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Abstract

This paper aims at assessing the value of load shifting and demand side flexibility for improving
electric grid system operations. In particular, this study investigates to what extent residential heat
pumps participating in load shifting can contribute to reducing operational costs and CO2 emis-
sions associated with electric power generation and how home owners with heat pump systems can
be best motivated to achieve these flexibility benefits. Residential heat pumps, when intelligently
orchestrated in their operation, can lower operational costs and CO2 emissions by performing load
shifting in order to reduce curtailment of electricity from renewable energy sources and improve
the efficiency of dispatchable power plants. In order to study the interaction, both the electricity
generation system and residences with heat pumps are modeled. In a first step, an integrated mod-
eling approach is presented which represents the idealized case where the electrical grid operation
in terms of unit commitment and dispatch is concurrently optimized with that of a large number
of residential heat pumps located in homes designed to low-energy design standards. While this
joint optimization approach does not lend itself for real-time implementation, it serves as an upper
bound for the achievable operational cost savings. The main focus of this paper is to assess to
what extent load shifting incentives are able to achieve the aforementioned savings potential. Two
types of incentives are studied: direct load control and dynamic time-of-use pricing. Since both
the electricity generation supply system and the residential building stock with heat pumps had
been modeled for the joint optimization, the performance of both load shifting incentives can be
compared by separately assessing the supply and demand side. Superior performance is noted for
the direct-load control scenario, achieving 60% to 90% of the cost savings attained in the jointly
optimized best-case scenario. In dynamic time-of-use pricing, poor performance in terms of reduced
cost and emissions is noted when the heat pumps response is not taken into account. When the
heat pumps response is taken into account, dynamic time-of-use pricing performs better. However,
both dynamic time-of-use pricing schemes show inferior performance at high levels of residential
heat pump penetration.
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Nomenclature1

A State space model matrix2

B State space model matrix3

co2ti,j CO2 emission cost4

curj Curtailment of RES5

dHP
j Heat pump electricity demand6

dIMj Centrally-suggested demand pro-7

file8

dtradj Traditional electricity demand9

fci,j Fuel cost10

gPP
i,j Power plant electricity generation11

gRES
j RES electricity generation12

nb Number of buildings13

pAUX
s,j Electricity demand auxiliary14

pHP
s,j Electricity demand heat pump15

priceGj Price profile from generation16

model17

priceIj Price profile from integrated18

model19

qDHW
s,j Domestic hot water demand20

qSj Solar heat gains21

qSs,j Internal heat gains22

rci,j Ramping cost23

sci,j Start-up cost24

tej Ambient air temperature25

tgj Ground temperature26

tmax
s,j Maximum comfort temperature27

tmin
s,j Minimum comfort temperature28

ts,j Temperature vector29

w Weighting factor load shaping30

zi,j Power plant commitment status31

HP Heat pump32

PP Power plant33

RES Renewable energy sources34

1. Introduction35

Demand response is a form of demand-side36

management for altering consumers’ electrical37

demand profiles by means of incentives such38

as dynamic electricity prices [1]. According39

to Strbac [2], demand response can reduce the40

need for investments in electricity generation,41

transmission, and distribution infrastructure,42

as well as mitigate negative effects associated43

with the large-scale introduction of generation44

from intermittent and variable renewable en-45

ergy sources (RES). Among the multiple meth-46

ods to attain demand response, as discussed by47

Gellings [3], this paper focusses on load shift-48

ing. In this paper, load shifting is employed to49

avoid electricity demand at times when power50

plants with lower efficiency are running and to51

increase demand at times when renewable en-52

ergy sources are curtailed. There are various53

methods to attain load shifting with minimal54

to no impact on process quality [4], including55

the process of providing heating or cooling in56

a building context. Load shifting of heating57

and cooling demand can either be performed58

manually by the building occupants or auto-59

matically. As shown by Wang et al. [5] and60

Dupont [6], automatic control achieves higher61

participation in demand response than man-62

ual control. The smart thermostat, an en-63

abling technology to achieve automatic control64

for heating and cooling demand [7], has drasti-65

cally increased its market share in recent years66

[8]. Apart from improving energy efficiency [9],67

some of these internet-connected smart ther-68

mostats already perform peak shaving while69

maintaining thermal comfort [10].70
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In the literature, one can find two approaches71

to determining the potential benefits of load72

shifting, either from a grid perspective or a73

building owner’s perspective. In order to eval-74

uate the potential benefits of load shifting from75

an electric system perspective, authors typi-76

cally consider direct load control [11, 12, 13, 14,77

15]. In this way, applying load shifting to res-78

idential buildings with heat pumps allows nu-79

merous benefits, such as balancing short-term80

power fluctuations of wind turbines [11], pro-81

viding reserves [12] or voltage stability [13], re-82

ducing wind energy curtailment by up to 20%83

[14], and reducing CO2 emissions by up to 9%84

[15].85

On the other hand, studies conducted from a86

building owner’s perspective typically consider87

a wholesale electricity price profile and assume88

the actions taken under load shifting do not89

effect this price profile. For example, Kamgar-90

pour et al. [16] found that for a set of 100091

residential buildings, savings of up to 14% can92

be attained with respect to a wholesale elec-93

tricity price profile. Henze et al. [17] attained94

savings up to 20% by employing the passive en-95

ergy storage present in an office building with96

respect to an on-peak and off-peak electricity97

tariff. Kelly et al. [18] also investigated the98

use of thermal energy storage to shift electric-99

ity demand to off-peak periods, but reported100

significant increases in energy use. In addition,101

Kelly et al. observed a loss of load diversity102

causing a peak demand during off-peak tariff103

periods (rebound), which is up to 50% higher104

than normal. This loss of load diversity phe-105

nomenon for thermostatically controlled loads106

is explained well by Lu and Chassin [19]. More107

advanced and dynamic price profiles have been108

suggested in different studies, e.g. Oldewurtel109

et al. [20] suggest a price profile based on the110

spot price and on the level of the traditional111

electricity demand. A good overview of dif-112

ferent price based incentives for consumers is113

provided by Dupont et al. [21].114

The motivation for the work presented in this115

paper revolves around the question what value116

grid flexibility offers. While there appears to117

be universal agreement that elasticity in elec-118

trical demand will be instrumental in dealing119

with variable and intermittent RES, little is120

known regarding the quantitative extent of the121

benefits resulting from load flexibility vis-a-vis122

conventional supply side options for accommo-123

dating the RES variability. This work begins124

this valuation of grid flexibility by investigat-125

ing the optimal control of thermostatically con-126

trolled loads of electrically driven heat pumps127

under a set of simplifying assumptions, which128

are necessary to solve this approximated prob-129

lem in human time. Future work will consider130

other flexible loads including, but not limited131

to, electric vehicle charging, commercial build-132

ing thermal mass and HVAC systems control,133

and dispatchable home appliances.134

In this research a unique approach is sug-135

gested and evaluated: First, both the elec-136

tricity generation system and the buildings137

equipped with heat pumps are modeled and138

optimized jointly in order to evaluate the theo-139

retically maximum benefits and impact of load140

shifting, similar to [22, 23]. Modeling both sys-141

tems also allows studying different load shifting142

incentives. Both supply and demand systems143

are assumed to behave rationally and strive144

to minimize their observed cost. To this aim,145

all buildings considered feature a model pre-146

dictive controller (MPC) developing optimal147

thermostat setpoint strategies. This could be148

achieved, for example, by a massive deploy-149

ment of smart thermostats performing MPC.150

In this context, MPC is a control approach,151

which optimizes the control of a building’s152

heating and/or cooling system by harnessing a153

simplified physical model of the building’s ther-154

mal characteristics and energy systems along155

with predictions on occupancy and weather156

conditions. As shown in experiments in ter-157

tiary buildings by Širokỳ et al. [24], MPC can158

reduce energy use up to 28% . Buildings with159

MPC can easily cope with dynamic price pro-160
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files, as shown by Oldewurtel et al. [20].161

