Genomic Alterations of the JAK2 and PDL Loci Occur in a Broad Spectrum of Lymphoid Malignancies

Katrien Van Roosbroeck ${ }^{1,2}$, Julio Finalet Ferreiro ${ }^{1}$, Thomas Tousseyn ${ }^{3}$, Jo-Anne van der Krogt ${ }^{1}$, Lucienne Michaux ${ }^{1}$, Barbara Pienkowska-Grela ${ }^{4}$, Ivan Theate ${ }^{5}$, Pascale De Paepe ${ }^{6}$, Daan Dierickx ${ }^{7}$, Chantal Doyen ${ }^{8}$, Natalie Put ${ }^{1}$, Jan Cools ${ }^{1,2}$, Peter Vandenberghe ${ }^{1}$ and Iwona Wlodarska ${ }^{1 *}$
${ }^{1}$ Center for Human Genetics, K.U.Leuven, Leuven, Belgium; ${ }^{2}$ Center for the Biology of Disease, VIB, Leuven, Belgium; ${ }^{3}$ Translational Cell and Tissue Research K.U.Leuven, Department of Pathology UZ Leuven, Leuven, Belgium; ${ }^{4}$ Cytogenetic Laboratory, Maria Sklodowska-Curie Memorial Cancer Centre and Institute, Warsaw, Poland; ${ }^{5}$ Service d'anatomopathologie, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; ${ }^{6}$ Department of Pathology, AZ St Jan AV, Brugge, Belgium; ${ }^{7}$ Department of Hematology, UZ Leuven, Leuven, Belgium and ${ }^{8}$ Department of Hematology,Mont-Godinne University Hospital, Yvoir, Belgium.

* Correspondence to: Iwona Wlodarska, Center for Human Genetics, Herestraat 49, B-3000 Leuven, Belgium; e-mail: iwona.wlodarska@uzleuven.be; Phone: +32 163460 57; Fax: +32 16345695

Short title: JAK2 and PDL1/2 aberrations in lymphoma

Supported by the concerted action grant from the K.U.Leuven no. 3M040406 (KVR, TT, JC, PV and IW) (http://www.kuleuven.be/), research grants from the FWO Vlaanderen (G081411N to TT) and "Stichting tegen Kanker" (PV) (http://www.kanker.be/). TT holds a Mandate for Fundamental and Translational Research from the "Stichting tegen Kanker" (2014-083). DD holds a Mandate for Clinical Research from the University Hospitals Leuven and is a fund manager of 'Stefanie's Rozen Fonds'. PV is a senior clinical investigator of the FWO-Vlaanderen.

Abstract

The recurrent 9 p24.1 aberrations in lymphoid malignancies potentially involving four cancer-related and druggable genes (JAK2, CD274/PDL1, PDCD1LG2/PDL2 and KDM4C/JMJD2CI) are incompletely characterized. To gain more insight into the anatomy of these abnormalities, at first we studied 9p24.1 alterations in 18 leukemia/lymphoma cases using cytogenetic and molecular techniques. The aberrations comprised structural (nine cases) and numerical (nine cases) alterations. The former lesions were heterogeneous but shared a common breakpoint region of 200 kb downstream of JAK2. The rearrangements predominantly targeted the PDL locus. We have identified five potential partner genes of PDL1/2: PHACTR4/1p34, N4BP2/4p14, EEF1A1/6q13, JAK2/9p24.1 and IGL/22q11. Interestingly, the cryptic JAK2-PDL1 rearrangement was generated by a microdeletion spanning the 3'JAK2-5'PDL1 region. JAK2 was additionally involved in a cytogenetically cryptic IGH-mediated $\mathrm{t}(9 ; 14)(\mathrm{p} 24.1 ; \mathrm{q} 32)$ found in two patients. This rare but likely underestimated rearrangement highlights the essential role of JAK2 in B-cell neoplasms. Cases with amplification of 9 p24.1 were diagnosed as primary mediastinal B-cell lymphoma (five cases) and T-cell lymphoma (four cases). The smallest amplified 9p24.1 region was restricted to the JAK2-PDL1/2-RANBP6 interval. In the next step, we screened 200 cases of classical Hodgkin lymphoma by interphase FISH and identified PDL1/2 rearrangement (CIITA- and IGH-negative) in four cases (2\%), what is a novel finding. Forty (25%) cases revealed high level amplification of 9p24.1, including four cases with a selective amplification of PDL1/2. Altogether, the majority of 9 p 24.1 rearrangements occurring in lymphoid malignancies seem to target the programmed death-1 ligands, what potentiates the therapeutic activity of PD-1 blockade in these tumors.

