavelength devi-

ations were created by handling of the fabric after it had left the loom, whereas deviations

characterized by shorter wavelengths are believed to have been generated by randomness in

the actions of the weaving loom. We will refer to the longest wavelength deviations in tow

positioning as ”handling-induced trends”.

Data for the subject 2/2 twill weave in this paper reveal handling-induced trends that are

pure shear deformations (no dilation or compression, i.e.,change in the separation of tows),

with the shear approximately uniform over the specimen. Given this, the handling-induced

trends were deduced as illustrated in figures 5(a) and 5(b), by a procedure analogous to ref-

erence period collation, but with the reference period sizeequal to a specimen dimension.

With handling-induced trends thus defined to be uniform overthe specimen, and effectively

deterministic for that particular specimen, one may define stochastic deviations using an
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analogue of equation 2, i.e., decompose positional variations into a systematic trend (the

handling-induced trend) and stochastic deviations. The definition of the stochastic devia-

tions for long-range data is illustrated in figure 5(c).

x

y

one unit cell
idealized tow locus

measured tow locus

(a)

x

y

(b)

x

y

x3

y5

deviation at position (x3, y5)

(c)

Figure 5: Handling-induced trends in long-range data. (a) Schematic of long-wavelength positional variations
for warp tows found in long-range data for a specimen much larger than the unit-cell size. (b) The positional
data for each tow are translated in they-direction so that they approximately coincide; and the mean of the
superposed data is computed as the mean handling-induced trend (red curve). (c) The deviations in tow
position due to machine noise are computed translating the curve for the mean handling-induced trend back
to the nominal position of any towj, and the difference between the data curve for that tow and the mean
handling-induced trend at any grid pointxi is recorded as the deviation in the tow position at grid point(xi ,
y j).

The assignment of long-range positional deviations as ”handling-induced trends” or

”machine-induced stochastic deviations” has so far been the subjective interpretation of
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long-range data for single specimens of a 3-D interlock weave [15] or one pair of speci-

mens of a twill weave [18]. In the analysis of the 3-D interlock weave, handling-induced

trends were defined to include variations in tow spacing as well as shear distortions, which

appeared justified by those data [15]. Handling-induced trends might generally be expected

to be stochastic, differing from specimen to specimen, unless the handling conditions were

to be repeatable for some reason. Yet, curiously, in the analysis of the pair of 2/2 twill

weave specimens, the handling-induced trends were found tobe nearly identical for the two

specimens. Many more specimens need to be analyzed before the characteristics and origin

of so-called handling induced trends will be clarified. In this paper, in considering data for

a single specimen, they play an analogous role in analysis tothe systematic trends defined

for short-range data.

4.1.4. The data structure of deviations

For both scales, the random deviationsǫ( j,t,s)
i are computed for every data point on the

grid as the departure from the mean behavior expected for that grid point for the systematic

or handling-induced trends. The deviations constitute a ”random field”, defined over a 2-D

spatial grid. Consider a tow parameterε ∈ {ρ, z,AR,A, θ}, with ρ = y or x for warp and weft

tows, that has been evaluated for one tow genus at each grid point (figure 4). The field of

deviations inε over the entire specimen can be written as aNi × N j random matrixH:

H = {[H1]T [H2]T ...[HN j ]T} (3)

with

H j = [ǫ j
1ǫ

j
2...ǫ

j
Ni

] (4)

Each row inH corresponds to the tow path deviations of a single tow which are defined

at equidistant positions along its length. For the example of the warp tows, presented in

figure 6, thex-direction containsNi grid locations, corresponding to the number of columns

in H, and they-direction containsN j grid locations, corresponding to the number of rows in

H.
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Figure 6: In-plane positional deviations of six adjacent warp tows after removal of either the systematic
or handling-induced trend. Deviations are defined on a rectangular grid, with the row spacing matched to
the tow spacing. The auto-correlation matrix is constructed by computing the covariance of deviations at
two positions along one tow. The cross-correlation matrix is constructed by computing the covariance of
deviations at two positions on different tows. The red ellipses indicate relative positions for auto-correlation
and cross-correlation for a spacing of 1 unit in the correlation matrix.

4.1.5. Correlation information and matrix representation of correlations

For both short-range and long-range data, correlation information is determined by com-

puting Pearsons moment correlation coefficient for pairs of zero-mean deviation data (fig-

ure 6). In the following, we discuss the structure of correlation data involving a single tow

parameter (e.g., one of the set{ρ, z,A,AR, θ} defined for short-range data) and a single tow

type (warp or weft). Such analysis is valid when different types of tow parameters are un-

correlated. If correlations between the deviations in different tow parameters, or between

warp and weft, are also considered, the data structure remains similar in form, but becomes

much larger. Remarks on the size of correlation data sets appear in section 4.1.7.

First, we distinguish two categories of correlations, which recognize the fact that the

magnitude of some correlations will be strongly influenced by the continuity of tows. ”Auto-

correlation” is determined by computing Pearson’s correlation coefficientCauto(k) for pairs

of data found for all grid pointsi and i′ that have the same spacingk = i′ − i sampled on
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the same tow, repeated for all tows of the same genus. ”Cross-correlation” is determined

by computing Pearson’s correlation coefficientCcross(k, k′) for pairs of data found at all grid

points (i, j) and (i′, j′) that have the same vector spacing (k, k′) = (i, j) − (i′, j′) sampled on

different towsj and j′, repeated for all pairs of tows of the same or different genus.

The correlation matrixRH summarizes the Pearson’s moment correlation coefficient in-

formation (auto- and cross-correlation) of any tow parameter. Most generally, one might

define the correlation matrix as a square matrix of dimensionN jNi × N jNi, whereNi is the

number of grid points along a single tow (e.g., alongx in figure 6) andN j is the number of

tows in the sample (e.g., number of grid points alongy in figure 6), withNi andN j taking

the same values in each of an ensemble of equally sized, nominally equivalent specimens.

To reflect the distinction of auto-correlations and cross-correlations, the correlation matrix

RH can be written as an array ofN j × N j blocks with each block a submatrixRj j ′ where the

subscripts identify one of theNF tows of warp or weft type in the data set (e.g. tows 1 till

tow 6 in figure 6)):

RH =






















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












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
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























(5)

Each submatrix entry is constructed from selecting one of the Ni ×Ni correlation data avail-

able for towsHi andH j. SubmatrixRj j ′ is represented as:

Rj j ′ =










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




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(6)

with r j j ′(xi , xi′) the Pearson’s correlation value between deviation valuesat locationsxi and

location xi′ on tow j and tow j′ respectively. Figure 6 presents in thex-direction one set

of the pair of points needed to computer11(x3, x4), and in they-direction one set of pair
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of points needed to computer12(x3, x3). The submatrices at the diagonal ofRH thus repre-

sent the auto-correlation matrices, while the off-diagonal entries are the cross-correlations

between the different tow paths.

4.1.6. Estimated size of correlation matrices

The correlation matrix so defined for a single tow parameter is typically very large.

For example, consider a plain-weave specimen in which large-scale stochasticity is being

studied and which contains 100 warp tows and 100 weft tows. For tows that are 1 mm

wide, such a specimen will be 100× 100 mm2, a relatively modest size. Assume that grid

points are located at the nominal intersections of each warpand weft pair. Then the rank

of the correlation matrix for a single tow parameter, e.g., one of {ρ, z,A,AR, θ} for either

warp or weft tows will be 104. On the other hand, if a tow parameter for warp tows is

assumed to be significantly correlated with the same tow parameter for weft tows, then the

matrix of all possible correlations for that parameter rises to rank 2× 104. If significant

correlations exist among any two of the five tow parameters, and between any pair of warp

and weft tows, then the rank of the matrix of all correlationsrises again to 105. Such a

matrix is still comfortably manageable in computations, but, if a data-rich world generates

data either for larger specimens or on a finer grid, the matrixrank may become an issue.