The aim of this paper is twofold. First, it162

is of interest how much operational costs and163

CO2 emissions of the electric system can be164

reduced by a widespread application of load165

shifting for low-energy residential buildings166

equipped with electric heat pumps. Hence, this167

paper does not consider the potential of load168

shifting in alleviating grid congestion, provid-169

ing spinning reserves, offering frequency regu-170

lation, or providing voltage stability. Instead,171

this paper aims at assessing, in a deterministic172

manner, how much fossil fuel use and RES cur-173

tailment can be avoided at the electric system174

level. The main focus of the paper is to com-175

pare two common approaches to attain the de-176

sired benefits through load shifting with a prac-177

tical implementation in mind: direct-load con-178

trol and time-of-use pricing. These incentives179

are compared by determining to what extent180

the reductions in operational costs and CO2181

emissions, as enabled by load shifting, are at-182

tained. The results of the first part involving183

the joint optimization of energy supply and de-184

mand system serve as a reference benchmark185

for this comparison.186

In this study, the presented models are built187

on many simplifying assumptions. All models188

employ perfect predictions and assume the ab-189

sence of model mismatch. All buildings possess190

ideal model predictive controllers and have an191

identical building structure. The heat pumps192

have a predetermined, fixed COP for each op-193

timization horizon and can modulate perfectly.194

There are no constraints and losses of the trans-195

mission and distribution grids. Also, there is196

no import or export of electricity. Finally,197

there is perfect competition among all power198

plants and buildings.199

This paper will show that, even under these200

strong assumptions and simplified determinis-201

tic assessment, the performance of the studied202

load shifting incentives already significantly de-203

viates from the load shifting performance of the204

jointly optimized best-case scenario. Addition-205

ally, it is shown that this performance is very206

sensitive to the share of RES and the number207

of participating buildings.208

The boundary conditions in this study are209

inspired by the Belgian context, with an elec-210

tricity generation system dominated by nuclear211

power plants, gas-fired power plants, and re-212

newable energy sources (RES). The buildings213

considered are all detached, heating-dominated214

low-energy buildings. As shown by Patteeuw215

et al. [23], low-energy buildings are the best216

candidates for a widespread heat pump im-217

plementation in Belgium. Section 2 describes218

the different models and scenarios employed in219

this paper. The Results Section (Section 3)220

illustrates the output of the different models221

(Section 3.1) used to evaluate the load shifting222

potential (Section 3.2) and the performance of223

load shifting incentives (Section 3.3). The dif-224

ference between the performance of these load225

shifting incentives is explained in Section 3.4226

while results for mixtures of these incentives227

are shown in Section 3.5. Finally, a discussion228

is given in Section 4 in order to arrive at the229

conclusions in Section 5.230

2. Methodology231

This section consists of two parts. Section232

2.1 elaborates on the different models used, and233

the case study for assessing the load shifting234

incentives. Section 2.2 illustrates the different235

scenarios considered for applying these incen-236

tives.237

2.1. Models and parameters238

All models in this article are examined as de-239

terministic optimal control problems as listed240

in Table 1. In the first model (Gen), the elec-241

tricity generation system minimizes its total242

operational cost via a unit commitment and243

economic dispatch problem with profiles for244

electricity demand and electricity generation245

by RES. From a building owners’ perspective246

(B20 and B2), the heat pumps in the buildings247
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Table 1: Overview of the abbreviation (Abbr.) and
description of the models in this study.

Abbr. Description

Gen Electricity generation system model

B20 Large building stock model, optimal
control problem of 20 buildings.

B2 Aggregated building stock model
based on B20.

Int20 Integrated model performing a
co-optimization of B20 and Gen.

Int2 Integrated model performing a
co-optimization of B2 and Gen.

are controlled by MPC that minimizes individ-248

ual electricity cost while maintaining thermal249

comfort. In the integrated models, the two op-250

timal control problems are combined into one251

optimal control problem (Int20 or Int2) that252

jointly minimizes the total cost for generating253

electricity for both the traditional electricity254

demand and the total electricity demand, in-255

cluding that stemming from low-energy build-256

ings with heat pumps whose temperature set-257

points can be optimized. These models are258

mixed integer linear programs (MILP) with259

an optimality gap of 0.1%, implemented in260

GAMS 24.4 and MATLAB 2011b, using the261

MATLAB–GAMS coupling as described by262

Ferris [25] with CPLEX 12.6 as solver. All pre-263

sented results are from a full year simulation264

for which the electricity demand and weather265

conditions are based on Belgium in 2013.266

Electricity generation system. The electricity267

generation system is modeled as a unit com-268

mitment and economic dispatch problem [26].269

For every time step j, the commitment status270

(binary variable zi,j) and the hourly output of271

each power plant with index i (gi,j) are deter-272

mined along with the curtailment of renewable273

energy sources (curj) in order to minimize the274

total operational cost of meeting the electricity275

demand:276

min
∑
i,j

fci,j + co2ti,j + sci,j + rci,j (1)

subject to

∀j : dtradj + nb · dHP
j = curj · gRES

j +
∑
i

gPP
i,j

(2)

∀j : 0 ≤ curj ≤ 1 (3)

∀i, j : f(gPP
i,j , zi,j) = 0. (4)

277

The total cost consists of fuel cost (fci,j),278

CO2 emission costs (co2ti,j), and costs re-279

lated to starting (sci,j) and ramping (rci,j)280

of power plants. Electricity generation from281

renewable energy sources (gRES
j ) is assumed282

to have an operational cost of zero. As de-283

scribed in Appendix A or by Patteeuw et al.284

[27], the constraints (f(gPP
j , zi,j)) include min-285

imum and maximum operating points, ramping286

rates, minimum up and down times and start-287

up costs. The electricity demand consists of288

two parts. The first is the traditional national-289

scale electricity demand, assumed to remain a290

fixed profile (dtradj ). The second part is the291

electricity demand of the heat pumps (dHP
j ).292

Given the load diversity due to the difference293

in user behavior, as discussed in the text be-294

low, the electricity demand of the heat pumps295

is scaled linearly with a factor nb and hence296

represents the demand of a large portfolio of297

buildings. In order to study the magnitude298

sensitivity, the number of buildings is varied299

in multiple steps between 50, 000 and 500, 000.300

Hence, on a yearly basis, the heat pumps of301

the buildings respectively add an electricity de-302

mand between 0.4 and 4 TWh to the tradi-303

tional electricity demand of 85.6 TWh [28], i.e.304

at most roughly 5%.305

The technical parameters and fuel costs for306

the power plants are taken from Bruninx et307

al. [29] and summarized in Table 2. These308

technical parameters and costs are inspired by309
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Table 2: Parameters for the electricity generation sys-
tem per fuel type [29, 30, 28, 31]

Total Nr. of Nominal
cap. units cost

Type (MW) (-) ( EUR
MWhe

)

Nuclear 5925 8 6
Coal 760 3 30
Gas 7018 47 60
Oil 215 13 83

the Belgian power system. However, in or-310

der to cope with the large production by RES,311

the technical parameters for the nuclear power312

plants are taken from more flexible nuclear313

power plants than currently present in Bel-314

gium. Hence, the generation system is inspired315

by, but not completely representative for Bel-316

gium. Additionally, as mentioned in the be-317

ginning of the Methodology section, losses or318

capacity limits due to the electricity grid are319

neglected.320

The profile for the traditional electricity de-321

mand (dtradj ) consists of the Belgian electric-322

ity demand, from which the electricity genera-323

tion by combined heat and power, run-off river,324

and pumped hydro are subtracted. The profiles325

for these demand and generation types are as-326

sumed to be constant and are taken from Elia327

[30] for Belgium for the year 2013. Electricity328

generation from PV, onshore wind and offshore329

wind is lumped together in gRES
j with a share330

based on the year 2013 in Belgium [30]: 3%,331

2.2% and 2.7%, respectively. The generation332

profiles of these RES are also for Belgium in the333

year 2013 [30]. In order to study the sensitiv-334

ity of the results towards the share of electricity335

generation from RES, the generation profile is336

scaled up in order to represent 15%, 20%, 30%337

and 40% of the yearly electricity demand, de-338

pending on the case. According to Devogelaer339

et al. [32], these are feasible shares for Belgium.340

Residences with heat pumps. Regarding the341

residences with heat pumps, the individual cost342

minimization is a linear optimal control prob-343

lem, towards minimizing the total electricity344

demand (
∑

j d
HP
j ) of multiple buildings, de-345

noted by the index s:346

min
∑
j

dHP
j =

∑
s

(
pHP
s,j + pAUX

s,j

)
(5)

subject to

∀s, j : ts,j+1 = A · ts,j
+ B · [pHP

s,j , p
AUX
s,j , tej , t

g
j , q

S
j , q

I
s,j , q

DHW
s,j ]