Keywords: JAK2, PDL, 9p24 translocation, amplification, lymphoma progression

INTRODUCTION

Genomic alterations of the 9p24.1 region, recurrent in hematological malignancies, have drawn a longstanding attention. The involved interval contains four cancer-related genes, JAK2, CD274/PDL1, PDCD1LG2/PDL2 and KDM4C/JMJD2Cl, all druggable targets for precision therapy (Sharma et al., 2011; Hao et al., 2014; Chin \& Han, 2015). In addition to the 9p24.1 amplification hallmarking primary mediastinal B-cell lymphoma (PMBCL) and classic Hodgkin lymphoma (cHL) (Joos et al., 2000; Bentz et al., 2001; Meier et al., 2009; Green et al., 2010), all four genes are targeted by various leukemia/lymphoma-related rearrangements. The best known targeted gene, JAK2, encodes a nonreceptor tyrosine kinase which plays a key role in the JAK-STAT signaling pathway downstream of several cytokine receptors (Ghoreschi et al., 2009). JAK2 is frequently activated by mutations and chromosomal translocations in myeloproliferative disorders (Vainchenker et al., 2008; Skoda et al., 2015) and involved in recurrent rearrangements, including SEC31A-JAK2 in cHL (Van Roosbroeck et al., 2011). CD274 and PDCD1LG2 (further referred to as PDL1 and PDL2, respectively) are coding for the programmed death-1 (PD-1) ligands, which act as negative regulators of anti-tumor immunity by binding their cognate receptor, PD-1, on cytotoxic T-cells, and which induce T-cell "exhaustion" (Blank \& Mackensen, 2007; Keir et al., 2008; Zou \& Chen, 2008; Andorsky et al., 2011). Rearrangements of the $P D L$ loci were recently detected in 20% of PMBCL and in sporadic cases of primary testicular diffuse large B-cell lymphoma (DLBCL), primary central nervous system lymphoma and two HL-derived cell lines (Steidl et al., 2011; Twa et al., 2014; Berghoff et al., 2014; Twa et al., 2015). Thus far, three genes, CIITA, IGH and NRG1, were identified as PDL-fusion partners by high-throughput sequencing (Steidl et al., 2011; Twa et al., 2014; Twa et al., 2015; Twa \& Steidl, 2015). KDM4C encodes a lysine-specific demethylase, which regulates histone methylation dynamics and plays critical roles in modulating chromatin architecture, gene transcription, and cellular differentiation (Berry \& Janknecht, 2013). KDM4C is involved in a rare IGH-mediated translocation in mucosa-associated lymphoid tissue (MALT) lymphoma (Vinatzer et al., 2008). Noteworthy, the 9p24.1 amplification frequently observed in PMBCL and cHL, does not target a single gene, but affects at least 10 protein-coding genes, among others JAK2, PDL1, PDL2 and KDM4C, located within the $\sim 3.5 \mathrm{Mb}$ commonly amplified interval (Rui et al., 2010). Following the concept of cooperative oncogenic effects of multiple genes within amplicons, the authors provided
evidence that JAK2 and KDM4C cooperatively modify the epigenome of the amp(9p24.1)-positive lymphomas and, consequently, enhance proliferation and survival of neoplastic cells (Rui et al., 2010). On the other hand, an integrative genomic and transcriptomic study of Green et al., (Green et al., 2010) identified PDL1 and PDL2 as key targets of the 9p24.1 amplification in PMBCL and cHL, and showed that JAK2 can additionally upregulate the expression of the PDL transcripts. The essential role of PDL1/2 in the pathogenesis of lymphoma is highlighted by an aberrant expression of these highly immunosuppressive proteins in other lymphoma subtypes, including certain aggressive B-cell lymphomas and virus-/immunodeficiency-associated malignancies (Chen et al., 2013; Berghoff et al., 2014). By expressing the PD-1 ligands, lymphomas, as well as other tumors, can selectively block antitumor immune responses (Andorsky et al., 2011). These findings have recently revolutionized the treatment of several solid tumors and hematologic malignancies (reviewed by Armand, 2015). Therapeutic blockade of PD-1 appeared to be particularly remarkable in cHL (Ansell et al., 2015), prompting further search of lymphomas that display similar features and might benefit of this novel form of therapy. Most of the 9p24.1 discoveries in lymphoma come from interphase FISH studies, copy number analysis and high-throughput sequencing. Therefore, relatively little is known about chromosomal alterations underlying these rearrangements. To complete this knowledge and gain more insight into the anatomy of the 9p24.1 aberrations, we screened more than 40 leukemia/lymphoma cases with documented 9 pter abnormalities and approximately 200 cases of unselected cHL by fluorescence in situ hybridization (FISH). Here, we report results of detailed molecular cytogenetic investigations of 26 cases of B- and Tcell malignancies, including cHL, with the cytogenetically and/or FISH-proven 9p24.1 alterations. The study demonstrates genetic heterogeneity and complexity of the 9p24.1 alterations in leukemia/lymphoma, which seem to predominantly target the PDL locus.

MATERIALS AND METHODS

Case Selection

Cases were identified through the Cancer Database of the Center for Human Genetics and Department of Pathology, UZ/KU Leuven, Leuven, Belgium. One case (no 1.2) was provided by Dr. Pienkowska-Grela
from MSCM Cancer Centre and Institute, Warsaw, Poland. Clinical information was retrieved for all cases from the medical records.

The study was reviewed and approved by the Ethical Committee of the KU Leuven, Leuven, Belgium. All samples were collected according to the institutional policies.

Cytogenetics

Conventional G-banding chromosomal analysis and FISH followed standard protocols. Karyotypes were described according to the International System for Human Cytogenetic Nomenclature (ISCN 2013) (Shaffer et al., 2013). FISH probes used in this study, as well as their genomic localization, can be found in Table S1 and Table S2. Of note, the red-labelled probes included in the JAK2 break-apart (BA) assay cover PDL1 and PDL2 genes located downstream of JAK2 (Figure 1A). Noncommercial probes were directly labeled with SpectrumOrange- and SpectrumGreen-dUTP (Abbot Molecular, Ottigne, Belgium) using random prime reaction (Invitrogen, Carlsbad, USA). FISH experiments were evaluated using an Axioplan 2 fluorescence microscope equipped with a charge-coupled device Axiophot 2 camera (Carl Zeiss Microscopy, Jena, Germany) and a MetaSystems Isis imaging system (MetaSystems, Altlussheim, Germany). One to 10 abnormal metaphases (and facultatively 200 interphase cells) were evaluated in each FISH experiment. Interphase FISH analysis of cHL cases was previously described (Vandenberghe et al., 2015).

RNA Extraction and Quantitative Reverse Transcription PCR

Total RNA was extracted with TRIzol Reagent (Life Technologies, Merelbeke, Belgium), purified with the RNeasy Mini Kit (Qiagen, Dorking, United Kingdom) and treated with the Turbo DNA-free ${ }^{\text {TM }}$ kit (Ambion, Austin, TX, USA) according to the manufacturer's instructions. One microgram of the DNase-treated total RNA was reverse transcribed into cDNA with random hexamers and SuperScript III (Life Technologies, Merelbeke, Belgium).

Quantitative reverse transcription (QRT)-PCR followed previously described protocols (Lahortiga et al., 2007), but was carried out on a cDNA template. Primer sequences used in QRT-PCR experiments can be found in Table S3. All QRT-PCR experiments were carried out in triplicate and normalized against the

HPRT1 reference gene. The fold difference was calculated with the $\Delta \Delta \mathrm{Cq}$ method and the expression of a mixture of five nonmalignant lymph node samples was set at one. Statistical analysis was done in GraphPad with the two-tailed unpaired t-test with a 95% confidence interval. p-values <0.05 were considered statistically significant.

Copy Number Analysis

Whole-genome high-resolution analysis of four cases (no. 1.1, 1.4, 1.5 and 1.7) was performed with the Human Genome CGH Microarray 244A kit (Agilent Technologies, Santa Clara, CA) as previously described (Van Roosbroeck et al., 2011), but with some minor modifications. The ADM-2 algorithm was chosen to report aberrations for all the samples with a minimum of four probes per aberrant segment. The minimum absolute average log ratio was set at 0.22 . Two cases (cases 1.6 and 1.9) were analyzed with the 2.7 M cytogenetic array from Affymetrix (Santa Clara, CA). The arrays were processed in accordance with the manufacturer's instructions. Raw data were analyzed with the Affymetrix software Chromosome Analysis Suite 1.1.0 (ChAS). For annotation information, the Cytogenetic Array Annotation files (Release 31) provided by Affymetrix, were used. For analysis of copy number alterations, a size of more than 100 kb and more than 20 markers/copy number alteration were used as thresholds.

RNA Sequencing

RNA sequencing was performed on the Illumina HiSeq2000 Genome Analyzer using a paired-end format. The RNA library preparation was carried out with the TRUseq RNA Sample Preparation Kit (Illumina, San Diego, CA) according to the manufacturer's instructions. Gene fusions were analyzed with the deFuse algorithm (McPherson et al., 2011) and ArrayStudio software (www.omicsoft.com).