Partly for this reason, we also consider how the representation of the correlation information

can be reduced to far fewer degrees of freedom by certain assumptions about its plausible

structure. The assumptions allow a second, at least equallyimportant advantage: when

certain relationships exist among correlations, statistically significant information can be

obtained even from data for a single specimen.

4.1.7. Simplified representations of correlation

As well as assuming the absence of correlations between different tow parameters, or

between warp and weft pairs, a number of other assumptions about the nature of correlations

are suggested by data that have been acquired to date [49, 17,18]:

• Translational invariance

25



It is often attractive to assume that the correlation between the deviations at a pair of

grid points depends only on their vector separationτx = |x−x′|. If this is the case, then

the number of degrees of freedom in the correlation matrix,RH, is greatly reduced. In

particular, all the block matrices on any diagonal ofRH, whether the leading diagonal

(auto-correlations) or an off-diagonal (cross-correlations) become identical; and the

elements on any row within any block matrix take values that depend only on the

distance of that element from the lead diagonal of the block matrix, regardless of row.

The block matrixRj j ′ is now represented as:

Rj j ′ =


















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(7)

with r j j ′(k) the Pearson’s correlation value between deviation valuesof tow j and tow

j′ which are separated by a vectorkδ over the grid (k = 0..Ni − 1).

• Series expansions and correlation lengths

Further simplification of the correlation data matrix can beachieved by analyzing the

manner in which correlations decay as the distance between two grid points increases,

i.e., the rate of decay of the magnitude of elements of any of the block matrices,

Rj j ′, with distance of the element from the lead diagonal ofRH. The most complete

analysis of this decay is performed using a Series Expansionmethod. The Series

Expansion method uses a modest number of degrees of freedom to describe the decay.

In the simplest possible analysis, the decay is defined by a single parameter, such as

the correlation length. Both the Series Expansion method andthe definition of the

correlation length are described fully in section 5.

The question of how the functionsCauto(k) andCcross(k, k′) depend on the point separations

k andk′, and whether cross-correlationsCcross(k, k′) are significant, determine the preferred
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method and the complexity of generating virtual specimens.

4.2. Illustrative data from a 2/2 twill weave

4.2.1. Material description

Data for a 2/2 twill woven carbon fibre Hexcel fabric (G0986 injectex) [51], impregnated

with epoxy resin using a resin transfer moulding (RTM) production process [17], show

qualitative characteristics that prove to be similar to those found for a number of other

weaves (3-D interlock weaves) for which data have been analyzed to date. In the twill

weave, each unit cell of the reinforcement consists of four equally spaced warp and weft

tows with periodic lengths of the warp (x-axis) and weft (y-axis) tows that are nominally

identical:λx = λy=11.43 mm. Warp tows are represented by one genus and weft towsas a

second. Figure 3 shows a numerical model of the textile geometry.

4.2.2. Short-range information

Short-range variations are identified in [17] from a seven-ply sample of dimensions

comparable to one unit cell using laboratory X-ray micro-CT.Information about the tow

path centroids (ρ, z) with ρ=y for the warp tows andρ=x for the weft tows, tow aspect ratio

AR, tow areaA and tow orientationθ in cross-section are extracted. Statistical information

(σ, ξauto) of all tow path parameters, combined from all seven plies, are given in tables 1

and 2.

Auto-correlationsCauto(k) in the short-range data are characterized by a single scalar

parameter, the correlation lengthξ, which ”measures the distance of two different stochas-

tic field locations over which the correlation between the respective random variables ap-

proaches zero or a practically very small value” [3]. The value of ξ is determined using

linear regression of only the first fivek values, because higherk values are noisy due to the

small specimen size that can be analyzed by micro-CT. Cross-correlations in the short-range

data are found by statistical analysis to be negligible, whether between tows of the same or

different genuses [13].
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4.2.3. Long-range information

The short-range data for tow paths hint at possible long-range correlations for the in-

plane component of the positional deviations for any tow. Additional data were therefore

acquired for the deviation of the centroid of each tow, sampled by optical imaging for a

few locations per unit cell position in large one-ply samples of size 13× 13 unit cells [18],

from which a region of 10× 10 unit cells is inspected. The long-range in-plane deviations

were expressed in terms of their standard deviations and thecorrelation lengthsξ for decay

along the tow and between tows (tables 1 and 2). The correlation length was evaluated for

warp tows by fitting an exponential correlation functionCexp= exp
(

−
τx

ξ

)

to the data, while

the correlation length between weft tows was evaluated by fitting a squared exponential

correlation functionCsq,exp= exp
(

−
τ2x
ξ2

)

to the data.

4.2.4. Multi-scale character implied by systematic trendsand correlation information

Systematic trends in short-range data, whether for the out-of-plane centroid coordinate

z (figure 7(a)), the aspect ratioAR (figure 7(c)), or the cross-sectional areaA (figure 7(d)),

exhibit periodic variations consistent with the known locations of crossovers between warp

and weft tows. In contrast, systematic trends in the in-plane centroid positionρ = y or ρ = x

for the long-range data show aperiodic behavior with spatial wavelength approximating the

specimen dimensions (figure 7(b)). Because the wavelength approximates the specimen

dimensions, we interpret the systematic trends in long-range data as the result of handling

of the fabric after its removal from the loom, i.e., handling-induced trends.

In contrast to the systematic trends, the deviations in boththe long-range and short-range

data we interpret as generated during fabrication of the textile on the loom, arising from

chatter in the motion of loom components. A similar distinction was suggested by analysis

of statistical data for 3-D interlock weaves [15]. The rate of decay of auto-correlations

Cauto(k) with point separationk is substantially different for short-range and long-range

data, indicating the probable presence of distinct mechanisms for their origin.

As illustrated by the data for the 2/2 twill weave and for data for a 3-D interlock com-

posite [49], the number of parameters needed to describe deviations at the meso-scale (unit-
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Figure 7: Periodic average and handling trends after translation of all tows per tow path parameter to their
reference period, with the warp genuses defined along x-axisand the weft genuses along y-axis. Periodic
trends are represented for one unit cell distance, while thehandling effect is shown over a distance of ten unit
cells.

cell scale) is usually greater than needed at the macro-scale. For example, the 2/2 twill

composite is represented by five parameters at the meso-scale {z,A,AR, θ} and one at the

macro-scale{ρ}. Positional variations and shape distortions of tows at theunit-cell scale,

where tows are influenced by crossovers with variable spacing, are more complex than the

gradual drift in tow position that manifests over many unit cells.

4.2.5. Summary of statistical data

Standard deviations and correlation lengths for the short-range deviations and long-

range deviations (in-plane position coordinate only) are reported in tables 1 and 2. These,

as well as more complete records of correlations, will be used in a multi-scale strategy for

generating virtual specimens.
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5. Generating instantiations of stochastic textile reinforcement using multi-scale mod-

elling (step 2)

5.1. Generation strategy

The strategy for generating instantiations of stochastic textiles, or stochastic virtual spec-

imens, fits within the overarching strategy depicted in figure 2: the reconstruction step repli-

cates target statistics that have been determined by experiment to create virtual specimens

that can be used in predictions of performance and lifetime.The reconstruction process

yields ensembles of instantiations of stochastic virtual specimens, by executing the follow-

ing steps:

1. A system of four discrete rectangular 2-D lattices is constructed for generating long-

range positional variations and short-range positional variations for warp and weft

tows, which is the same as were used to analyse data in section4.1.1 but is not nec-

essary. In general, where archived statistics are being used to calibrate the virtual

specimen generator, the grid used to analyse data may not even be known. It is also

convenient to define the grid locations of the long-range lattice to coincide with a

subset of the grid locations for the short-range variations. However, the grid spacing

in the grid for generating short-range variations should beequal to or smaller than the

shortest correlation length identified by experimental analysis; and, if the effects of

all components of long-range deviations are to be analyzed using virtual specimens

in virtual tests, then the overall dimensions of the virtualspecimen generated (i.e.,

the total number of grid points) should exceed the longest correlation length iden-

Table 1: Standard deviation of the tow path parameters from the short-range [17] and long-range characteri-
sation [18], respectively indicated bysr andlr .