(6)

∀s, j : tmin
s,j ≤ ts,j ≤ tmax

s,j . (7)

347

The demand for space heating and domestic348

hot water (DHW) is either provided by an air-349

coupled heat pump (pHP
s,j ) or by an auxiliary350

electrical resistance heater (pAUX
s,j ). The build-351

ing structure is a reduced-order model based on352

Reynders et al. [33] and illustrated in Figure353

1. The combination of reduced-order models354

of heating system and building model shows a355

RMSE of 5 % per building with respect to a356

detailed emulator model [34]. The vector ts,j357

denotes the temperatures of this building struc-358

ture, along with the average temperature of the359

DHW storage tank. These temperatures are360

determined by a state-space model (matrices361

A and B) and subject to disturbances. These362

disturbances consist of the ambient air temper-363

ature (tej), ground temperature (tgj ), solar heat364

gains (qSj ), internal heat gains (qIs,j) and DHW365

demand (qDHW
s,j ). The indoor air temperatures366

as well as the temperature of the storage tank367

for DHW need to stay within the lower (tmin
s,j )368

and upper (tmax
s,j ) bound in order to maintain369

thermal comfort. An overview of the model370

equations is given in Appendix A while a de-371

tailed description and verification of the model372

equations is given by Patteeuw and Helsen [34].373

In order to keep the problem size for the best374

case integrated model (Int20) manageable for375

the MILP solver, the number of buildings, with376

index s was chosen to be 20. Each of the 20377
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Figure 1: The structure of the reduced order building model as developed by Reynders et al. [33]. The day zone
consists of 5 states: the temperatures of the indoor air (Ti), internal walls (Twi), external walls (Tw), ground floor
(Tf ) and floor connecting the day zone and night zone (Tfi). The night zone also has a state for this connection,
along with a temperature for indoor air, internal walls and a lumped state for external walls and roof (Tw). The
parameters for the different R and C values can be derived based on Protopapadaki et al. [35]. The ambient air
temperature (Te) and ground temperature (Tg) are boundary conditions to the model.

buildings has a different user behavior, based378

on Baetens and Saelens [36], but an identical379

building structure. This results in a diversity380

factor of 75 %, similar to the active occupancy381

of Richardson et al. [37]. Hence, the build-382

ings are assumed to be represented by an av-383

erage building, as the load shifting potential384

for thoroughly insulated buildings is very sim-385

ilar [23]. This average building is split up in386

two thermal zones as proposed by Reynders387

et al. [33] (see Figure 1). The first zone,388

named “day zone”, consists of the ground floor389

and includes the rooms where the occupants390

are active by day. The other rooms, consist-391

ing mainly of bedrooms, make up the second392

zone named “night zone”. Based on the TAB-393

ULA [38] project in which representative build-394

ings for the Belgian building stock were investi-395

gated, the day and night zone have a floor area396

of 132 m2 and 138 m2 respectively. Further-397

more, this study focuses on low-energy build-398

ings. According to the economic optimum for399

Belgium [39], these buildings have an average400

U-value of 0.3 W/m2K and a ventilation rate401

of 0.4 air changes per hour (ACH).402

Each building is equipped with floor heat-403

ing and a hot water storage tank for domes-404

tic hot water, which are both heated by an air405

coupled heat pump. The heat pump is sized406

to meet 80% of the peak heat demand while407

the rest of the peak demand is covered by an408

auxiliary electric resistance heater. The coeffi-409

cient of performance (COP) of the heat pump410

is predetermined according to Bettgenhäuser411

et al. [40] and assumed constant throughout412

each optimization horizon of a week. The con-413

stant COP assumption in optimal control prob-414

lems has been studied by Verhelst et al. [41]415

and Patteeuw and Helsen [34]. Finally, weather416

data is based on measurements in Uccle (Brus-417

sels, Belgium).418

Integrated model. In the integrated model, the
two above mentioned optimal control problems
are merged into one optimal control problem.
The buildings no longer minimize their own
electricity use and Eq. (5) becomes a constraint
instead of an optimization criterion. Hence,
the objective function is the total operational
cost minimization of meeting the electricity de-
mand, with the added freedom of shaping the
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heat pumps’ electricity demand:

min
∑
i,j

fci,j + co2ti,j + sci,j + rci,j (8)

subject to

∀j : dtradj + nb · dHP
j = curj · gRES

j +
∑
i

gPP
i,j

(9)

∀j : 0 ≤ curj ≤ 1 (10)

∀i, j : f(gPP
i,j , zi,j) = 0 (11)

∀j : dHP
j =

∑
s

(
pHP
s,j + pAUX

s,j

)
(12)

∀s, j : ts,j+1 = A · ts,j
+ B · [pHP

s,j , p
AUX
s,j , tej , t

g
j , q

S
j , q

I
s,j , q

DHW
s,j ]

(13)

∀s, j : tmin
s,j ≤ ts,j ≤ tmax

s,j . (14)

This electricity demand can be shaped as long419

as the indoor operative temperatures and hot420

water tank temperature stay between comfort421

bounds. The merit of this modeling approach,422

for which the equations are given in Appendix423

A or in [27], is the ability to fully capture the424

operational benefits of load shifting for the elec-425

tricity generation system, as shown in [42].426

In the ideal case, this integrated model has427

available all details of buildings participating in428

load shifting (Int20)1. In practice however, the429

number of participating buildings could go up430

to thousands, making an integrated optimiza-431

tion infeasibly large. Thus, an aggregation of432

this large building set is necessary. Assuming433

the presented average building to be represen-434

tative for a wider set of buildings, an aggrega-435

tion with respect to building parameters is not436

1In some cases, the integrated optimization with
20 buildings (Int20) was not able to attain a solu-
tion. For the other cases, the results were very close
to the integrated model with the aggregated buildings
(Int2), more precisely within the optimality gap of 0.1%.
Hence, in the failed cases of Int20, the result from Int2
serves as result for Int20.

needed. However, the 20 buildings are consid-437

ered to have different occupant behavior. An438

aggregation methodology [34] is employed to439

aggregate these buildings into two representa-440

tive buildings used in the integrated model Int2441

(see Table 1). The aggregation methodology442

consists of two steps as demonstrated in Fig-443

ure 2. First, a preprocessing step is needed to444

determine the lowest possible temperature pro-445

files which still provide thermal comfort (blue446

lines in Figure 2a and Figure 2b). This is done447

by performing the minimization towards elec-448

tricity demand, as given by Eq. (5) to Eq. (7),449

to determine the lowest possible temperatures450

for the day zone, night zone and storage tank451

for DHW, one for each building. In a second452

step, these temperature profiles are averaged453

over all buildings considered (black line in Fig-454

ure 2c). These averaged temperature profiles455

serve as lower bounds (Tmin
s,j ) for the aggre-456

gated building stock of the integrated model457

(Int2). In this model, only two buildings re-458

main, with the “average” building structure459

but with two different sizes of the DHW stor-460

age tank.461

2.2. Incentive scenarios462

Given the modeling framework discussed in463

Section 2.1, it is possible to study different in-464

centive mechanisms for realizing the possible465

operational benefits of load shifting. Figure 3466

gives an overview of the different incentive sce-467

narios.468

First, in the Reference scenario, no load469

shifting is performed. In this scenario, the con-470

trols of the heat pumps of the 20 buildings471

(B20) completely ignore the electricity gener-472

ation system and focus on minimizing their473

own electricity use. Hence, in this scenario the474

buildings face a flat electricity price. This re-475

sults in the following optimization criterion for476

the optimal control problem of the MPC:477

min
∑
j

dHP
j . (15)
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Figure 2: Example of user behavior aggregation for 2 buildings, based on [34]. Black lines denote a lower set point
for the operative temperature in the day zone. Blue lines denote the actual temperature profiles.