Immunohistochemistry

Immunohistochemistry was performed on paraffin-embedded tissue sections with antibodies against PDL1 and PDL2 (ProSci Incorporated, Poway, CA). Sections were stained according to the manufacturer's recommendations, and staining results were visualized with the EnVision system (Dako, Glostrup, Denmark). Negative, as well as positive controls were included. Images were captured with a

Leica DM LB microscope (Leica, Wetzlar, Germany), a Leica PL FLUOTAR objective lens (40x/0.70) and a Leica DC200 camera. Images were imported directly into PowerPoint (Microsoft, Redmond, WA) with the Leica DC200 camera software (version 2.51).

RESULTS

Genetic Analysis

Forty one B-cell leukemia/lymphoma cases with structural 9pter abnormalities were subjected to metaphase FISH analysis with a dual-color JAK2 BA assay. An aberrant FISH pattern was identified in 16 cases, including seven cases with rearranged signals (Table 1) and nine cases with amplified signals (Table 2). In the remaining cases, 9p breakpoints occurred either distal (13 cases) or proximal (12 cases) to JAK2/PDLs. The cases with breakpoints centromeric to JAK2/PDLs were additionally analyzed with the KDM4C BA assay (Table S2) and all showed a normal FISH pattern.

Table 1 presents seven cases with 9p24.1 rearrangements and two additional cases with apparently normal chromosomes 9 , but with cryptic aberrations coincidentally detected by routine FISH (cases 1.2 and 1.9). The cases represent various indolent and aggressive B-cell malignancies, among others CLL in Richter transformation (case 1.1) and transformed MALT lymphoma (case 1.8). All 9p24.1 aberrations were further characterized by FISH and, if available, by array comparative genomic hybridization (aCGH), molecular techniques and RNA-sequencing (case 1.9). The aberrations were heterogeneous and included five reciprocal translocations (cases 1.1, 1.2, 1.5, 1.6 and 1.8), two non-reciprocal translocations (case 1.3), two insertions (cases 1.4 and 1.7) and one inversion (case 1.9). Two translocations, $t(4 ; 9)(p 14 ; p 24.1)$ and $t(9 ; 14)(p 24.1 ; q 32)$, were found in two cases each (cases 1.6 and 1.8 ; and cases 1.2 and 1.3, respectively). To characterize the 9 p24.1 breakpoints more in-depth, we applied a set of 31 DNA probes covering the 9p21-9pter ($\sim 22 \mathrm{Mb}$) region. The detailed results of metaphase FISH analysis are summarized in Table S1. As shown in Figure 1A, all 9p24.1 breakpoints clustered in the 200 kb region centromeric to JAK2, harboring PDL1 and PDL2. Intriguingly, in both cases with insertions (cases 1.4 and 1.7), cryptic microdeletions spanning JAK2 and the neighboring sequences, but not affecting PDL1/2, were detected. In case 1.7, the deletion covered approximately 2 Mb region (9:3267306-5325065 bp), as estimated by aCGH profiling and confirmed by FISH (Figure S1). The centromeric breakpoint of this
deletion occurred approximately 104 kb telomeric to PDL1 and was flanked by RLN1 (retained) and RLN2 (lost).

To identify partner genes involved in the 9p24.1 aberrations, all cases were analyzed by metaphase FISH with probes selected from the postulated reciprocal region (Table S1). The analysis demonstrated involvement of immunoglobulin (IG) genes (IGL/22q11 and IGH/14q32) in cases 1.1-1.3 (Figure 1B) and disruption of non-IG sequences in the remaining cases. In cases 1.4 and 1.5 , the breakpoints were mapped in regions harboring the PHACTR4 (1p34) and EEF1A1 (6q13) genes, respectively. In cases 1.7, 1.6 and 1.8 , the affected genes were not identified, but the breakpoints were narrowed down to the 3p21.3p24.3 cytoband ($3: 23600747-45463193 \mathrm{bp}$) and two overlapping 4p14 regions, 4:3992706940657405 bp (N4BP2, RHOH, CHRNA9, RBM47) and 4:39781081-40087915 bp (PDS5A, N4BP2), respectively. Notably, both 4 p 14 breakpoints involved $N 4 B P 2$, which might be a common target of this translocation. Interestingly, case 1.3 had likely unbalanced three-way $t(9 ; 13 ; 14)(p 24.1 ; q 11 ; q 32)$ associated with loss of $\operatorname{der}(13) t(13 ; 14)(q 11 ; q 32) / 5^{\prime} / G H$ (green signal). Due to the $9 p 24.1$ break between C9orf46 and PDL1, the 9pter region harboring JAK2 was translocated to the rearranged IGH locus at der(14), while PDL1/2 were juxtaposed with the gene poor region at $13 q 11$ (centromeric to RP11341D18) on der(9). Very intriguing was case 1.9 with biallelic $\operatorname{inv}(9)(p 23 p 24.1)$. As shown by aCGH (Figure 2A and 2C), the inversion was associated with two microdeletions: (i) at 9p24.1, spanning the 3' end of JAK2 and the 5^{\prime} region of PDL1 (9:5048723-5458818 bp) and leading to the cryptic JAK2-PDL1 rearrangement, and (ii) at 9p23, likely bordering the centromeric breakpoint of inv(9). As evidenced by SNP analysis and confirmed by FISH, the 9 p aberrations were biallelic due to uniparental disomy of $9 p$ (UPD9p) (Figure 2A-B). Subsequent RNA-sequencing identified the fusion of exon 4 of JAK2 with genomic sequences 161 bp upstream of the PDL1 transcript. These findings were validated by RT-PCR (Figure 2D). Due to the presence of a premature stop codon, the fusion protein was most likely not functional. As insulator sequences located directly upstream of PDL1 were also deleted, the transcription machinery could use the JAK2 promoter to aberrantly drive PDL1 mRNA expression. FISH analysis was complemented by aCGH performed in six cases (no. 1.1, 1.4, 1.5-1.7, and 1.9). We used aCGH data (partially shown) to verify and correct karyotypic abnormalities. Among others, aCGH detected cryptic del(9p21) involving CDKN2A/B in cases 1.6, 1.7 (Figure S1) and 1.9, and demonstrated
del(6q23)/TNFAIP3 in cases 1.1, 1.5 and 1.6. The latter aberration was present in two additional cases not analyzed by aCGH.

