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M. P. F. Graça,1 and J. C. González3
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In this report, we propose an AC response equivalent circuit model to describe the admittance

measurements of Cu2ZnSnS4 thin film solar cell grown by sulphurization of stacked metallic

precursors. This circuit describes the contact resistances, the back contact, and the heterojunction

with two trap levels. The study of the back contact resistance allowed the estimation of a back

contact barrier of 246 meV. The analysis of the trap series with varying temperature revealed

defect activation energies of 45 meV and 113 meV. The solar cell’s electrical parameters were

obtained from the J-V curve: conversion efficiency, 1.21%; fill factor, 50%; open circuit voltage,

360 mV; and short circuit current density, 6.8 mA/cm2. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4726042]

Despite the success reached by CdTe and

CuIn1�xGaxSe2 (CIGS) based thin film solar cells (TFSC),

toxicity and scarcity problems may represent a limiting fac-

tor for large scale production in the future. This is one of the

reasons why an increasing number of research groups are

putting effort in developing and studying alternative

absorber layers such as Cu2ZnSnS4 (CZTS). So far, for pure

sulfur CZTS the highest published efficiency is 8.4% using

co-evaporation techniques.1 Using an absorber layer based

on a chalcogenide mixture of S and Se, Barkhouse et al. pub-

lished the highest efficiency reached by this family of com-

pounds, 10.1%, using non-vacuum growth methods.2 In

order to have a better understanding of the factors that are

limiting the achievement of higher efficiencies, the device’s

electrical characterization must be carried out. The study of

the open circuit voltage vs. temperature, the external quan-

tum efficiency for different bias voltages and time-resolved

photoluminescence allows a clearer understanding of these

limiting factors.1,3,4 In this work, we use admittance spec-

troscopy to perform the electrical characterization of the so-

lar cell. This technique was already used on CZTS based

devices grown by co-evaporation methods and also on CdTe

and CIGS solar cells.2,5,6 With this technique, an AC

response equivalent circuit was proposed and from the

resulting model several parameters were extracted, allowing

the characterization of the CZTS/CdS heterojunction and the

Mo/MoS2/CZTS back contact interfaces.

The absorber layer and solar cell were grown according

to a method described elsewhere.7 The composition was ana-

lyzed using energy dispersive spectroscopy measurements of

the top surface of the absorber layer. Metal composition

ratios, [Cu]/[Zn]þ[Sn] and [Zn]/[Sn], in accordance to the

value that provides an optimum electrical performance as

shown by Katagiri et al. in an empirical study,8 0.8 and 1.2,

respectively. For phase detection, two techniques were

employed, x-ray diffraction and Raman scattering.9 These

measurements have shown that the dominating phase is

CZTS, but Raman peak signatures of b-ZnS and cubic-

Cu2SnS3 were also found.10 Optical transmittance and reflec-

tance measurements were performed on samples without the

Mo layer, allowing the estimation of the CZTS band gap to

be 1.50 eV. The parameters obtained from the J-V curve are

summarized in Table I. Interface and bulk recombination

centers, formation of secondary phases, and poor heterointer-

face quality are, probably, the sources of this low

performance.

The admittance measurements were performed in a

homemade cryostat with temperatures ranging 80 K to 360 K

using an Agilent 4294A precision impedance analyzer and

an Oxford ITC4 temperature controller. All data were

acquired in dark conditions with no applied bias. The ampli-

tude of the AC signal was set to be constant and equal to

25 mV and the analyzed frequency range was 40 Hz to

1 MHz.

Fig. 1 shows the collected imaginary part of the admit-

tance, Im½YðxÞ�, vs. the real part of the admittance,

Re½YðxÞ�, for temperatures of 293 K, 320 K, and 360 K. The

curves for lower temperatures followed the same trend. This

figure shows semicircles increasing with decreasing tempera-

ture. This is a consequence of the thermally activated behav-

ior of the conductivity.5

Fig. 2(a) shows the three equivalent circuits tested to

adjust the admittance data, namely M1, M2, and M3. The fit-

ting of the model to the measured data was done with

ZSimpWin 3.22d.11 The simplest model, M1, corresponds to

TABLE I. Electrical parameters for the studied solar cell.

Eff.

(%)

FF

(%)

Jsc

(mA/cm2)

Voc

(mV)

Rs

(X cm2)

Rp

(X cm2)

A

(dark/light)