From this, the electricity generation system478

(Gen) needs to deliver this resulting heat pump479

electricity demand plus the traditional electric-480

ity demand.481

In the Best Case scenario, the electricity gen-482

eration system and all participating buildings483

simultaneously optimize their control by means484

of an integrated model (Int20). In this model,485

the building structure and domestic hot water486

tanks are occasionally preheated when this re-487

duces the total cost for the electricity genera-488

tion system. Simultaneously, the power plants489

are optimally dispatched in order to meet the490

resulting electricity demand. This Best Case491

scenario serves as upper bound of the opera-492

tional cost savings attainable by applying load493

shifting.494

A first time-of-use pricing scenario is the495

Price G scenario. In this scenario, the electric-496

ity generation system makes an estimate of the497

total electricity demand of the following day,498

including the electricity demand of the heat499

pumps, which minimize their own consump-500

tion. This estimate is assumed to be perfect in501

this paper. However, the heat pump controllers502

receive the resulting price profile, priceGj , and503

alter the electricity demand accordingly by ap-504

plying the following optimization criterion:505

min
∑
j

priceGj · dHP
j . (16)

In real-time, the electricity generation faces506

the traditional electricity demand plus the al-507

tered building electricity demand. This sce-508

nario hence represents a unilateral price com-509

munication from the electric power system to510

the buildings with heat pumps.511

In contrast to this, the Price I scenario rep-512

resents the situation where the electricity gen-513

eration system makes an estimate of the flex-514

ibility of the buildings with heat pumps. In515

the estimate for the following day, the aggre-516

gated representation of the buildings with heat517

pumps (B2) is co-optimized with the dispatch518

of the electricity generation system. The re-519

sulting price profile from this integrated model,520

priceIj , is then communicated to the controllers521

of the heat pumps, resulting in the following522

optimization criterion523

min
∑
j

priceIj · dHP
j . (17)

Also in this scenario, the impact of the mea-524

sure on the electricity generation system is de-525

termined.526

Finally, the Load Shaping scenario is iden-527

tical to the Price I scenario except that, in-528

stead of communicating the resulting price pro-529

file, the resulting demand profile from the in-530

tegrated model (dIMj ) is communicated to the531

buildings. This demand profile, similarly to532

the work of Corbin and Henze [43, 44], acts533
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Price I

Load 
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B20
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Gen &
B2

B20 Gen

Gen &
B2

B20 Gen

Day ahead Real-time

Buildings minimize their own 
consumption.

Perfect interaction in order to 
reduce total system cost.

Based on estimate of heat pump 
demand, the generation system 
sets a price profile.

Prices based on integrated 
optimization of generation 
system and heat pump flexibility.

Integrated optimization 
determines a load schedule, 
suggested to the buildings.

Figure 3: An overview of the studied scenario’s. The red non-filled arrows denote the communication of a price
profile. The blue filled arrows denote the communication of the electricity demand profile of the buildings equipped
with a heat pump. In the load shaping scenario, the dashed blue arrow denotes the suggestion of an electricity
demand profile. The color of the boxes denotes the model type. The red box denotes the electricity generation
system model, the blue box the building stock model and the purple box the integrated model of both.

as a centrally-suggested demand curve for the534

buildings with heat pumps. The resulting opti-535

mization criterion for the optimal control prob-536

lem of the heat pump controllers is:537

min w · |dHP
j − dIMj |+ (1− w) ·

∑
j

dHP
j (18)

in which dIMj represents the centrally-538

suggested demand profile from the integrated539

model. Hence, the heat pump controllers540

make a trade-off between the deviation with re-541

spect to the centrally-suggested demand profile542

(|dHP
j − dIMj |) and minimizing electricity use543

(
∑

j d
HP
j ) by means of the weighting factor w,544

taken to be 0.5 in this study.545

3. Results546

The Results Section consists of five parts.547

In the first part, Section 3.1, the output of548

the different models, presented in Table 1, is549

illustrated. In Section 3.2, the potential of550

load shifting is investigated for the studied551

boundary conditions. The results for the differ-552

ent load shifting implementation scenarios are553

shown in Section 3.3 and the resulting metrics554

in Section 3.4. Finally, the different cost func-555

tions for the buildings, Eq. (15) to (18), are556

combined in Section 3.5.557

3.1. Illustration of model output558

Figure 4 shows the results for two days in559

the case where 30% of the yearly electricity560

demand is generated from RES and 250, 000561

buildings are equipped with heat pumps. The562

power plants need to generate the sum of the563

residual traditional electricity demand, Figure564

4a, and the electricity demand of the heat565

pumps, Figure 4c. Note that, in some scenar-566

ios, both the heat pump and auxiliary heater567

are activated simultaneously, causing a high568

electricity demand of 10kWe per building. Fig-569

ure 4b shows how the day zone temperatures,570

averaged over the buildings, are manipulated571

to achieve these electricity demands. In the572
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Figure 4: The power plants must deliver the sum of the traditional residual demand (Figure 4a) and the heat pumps
demand (Figure 4c). The curtailment at hours 11 to 16 and hours 27 to 28, in some cases communicated through a
price profile (Figure 4d), forms an incentive to preheat the buildings (Figure 4b).

Reference scenario (blue lines in Figure 4), the573

indoor air temperatures are kept close to the574

lower comfort bounds, resulting in an elec-575

tricity demand that doesn’t strongly fluctuate.576

In this scenario, the buildings miss the op-577

portunity of using the excess electricity gen-578

eration by RES that gets curtailed in hours579

11 to 16 and hours 27 to 28. In the Best580

Case scenario (green lines in Figure 4) ad-581

vantage of this abundant electricity genera-582

tion by RES is taken by drastically increasing583

heat pump electricity demand (dHP
j ) in those584

hours. As a result, no electricity generation by585

RES is curtailed, as the buildings have perfect586

knowledge of the magnitude of the curtailment.587

This avoiding of curtailment causes the nuclear588

power plants to set the price (green line in Fig-589

ure 4d) and, hence, no zero electricity price is590

observed.591

This is not the case for the Price G scenario592

(red lines in Figure 4). In this scenario, the593

buildings face a zero electricity price at times594

of curtailment, see Figure 4d. This causes the595

so-called avalanche effect [45] to occur, mean-596

ing that the buildings drastically increase their597

electricity demand as they observe electricity to598

be completely for free at that time. However,599

this leads to an overshoot in demand, which600

will cause the electricity price to go up again601

in hours 11, 15, 16, 27 and 28. Clearly, this602
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will increase the electricity generation cost far603

more than expected. The Load Shaping sce-604

nario (pink dashed lines in Figure 4) does not605

cause this overshoot in demand, as it receives606

information on how much to increase electric-607

ity use in these time periods. As can be seen608

in the figure, the electricity demand profile in609

the Load Shaping scenario is very close to that610

of the Best Case scenario.611

3.2. Potential of load shifting612

In this section, the savings in operational613

cost and CO2 emission of the Best Case sce-614

nario for load shifting are shown. This will615

serve as an upper bound to the possible savings616

of the different load shifting implementation617

scenarios in Section 3.3. Throughout this pa-618

per, the results are given for a variation of two619

important parameters: The number of build-620

ings equipped with heat pumps and the share621

of electricity generated by RES over a year. Ta-622

ble 3 gives an overview of the total yearly oper-623

ational cost and CO2 emissions. Note that the624

mentioned number of buildings switch from fos-625

sil fuel fired heat production to heat pumps. A626

higher number of buildings making this switch,627

causes a higher electricity demand and thus628

higher operational costs and CO2 emissions for629

the electricity generation system2.630

As can be seen in Table 3, performing load631

shifting causes operational costs and CO2 emis-632

sions to decrease. The trend is however not633

linear, as can be seen in the savings per par-634

ticipant. This is discussed further by Arte-635

coni et al. [46]. A number of buildings higher636

than 500,000 is not studied as the peak in to-637

tal demand approaches the maximum installed638

capacity of the assumed electricity generation639

system. A number of buildings lower than640

2When considering the entire system from a primary
energy perspective, buildings and electricity generation
system, the switch to heat pumps causes total opera-
tional costs and CO2 emissions to lower, see Patteeuw
et al. [23]. This paper only discusses the effects for the
electricity generation system.