σsr
x σsr

y σsr
z σsr

AR σsr
A σsr

θ
σlr

x σlr
y

[mm] [mm] [mm] [-] [mm2] [ ◦] [mm] [mm]

σwarp - 0.113 0.014 1.774 0.023 0.797 - 0.106
σwe f t 0.063 - 0.015 1.440 0.024 0.833 0.615 -
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Table 2: Correlation lengths of the tow path parameters fromthe short-range [17] and long-range character-
isation [18], respectively indicated bysr and lr . Only for the in-plane position a cross-correlation lengthis
defined.

ξsr
x ξsr

y ξsr
z ξsr

AR ξsr
A ξsr

θ
ξlrx ξlry

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

ξ
warp
auto - 22.89 1.78 7.26 2.53 4.56 - 114.89
ξ

warp
cross - - - - - - - 4.49
ξ

we f t
auto 9.42 - 1.62 5.48 1.01 3.49 52.89 -
ξ

we f t
cross - - - - - - 13.16 -

tified by experimental analysis. The following steps are then iterated for each tow

characteristic.

2. Long-range, handling-induced trends (figure 5) are generated for warp and weft tows

at the grid locations of the sparser grid for long-range variations. Values at the grid

locations of the finer grid for short-range variations are then generated by interpola-

tion.

3. Short-range, deterministic trends are generated for warp and weft tows at the grid

locations of the finer grid for short-range variations. Since the virtual specimen is

generally much larger than one unit cell, whereas the short-range, deterministic trends

are recorded over a single reference period, the short-range, deterministic trends for

the whole virtual specimen must be generated using the reverse of the process of

reference period collation (figure 4) [40]: values at any grid point are set equal to

the value at the corresponding point in the reference period, which is shifted from

the grid point in question by a lattice vector,k/N j,ya + l/N j,xb, wherek andl integers

(section 4.1.2).

4. The long-range handling-induced trends and the short-range deterministic trends are

combined at all locations on the finer grid by linear superposition. Linear superposi-

tion is valid because the spatial gradient in the long-rangehandling-induced trends is

generally small over gauge lengths commensurate with the unit cell and therefore the

long-range handling-induced trends will not have influenced the deduction of short-
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range deterministic trends from experimental data.

5. Long-range stochastic deviations are generated at all locations of the sparser grid

using Monte Carlo Markov Chain methods or Series Expansion techniques. Values

of long-range stochastic deviations are then generated at all locations on the finer grid

by interpolation.

6. Short-range stochastic deviations are generated at all locations of the finer grid using

Monte Carlo Markov Chain methods.

7. The long-range deviations and the short-range deviations are combined at all locations

on the finer grid by linear superposition. The validity of using linear superposition

rests on whether the short-range and long-range deviationsare uncorrelated. Because

the characteristic wavelength of significant spectral components of the short-range

deviations tends to be less than the shortest characteristic wavelength of long-range

deviations, their correlation is likely to be weak. However, proof of this assumption

awaits richer data sets.

8. The deterministic trends resulting from step (4) are combined with the stochastic

deviations resulting from step (7) to create the complete specification of one tow

characteristic throughout a single stochastic virtual specimen.

9. Steps (2) through (8) are repeated for all tow characteristics, and for both warp and

weft tows, to create a single virtual specimen.

10. Steps (2) through (9) are iterated to generate an ensemble of stochastic virtual speci-

mens.

The above scheme implicitly assumes that deviations on towsof different type (warp

and weft) are uncorrelated. This is a valid assumption for a number of data sets gathered to

date. Elaborations of the process to treat correlations between tows of different type appear

in [52].

We will illustrate this procedure, for a single ply of fabricwith tow parameters consisting

of the set{ρ, z,A,AR, θ}. However, the procedure would remain the same for any type of

periodic textile, including 3-D weaves, except that, if a larger numbers of tow genuses were
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present, the procedure would be based on an appropriately enriched lattice.

5.2. Reconstruction algorithms

A number of algorithms have been developed to solve the reconstruction problem, i.e.,

to generate instantiations of the stochastic textile reinforcement whose statistics match those

derived from experimental data (standard deviation and correlation data). The algorithms

were all developed to take advantage of the fact that statistical data for textiles tend, like

the textiles themselves, to be highly anisotropic, usuallywith slow variations along the

length of tows but rapid variations in the orthogonal direction. But even given this common

condition, different algorithms are warranted depending on the richness ofavailable data

and differences in the magnitudes of certain correlations.

• A Markov chain algorithm deals with either short-range or long-range deviations

along a single tow when auto-correlations decay in a simple manner or the experi-

mental data are relatively sparse.

• A Series Expansion algorithm deals with either short-rangeor long-range deviations

along a single tow when auto-correlations exhibit more complex behavior and the

experimental data are relatively rich.

• A combination of Fourier analysis and the Markov Chain algorithm and a random

walk model deals with long-range deviations data in which cross-correlations are

strong and complex (not well represented by a single correlation length), auto-correlations

are strong but relatively simple (can be represented by a single correlation length for

each amplitude and phase), and data are relatively rich.

• A matrix cross-correlated Series Expansion method deals with either short-range or

long-range deviations when deviations exhibit significantcross-correlations between

tows and identical, relatively complex auto-correlation behavior along each tow, and
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data are relatively rich.1.

In the following, we briefly describe the Markov Chain algorithm [40, 41, 17], the Series

Expansion technique [38, 14], and the Fourier Transform method [15]. In section 5.4, we

illustrate the advantages of the first two reconstruction algorithms (Markov Chain & Series

Expansion) by their application to data from the 2/2 twill weave described in section 4.2.

5.2.1. The Monte Carlo Markov Chain method for reconstructingauto-correlated devia-

tions

The Monte Carlo Markov Chain method offers a simple and fast method of reconstruct-

ing tow parameters for textile structures [40]. The algorithm is applicable when cross-

correlations of deviations on different tows are negligible. The Markov Chain generator

acts for each tow parameter separately and is calibrated by the corresponding experimen-

tally determined standard deviation and auto-correlationlength.

First, the deviations of the considered parameterǫ are discretised on an interval with

grid spacinga (a is chosen independently from lattice spacingν) and number of intervals

2m+1: {−ma,−(m− 1)a, ...,0, ..., (m− 1)a,ma} that satisfies the relationma = 3σǫ. The

parametermmust be chosen not too low to avoid discontinuity errors due to the discreteness

of the representation and not too high to minimize computational time. The probability of

occurrence of the discrete values ofǫ constitutes the distribution vectorPǫi for locationi:

Pǫi =
[

p(i)
m p(i)

m−1 ... p(i)
0 ... p(i)

−m+1 p(i)
−m

]T

(8)

with T denoting the transpose operation. The Markov process generates the distribution

vectorPǫi+1 of the particular parameterǫ at the next grid locationi + 1 using the probability

transition matrixAǫtrans:

Pǫi+1 = AǫtransP
ǫ
i (9)

1The requirement of identical auto-correlation behaviour is not mandatory, but considerably simplifies the
analysis
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To begin, a tri-diagonal probability transition matrix (PTM) is constructed containing two

independent parametersα andβ and a third dependent parameterγ = 1− α − β:

Atrans,0 =
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(10)

The parameterα is given an arbitrary fixed value of 0.9, whileβ is chosen to match the

target standard deviationσǫ (figure 8(a)): the moreβ exceedsγ, the more likely is each

application of the PTM to move the value ofǫ away from its mean. Next, the target correla-

tion length (information of the nearest neighbour:k=1) is matched by constructing the new

PTM Aǫtrans = ANA
trans,0, which is the iterative re-application of the tri-diagonalform Atrans,0.