1.2 50 6.8 360 0.85 360 1.9/2.1
a)Electronic mail: pafernandes@ua.pt.
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a device characterized by a series resistance, Rs, and a paral-

lel capacitance and resistance, Cj and Rj, respectively. The

first element models all the contact and material resistances,

such as Mo contact, ZnO:Al front window and Ni:Al contact

grid and the loop describes the CZTS/CdS heterojunction

AC response. An extra loop is added for the circuit M2,

formed by Rb and Cb which models the behaviour of a non-

ohmic Mo-MoS2/CZTS electrical back contact. In the last

model, M3, two capacitor-resistor (C1 � R1; C2 � R2) pairs

have been added to the CZTS/CdS network to account for

recombination centers in the CZTS layer.5 Additional C-R

pairs in the CdS/CZTS heterojunction section did not show

visible improvements in the fittings results.12

Fig. 2(b) shows the measured admittance for a tempera-

ture of 293 K and the fitting results for the three models. The

fitting deviations for the admittance module, jYj, versus fre-

quency are shown in Fig. 2(c). These results show that model

M3 is the most suited one. For a low frequency regime,

f< 500 Hz, all models present satisfactory fitting results with

deviations smaller than 5%. In this regime, the AC response

of the device is dominated by the capacitance of the junction,

Cj.
13,14 To improve the fittings for a higher frequency re-

gime, the back contact loop must be added, as shown in

model M2 and M3. Note that the maximum fitting deviation

decreases from �25% (M1) to �8% (M2). In this regime,

the capacitance behavior of the solar cell is given by the rela-

tion C � ð1=Cj þ 1=CbÞ�1
.13,14 The inclusion of the trap

states reduces the error to below 2% (M3). Similar results

were obtained for the other temperatures.

The extracted resistances values, Rb; Rj; R1, and R2,

are presented in Fig. 3(a). All these parameters show an ex-

ponential increase with decreasing temperature, as shown in

the logarithmic plot in Fig. 3(a). Rj seems to be well fitted

using the relation 1=Rj ¼ Gj ¼ G0 � expðT=T0Þ, where Gj is

the junction conductance, G0 and T0 are constants. This

behavior is known as temperature assisted tunneling and is

FIG. 1. (a) Complex admittance plane of the studied solar cell measured at

temperature of 293 K, 320 K, and 360 K, in dark conditions with no applied

bias voltage.

FIG. 2. (a) Tested AC response equivalent circuits of the studied solar cell. (b) Complex admittance plane of the studied solar cell measured at a temperature

of 293 K, in dark conditions with no applied bias voltage and the fittings results for the AC response equivalent circuits. (c) Fitting deviations of jYj vs. fre-

quency for the three tested circuits.
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common on low mobility semiconductors.5 In fact, this feature

was confirmed by Hall measurements in samples grown by a

similar process.15 The temperature variation of the capacitan-

ces Cj; C1, and C2 is presented in Fig. 3(b). These variables

show a decrease with decreasing temperature. The heterojunc-

tion capacitance, Cj, is characterized by a step decrease at

’ 280 K, a plateau at 6:560:2 nF cm�2 and another step

decrease at ’ 140 K. The low temperature step may be

explained by carrier freezing out and Cj should tend to the het-

erojunction geometrical capacitance, which should be close to

0.5 nF cm�2. The other variables do not seem to have any dis-

tinguishable temperature dependence within the experimental

apparatus resolution or it could be hidden below the measure-

ments errors, Rs ¼ 1:260:5 X � cm2 and Cb ¼ 98625 nF

cm�2. According to Gunawan et al.,4 the presence of a poten-

tial barrier can be defined by Rb ¼ kB

qA�T � expð /b

kBTÞ, where A�

is the effective Richardson constant and /b is the barrier

height at the interface. Fig. 3(c) presents the curve lnðRbTÞ vs.

1/T, from which high temperature /b1 was extracted with a

value of 246:4613:0 meV. It is interesting to note that for a

lower temperature the same curve also allow the estimation of

a barrier with a different height, /b2, of 70:0610:0 meV. The

nature of this result is unclear but it could be related to the

fact that the back contact device is formed by two interfaces,

MoS2/CZTS and Mo/MoS2. Attempts to model separately

these two interfaces were not successful. Fig. 3(d) shows an

Arrhnenius plot of the characteristic frequency, x0, defined as

x0 ¼ 1
RiCi

, where i¼ 1,2, for each trap level. The thermal

emission depth of the defect, EA, can be extracted following

the expression x0 ¼ n0T2 � expð� EA

kBTÞ, where n0 is the ther-

mal emission prefactor.16 The defect activation energies

obtained were ð44:760:7Þ meV and ð112:763:5Þ meV. The

shallower defect, EA1, has a transition energy higher than the

one obtained by Chen et al. of ’ 20 meV for the VCu defect.

Photoluminescence studies of samples grown by a similar

process pointed to defect activation energies values close to

the ones of EA1.15 On other hand, the deeper defect, EA2,

seems to be close to the CuZn defect activation energy of

120 meV.17

In summary, we propose an AC response equivalent cir-

cuit that consists of a series connection of three sections. The

first loop comprises all series resistances of the device. The

second describes the back contact behavior in the AC re-

gime. The temperature study of the back contact shunt resist-

ance shows a near room temperature barrier height of

246 meV. The third section describes the behavior of CZTS/

CdS heterojunction containing two trap levels. The analysis

of the latter allowed the determination of a defect’s activa-

tion energy of 45 meV and 113 meV.
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