Table 2 presents nine cases with amplified JAK2 BA signals. The patients were diagnosed with PMBCL (no 2.1-2.5), PTCL NOS (no 2.6-2.7), ALK-negative ALCL (no. 2.8) and ALK-positive ALCL (no 2.9). Eight cases presented with add(9p), which was further specified as a homogeneously staining region (hsr). Case 2.4 displayed amplification outside of add(9p). The affected chromosomes showed heterogeneous morphology, underlied by a different size and structure of amplicons. For example, the long $\operatorname{der}(9 p)$ in case 2.1 was generated by the 9pter-9pter fusion of two aberrant chromosomes 9 harboring hsr(9p24.1) varying in size. It seems that the initial amplicon underwent 'mirror' duplication, as deduced from the presence of two flanking signals of CDKN2A/9p21 (Figure 1C). The highest level of amplification was observed in cases 2.2 and 2.6 (Figure 1C). In case 2.3, the amplified JAK2 BA signals were found on $\operatorname{der}(9)$ and subclonally, on derivatives of 14,18 and 22 . Three cases (2.2, 2.3 and 2.6) revealed $\mathrm{hsr}(9 \mathrm{p})$ associated with non-reciprocal $t(9 p 24)$, evidenced by a negative WCP 9 painting of the terminal region and loss of the 9 p subtelomeric sequences. Because of a low percentage of neoplastic cells in the available material, the size of amplicons was not determined by aCGH but provisionally estimated by FISH with probes for the 9p-subtelomeric region, KDM4C (6.7 Mb), NFIB (14.08 Mb), CDKN2A/B (21.98 Mb) and PAX5 (36.83 Mb) (Table S1 and Table S2). The smallest amplified region restricted to sequences spanned by the JAK2 BA assay (JAK2<->RANBP6) was found in case 2.2 (Table 2). Table 3 presents 8 selected cases of cHL with PDL1/2 alterations detected by FISH in interphase ReedSternberg cells. The majority of these cases were identified during our previous FISH study of cHL (Van Roosbroeck et al., 2011). To date, we have analyzed approximately 200 cases of cHL and in four cases (no. 3.1-3.4) we have observed loss of the green/JAK2 signal and retain of the red/PDLs signal indicative of an unbalanced $\mathrm{t}(9 \mathrm{p} 24.1)$. Loss of 9 pter was confirmed by FISH with the $9 p$ subtelomeric probe. Lack of cytogenetic data prevented identification of partner genes, but involvement of CIITA and IGH in these translocations was excluded by FISH. It is worth to note, that the majority of analyzed cHL cases displayed copy number gain of the JAK2 BA probes: 78 cases (39\%) showed 3-5 extra signals (low copy gain) and 40 cases (25%) revealed amplified signals. Remarkably, four of the latter cases (no. 3.5-3.8) showed a predominant amplification of the red/PDLs signal (Figure 1D).

Expression Analysis

The expression pattern of five genes potentially targeted by the 9p24.1 aberrations detected in the first cohort, JAK2, RLN1, C9orf46, PDL1 and PDL2, was assessed by QRT-PCR in seven available cases. The analysis demonstrated upregulation of PDL1 and PDL2 in case 1.4, overexpression of only PDL1 in cases 1.7, 1.8 and 1.9, and upregulation of only PDL2 in cases 1.1 and 1.5 (Table 1; Figure 3). No candidate gene was overexpressed in case 6. Further mRNA expression analysis of JAK2, PDL1 and PDL2 mRNA was performed in three PMBCL cases (no. 2.1, 2.2, 2.4) and single cases of PTCL NOS (no. 2.6) and ALK+ ALCL (no.2.9). The analysis detected overexpression of all three genes in cases 2.1 and 2.4 (the highest expression of PDL1), upregulation of PDL1 and PDL2 in case 2.2, upregulation of JAK2 and PDL1 in case 2.6 and overexpression of only PDL1 in case 2.9 (Table 2). Results of QRT-PCR analysis performed in two T-cell lymphoma cases with amp(9p24.1) (cases 2.6 and 2.9) are shown in Figure 4.

Finally, available cases were studied by IHC with antisera for PDL1 and PDL2. All cases expressed at least one of the proteins analyzed (Table S4, Figure S2). Given, however, that lymphomas frequently express PD-1 ligands, the rearrangement-related overexpression of these proteins could not be demonstrated.

DISCUSSION

Our study provides evidence that the structural 9p24.1 aberrations in lymphoid malignancies are hallmarked by a common $\sim 200 \mathrm{~kb}$ breakpoint region located downstream of JAK2 and harboring PDL1/2. These rearrangements seem to target both loci and result in their transcriptional deregulation. As partner breakpoints affect (directly or indirectly) various protein-coding genes as well as protein-noncoding sequences, a fraction of the 9p24.1 rearrangements may escape detection by high-throughput sequencing. Involvement of IG loci, which was documented in $t(9 ; 14)(p 24.1 ; q 32)$ and $t(9 ; 22)(p 24.1 ; q 11)$, is typical for B-cell malignancies. The former translocation was found in two cases diagnosed as primary cutaneous DLBCL, leg-type, and B-ALL. Thus far, $t(9 ; 14)(p 24.1 ; q 32)$ has not been associated with these disease entities, but considering its cryptic nature, the translocation could be overlooked. Basing on the
known molecular mechanisms of $\mathrm{t}(I G)$ (Willis \& Dyer, 2000; Kuppers \& Dalla-Favera, 2001), we presume that $\mathrm{t}(9 ; 14)(\mathrm{p} 24.1 ; \mathrm{q} 32)$ affects JAK2, because this gene, but not PDL1/2, was translocated to $\operatorname{der}(14)$ and juxtaposed with the 3'IGH enhancer. If so, IGH-JAK2 would be the next JAK2 rearrangement identified in B-ALL (Kawamura et al., 2015). This novel JAK2 aberration contrasts with the known JAK2 fusions occurring in myeloid neoplasms and acute leukemias, like ETV6-JAK2, BCR-JAK2, PCM1-JAK2 and others, which affect the 3'end of the gene and activate the JAK2 tyrosine kinase (Springuel et al., 2015). We presume that molecular consequences of $t(9 ; 14)(p 24.1 ; q 32)$ are similar to that of amp $(9 p 24.1)$ and inactivated mutations of SOCS1 (inhibitor of JAK2) recurrently occurring in PMBCL (Melzner et al., 2005). The latter aberrations lead to elevated transcription of the entire JAK2, followed by phosphorylation of the product and subsequent activation of the JAK2/STAT pathway and its targets (e.g. CCND1, OSM, $B C L x L$). Given that JAK2 can additionally upregulate expression of the $P D L$ transcripts (Green et al., 2010), $\mathrm{t}(9 ; 14)(\mathrm{p} 24.1 ; \mathrm{q} 32)$ may also indirectly affect the expression of PD-1 ligands.