The parameterNA is calibrated from the graph shown in figure 8(b), which was built for the

choice ofα = 0.9, m=10 and a particular choice ofβ.

The Markovian procedure is the core computation within the Monte Carlo based scheme

which is repeated for all parameters [40], with a different (2m+1) by (2m+1) probability

transition matrixAǫtrans for each tow parameter. A sequence of deviation values alonga tow is

initiated by mapping a uniform random number onto the cumulative probability distribution

of the vectorP of equation 8 that represents the expected distribution ofAtrans. Subsequent

values in the sequence are generated by mapping further random numbers onto the row of

Atrans that corresponds to the value of the deviationǫ at the previous grid location.
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Figure 8: Graphs used to calibrate the probability transition matrix: (a) ratioσǫ/σmax, whereσmax is the
variance generated by the PTMAtrans,0 in the caseβ = γ and (b) the numberNA of iterative application of
Atrans,0 required to reproduce the target correlation length.

The generated deviations possess high-amplitude long-range wavelength fluctuations,

according to the auto-correlation length, combined with low-amplitude short-range wave-

length variations. The latter are numerical noise associated with the discreteness of the

Markov Chain and are not observed in experiments. A post-processing smoothing oper-

ation reduces the short-range noise without affecting the statistics of the deviations to an

unacceptable degree. The smoothing is a modified version of the moving box average that

conserves the standard deviation [40]. However, when deviations with different signs are

present in the averaging interval, the conventional movingaveraging rule must be applied

which does not conserve the standard deviation. Deviation values are typically smoothed

using information over±2 neighbouring grid points.

5.2.2. The cross-correlated Karhunen-Loève Series Expansion technique for reconstructing

auto- and cross-correlated deviations

The K-L Series Expansion [11, 53] is a common technique to discretise and generate

realisations of finite deviations represented asrandom fields. This method involves the

spectral representation of the correlation matrixRH, described in section 4.1.5, in a form of

principal component analysis [54].

36



This section describes (1) the general case, in which different tows of the same type

may have different auto-correlation behaviour and cross-correlation between different tows

of the same type are not necessarily spatially homogeneous (e.g., for warp tows, cross-

correlations for a pair of points that have the samex-coordinate on two different tows may

vary whenx is varied), and (2) a simplified approach, for a specimen in which all different

tows of the same type share the same auto-correlation behaviour and cross-correlations

between different tows of the same type are spatially homogeneous, represented by a single

coefficient (e.g., for warp tows, cross-correlations for a pair ofpoints that have the samex-

coordinate on two different warp tows are independent ofx). The latter method is especially

interesting for standard weave structures.

Both algorithms are calibrated with the experimental standard deviation, and auto-correlation

and cross-correlation statistics. Truncation of the principal component analysis in each cor-

relation direction is different and related to how rapidly the variations occur: rapidvariations

in the direction normal to the tows and a much slower variation along the tow path, is the

common case for long tows of continuous fibres.

In the general case (algorithm 1), a single realisation of a set of zero-mean tow path

deviations{ǫ̃ j
i , i = 1..Ni , j = 1..N j} in the same format asH and represented bỹH, is

generated by performing the Karhunen-Loève Series Expansion [55, 11, 53]:

H̃(x) =
N j Ni
∑

z=1

√

λzηzφz(x) (11)

with {ηz , z = 1..N jNi} a set of centred orthonormal random variables and{λz, φz , z =

1..N jNi} the eigenvalues and eigenvectors obtained by solving the eigenequation ofRH:

RHΦ = ΛΦ (12)

with Λ a diagonal matrix with theN jNi eigenvectors on its diagonal andPhi the eigenvector

matrix that has as dimensionsN jNi × N jNi. In practice, a truncation of the series is per-
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formed. The number of K-L terms in the series is defined by ordering the eigenvalues in

a descending series and considering only the larger eigenvalues, which correspond to the

most influential variations. The number of eigenvalues retained is determined by testing for

adequate representation of the experimentally measured randomness. Since these generated

set of deviations are standardised Gaussian random fields, anormalisation step to the exper-

imental standard deviation should be performed which can bedifferent for each individual

field that represent deviations of a single tow path since thestandard deviation is different

for tows belonging to a different genus:H jσ j( j = 1..N j).

The general approach requires the solution of a high-dimensional eigenvalue problem

of the correlation matrixRH (orderNiN j). Vor̆echovsḱy (algorithm 2) proposes a significant

reduction in this dimension for a set of deviations{ǫ̃ j
i , i = 1..Ni , j = 1..N j}, in which the

auto-correlation and cross-correlation structures are treated as separable: the individual 1-D

fields (tow paths) share the same auto-correlation, assumedto depend only on the separation

of points in the tow direction, while the cross-correlations between the 1-D fields (tow paths)

are represented by the so called ”cross-correlation coefficients”. For each certain distance

between two tows, a different cross-correlation coefficient is computed (totalN j −1 scalars)

by using the Pearson’s correlation coefficientCcross(k, k′) for pairs of data found at all grid

points (i, j) and (i + 1, j′), where j and j′ have a fixed spacing and with a vector spacing

(k, k′) = (i, j)−(i+1, j′) repeated for all pairs of points along each set of two tows (figure 6).

The methodology requires only the information of this one scalar to reconstruct its cross-

correlation structure by multiplication of the subject cross-correlation coefficient with the

entire auto-correlation structure. This approach with cross-correlation coefficient depending

only on the separation of two tows, is specifically valid in case the auto-correlation is the

same for the tows for which the cross-correlation is evaluated, with the auto-correlation

only depending on the separation of points. Under these conditions, the approach yields

identically good results as if the generation of deviationswould be performed with the

general correlation matrixRH [38].
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In summary, the correlation information ofRH can be fully represented by two sepa-

rate correlation matrices: an auto-correlation matrixRA of orderNi, which is identical for

all individual tow paths, and a cross-correlation matrixRC of order N j which describes

all the cross-correlation coefficients between the different tow paths. Both matrices are

constructed similarly as for the submatrixRH j H j in section 4.1.5 while assuming that the

correlation between the deviations at a pair of grid points depends only on their vector sep-

arationτx = |x− x′| (section 4.1.7). Instead of performing a normalisation of the generated

random fields to the experimental standard deviation, the auto-correlation matrix is already

multiplied by the square of the standard deviation before performing its eigendecomposi-

tion. Such an approach can save considerable computationaleffort for largeRH since now

the eigendecomposition of the auto-correlation matrix andcross-correlation matrix, which

are of much smaller dimensions, can be performed separately.

The approach of Vŏrechovsḱy based onRA andRC and using the Karhunen-Loève Series

Expansion consists of subsequent steps to acquireNsim realisations of cross-correlated tow

paths (104 specimens) [14, 38]:

1. Perform eigendecomposition of the auto-correlation matrix RA = [ΦA][ΛA][ΦA]T

and apply truncation:λA
i , φA

i (x) with i = 1..Nvar (Nvar ≤ Ni).

Truncation is applied by ordering the eigenvaluesλA
i in a descending series and con-

sidering only theNvar larger eigenvaluesλA
i and corresponding eigenvectorsφA

i (x) that

capture most of the randomness.