50,000 is also not studied as for these small641

numbers, the operational cost savings approach642

the optimality gap of 0.1% used in this study.643

Another important parameter is the share of644

electricity generated by RES over a year. As645

can be seen in Table 3, a higher share of RES646

causes the potential operational cost savings647

of load shifting to increase. For example, an648

increase in RES share from 8 to 40%, causes649

the potential operational cost savings to rise650

from 12 million EUR to 28 million EUR.651

3.3. Comparison of incentives scenarios652

The savings presented in Section 3.2 could653

be hard to attain in practice as the Best Case654

scenario is not feasible for a large set of build-655

ings. Instead, a set of alternative scenarios656

for attaining these savings were introduced in657

Section 2.2. The performance of these differ-658

ent scenarios in striving towards the opera-659

tional cost savings of the Best Case scenario is660

shown with respect to the RES share in Figure661

5a for 250,000 buildings with heat pumps. In662

this figure, 100% represents the Best Case sce-663

nario, while 0% represents the Reference sce-664

nario. Most notable is the poor performance665

of the Price G scenario. Up to a RES share of666

20%, this implementation causes the total op-667

erational cost to be even higher than the Ref-668

erence scenario. This is because the buildings669

greedily overreact to price incentives and in-670

duce extra operational costs for the electricity671

generation system. Only when the RES share672

is high enough, does the Price G scenario start673

showing operational costs reductions with re-674

spect to the Reference scenario. However, this675

increase in savings for a higher RES share is a676

general trend in all scenarios.677

The price signal from the integrated model,678

scenario Price I, partly avoids the overreaction679

as it has information on both electricity gener-680

ation system and buildings. In a sense, it rep-681

resents the price signal after a long iteration of682

price and demand between electricity genera-683

tion system and buildings. However, the Price684

I scenario is still outperformed by about 20%685

12



Table 3: The difference between the Reference and Best Case yields the upper limit for savings by applying load
shifting. Both the relative savings and the savings per participant (part.) are shown.

RES share (%) 30 8 15 20 30 40
No. of buildings (x1000) 50 100 250 375 500 250

Reference: cost (106 EUR) 670 682 723 760 799 1276 1048 916 723 595
Reference: CO2 (106 ton) 4.68 4.81 5.21 5.57 5.92 10.98 8.72 7.31 5.21 3.95

Best case: cost (106 EUR) 663 670 697 724 755 1264 1032 896 697 567
Best case: CO2 (106 ton) 4.61 4.69 4.97 5.24 5.52 10.94 8.64 7.16 4.97 3.69

Cost saving (%) 1.0 1.7 3.6 4.7 5.5 0.9 1.5 2.2 3.6 4.7
CO2 reduction (%) 1.5 2.5 4.6 5.9 6.7 0.4 0.9 2.1 4.6 6.6

Cost saving (EUR/part.) 140 120 104 96 88 48 104 80 104 112
CO2 reduction (ton/part.) 1.4 1.2 0.96 0.88 0.80 0.16 0.32 0.64 0.96 1.04
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(b) For a 30 % RES share

Figure 5: Scenario comparison for operational cost savings relative to the Best Case scenario of load shifting. In
Figure 5a the share of RES is varied while 250,000 buildings are considered. In Figure 5b the number of participating
buildings is varied while the RES share remains at 30%.
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Table 4: The difference in operational cost savings between the different incentive scenarios can be explained by
the difference in curtailment of electricity generation by RES (Curt.), the average part load of all operating power
plants throughout the year (%), the difference in fuel and CO2 cost (Fuel+CO2) and the difference in costs related
to starting up and ramping of power plants (Start-up + ramping).

8% RES 40% RES
Scenario Curt. Part Fuel + Start-up + Curt. Part Fuel + Start-up +

load CO2 ramping load CO2 ramping
(TWh) (%) (cost in 106 EUR) (TWh) (%) (cost in 106 EUR)

Reference 0 95.8 1252 24 2.27 88.3 562 33
Best Case 0 97.8 1244 20 1.12 88.8 538 30
Price I 0 96.0 1249 22 1.80 88.2 544 30
Load Shaping 0 97.1 1249 20 1.64 87.8 542 30

by the Load Shaping scenario, although the dif-686

ference decreases for a higher RES share.687

The difference between Price I and Load688

Shaping scenarios can be explained using Ta-689

ble 4. For a low RES share (8%), there is no690

curtailment in the electricity generation sys-691

tem and the operational cost savings by load692

shifting (Best Case) are dominated by improv-693

ing the efficiency of the power plants (Fuel and694

CO2 cost) and avoiding start-up and ramping695

costs. The efficiency of the power plants is im-696

proved by running these power plants closer to697

their full load capacity (see Part load in Table698

4). These savings can be subtle to attain, as a699

slight increase in demand above the maximum700

generation capacity of the last power plant can701

trigger an extra power plant to be activated.702

Since in the Load Shaping scenario an exact703

indication of what the ideal electricity demand704

profile looks like is given, these subtleties are705

better retained. A price profile can give an in-706

dication of when electricity demand should be707

increased or decreased, but not how much this708

increase or decrease should be.709

On the other hand, for a high RES share710

(40%), the savings are dominated by reducing711

RES curtailment in order to decrease opera-712

tional costs. Both Price I and Load Shaping713

scenarios are successful in decreasing RES cur-714

tailment. In the former, the buildings see a715

very low electricity price and act accordingly.716

In the latter, the buildings receive information717

on how much the demand should be increased718

when curtailment occurs. However, the Load719

Shaping scenario is better as it communicates720

how much the demand should be increased in721

order to exactly absorb all curtailment. This722

information is not present in a price profile.723

The number of buildings having a heat pump724

installed, also has an impact on the perfor-725

mance of the incentive scenarios as shown in726

Figure 5b. In this figure, the share of RES727

in the yearly electricity generation is fixed to728

30%. First of all, the Price G scenario performs729

very poorly as more people install a heat pump730

that participates in load shifting. In the case731

of 500,000 buildings, the demand overshoot in732

the coldest week is so high that the maximum733

cumulative capacity of the production park is734

exceeded. With respect to the Price I scenario,735

when a relatively low number of buildings is in-736

volved, this scenario performs the best. How-737

ever, as more buildings are involved, these all738

respond to the same price profile, and cause739

demand overshoots. In this case, the buildings740

start influencing the price itself, and become741

price influencers instead of price takers. In the742

case of 500,000 buildings with heat pumps, the743

performance is so abysmal that only about half744

of the potential savings are attained. In con-745

trast to this, the Load Shaping scenario is far746

more robust to the number of buildings: No747

matter what this number of buildings is, the748

Load Shaping scenario attains about 80% of749
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the possible savings.750

3.4. Comparison on metrics751

Similar to the work of Corbin [47], Table 5752

presents different metrics to evaluate the im-753

provement of the different incentive scenarios754

with respect to the Reference scenario. In con-755

trast to the work of Corbin, the full electric-756

ity generation system is modeled, which allows757

a direct interpretation of the residual demand758

curve. This is the total demand from which the759

electricity generation from RES is subtracted760

(dtradj + nb · dHP
j − curj · gRES

j ). In all load761

shifting scenarios, the electricity use of the heat762

pumps rises by between 13% to 20%. This is763

due to the high share of electricity generated by764

RES and nuclear power plants, which causes a765

lot of curtailment to occur in the Reference sce-766

nario. In the model, curtailment is deemed as767

for free and drastic increases in electricity use768

occur during these hours. This reduces electric-769

ity use after the time periods when curtailment770

occurred. Additionally, for the Best Case, an771

arbitrary choice between heat pump and auxil-772

iary heater occurs at times of curtailment, since773

during these times electricity is observed as for774

free. The Load Shaping scenario, as shown in775

Eq. (18), partly minimizes own electricity use,776

and will mostly choose for the heat pump dur-777

ing times of curtailment. For the Price G sce-778

nario, the zero electricity price at curtailment779

causes a drastic increase in electricity use. The780

Price I scenario rarely observes this zero elec-781

tricity price, as illustrated in Figure 4d, and782

hence increases electricity use far less.783

The peak demand shows interesting differ-784

ences between the different scenarios. During785

peak moments, expensive generation plants are786

running and the Best Case scenario will try787

to reduce electricity use during these hours as788

much as possible. The Price I and Load Shap-789

ing scenarios are able to partially imitate this790

behavior. However, for the Price G scenario791

the situation becomes worse than the Refer-792

ence scenario, as an overreaction to high prices793

Table 6: Hybrid incentive scenarios in which the opti-
mization criteria are a mixture of minimizing energy use
(Energy), minimizing cost with respect to a price profile
from the generation (Price G) or the integrated model
(Price I) and deviation towards a load profile (Load).
The presented attained percentage of operational cost
savings is for the case of a 30% RES share and 250,000
buildings with heat pump.