Noteworthy, all the remaining 9 p24.1 aberrations, including the IGL-mediated $\mathrm{t}(9 ; 22)(\mathrm{p} 24.1 ; \mathrm{q} 11)$, target the PDL locus. In contrast to $t(9 ; 14)(p 24.1 ; q 32)$, the variant $t(9 ; 22)(p 24.1 ; q 11)$ translocates strong regulatory sequences of $I G L$ to $\operatorname{der}(9)$ and upregulates expression of $P D L 2$, as shown by QRT-PCR. Intriguingly, the translocation was detected at the time of Richter transformation of a trisomy 12-positive CLL, suggesting its essential role in disease progression. This finding places the PDL2 gene together with MYC, BCL3, BMI1 and NOTCH1 on a list of genes implicated in high grade transformation of CLL (MartinSubero et al., 2007; De Keersmaecker et al., 2012; Put et al., 2012; Rouhigharabaei et al., 2013). Mechanisms of deregulation of the PDL locus by non-IG partner sequences have not been completely deciphered. In some cases, transcription of PDL1/2 was probably driven by promoters of partner genes, i.e., PHACTR4/1p34, N4BP2/4p14, EEF1A1/6q13 and JAK2/9p24.1, like in the previously reported fusions (Steidl et al., 2011; Twa et al., 2014; Twa et al., 2015; Twa \& Steidl, 2015). Noteworthy, the cryptic JAK2-PDL1 rearrangement was generated by a microdeletion spanning the 3'JAK2-5'PDL1 region. The effect of this fusion was enhanced by a subsequent UPD9p resulting in duplication of the whole $9 p$. On the other hand, upregulation of the $P D L$ locus by $\operatorname{der}(9) t(9 ; 13)(p 24.1 ; q 13)$ involving the gene poor region at $13 q 11$, might be caused by a position effect and/or loss of negative regulatory sequences at 9p24.1. The latter mechanism(s) could be also implicated in both insertions,
ins($3 ; 9$)(p?24.3;p24.1p?13) and ins($9 ; 1)(\mathrm{p} 24.1 ; \mathrm{p} 34 \mathrm{p} 36)$, showing deletion of sequences telomeric to the 9p24.1 breakpoint. Mechanistic significance of the 9pter/JAK2 loss is supported by a recurrent occurrence of similar lesions in cHL. Basing on FISH data, we presume that the 9 p 24.1 rearrangements in cHL represent unbalanced translocations targeting the $P D L$ locus and associated with loss of 9pter/JAK2. Potential partner genes, if any, comprise neither CIITA, known to be involved in the PDL1/2 fusions in PMBCL (Steidl et al., 2011), nor IGH, engaged in the PDL2-IGV7-81 fusion in one cHL-derived cell line (Twa et al., 2014). Further studies of the PDL1/2 rearrangements in cHL are needed to elucidate molecular mechanisms underlying these lesions.

As mentioned above, the most frequent 9p24.1 aberration in lymphoma, particularly in PMBCL and cHL, is amplification of the terminal interval spanning JAK2, PDL1, PDL2 and KDM4C. Notably, the aberration is detectable in circulating cell free DNA from cHL cases (Vandenberghe et al., 2015) and may serve as biomarker in non-invasive diagnostic/follow up testing. Also in the present series of selected tumors with 9pter abnormalities, approximately half of cases (56\%) showed amplification of the JAK2/PDLs signals. These cases were diagnosed either as PMBCL, or T-cell lymphoma (PTCL NOS, ALK-/ALK+ ALCL). Strikingly, none of the PMBCL cases with 9p aberrations revealed PDL1/2 rearrangement, although these aberrations seem to mark 20% of PMBCL (Steidl et al., 2011). Of note, we narrowed down the smallest amplified 9p24.1 region to the JAK2-PDL1/2-RANBP6 interval, miminizing the role of KDM4C in amp(9p24.1)-positive lymphomas (Rui et al., 2010). The amp(9p24.1) was detected in 25% of unselected cHL analyzed by interphase FISH, which is in line with previous reports (Joos et al., 2000; Meier et al., 2009; Green et al., 2010). Although the majory of cHL cases displayed a balanced JAK2/PDLs amplification, selective amplification of the PDL locus was observed in several cases. Interestingly, we have described a similar amplification peak affecting PDL1/2 in a recently analyzed case of EBV+ posttransplant DLBCL, one of two EBV+ DLBCL subtypes showing recurrent amp(9p24.1) (Finalet Ferreiro et al., 2015). Altogether, we showed that 9p24.1 aberrations in B-cell malignancies directly or indirectly affect the genes coding ligands for PD-1. Previous studies showed that the PDL/PD-1 pathway plays an important role in immune evasion of tumor cells. The immunosuppresive ligands expressed on tumor cells interact with the co-inhibitory PD-1 on T cells mediating decreased TCR-mediated proliferation and cytokine production (Blank \& Mackensen, 2007). Functional in vitro and in vivo studies performed on
lymphoma cell lines and mouse models demonstarted that PDL1 knockdown inhibits tumor proliferation, decreases tumor invasion ability and inhibits cell cycle progression. In addition, downregulation of PDL1 reverses drug-resistance and increase apoptosis of tumor cell (Li et al., 2012). Based on emerging association between the PDL/PD-1 pathway, T-cell exhaustion and tumor progression, novel immunotherapies targeting PD-1 has been recently developed. Several clinical trials of the PD-1 blockade have already been successfully conducted in hematological malignancies and particularly high response rate was obtained in patients with cHL (reviewed by Armand, 2015).

Summaring, our study confirms the previously published findings of recurrent structural and copy number alterations of 9p24.1 in lymphoid malignancies. The rearrangements are cytogenetically and molecularly heterogeneous but share the same 'hot' breakpoint region downstream of JAK2. They predominantly affect the PDL locus and lead to an aberrant expression of PD-1 ligands favoring an immune evasion (Blank \& Mackensen, 2007; Green et al., 2010). The PDL1/2 rearrangements are not specific but feature a broad spectrum of lymphoid malignancies, among others CLL, and contribute in their progression and increased aggressiveness. Amplification of 9p24.1, frequent in PMBCL and cHL, was also detected in Tcell lymphomas, confirming the previously reported data (present report and Meier et al., 2009). Structural aberrations of PDL1/2 and their selective amplification in cHL , which are novel findings, highlight an essential role of the PDL locus in the pathogenesis of cHL. As recently shown, the T-cell 'exhaustion" which resulted from an aberrant expression of PDL1/2 by neoplastic cells, is reversible with PD-1 blockade (Ansell et al., 2015). Systematic screening of entities which emerged in our study is warranted to identify individuals who may benefit in future from the anti-PD-1 therapy.

SUPPLEMENTAL INFORMATION

The Supplemental Information includes four tables and two figures, and can be found online with this article.

ACKNOWLEDGMENTS

The authors would like to thank Ursula Pluys, Kathleen Doms and Emilie Bittoun for their excellent technical assistance and Rita Logist for the editorial help.

REFERENCES

Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. 2011. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res 17:4232-4244.

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, Rodig SJ, Chapuy B, Ligon AH, Zhu L, Grosso JF, Kim SY, Timmerman JM, Shipp MA, Armand P. 2015. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 372:311-319.