2. Perform eigendecomposition of the cross-correlation matrix RC = [ΦC][ΛC][ΦC]T

and apply truncation:λC
i , φC

i (x) with i = 1..Nf ,r (Nf ,r ≤ N j).

Truncation is applied by ordering the eigenvaluesλC
i in a descending series and con-

sidering only theNf ,r larger eigenvaluesλC
i and corresponding eigenvectorsφC

i (x) that

capture most of the randomness.

3. GenerateNr ×Nsim (Nr = Nvar ·Nf ,r) Gaussian uncorrelated random variablesηr using

Latin Hypercube Sampling (LHS).

39



4. Construct the block sample matrixχD (Nr × Nsim):

χD = [φD][ΛD]1/2ηr (13)

with χD consisting of j blocks (j = 1..N j): χD =

[

[χD
1 ]T [χD

2 ]T · · · [χD
NF

]T
]T

where the elements of each block deliver theNvar standard Gaussian uncorrelated

random variables used in the next step to generateH̃ j(x), while the different blocks

are mutually cross-correlated.

5. Simulate a single realisation of the deviations of each tow pathH j and apply trunca-

tion [38]:

H̃ j(x) =
Nvar
∑

i=1

√

λA
i χ

D
j,iφ

A
i (x) (14)

Combination of the individual tow path realisations resultsin H̃(x) (Nr × Nsim).

This approach expands all cross-correlated fields (tow paths) within a single specimen using

the same spectrum of eigenvaluesλA
i and -vectorsφA

i (x), deduced from the auto-correlation

matrix, but the sets of uncorrelated random variables used for the expansion of each field

are now cross-correlated with neighbouring fields.

The introduction of cross-correlation for the random variables in step 4 is crucial in the

procedure and reproduces the cross-correlation information between the differentN j tow

paths using the matrix decomposition method of equation 13.The eigenvaluesλD and -

vectorsφD in equation 13 are solutions of the eigenvalue problem (similar as equation 12)

of a block cross-correlation matrixD of dimensionNvarNf ,r × NvarNf ,r :
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(15)
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This matrix possesses squared blocks (Nvar · Nvar) of unit matrices on its diagonal, while

off-diagonal blocks represent the cross-correlation betweeneach two sets of random fields

using the entries of the cross-correlation matrixRC.

In addition to this framework, Vŏrechovsḱy proposes an improvement of the accuracy

of the simulated auto-correlation by (i) applying correlation control techniques [56] and (ii)

the anticipation of additional grid locations on the sides for each field. This first operation

encounters the problem of spurious correlation which is sometimes introduced along the

random variablesχD
j,i of a single field. The effect of such techniques needs to be assessed

for each new topology to determine if this computational expensive procedure is required

or not. Furthermore, extra side points can be considered in the case disturbances are present

in the generated values at the edges of the field.

5.2.3. The Fourier Transform method for reconstructing auto- and cross-correlated devia-

tions

In many cases, long-range deviations of a tow parameter are expected to be statistically

homogeneous over a sample, but anisotropic, having rapid and complex variations in the

direction perpendicular to the tow direction and slow variations parallel to the tow direction.

For such cases, a method of Fourier analysis was developed that takes advantage of the

anisotropy to yield a relatively simple formulation with rapid execution [15].

Experimental data are of the type illustrated in section 4.2for long-range variations for

the twill weave, i.e., they consist of a 2-D grid of stochastic position values for one type

of tow (warp or weft). The data are partitioned into a sequence of scan lines, oriented per-

pendicular to the nominal tow direction (figure 9). The position values along each scan

line are subjected to discrete Fourier analysis, yielding an amplitude and phase value for

each frequency in a finite series. When the Fourier spectra forall scan lines are assem-

bled, variations of the amplitude and phase of each spectralcomponent along the nominal

tow direction can be collated. For each amplitude, the variation along the tow direction is

characterized by its standard deviation and correlation length. For each phase, the variation

along the tow direction is modeled as a random walk and characterized by a mean path
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length. Thus the stochastic data for a given tow parameter are fully characterized by the

standard deviation and correlation length of the amplitude, and the random walk mean path

length, for each of a series of Fourier wavelengths. The number of Fourier components

depends on the specimen size, but is typically 10, to order ofmagnitude.
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Figure 9: Data for positional variations of warp and weft tows in a 3-D angle interlock weave (from [15]). The
images show spatial derivatives of the lateral positional variations of tows, which are dimensionless. Some
representative scan lines are indicated (but not all), along which FFT analyses of the positional variations were
performed. Variations of the Fourier coefficients from one scan line to the next can be described quite simply.

The generation of instantiations of the full 2-D field is executed by forming inverse

Fourier transforms along each of the scan lines. The amplitude for each Fourier component

to be used at each scan line in the sequence of scan lines is generated using the Markov

Chain procedure of section 5.2.1, with the transition matrixAtrans calibrated by the experi-

mentally determined standard deviation and correlation length for that amplitude. The phase

for each Fourier component to be used at each scan line in the sequence of scan lines is gen-

erated by a random walk generator, calibrated by the experimentally determined mean path

length for that phase.

When the Fourier analysis method was applied to data for 3-D interlock weaves, handling-

induced deformation was revealed, similar to that described in section 4.2 for data for the
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twill weave. A simple way of filtering such long-wavelength trends out of the Fourier anal-

ysis was demonstrated: if the Fourier analysis is applied tothe spatial derivative of the

position field, rather than to the field itself, the Fourier spectra are dominated by the shorter-

wavelength spatial variations; the long-wavelength handling trends are filtered out.

5.3. Further remarks on the integration of scales

Because different numbers of parameters and grids with different spacings are used to

represent short-range and long-range stochastic behavior, the short-range and long-range

characteristics of instantiations (virtual specimens) are most conveniently generated sepa-

rately. The instantiations must then be integrated onto a common grid. The integration of the

short-range and long-range deviations for parameterε, denotedǫsr andǫ lr , respectively, can

be achieved by simple superposition and numerical interpolation provided the short-range

and long-range deviations are statistically independent.This integration of long-range de-

viations and short-range deviations, as described in steps(1) to (10) in section 5.1, must

deal with the fact that complete 3-D descriptions of the tow path are available at the unit-

cell scale, whereas incomplete 2-D surface information is available at the sub-component

scale, typically one or a few points per unit cell and often restricted to in-plane positional

variations. Where data on long-range variations are absent,the entire virtual specimen will

be generated using short-range variations only. Further, when the two scales are combined

onto a dense grid spanning the macro-scale, the number of degrees of freedom (DOFs) in

the entire composite model becomes very large. However, thepotential benefits of high-

fidelity studies of the effects of stochastic microstructure on sub-components may justify

very large computations.

5.4. Application to a woven textile composite

5.4.1. Overview

Virtual models are generated for the 2/2 twill woven textile spanning a region of ten

by ten unit cells, and thus containing each forty warp and forty weft tows. The model is

representative of one ply within a laminate. Each tow is discretised in 320 equidistant points
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such that the information of one unit cell is defined over a grid of thirty-two points. This

procedure is shown in figure 10 for the out-of-plane centroidcoordinate. A total of 4× 104

warp and weft tows, with lengths equal to ten times the unit cell periods, are simulated to

create 103 virtual specimens. Comparison with the experimental targetvalues is performed

by analysing histograms of the statistics and evaluating a normalised difference∆ from the

target values, defined as

∆ = |
υexp− υsim

υexp
| · 100% (16)

with υ equal to the standard deviation, auto-correlation length or cross-correlation length.

Figure 10: Procedure of generating a discretised tow representation, demonstrated for the out-of-plane centroid
position.

