Unsupervised multi-tissue decomposition of single-shell diffusion-weighted imaging by generalization to multi-modal data

Daan Christiaens1,2, Frederik Maes1,2, Stefan Sunaert2,3, and Paul Suetsens1,2,4

1ESAT/PSI, Department of Electrical Engineering, KU Leuven, Leuven, Belgium, 2Medical Imaging Research Center, UZ Leuven, Leuven, Belgium, 3Translational MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium, 4Medical IT Department, iMinds, Leuven, Belgium

Introduction

In recent years, data-driven analysis of diffusion-weighted imaging (DWI) has been extended beyond white matter (WM), explicitly modelling partial voluming with adjacent tissues. Supervised methods such as single- and multi-tissue constrained spherical deconvolution (CSD)1,2 reconstruct orientation distribution functions (ODF) of WM, grey matter (GM), and cerebrospinal fluid (CSF), given response functions (RF) for these tissues. These RFs are calibrated to the data based on prior segmentations, either obtained from T\textsubscript{1}-weighted anatomical data2 or directly from DWI3,4. Alternatively, unsupervised methods decompose DWI data in tissue components, akin to blind source separation, jointly optimizing tissue RFs and ODFs based on sparsity or convexity constraints5,6. However, the number of tissue classes is inherently limited by the number of shells (b-values) in the data. The 3-tissue model that was found optimal for healthy human brain data6 thus requires multi-shell data. Yet, in many cases only “single-shell” (b=0 and b=X) data is available. This study augments unsupervised tissue decomposition with multi-modal data. Specifically, we include a T\textsubscript{1}-weighted image (T\textsubscript{1}) in the framework of convexity-constrained non-negative spherical factorization (CNSF)3,7 and illustrate its applicability for decomposing single-shell DWI into WM, GM and CSF.

Method

The linear multi-tissue model decomposes the DWI signal into separate tissues, each characterized by a global, axially symmetric response function, and represents the tissue contribution in a voxel as the spherical convolution of its RF with a non-negative ODF. By casting all functions to the spherical harmonics basis, the convolution reduces to a tensor multiplication. If the RFs are unknown, this translates into a non-negative factorization problem1,2. Because this problem is underdetermined, CNSF additionally imposes that all RFs are convex combinations of the measured signal after reorientation6.

Multi-modal data is incorporated in the decomposition as additional isotropic channels, akin to the b=0, under the same assumption of linear partial voluming. As such, the estimated tissue RFs will include the expected T\textsubscript{1}-intensity. The tissue ODFs remain unchanged, and characterize both density (integral across the sphere) and directional structure. In all experiments, shell weights are set to their respective number of DWI volumes. The T\textsubscript{1} is arbitrarily assigned a weight corresponding to 100 DWI volumes.

Results

Dataset 1 is provided by the human connectome project7. Dataset 2 is acquired on a Philips Achieva 3T, isotropic voxel size 2.5 mm, 10225475 gradient directions at b=0;1000;2800s/mm4 respectively, corrected for distortion using reverse-phase encoding, and for field inhomogeneity. The T\textsubscript{1} is assumed to be registered and subsampled to the DWI.

First, we compare unsupervised tissue decomposition of multi-shell DWI with and without including T\textsubscript{1}. The RFs, shown in the top and middle rows of Fig. 1, are similar and correspond well with the ground-truth RFs, estimated with a supervised method6. Figure 2 shows the ODFs of the estimated tissue components. In both cases, the anisotropic component is associated with WM, two isotropic components are associated with GM and CSF. When including T\textsubscript{1}, the WM fraction is more sharply delineated, while GM becomes slightly fuzzier. In the ventricles, the CSF component is sensitive to Gibbs-ringing artefacts in the T\textsubscript{1}.

Secondly, we evaluate 3-tissue decomposition in single-shell DWI, augmented with T\textsubscript{1}. The RFs are plotted in Fig. 1, bottom row. Figure 3 shows the reconstructed ODFs in different shells, compared to single-shell CSD1. WM, GM, and CSF are effectively separated, even at low b-values. Close-ups of the WM ODF, reconstructed from b=2800s/mm2, are shown in Fig. 4, and indicate improved handling of partial voluming w.r.t. single-shell CSD, akin to multi-tissue CSD and CNSF.

Discussion

Our results show that augmenting single-shell DWI with T\textsubscript{1} provides the necessary contrast to discriminate three tissue components, associated with WM, GM, and CSF. While related work has used a T\textsubscript{1}-segmentation to adapt the CSD response function locally8, our approach instead finds a set of tissue RFs that explain the data (DWI and T\textsubscript{1}), without requiring prior segmentation. The comparison with single-shell CSD in Fig. 3 shows that even at low b-values, where CSF signal yields large fibre ODFs in the ventricles, our method is able to reconstruct fibre ODFs with no observable CSF contamination. Similarly, Fig. 4 illustrates that the multi-tissue decomposition accounts for partial voluming, and ultimately benefits ODF reconstruction and subsequent tractography1,2.

The extension to multi-modal data is not only applicable to T\textsubscript{1}, but also to FLAIR, MRS metabolite concentration, or any other contrast that supports the assumption of linear partial voluming. Future work could investigate its use for studying tissue structure in pathology.

Conclusion

We generalized CNSF for combined analysis of DWI and other modalities, and exemplified its use with 3-tissue decomposition of single-shell DWI in combination with T\textsubscript{1}.

Acknowledgements

D.C. is supported by Ph.D. grant SB 121013 of the Agency for Innovation by Science and Technology (IWT). Data were provided in
part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

References

Figures

Fig. 1: Response functions estimated with CNSF in dataset 1, compared to ground truth (dashed lines). Top: multi-shell DWI. Middle: multi-shell DWI + T1 anatomical image. Bottom: single-shell DWI + T1, for each shell separately.
Fig. 2: Comparison between CNSF of multi-shell DWI with and without T1 anatomical data in dataset 2.

Fig. 3: Left: Tissue ODFs estimated from T1 and single-shell DWI in dataset 2, estimated with CNSF. Right: Fibre ODF of single-shell CSD.
Fig. 4: Comparison of the proposed method to multi-shell CNSF and single-shell CSD in dataset 1. Coronal slice of the left frontal superior gyrus (top) and the semioval centre (bottom), overlaid on the T1-image.