Armand P. 2015. Checkpoint blockade in lymphoma. Blood 125:393-400.
Bentz M, Barth TF, Bruderlein S, Bock D, Schwerer MJ, Baudis M, Joos S, Viardot A, Feller AC, MullerHermelink HK, Lichter P, Dohner H, Moller P. 2001. Gain of chromosome arm 9p is characteristic of primary mediastinal B-cell lymphoma (MBL): comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line. Genes Chromosomes Cancer 30:393-401.

Berghoff AS, Ricken G, Widhalm G, Rajky O, Hainfellner JA, Birner P, Raderer M, Preusser M. 2014. PD1 (CD279) and PD-L1 (CD274, B7H1) expression in primary central nervous system lymphomas (PCNSL). Clin Neuropathol 33:42-49.

Berry WL, Janknecht R. 2013. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res 73:2936-2942.

Blank C, Mackensen A. 2007. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56:739-745.

Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, Yu H, Fletcher CD, Freeman GJ, Shipp MA, Rodig SJ. 2013. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 19:3462-3473.

Chin YW, Han SY. 2015. KDM4 histone demethylase inhibitors for anti-cancer agents: a patent review. Expert Opin Ther Pat 25:135-144.

De Keersmaecker K, Michaux L, Bosly A, Graux C, Ferreiro JF, Vandenberghe P, Cools J, Wlodarska I. 2012. Rearrangement of NOTCH1 or BCL3 can independently trigger progression of CLL. Blood 119:3864-3866.

Finalet Ferreiro J, Morscio J, Dierickx D, Marcelis L, Vandenberghe P, Gheysens O, Verhoef G, Zamani M, Tousseyn T, Wlodarska I. 2015. EBV-Positive and EBV-Negative Posttransplant Diffuse Large BCell Lymphomas have Distinct Genomic and Transcriptomic Features. Am J Transplant in press.

Ghoreschi K, Laurence A, O'Shea JJ. 2009. Janus kinases in immune cell signaling. Immunol Rev 228:273-287.

Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, Chapuy B, Takeyama K, Neuberg D, Golub TR, Kutok JL, Shipp MA. 2010. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268-3277.

Hao Y, Chapuy B, Monti S, Sun HH, Rodig SJ, Shipp MA. 2014. Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo. Clin Cancer Res 20:2674-2683.

Joos S, Kupper M, Ohl S, von BF, Mechtersheimer G, Bentz M, Marynen P, Moller P, Pfreundschuh M, Trumper L, Lichter P. 2000. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 60:549-552.

Kawamura M, Taki T, Kaku H, Ohki K, Hayashi Y. 2015. Identification of SPAG9 as a novel JAK2 fusion partner gene in pediatric acute lymphoblastic leukemia with $t(9 ; 17)(p 24 ; q 21)$. Genes Chromosomes Cancer 54:401-408.

Keir ME, Butte MJ, Freeman GJ, Sharpe AH. 2008. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677-704.

Kuppers R, Dalla-Favera R. 2001. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20:5580-5594.

Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F, Mentens N, Beverloo HB, Pieters R, Speleman F, Odero MD, Bauters M, Froyen G, Marynen P, Vandenberghe P, Wlodarska I, Meijerink JP, Cools J. 2007. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 39:593-595.

Li Y, Wang J, Li C, Ke XY. 2012. Contribution of PD-L1 to oncogenesis of lymphoma and its RNAi-based targeting therapy. Leuk Lymphoma 53:2015-2023.

Martin-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F, Calasanz MJ, De WolfPeeters C, Dyer MJ, Felman P, Gardiner A, Gascoyne RD, Gesk S, Harder L, Horsman DE, Kneba M, Kuppers R, Majid A, Parry-Jones N, Ritgen M, Salido M, Sole F, Thiel G, Wacker HH, Oscier D, Wlodarska I, Siebert R. 2007. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a $t(14 ; 19)(q 32 ; q 13)$ or variant BCL3-translocation. Leukemia 21:1532-1544.

McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, Griffith M, Heravi MA, Senz J, Melnyk N, Pacheco M, Marra MA, Hirst M, Nielsen TO, Sahinalp SC, Huntsman D, Shah SP. 2011. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7:e1001138.

Meier C, Hoeller S, Bourgau C, Hirschmann P, Schwaller J, Went P, Pileri SA, Reiter A, Dirnhofer S, Tzankov A. 2009. Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol 22:476-487.

Melzner I, Bucur AJ, Bruderlein S, Dorsch K, Hasel C, Barth TF, Leithauser F, Moller P. 2005. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105:2535-2542.

Put N, Van Roosbroeck K, Konings P, Meeus P, Brusselmans C, Rack K, Gervais C, Nguyen-Khac F, Chapiro E, Radford-Weiss I, Struski S, Dastugue N, Gachard N, Lefebvre C, Barin C, Eclache V, FertFerrer S, Laibe S, Mozziconacci MJ, Quilichini B, Poirel HA, Wlodarska I, Hagemeijer A, Moreau Y, Vandenberghe P, Michaux L. 2012. Chronic lymphocytic leukemia and prolymphocytic leukemia with MYC translocations: a subgroup with an aggressive disease course. Ann Hematol 91:863-873.

Rouhigharabaei L, Ferreiro JF, Put N, Michaux L, Tousseyn T, Lefebvre C, Gardiner A, De Kelver W, Demuynck H, Verschuere J, Theate I, Vicente C, Vandenberghe P, Cools J, Wlodarska I. 2013. BMI1, the polycomb-group gene, is recurrently targeted by genomic rearrangements in progressive B-cell leukemia/lymphoma. Genes Chromosomes Cancer 52:928-944.

Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, Wright GW, Lenz G, Ngo VN, Shaffer AL, Xu W, Zhao H, Yang Y, Lamy L, Davis RE, Xiao W, Powell J, Maloney D, Thomas CJ, Moller P, Rosenwald A, Ott G, Muller-Hermelink HK, Savage K, Connors JM, Rimsza LM, Campo E, Jaffe ES,

Delabie J, Smeland EB, Weisenburger DD, Chan WC, Gascoyne RD, Levens D, Staudt LM. 2010. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18:590-605.

Shaffer LG, McGowfan-Jordan J, Schmid M. 2013. An International System for Human Cytogenetic Nomenclature (2013). Basel, Switzerland: S. Karger AG.

Sharma P, Wagner K, Wolchok JD, Allison JP. 2011. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11:805-812.

Skoda RC, Duek A, Grisouard J. 2015. Pathogenesis of myeloproliferative neoplasms. Exp Hematol 43:599-608.

Springuel L, Renauld JC, Knoops L. 2015. JAK kinase targeting in hematologic malignancies: a sinuous pathway from identification of genetic alterations towards clinical indications. Haematologica 100:1240-1253.

Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, Johnson NA, Zhao Y, Telenius A, Neriah SB, McPherson A, Meissner B, Okoye UC, Diepstra A, van den Berg A, Sun M, Leung G, Jones SJ, Connors JM, Huntsman DG, Savage KJ, Rimsza LM, Horsman DE, Staudt LM, SteidI U, Marra MA, Gascoyne RD. 2011. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377-381.

Twa DD, Chan FC, Ben-Neriah S, Woolcock BW, Mottok A, Tan KL, Slack GW, Gunawardana J, Lim RS, McPherson AW, Kridel R, Telenius A, Scott DW, Savage KJ, Shah SP, Gascoyne RD, Steidl C. 2014. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123:2062-2065.

Twa DD, Mottok A, Chan FC, Ben-Neriah S, Woolcock BW, Tan KL, Mungall AJ, McDonald H, Zhao Y, Lim RS, Nelson BH, Milne K, Shah SP, Morin RD, Marra MA, Scott DW, Gascoyne RD, Steidl C. 2015. Recurrent genomic rearrangements in primary testicular lymphoma. J Pathol 236:136-141.

Twa DD, Steidl C. 2015. Structural genomic alterations in primary mediastinal large B-cell lymphoma. Leuk Lymphoma e-pub ahead of print:1-12.

Vainchenker W, Dusa A, Constantinescu SN. 2008. JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol 19:385-393.

Van Roosbroeck K, Cox L, Tousseyn T, Lahortiga I, Gielen O, Cauwelier B, De PP, Verhoef G, Marynen P, Vandenberghe P, De Wolf-Peeters C, Cools J, Wlodarska I. 2011. JAK2 rearrangements, including the novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood 117:4056-4064.

Vandenberghe P, Wlodarska I, Tousseyn T, Dehaspe L, Dierickx D, Verheecke M, Uyttebroeck A, Bechter O, Delforge M, Vandecaveye V, Brison N, Verhoef G, Legius E, Amant F, Vermeesch J. 2015. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. The Lancet Haematology 2:e55-e65.

Vinatzer U, Gollinger M, Mullauer L, Raderer M, Chott A, Streubel B. 2008. Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res 14:6426-6431.

Willis TG, Dyer MJ. 2000. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96:808-822.

Zou W, Chen L. 2008. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467-477.

LEGEND TO THE FIGURES

Figure 1. Physical map of the 9 p 24.1 breakpoint cluster and FISH examples of structural and numerical 9p24.1 aberrations in lymphoma. (A) Physical map of the 9p24.1 breakpoint cluster of approximately 200 kb downstream of JAK2 defined in cases 1.1-1.9. Yellow boxes represent genes, blue boxes represent probes, and red and green boxes represent the probes from the JAK2 BA assay. (B) FISH analysis of case 1.1 with $\mathrm{t}(9 ; 22)(\mathrm{p} 24.1 ; \mathrm{q} 11)$ using the JAK2 BA assay (left panel) and WI2-1621G6-SO/ WI2-1844L21-SG (middle panel), and case 1.2 with $\mathrm{t}(9 ; 14)(\mathrm{p} 24.1 ; \mathrm{q} 32)$ using LSI IGH (right panel) and JAK2 BA probes (inset). (C) Metaphase FISH analysis with probes covering JAK2 (red) and CDKN2A (green), and WCP9/SpectrumGreen (inset) in cases 2.1 (left panel), 2.2 (middle panel) and 2.6 with amp(9p24). (D) Interphase FISH analysis with the JAK2 BA assay and CEP8/SA (blue) probes in two cHL cases with structural 9 p24 aberrations (case 3.2, left panel; case 3.4, middle panel) and amp(9p24) (case 3.7 , right panel).

Figure 2. Complex 9p aberrations in case 1.9 with inv(9). (A) Upper panel: aCGH profile of the whole chromosome 9 showing three microdeletions at 9p24.1 (JAK2-PDL1), 9p23 and 9p21 (CDKN2A/B) pointed by red arrows. Lower panel: SNP data illustrating UPD9p. Due to the low percentage of neoplastic cells (20%) in the analyzed specimen, $9 p$ microdeletions were recognized by the software as monoallelic, however, FISH demonstrated biallelic 9p losses and rearrangements (see B). (B) Interphase FISH analysis with the JAK2 BA probes (left panel), RP11-125K10-SG/RP11-509D8-SO (middle panel) and RP11-140C18-SO/RP11-343D17-SG (right panel) evidencing biallelic 9p24.1 rearrangements/deletions. (C) aCGH profile of 9p24.1 showing a microdeletion spanning 3'JAK2 and 5'PDL1/CD274 (marked in green). (D) Schematic representation of the genomic structure of the JAK2/PDL1 region and the JAK2-PDL1 rearrangement determined by RNA-sequencing (upper panel) and validated by RT-PCR (lower panel). Breakpoint regions are indicated by black arrows.

Figure 3. Expression analysis of JAK2, PDL1 and PDL2 mRNA in cases with structural 9p24.1 abnormalities. (A) JAK2 is significantly downregulated in 6/7 analyzed cases (marked with **) as compared to the average expression in five nonmalignant lymph nodes; (B) PDL1 is significantly upregulated in 4/7
analyzed cases (marked with *) as compared to the average expression in five nonmalignant lymph nodes; (C) PDL2 is significantly upregulated in 3/7 analyzed cases (marked with *) and significantly downregulated in 3/7 cases (marked with **) as compared to the average expression in five non-malignant lymph nodes.

Figure 4. QRT-PCR analysis of JAK2, PDL1 and PDL2 performed in two T-NHL patients with 9p24.1 amplification. (A) Both JAK2 and PDL1 are significantly upregulated in a case 2.6 (PTCL NOS), as compared to the average expression in five non-malignant lymph nodes. (B) Only PDL1 is significantly upregulated in a case 2.9 (ALK+ ALCL), as compared to the average expression in five non-malignant lymph nodes. JAK2 and PDL2 are significantly downregulated in this patient.

Tables
Table 1: Relevant genetic and clinical data of cases with structural 9p24.1 aberrations