The modelling procedure is based on several assumptions:

• Deviations are assumed to be normally distributed

• The cross-section of a tow is approximated by an ellipse

• Short-range and long-range deviations are statistically independent of each other

• In-plane long-range deviations, characterised from a single-ply sample, are also rep-

resentative of a multi-ply sample

• Short-range deviations do not have any repetitive long-range effect exceeding the unit

cell size
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The first and second assumptions are validated by the limitedexperimental data for

the twill weave, as well as data for 3-D woven ceramic matrix composites [49, 40, 15, 46].

Validation for other materials, and for richer databases ofthe materials studied so far, awaits

future experiments. A more realistic geometrical shape of atow in cross-section can be

acquired using moment analysis (see appendix A of [17]) or splines [57]. The lack of cross-

correlation between short-range parameters and the long-range in-plane centroid permits the

independent generation of short- and long-range deviations. The fourth hypothesis supposes

that inter-ply effects have a limited effect on the in-plane centroid path. The last assumption

refers to the out-of-plane centroid, tow area and tow aspectratio that are quantified from a

unit cell sample. Although invalidation of this assumptionwould be surprising, additional

quantification over longer-range samples would be reassuring.

For the subject 2/2 twill textile composite, the generation of short-range deviations

{z,A,AR, θ} are exemplified by the Markov Chain algorithm since for each ofthese tow

path parameters no cross-correlation is observed while thedata on correlation are not very

rich and does not necessarily need a more elaborated method.The long-range deviations of

{ρ} are produced using the cross-correlated Series Expansion method since significant cross-

correlation between sets of tows are found with much more information collected about the

correlation structure.

5.4.2. Average trends

An average reinforcement description of the textile is acquired by (i) interpolation of the

individual average periodic and handling trends of each towpath parameter to the equidis-

tant grid locations over which the specimen is defined and (ii) combination of the different

tendencies. Periodicity is exploited to construct the repetitive systematic trend of the short-

range parameters along the entire lattice. Figure 11 displays the average reinforcement of

the 2/2 twill woven composite.
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Figure 11: The average reinforcement description presented for the centroid coordinates at the short- and
long-range, obtained by combining the average trends from figure 7 for all tow paths within the specimen.

5.4.3. Simulation of auto-correlated deviations by the Monte Carlo Markov Chain method

The Monte Carlo Markov Chain method has already been used to generate zero-mean

tow centroid fluctuations of unit cells in [13], using the short-range data of tables 1 and 2

including the in-plane centroid position. The generalisation of the method for multiple unit

cell structures is easily performed.

All short-range deviations of the subjected 2/2 twill woven composite{z,A,AR, θ} are

produced using this approach. Any tow parameter of this set is generated over the grid

of 320 points, as discussed in section 5.1. Based on the statistical information of these

path parameters, it is sufficient to discretise the experimental deviations in twenty pieces

(m = 10) with corresponding distribution vector. As a post-processing step, a smoothing

operation is performed using information of±2 neighbouring grid points. The procedure is

able to reproduce the wavelengths of fluctuations as demonstrated in figure 12 for the warp

out-of-plane centroid coordinate.

A total of 4× 104 warp and weft tows were created by the Markov Chain algorithm

to construct 103 long-range specimens. Reproduction of the experimental statistical data is

demonstrated for the warp tows using the (i) combined data set, collecting the deviations of

all 4× 104 tows, and the (ii) data sets that represent tow data of singleunit cells. No addi-

tional comparison of the single tow statistics is performeddue to the lack of experimental
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information of individual tows with a length spanning ten unit cells.

Figure 13 presents the auto-correlation graph of the experimental and simulated warp

z-centroid for the combined data set. Calibration ofAtrans using only the nearest neighbours

(k = 1) results in an exponential correlation course with minor fluctuations that crosses the

zero-correlation boundary for large point spacings. This is in contrast with the experimental

correlation information that is typified by data that fluctuate around a trend, a discrepancy

that is mainly attributed to the limited size of the experimental data set. When the correlation
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Figure 12: Warp out-of-plane centroid deviations trend for28 warp tows: (a) experimental vs. (b) smoothed
deviations obtained from simulations.
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Figure 13: Correlation graph showing the experimental and simulated data of the warpz-centroid coordinate.
A linear approximation of the first lag data is performed to deduce the correlation length.
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length is approximated by a linear fit to the five nearest pointspacings (k ≤ 5), better

agreement results in higher correlation lengths for the produced deviations, especially for

tow parameters with a correlation length smaller than 5ν. The simulated standard deviation

and correlation length for generatedz-centroids and aspect ratioARare shown by means of

example in table 3. Standard deviations of all parameters are simulated with high accuracy

(∆ < 0.12%), while the correlation length of the tow path parameters of thez-centroid

show significant normalised errors from the target data (∆ = 73%). Some but not all of

the normalised error∆ arises in the smoothing operation to remove short-wavelength noise:

correlation lengths are slightly increased after the smoothing step, because neighbouring

values are made more dependent.

Table 3: Standard deviation and auto-correlation length for the combined data set of warpzandARdeviations
produced with the Markov Chain algorithm. Smoothed resultsare indicated bysm.

σz σAR ξz ξAR

[mm] [-] [mm] [mm]

Warp genus 0.014 1.772 3.08 8.77
∆warp 0.11% 0.12% 73.16% 20.90%
Warp genus -sm 0.013 1.755 3.65 10.86
∆warp− sm 5.84% 1.09% 104.79% 49.61%

In addition, the generated and experimental average unit cell standard deviation and

auto-correlation length are compared. Unit cell statistics are computed by identification of

tows belonging to a single unit cell in the virtual specimen.The Markov Chain permits a

good comparison in average values for all short-range parameters as presented in table 4.

The generated unit cell standard deviations and auto-correlation lengths are centred around

the target values, for both warp and weft tows. This is demonstrated for the warpz-centroid

coordinate in figure 14. Similar to the results in [13], smoothing has limited effect on the

unit cell standard deviation, while a high variance is observed for the non-smoothed and

smoothed correlation lengths. The sensitive calculation of the correlation length as linear

approximation of the first lags in the auto-correlation graph and the relatively small number
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of data points (128 per unit cell) are likely sources of the discrepancy between generated

and experimental correlation lengths. As indicated in table 4, the normalised difference∆

increases substantially for the smoothed statistics to around 10% for the standard deviation

and from 50% till 73% for the correlation lengths ofzandAR.

The modest errors in generated standard deviations and the larger errors in generated

correlation lengths can be reduced to acceptably small levels by a simple expedient [40]:
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Figure 14: The unit cell statistics of the generated out-of-plane warp centroid positions (a) without and (b)
with smoothing. Simulated data achieve the target statistics on average. When smoothing is applied, the
simulated standard deviations are slightly affected, while all correlation lengths are increased.
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if the target values used to calibrate the Markov Chain generator are shifted by a suitable

amount, the generated statistics can be made to match the actual desired target statistics very

well. The required shift can usually be found in a single iteration, because each generated

variance or correlation length is approximately proportional to the value used for calibration

of the Markov Chain.

Table 4: Mean of the standard deviation and auto-correlation length of the warpzandARdeviations belonging
to single unit cells, produced with the Markov Chain algorithm. Smoothed results are indicated bysm.