Name % savings

Energy+Price G 38
Energy+Price I 41
Price I+Load 90
Energy+Price I+Load 93

in some hours causes an even higher peak in794

the hours before.795

The mean ramping, calculated as the mean796

of the absolute value of the ramping from hour797

to hour, shows significant differences between798

the scenarios. The Best Case scenario is able799

to significantly decrease the hour to hour vari-800

ations in residual demand. The Price I and801

Load Shaping scenario approximate this be-802

havior while the Price G scenario again shows803

worse behavior than the Reference case. This804

is mainly due to the drastic ramping of the heat805

pump electricity demand right before and after806

hours of curtailment, as shown in Figure 4c.807

3.5. Hybrid incentive scenarios808

Multiple combinations of the above men-809

tioned scenarios are possible by combining the810

optimization criteria from Eq. 15 to Eq. 18.811

The performance of a selection of these hybrid812

scenarios are summarized in Table 6.813

Regarding the price-based scenarios, the ad-814

dition of minimizing total energy use could815

counteract the overshoot with respect to the816

price profile. For the Price G scenario, the817

addition of minimizing energy use in the op-818

timization criterion (Energy+Price G) slightly819

improves the attained savings from 32% to820

38%. However, for the Price I scenario, adding821

the minimization of energy use in the optimiza-822

tion criterion (Energy+Price I) drastically de-823

creases the attained savings from 72% to 41%.824
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Table 5: Metrics of the residual load curve (dtradj + nb · dHP
j − curj · gRES

j ), similar to Corbin [47], for the case of a
30% RES share and 250, 000 buildings with heat pumps.

Name Reference Best case Price G Price I Load Shaping

Heat pump electricity use (TWh) 1.99 2.41 2.39 2.27 2.32
Peak (GW) 12.6 11.9 12.8 12.3 12.0
Mean ramping (MW/h) 452 367 502 429 378

In this combined case, the price profile triggers825

the correct behavior far less.826

In practice, the Load Shaping scenario may827

be difficult to implement as compensating the828

participating building owners is not straight-829

forward. By combining this scenario with830

a fluctuating price profile, this compensation831

could be easier. The combination of the price832

from the integrated model with the load shap-833

ing (Price I+Load) attains a slightly higher834

percentage of the operational cost savings835

(90%) than the load shaping scenario (85%).836

However, this cost function proved to be diffi-837

cult to handle for the buildings, as in some days838

it drives the temperature close to its bounds839

in order to attain more drastic electricity de-840

mand profiles. These issues were not observed841

in the combination of the three scenarios (En-842

ergy+Price I+Load). This final hybrid sce-843

nario performs very well in terms of operational844

cost savings and attains 93% of the maximal845

possible operational cost savings.846

4. Discussion847

Load shifting applied to building portfo-848

lios with electrically driven heat pumps pro-849

vides value for the electricity generation sys-850

tem, as it can contribute to lowering system851

operational costs and CO2 emissions (Table 3).852

For a low number of buildings or a low RES853

share, these savings are about 1% and hence854

rather limited. As the number of buildings or855

RES share increases, the reductions in oper-856

ational cost and CO2 emissions go up to 5%857

and 6.5% respectively. This is not a drastic858

change, but is nonetheless a significant contri-859

bution. For these cases, the cost savings are860

typically around 100 EUR per participant per861

year. Given the typical investment cost of en-862

abling technologies such as the smart thermo-863

stat [8] or smart controllers [14] between 200864

EUR and 350 EUR, the pay-back period is on865

the order of magnitude of a few years, for the866

boundary conditions employed in this study867

and assuming that all cost savings are directly868

attributed to the building owners. The order869

of magnitude of the annual reduction in CO2870

emissions is around 1 ton per participant but871

highly depends on the number of participating872

buildings and the RES share.873

Regarding the magnitude of the operational874

cost savings of load shifting, Hedegaard and875

Münster [48] investigated the value of flexi-876

ble operation of heat pumps in 716, 000 build-877

ings for an electricity generation system with878

a 60% share of wind generation and biomass879

fired combined heat and power plants. Ac-880

cording to Hedegaard and Münster [48], this881

flexible operation results in an annual cost sav-882

ing per participant of 30 EUR due to avoided883

operational costs and a 2% reduction in CO2884

emissions. When comparing these results with885

Table 3, the savings are on the same order of886

magnitude, but are not close. Given the sim-887

ilar climate, building and heat pump charac-888

teristics in both studies, the differences in sav-889

ings are dominated by the composition of the890

electricity generation system. This difference,891

along with the large spread of results in Table892

3, illustrates that the reductions in operational893

cost and CO2 emissions are highly case depen-894

dent.895

Figure 4c illustrates the avalanche effect as896

discussed by Dallinger and Wietschel [45] for897
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the Price G scenario: all heat pump controllers898