< σz > < σAR > < ξz > < ξAR >

[mm] [-] [mm] [mm]

Target [17] 0.014 1.774 2.27 6.84
Warp tows 0.013 1.569 2.15 7.00
∆warp 4.29% 11.56% 5.29% 2.32%
Warp tows -sm 0.013 1.540 3.45 11.82
∆warp− sm 10.71% 13.22% 51.78% 72.82%

5.4.4. Simulation of auto- and cross-correlated deviations by the cross-correlated Karhunen-

Loève Series Expansion

This technique is employed to simulate the in-plane centroid position{ρ}, which is the

only tow path parameter in the considered 2/2 twill woven composite that is cross-correlated

with adjacent tows. It is also the only parameter which possess a long-range trend. The

Series Expansion is performed separately for warp and weft genus with forty individual

tows per genus in one specimen (N j = 40), equidistantly spaced over ten times the periodic

length iny-direction for the warp genus or inx-direction for the weft genus. Each set of

long-range tow path deviations̃H j(x) is described over a sparse equidistant grid of forty-one

points (Ni = 41) that span at least ten times the periodic length of its towdirection.

The auto-correlation and cross-correlation matrices are constructed from the fitted cor-

relation functions to the computed Pearson’s correlation values for different point spacings,

deduced in section 4.2 and summarised in table 5. Auto-correlation is obtained by pro-

jecting the auto-correlation functions onto the grid of forty-one points representing the tow

50



length, while the cross-correlation functions are projected onto the grid of forty points rep-

resenting the in-plane positions of each individual tow path. In this procedure, it is assumed

that the auto-correlation data only depend on the separation of points in the tow direction,

while cross-correlation data depend only on the separationof points in the direction normal

to the tows. In a last step, the generated long-range deviations, defined on a sparse grid of

forty-one points, are interpolated at all locations on the finer grid of 320 points.

Table 5: Input correlation functions and applied truncation for simulating the in-plane fluctuations.

Warp tows Weft tows

Auto-correlationCauto σ2
wa exp

(

−
τx

ξ
warp
auto

)

σ2
weexp

(

−
τ2x

ξ
we f t
auto

2

)

Cross-correlationCcross exp
(

−
τx

ξ
warp
cross

)

exp
(

−
τ2x

ξ
we f t
cross

2

)

Nvar 33 4
Nf ,r 40 13

RealisationsH̃ j(x) of the in-plane centroids of warp and weft tows are computedusing

the truncated series of equation 14. After sorting the eigenvalues, only theNvar or Nf ,r

largest eigenvalues and corresponding eigenvectors are considered in the procedure instead

of respectivelyNi andN j. An appropriate measure of the captured variability is given by
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Figure 15: Warp in-plane centroid deviations trend for 80 warp tows: (a) experimental vs. (b) simulated
deviations.
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the normalised sum (or truncation error)̺ which is fixed to minimum 0.9975:

̺ =

∑Nred
i=1 λi

∑N
i=1 λi

≥ 0.9975 (17)

with Nred equal toNvar or Nf ,r . The applied truncation for warp and weft deviations is re-

lated to wavelength of the variations in each direction and is given in table 5. Throughout

the procedure, no correlation control techniques are considered to reduce possible spurious

correlation between the random variablesχD
j,i. A sensitivity analysis concluded that this ad-

ditional operation does not add in significant accuracy for the resulting statistics. Additional

side points to the considered grid of the random field are not foreseen since no disturbance

in the produced deviation values are observed at the beginning and end of the field.

In-plane centroid fluctuations are generated for 4× 104 tows of each genus. The short

wavelength of the experimental warp deviations and long wavelength of the measured weft

variations are reproduced by the simulations. The correspondence for the warp in-plane

deviation trend is demonstrated in figure 15. In contrast to the deviations produced with

the Markov Chain algorithm in section 5.4.3, no additional smoothing operation is needed.

Quantification of the spikes in the produced fluctuations concludes a less spiked path than

observed in the experiments. This is not only attributed to the Series Expansion technique,

but also to the normality assumption of the in-plane deviations which diminishes the pres-

ence of larger spikes in the simulated path.

The conformity between the experimental and simulated statistics is validated for the

warp tows using data of thousand generated virtual specimens. This information is inves-

tigated for the (i) combined data set, (ii) individual specimens consisting of hundred unit

cells and (iii) individual 1-D fields, each representing onetow with a length of ten unit cells.

Statistics of the combined data set are precisely reproduced with normalised differences

∆ for standard deviationσ and correlation lengthsξauto, ξcross which are less than 1% (ta-

ble 6). Target correlation functions (table 5) and simulated correlation functions perfectly

overlap with small differences for the largest lag spacings, shown in figure 16 for the warp
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auto- and cross-correlation graph.

When the statistical data per specimen (< σ >, < ξauto >, < ξcross >) are considered,

again good correspondence is obtained as indicated in table6. The produced auto- and

cross-correlation lengths for the warp tows of all thousandreinforcement descriptions are

shown in figure 17. All generated correlation lengths have normalised errors∆ which are

less than 3.48% for the standard deviation and maximum 1.72%for the correlation lengths.

Table 6: Standard deviation and correlation lengths for the(i) combined data set of in-plane positions and (ii)
mean of the individual specimens, generated with the cross-correlated Series Expansion technique.

σcomb < σspec> ξcomb
auto < ξ

spec
auto > ξcomb

cross < ξ
spec
cross>

[mm] [mm] [mm] [mm] [mm] [mm]

Warp tows 0.106 0.103 115.81 114.00 4.54 4.42
∆warp 0.09% 3.48% 0.80% 0.78% 1.03% 1.72%

An overview of the individual warp field statistics, in termsof standard deviation and

auto-correlation length, is presented in table 7. The experimental information of the individ-

ual tow standard deviation and correlation information is computed from arranging the data

in [14]. While the generated standard deviation is obtained within 3% error, the produced

auto-correlation length only approximates the target value with similar order of magnitude.
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Figure 16: Comparison of the warp input and simulated (a) auto-correlation and (b) cross-correlation func-
tions. A perfect fit is obtained with minor fluctuations for the highest point spacings.
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Figure 17: Simulated (a) auto- and (b) cross-correlation lengths of the warp in-plane centroids. The experi-
mental value is simulated on average.

Latin Hypercube sampling of the independent deviationsηr ensures a good similarity with

the target mean and standard deviation. The difference in target and simulated correlation

length is due to the normality assumption of the deviations distribution and the ideal fitted

input correlation functions. These provoke the duplication of the statistical information on

the individual tow level.

Table 7: Standard deviation and correlation lengths for individual 1-D random fields, representing the in-plane
centroid, produced with the cross-correlated Series Expansion technique.

σtarget σ1D ξ
target
auto ξ1D

auto

[mm] [mm] [mm] [mm]

Warp tows -mean 0.051 0.053 20.69 32.06
∆warp,mean - 2.93% - 54.93%

6. Construction of virtual specimens in a geometrical modelling software (step 3)

The last step of the multi-scale framework (figure 2) createsvirtual specimens with

random geometry that possesses both long-range and short-range deviations with the appro-

priate auto- and cross-correlations. In this paper, we exemplify this step by using the com-

mercially available WiseTex software [16]. The tow path description of a nominal WiseTex
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model is overwritten by the stochastic tow path realisations, which are built as combination

of the average trend with the generated zero-mean deviations for each tow path parameter.

The WiseTex XML-structure is used to overwrite the tow path information since it permits

scripting of local reinforcement information without the need of understanding the internal

computational procedure [58]. In addition to the tow path description, other path informa-

tion of the nominal model is updated such as the path length and the orientation vectors that

fix each cross-section along the path in space [13, 59, 4].

Figure 18 compares a nominal model with a generated stochastic specimen of the 2/2

twill woven composite. A substantially different reinforcement description is observed.

In contrast to the nominal model where warp and weft tows are following straight paths,

the random model shows a significant difference in the in-plane centroid mobility for the

warp and weft tows: weft tows are more variable and possess clustering behaviour between

neighbouring tows. This results in spatial distribution ofthe open space between two neigh-

bouring tows which varies locally. The detailed image of an arbitrary unit cell shows the

variation in the out-of-plane centroid position and tow cross-sectional variations.