simultaneously observe a low electricity price899

and drastically increase demand in those mo-900

ments. Kelly et al. [18] also observed this over-901

consumption due to low prices, along with a902

loss of load diversity. As shown by Ling and903

Chassin [19], this loss of load diversity can904

cause simultaneous oscillations in electricity905

demand of thermostatically controlled loads,906

causing problems for the electricity generation907

system following the low price period. As pro-908

posed by Dallinger and Wietschel [45], when909

all participants make individual price forecasts,910

the peak electricity demand is less concentrated911

and also the load diversity is better preserved.912

The Load Shaping scenario suffers far less913

from the above mentioned effects. First, dur-914

ing the moments of curtailment, the buildings915

do not receive a low electricity price but in-916

formation to increase demand and, equally im-917

portant, up to which level to increase demand.918

In the hour 27 in Figure 4a for example, there919

is little curtailment of RES and the buildings920

know that only a limited increase of electricity921

demand is necessary. This is far more infor-922

mation than a price signal can hold. Second,923

the optimization criterion of the Load Shap-924

ing scenario, Eq. 18, shows that the centrally-925

suggested demand curve (dIMj ) is merely a sug-926

gestion, not an obligation, towards increasing927

or decreasing electricity demand. Part of the928

optimization criterion is still the electricity use929

minimization of each individual building. This930

partly ensures the preservation of load diver-931

sity, as each building will make an individual932

trade-off. Nonetheless, preservation of load di-933

versity could be improved even more by provid-934

ing each building with a certain perturbation935

on the centrally-suggested demand curve [45].936

The results for the different scenarios (Figure937

5) show the potential benefit of applying the938

integrated optimization during the day ahead939

stage and distributing profiles from this source.940

The resulting price profile (Price I scenario)941

clearly outperforms the case where the price942

profile is unilaterally determined from the elec-943

tricity generation system (Price G scenario).944

The Price I scenario can be regarded as the945

case where the electricity price is infinitely iter-946

ated between electricity generation system and947

the individual buildings. As Figure 5b shows,948

this price profile causes the system to attain949

a great amount of the theoretically possible950

savings, as long as the number of participat-951

ing buildings remains small. In this sense the952

buildings are price takers up to this point, and953

will only have a minor effect on the price it-954

self. As the number of participating buildings955

increases, this influence will no longer be neg-956

ligible and the buildings become price influ-957

encers. In this sense, the approach of suggest-958

ing a load profile instead of a price profile (the959

Load Shaping scenario) is generally better for960

a high number of participating buildings, over961

100, 000 in this study. The relative operational962

cost savings remain stable in this scenario, even963

for 500, 000 participating buildings. On a total964

of 4.6 million households in Belgium [49], this is965

still a relatively small amount of participating966

buildings.967

From the presented results, one should care-968

fully consider whether time-of-use pricing is the969

correct way to achieve load shifting. In re-970

gions where a high share of the buildings em-971

ploy electricity for either heating or cooling,972

a price profile can lead to unintended adverse973

effects. With the increasing share of smart974

thermostats [8], which are technically able to975

act upon such price profiles, these artifacts of976

greedy control actions could occur shortly af-977

terwards. In these regions, a central determina-978

tion of a load profile for all buildings to follow,979

appears to be a better option.980

The paper only investigates the effects of dif-981

ferent load shifting incentives for low-energy982

buildings. Patteeuw et al. [23] showed that983

buildings lacking proper insulation are not suit-984

able candidates for heat pumps, at least not in985

a Belgian context. Hence, these buildings were986

not included in this paper.987
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With respect to compensation for the build-988

ing owner, either a yearly fee or a tempered989

price profile is possible. A yearly compensation990

can be based on the operational cost savings991

as presented in Table 3, although it can be a992

challenge to determine which party is responsi-993

ble for paying this compensation. A tempered994

price profile can be used in a hybrid scenario,995

such as in the Energy+Price I+Load scenario,996

to automatically compensate the building own-997

ers.998

For implementing the Load Shaping scenario999

in practice, the procedure can be followed as1000

shown in Figure 3. A day ahead integrated1001

optimization of the electricity generation sys-1002

tem along with an aggregated representation1003

of the building stock could be performed. The1004

resulting load profile is communicated to the1005

generation system operators to determine their1006

dispatch. Furthermore, the centrally-suggested1007

demand curve (dIMj ) is communicated to the1008

smart thermostats of all participating build-1009

ings, with a small perturbation applied in order1010

to maintain load diversity. The electricity gen-1011

eration system thus runs business as usual, al-1012

beit in providing an altered electricity demand1013

profile.1014

5. Conclusion1015

In this paper, results are presented of mod-1016

eling two perspectives on load shifting for heat1017

pumps. The first perspective is the classical1018

operational cost minimization of the electricity1019

generation system by means of a unit commit-1020

ment and economic dispatch model. The sec-1021

ond perspective is that of a set of building own-1022

ers which each possess a model predictive con-1023

troller for their heating system. By modeling1024

the two perspectives, an assessment is possi-1025

ble of reductions in both operational costs and1026

CO2 emissions due to load shifting. Addition-1027

ally, an integrated formulation of the two per-1028

spectives is employed in order to determine the1029

upper bound of operational cost and CO2 emis-1030

sion reductions. Note that perfect predictions1031

and absence of model mismatch are assumed in1032

this study.1033

In the studied cases, this integrated formula-1034

tion shows reductions in operational costs be-1035

tween 0.9% and 5.5%, depending on the num-1036

ber of participating buildings and the share of1037

RES in the electricity generation. In addition,1038

a reduction of CO2 emissions is observed to be1039

between 0.4% and 6.6%. These savings result1040

from a better part-load operation of the power1041

plants, a reduction in starting up and ramping1042

of power plants and the reduction in curtail-1043

ment of electricity generation from RES.1044

Multiple scenarios for a more practical load1045

shifting application are studied, inspired by1046

time-of-use pricing and direct-load control.1047

The added value of the integrated formula-1048

tion is shown, as it produces price profiles that1049

clearly outperform price profiles coming from1050

the electricity generation system optimization1051

alone. However, as soon as a large amount of1052

buildings, identified to be 100, 000 in this study,1053

start participating in load shifting, the perfor-1054

mance of price profiles drops significantly.1055

In general, and surely for a large amount1056

of participants, it is shown that Load Shap-1057

ing clearly outperforms the price-based incen-1058

tives. Load Shaping gives clear information on1059

the magnitude of RES curtailment and ineffi-1060

cient part-load operation of electricity genera-1061

tion plants. For this scheme, it does not mat-1062

ter how many buildings are participating, the1063

performance remains in the same order of mag-1064

nitude.1065

Finally, the authors suggest that a practical1066

implementation of this load shifting approach1067

may be performed centrally, namely by per-1068

forming the day-ahead optimization of the op-1069

eration of the electricity generation system and1070

an aggregated formulation of the building port-1071

folio with heat pumps. The resulting load pro-1072

file can then be communicated to the buildings1073

as a suggestion on how to shape the heat pump1074

electricity demand over time.1075
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Appendix A. Integrated model1091

The integrated model combines the electric-1092

ity generation system model with an optimal1093

control formulation of the buildings with heat1094

pumps. First, the equations of the electricity1095

generation system model are given, which are1096

based on Van den Bergh et al. [26]. The op-1097

timization criterion is to minimize total opera-1098

tional cost over all timesteps with index j:1099

min
∑
i

∑
j

fci,j + co2ti,j + sci,j + rci,j .

(A.1)

For each power plant with index i, the gen-1100

eration level (gPP
i,j ) and commitment status1101

(binary variable zi,j) determine the fuel cost1102

(fci,j), CO2 cost (co2ti,j), start-up cost (sci,j)1103

and ramping cost (rci,j):1104

∀i,∀j : fci,j = ci · zi,j +mai · (gPP
i,j − gmin

i · zi,j)
(A.2)

∀i,∀j :co2ti,j = co2p · [bi · zi,j
+mbi · (gPP

i,j − gmin
i · zi,j)]

(A.3)

∀i,∀j : sci,j = stcoi · vi,j (A.4)

∀i,∀j : rci,j ≥ racoi · (gPP
i,j − gPP

i,j−1 − vi,j · gmax
i )

(A.5)

∀i,∀j : rci,j ≥ racoi · (gPP
i,j−1 − gPP

i,j − wi,j · gmax
i )

(A.6)

in which the binary variables vi,j and wi,j re-1105

spectively denote a start-up or shut-down of1106

power plant i in time step j. The parameter1107

ci is the fuel cost for running the plant at its1108

minimum power level (gmin
i ) and mai is the1109

marginal cost for the generation level on top1110

of the minimum power level. The CO2 emis-1111

sions also consist of an emission bi at mini-1112

mum power level and a term accounting for1113

the marginal emissions (mbi). The CO2 cost1114

is then determined via a CO2 price co2p. Fur-1115

thermore, stcoi and racoi respectively denote1116

the start-up cost and ramping cost of power1117

plant i. The power plants are submitted to a1118

series of technical constraints, different per fuel1119

and technology:1120

∀i,∀j : gPP
i,j ≤ gmax

i · zi,j (A.7)

∀i,∀j : gPP
i,j ≥ gmin

i · zi,j (A.8)

∀i,∀j : gPP
i,j ≤ gPP

i,j−1 + ∆max,up
i (A.9)

∀i,∀j : gPP
i,j ≥ gPP

i,j−1 −∆max,down
i (A.10)

∀i,∀j : 1− zi,j ≥
j∑

j′=j+1−mdti

wi,j′ (A.11)

∀i,∀j : zi,j ≥
j∑

j′=j+1−muti

vi,j′ (A.12)

∀i,∀j : zi,j−1 − zi,j + vi,j − wi,j = 0 (A.13)

with gmax
i the maximum power level. The max-1121

imum ramping-up (∆max,up
i ) and maximum1122

ramping-down (∆max,down
i ) values are derived1123

from the maximum ramping rates of the power1124

plants. The minimum up-time and down-time1125
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of power plant i are denoted by muti and mdti1126

respectively.1127

The market clearing condition couples the1128

electricity generation system model and the op-1129

timal control formulation of the buildings with1130

heat pumps:1131

∀j : dtradj + nb · dHP
j = curj · gRES

j +
∑
i

gPP
i,j

(A.14)