7. Discussion

Generally, the statistics of a stochastic textile can be more completely replicated using

methods that use all available auto-correlation information and incorporate cross-correlations

as well, such as the Series Expansion technique and the modified Fourier transform detailed

above. These methods calibrate the generation procedure bymatching the variation of cor-

relations between pairs of points whose separation rises from effectively zero to the span

of the data. In contrast, the Markov Chain method targets onlythe initial, approximately

linear decrease in the correlation between data from pairs of points as the separation of the

pair increases from zero. It is used when data are not sufficiently rich to support the more

detailed analysis of the Series Expansion or modified Fourier methods, and combined with

the simple iteration described in section 5.4.3 to reduce errors due to the discreteness of the

representation or smoothing operations, the Markov Chain method is reasonably accurate
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Figure 18: WiseTex representation of a nominal and stochastic virtual specimen. Warp and weft tows are
respectively oriented horizontally and vertically.

and expedient. For data analyzed to date, the simple conceptof the transition matrix that

underlies the Markov chain procedure has proven very appropriate for the spatially limited

data available from micro-CT experiments [49, 40, 17, 13], where correlation information

is only reliably defined for pairs of data points with small separations. In contrast, the

data acquired using optical imaging or digital image correlation cover much larger spatial

ranges [14, 15], supporting the detail required by the Series Expansion or modified Fourier

methods.

The proposed methodology is devoted to typify the spatial geometrical randomness at

the meso- and macro-scale of high-performance composites,mainly used in aerospace ap-

plications. Fluctuations at the micro-level, such as fibre distribution and resin content inside
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a single tow, remain to be included. Fibre-scale variationshave been identified using micro-

CT imaging [44, 45, 46] and may well be related to those at higher scales, since the spatial

structure of stochastic fibre bundles may be implicated in the constitutive behavior of the

bundles [46], which will influence the bundle (or tow) shape when woven into preforms.

In future work, the virtual specimens demonstrated here canbe employed to predict

the effect of geometrical variability on the macroscopic mechanical properties. The pre-

cise description of geometrical variability over the composite allows one to (i) predict its

mechanical performance, such as stiffness, to define a quantitative measure of the spatial

variation over the structure, (ii) perform damage simulations with a higher fidelity, or (iii)

precisely simulate the resin impregnation of component-size fabrics. The random speci-

mens in the WiseTex format, without any adjustments, are directly compatible with tools

for micromechanical analysis such as stiffness evaluation [22, 4] and permeability simula-

tions [60]. Other simulations, especially damage investigation, require the FE representa-

tion of the random specimens. However, when transforming the WiseTex model into a FE

model, small adaptations are required of the tow path description since limited interpene-

tration appears in the virtual specimens. Within these models, tows need to be translated

until the interpenetration is removed, but such that topological rules stay satisfied [59, 41]

and statistical information is not altered.

8. Conclusions

A generic multi-scale framework is developed to generate realistic virtual textile speci-

mens. The aim of this approach is to deliver large textile models, i.e. consisting of multiple

unit cells, with a reinforcement structure that possesses the same statistical information

as quantified from the experimental samples. First, an experimental methodology is pre-

sented to characterise the geometrical variability in terms of the centroid coordinates and

cross-sectional parameters on the short-range (meso-scale) and long-range (macro-scale).

Non-destructive state-of-the-art inspection techniquessuch as X-ray micro-computed to-

mography, optical imaging or digital image correlation areapplied to measure the fabric
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architecture in a reliable and efficient way across the composite volume. The inherent scat-

ter of each tow path parameter in each tow direction is quantified in terms of an average

trend, standard deviation and correlation information by applying the reference period col-

lation method. Secondly, a stochastic multi-scale modelling approach is developed to re-

produce the measured variation in the tow reinforcement within the unit cell and between

neighbouring unit cells. Random instances of tow paths are acquired by combining the

deduced average trends with generated zero-mean fluctuations possessing the experimental

standard deviation and correlation lengths on average. Zero-mean auto-correlated devi-

ations are produced by the Monte Carlo Markov Chain for textilestructures or a Series

Expansion technique, while uncertain quantities that are dependent along and between tow

paths (auto- & cross-correlated) are generated using a cross-correlated Series Expansion

method or a Fourier Transform method in combination with a Markov Chain algorithm. In

the last step, virtual composite specimens with random fibrearchitecture are created in ge-

ometrical modelling software, such as the commercially available WiseTex software, using

an intrusive approach. Nominal tow path descriptions are overwritten with realistic tow rep-

resentations obtained from the previous step, while preserving the original fibre mechanics

and matrix properties. Concepts and procedures of this framework are developed for wo-

ven composites, but only minor modifications are required for other textile topologies than

woven structures.

The entire roadmap is demonstrated on a carbon-epoxy 2/2 twill woven composite pro-

duced by RTM. Virtual specimens are simulated that span a region of ten by ten unit cells

and are representative for a ply within a laminate. The preceded experimental characterisa-

tion concludes that the geometrical variability of this high-performance textile is significant

with substantial differences for warp and weft direction attributed to the manufacturing pro-

cess of the weave. The in-plane coordinate is subjected to the largest variation exceeding

the unit cell dimensions and is the only property of the tow path which is cross-correlated

with neighbouring tows of the same type. Based on this information, deviations of the

out-of-plane centroidz, aspect ratioAR and areaA are produced using the Monte Carlo
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Markov Chain method, while the cross-correlated in-plane position ρ is generated by the

cross-correlated Series Expansion procedure. A good comparison in terms of wavelengths

and extreme values is obtained between the experimental andsimulated deviations trends

for all properties. Further, all simulated tow deviations achieve the target statistics on av-

erage. The acquired virtual models in the WiseTex software can be further exploited for

studies on the reliability and quality of composites.
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[10] Schüeller G. A state-of-the-art report on computational stochastic mechanics. Proba-
bilistic Engineering Mechanics 1997;12(4):197–321.

[11] Ghanem R, Spanos P. Stochastic Finite Elements: a Spectral Approach. New York:
Springer-Verlag; 2000.

[12] Dadkhah M, Flintoff J, Kniveton T, Cox B. Simple models for triaxially braided
composites. Composites 1995;26(8):561–77.

[13] Vanaerschot A, Cox B, Lomov S, Vandepitte D. Stochastic multi-scale modelling of
textile composites based on internal geometry variability. Computers & Structures
2013;122:55–64.

[14] Vanaerschot A, Cox B, Lomov S, Vandepitte D. Simulation ofthe cross-correlated
positions of in-plane tow centroids in textile composites based on experimental data.
Composite structures 2014;116:75–83.

[15] Rossol M, Fast T, Marshall D, Cox B, Zok F. Characterizing in-plane geometrical
variability in textile ceramic composites. Journal of the American Ceramic Society
2015;98(1):205–13.

[16] Verpoest I, Lomov SV. Virtual textile composites software wisetex: Integration with
micro-mechanical, permeability and structural analysis.Composites Science and
Technology 2005;65(15-16):2563–74.

[17] Vanaerschot A, Cox B, Lomov S, Vandepitte D. Stochastic framework for quantify-
ing the geometrical variability of laminated textile composites using micro-computed
tomography. Composites Part A 2013;44:122–31.

[18] Vanaerschot A, Cox B, Lomov S, Vandepitte D. Stochastic characterisation of the
in-plane tow centroid in textile composites to quantify themulti-scale variation in
geometry. In: Proceedings of the IUTAM Symposium on Multiscale Modeling and
Uncertainty Quantification of Materials and Structures. Santorini, Greece: Springer;
2014, p. 187–202.
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