∀j : 0 ≤ curj ≤ 1 (A.15)

with curj determining the amount of curtail-1132

ment of the electricity generation (gRES
j ). The1133

demand consists of the traditional electricity1134

demand (dtradj ) to which the scaled up (with1135

factor nb) demand of the heat pumps (dHP
j )1136

is added. The following equations denote the1137

optimal control formulations of the buildings1138

with heat pumps, as described by Patteeuw1139

and Helsen [34]. The demand dHP
j is a sum1140

of the electricity demand of multiple buildings1141

with index s:1142

∑
j

dHP
j =

∑
s

(
pHP
s,j + pAUX

s,j

)
(A.16)

(A.17)

and consists of the positive electricity demand1143

of the heat pump pHP
s,j and an auxiliary electri-1144

cal resistance heater pAUX
s,j . These positive de-1145

mands are split up over delivering space heat-1146

ing (suffix sh) and DHW (suffix dhw) and are1147

limited as follows1148

∀j : pHP,sh
s,j + pHP,dhw

s,j ≤ pHP,max (A.18)

∀j : pAUX,sh
s,j + pAUX,dhw

s,j ≤ pAUX,max (A.19)

with pHP,max the maximum electric power of1149

the heat pump which is predetermined and1150

fixed each optimization horizon. The heat1151

pumps are assumed to modulate perfectly.1152

The maximum power of the auxiliary heater1153

(pAUX,max) is always the same value. As op-1154

posed to Eq. (6), the state space model for1155

building and DHW tank are split up in this1156

appendix. The state space model of the build-1157

ing, with temperature states tshs,j+1 and state1158

space matrices Ash and Bsh, is as follows1159

∀s, j : tshs,j+1 = Ash · tshs,j
+ Bsh · [pHP,sh

s,j , pAUX,sh
s,j , tEj , t

G
j , q

S
j , q

I
s,j ]

(A.20)

and is submitted to the disturbances of ambi-1160

ent temperature (tEj ), solar heat gain qSj and in-1161

ternal heat gains qIs,j . Some of the temperature1162

states are constrained by minimum (tsh,min
s,j )1163

and maximum (tsh,max
s,j ) temperatures in order1164

to maintain thermal comfort1165

∀s, j : tsh,min
s,j ≤ ts,j ≤ tsh,max

s,j . (A.21)

The DHW tank is assumed to be a perfectly1166

mixed storage tank. This tank could be heated1167

up above the maximum temperature that the1168

heat pump can attain (thpmax) by the auxiliary1169

heater. In order to avoid the need for an inte-1170

ger variable, Patteeuw and Helsen [34] formu-1171

lated a linear alternative. This defines the tank1172

temperature ttanks,j as the sum of a temperature1173

which is influenced by the heat pump thps,j and a1174

temperature difference influenced by the aux-1175

iliary heater dtauxs,j (the latter for the temper-1176

ature range above thpmax, typically 60 ◦C). The1177

model equations are:1178

∀s, j : ρcpv
tank
s

1

∆t
(thps,j+1 − t

hp
s,j) = paux1,dhws,j

+ copdhw · pHP,dhw
s,j − q̇hp,dems,j − uas · (thps,j − t

surr)

(A.22)

∀s, j : ρcpv
tank
s

1

∆t
(dtauxs,j+1 − dtauxs,j ) = paux2,dhws,j

− q̇aux,dems,j − uas · (dtauxs,j )

(A.23)
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with ρ and cp respectively the density and heat1179

capacity of water. The time step is denoted as1180

∆t. The COP for delivering DHW (copdhw) is1181

predetermined and assumed constant through-1182

out the optimization horizon. The DHW tank1183

in each building with index s has a certain1184

volume vtanks and thermal conductance uatanks .1185

Further constraints are1186

∀s, j : q̇hp,dems,j + q̇aux,dems,j = q̇dems,j (A.24)

∀s, j : paux1,dhws,j + paux2,dhws,j = pAUX,dhw
s,j

(A.25)

∀s, j : thps,j ≤ t
hp
max (A.26)

∀s, j : thps,j ≥ t
dem · hwdj + tcold · (1− hdws,j)

(A.27)

∀s, j : (ttankmax − thpmax) ≥ dtauxs,j ≥ 0. (A.28)

The heat demand q̇demj for supplying DHW has1187

to be extracted either from the tank temper-1188

ature influenced by the heat pump (q̇hp,demj )1189

or from the temperature difference influenced1190

by the auxiliary heater (q̇aux,demj ). The heat1191

pump can hence only heat up thps,j to thpmax. The1192

auxiliary heater can supply heat to both the1193

tank temperature influenced by the heat pump1194

(paux1,dhws,j ) and the temperature difference in-1195

fluenced by the auxiliary heater (paux2,dhws,j ).1196

Finally, ttankmax denotes the maximum allowable1197

DHW tank temperature, tcold the temperature1198

of cold tap water and tdem the minimum tank1199

temperature needed when occupants demand1200

hot water (denoted by the boolean hdws,j).1201
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M. Bosquet, J. Grözinger, B. von Manteuffel,1387

N. Surmeli, Heat pump implementation scenarios1388

until 2030, appendix, Tech. rep., Ecofys (2013).1389

[41] C. Verhelst, F. Logist, J. Van Impe, L. Helsen,1390

Study of the optimal control problem formulation1391

for modulating air-to-water heat pumps connected1392

to a residential floor heating system, Energy and1393

Buildings 45 (2012) 43–53.1394

[42] D. Patteeuw, K. Bruninx, A. Arteconi, E. Delarue,1395

W. Dhaeseleer, L. Helsen, Integrated modeling of1396

active demand response with electric heating sys-1397

tems coupled to thermal energy storage systems,1398

Applied Energy 151 (2015) 306–319.1399

[43] C. D. Corbin, G. P. Henze, Residential HVAC as a1400

supply following resource part i: Simulation frame-1401

work and model development, IEEE Transactions1402

on Power Systems.1403

[44] C. D. Corbin, G. P. Henze, Residential HVAC as a1404

supply following resource part ii: Simulation stud-1405

ies and results, IEEE Transactions on Power Sys-1406

tems.1407

[45] D. Dallinger, M. Wietschel, Grid integration of in-1408

termittent renewable energy sources using price-1409

responsive plug-in electric vehicles, Renewable and1410

Sustainable Energy Reviews 16 (5) (2012) 3370–1411

3382.1412

[46] A. Arteconi, D. Patteeuw, K. Bruninx, E. Delarue,1413

W. Dhaeseleer, L. Helsen, Active demand response1414

with electric heating systems: impact of market1415

penetration, Submitted to Energy (2015) 1–19.1416

[47] C. D. Corbin, Assessing impact of large-scale dis-1417

tributed residential HVAC control optimization on1418

electricity grid operation and renewable energy in-1419

tegration, Ph.D. thesis, University of Colorado,1420

CO, U.S.A. (2014).1421

[48] K. Hedegaard, M. Münster, Influence of individ-1422

ual heat pumps on wind power integration–energy1423

system investments and operation, Energy Conver-1424

sion and Management 75 (2013) 673–684.1425

[49] FPS Economy Belgium, Structure of the1426

population according to households: per1427

year, region and number of children, Online:1428

http://statbel.fgov.be/nl/statistieken/1429

cijfers/bevolking/structuur/huishoudens/.1430

23

http://statbel.fgov.be/nl/statistieken/cijfers/bevolking/structuur/huishoudens/
http://statbel.fgov.be/nl/statistieken/cijfers/bevolking/structuur/huishoudens/
http://statbel.fgov.be/nl/statistieken/cijfers/bevolking/structuur/huishoudens/

	Introduction
	Methodology
	Models and parameters
	Incentive scenarios

	Results
	Illustration of model output
	Potential of load shifting
	Comparison of incentives scenarios
	Comparison on metrics
	Hybrid incentive scenarios

	Discussion
	Conclusion
	Acknowledgement
	Integrated model
	References