Case ${ }^{\circ}$	SexlA ge	Diagnosis	Treatment	Responsel Survival	Samplel Status	Cytogenetics ${ }^{\text {a }}$	PSH mapped breakpoints		QRT-PCR				
							9 p 24.1	Partner chromosome	JAK2	RLIT	C9orf46	PDL1	PDL2
$1.1{ }^{\text {b }}$	W70	CLL in RT	CHOPx6; cerebral RDT; palliative care	PRJdied 14 months after diagnosis	LNP	47,XY,del(5)(p13.3p15.1),del(6)(q15),t(9;22) (p24.1;q11),+12,der(22)t(1;22)(q11;q13)[3]	Between W21621G6 and W21844L21	IGL/22q11 (IGL BA and CTD-2507C12 split)	down	down	down	NL	13.3-fold up
1.2	N69	Primary cutaneous DLBCL, leg-type	R-CHOP×8, RDT	PR	TMD	ND .isht(9;14)(p24.1;q32)	Between M21844L21 and W22110N11	IGH14q32 (LSI IGH split)	ND	ND	ND	ND	ND
			IVACX2	PR/died 15 months after diagnosis	TMP	43-49,XY,t(1;9)(q21;q34)[5],add(2)(p2?3)[13], $+3[11],+\operatorname{add}(3)(\mathrm{p} 13)[3], \operatorname{der}(5) \mathrm{t}(5 ; 10)(\mathrm{q} 22 ; \mathrm{q} 21)$, $\operatorname{del}(6)(\mathrm{q} 23)[3]$, del(8)(p21)[15],t(9;14)(p24.1;q32),- 10,+add(12)(p13)[6], add(15)(q26)[5], $\operatorname{del}(17)$ (p11.2), +18[13],+2-3mar][cp18]	Between W121844L21 and W22110N11	IGH-14q32 (LSI IGH split)	ND	ND	ND	ND	ND
1.3	N75	B-AL	ND	ND	BMD	```47,XY,der(2)t(2;9)(q13;q31),del(6)(q22),del(8)(p21) der(9)t(9;13)(p24.1;q11)t(2;9)(q13;q31), +add(9)(q13), -13, der(14)t(9;14)(p24.1;q32),-19, +3mar[5]```	Between M21621G6 and W21844 L21	IGH/14q32 (LSI IGH split; RP11-417P24 and 11771 separated) Unknown/13q11 (centromeric to RP11341D18)	ND	ND	ND	ND	ND
$1.4{ }^{\text {b }}$	N62	MALT lymphoma	Splenectomy, R-CHOP x8	PD, died 77 months after diagnosis (DR)	S/D	46-47,XY,del(1)(p34p36),t(4;6)(q35;q13),ins(9;1) (p24.1;p34p36), +i(9)(p10)[7], $\operatorname{der}(13) t(\times ; 13)(p 11 ; p 1$ 1), $\operatorname{add}(14)(q 32), \operatorname{add}(19)(q 13)[p p 11]$	Between W221621G6 and W21844 L21	PHACTR4/1p34(RP11427 O 24 and RP4669K10 separated)	NL	down	NL	11.4-fold up	3.3-fold up
$1.5{ }^{\text {b }}$	N18	DLBCL	R-CHOP like ${ }^{* *}$	CR/alive 120 months after diagnosis	LNP	48,XY,+X,der(4)t(2;4)(p12;p15.1)[9],t(5;16)(q33; $\mathrm{p} 13), \mathbf{t}(6 ; 9)(q 13 ; \mathrm{p} 24)$,del(6)(q21q23),+8[19]	Wthin W2592M24	Unknown (EEF1A1<-> MTO1)/6q13 (RP11- 705N21 and RP11- 772H06 separated)	down	ND	ND	NL	5.6-fold up
$1.6{ }^{\text {c }}$	N61	B-LL	PROMACEMOPP; palliative care at relapse	CR/relapse/di ed 84 months after diagnosis (within 1 month after relapse)	BMP	47-48, $\mathrm{X},+\mathrm{r}(\mathrm{X}), \mathrm{Y}, \mathrm{del}(2)(\mathrm{q} 12 \mathrm{q} 21), \mathbf{t}(4 ; 9)(\mathrm{p} 14 ; \mathrm{p} 24)$, i(6)(p10), del(8)(q11q13),del(9)(p21p21), $+\operatorname{der}(9) \mathrm{t}(4 ; 9)(\mathrm{p} 14 ; \mathrm{p} 24)[3], \operatorname{dup}(12)(\mathrm{q} 12 \mathrm{q} 21)[3]$, i(18)(q10)[3],add(19)(q13)[4][cp11]	Between M22110N11 and W22834C19	?N4BP2/4p14(RP11306 G03 and RP11666140 separated)	down	down	down	NL	down

$1.7{ }^{\circ}$	N61	MVL	R-CHOPx6, FCR×4 + Ritux $\times 2$; Watch and wait	died 90 months after diagnosis from secondary AML (in 2d CR of NHL)	LND	49,XY,+X,ins(3;9)(p?24.3;p24.1p?13),t(5;9) (q13;p21), del(6)(q13q16.3),+7,del(9)(p13p24.2), $+18[18]$	Between W22424114 and WM21790111	Unknown/3p21.3p24.3 (RP11-89F18 and RP11-111P21 separated)	down	down	NL	1.5-fold up	NL
1.8	F/69	DLBCL (transformed MALT lymphoma)	Reduction of immunesuppression, Rx4	PD/died within 3 months (DR)	LNP	$46, X X, \operatorname{del}(3)(\mathrm{q} 21)[4], \mathbf{t}(4 ; 9)(\mathrm{p} 14 ; \mathrm{p} 24)$, add(10)(q11) [6],t(14;18)(q32;q12)[12]	Between W21621G6 and W21844 L21	?N4BP2/4p14(RP11391N20 and RP11306G03 separated)	down	ND	ND	6.6-fold up	down
1.96	N49	FL, grade II -IIla	Watch and wait (7 months); R-CHOPx8 and Ritux $\times 2$	CR/alive 64 months after diagnosis	LND	$\begin{aligned} & \text { 46,×Y,t(2;14)(p24;q32),inv(9)(p23q24.1)×2, } \\ & \text { del(9p21p21)×2,dup(12)(q13.11q21.1)[13] } \end{aligned}$	Telomeric to M 2 2110N11	JAK2/9p24.1 (JAK2 BA split)	down	ND	ND	1.4-fold up	down

Abbreviations: M, male; F, female; CLL, chronic lymphocytic leukemia; RT, Richter transformation; DLBCL, diffuse large B-cell lymphoma; B-ALL, B-cell acute lymphoblastic leukemia; MALT, mucosa-associated lymphoid tissue; B-LL, B-cell lymphoblastic lymphoma; MZL, marginal zone lymphoma; FL, follicular lymphoma; (R)-CHOP, (rituximab)-cyclophosphamide, doxorubicin, vincristine, prednisone; RDT, radiotherapy; IVAC, ifosfamide, etoposide, high-dose cytarabine; ND, not determined; PROMACE-MOPP, prednisone, methotrexate, doxorubicin, cyclophosphamide, etoposide, mechlorethamine, vincristine, procarbazine; FCR, fludarabine, cyclophosphamide, rituximab; PR, partial remission; CR, complete remission; PD, progressive disease; LN, lymph node; P progression; TM, tumor (skin); D, diagnosis; BM, bone marrow; S, spleen.
${ }^{\text {a }}$ Corrected after FISH and aCGH; 9p aberrations appear in bold characters
${ }^{\text {b }}$ Cases analyzed by aCGH (244k arrays of Agilent)
${ }^{\text {c }}$ Cases analyzed by SNP arrays (2.7 M arrays of Affymetrix)

Table 2: FISH and QRT-PCR analysis of lymphoma cases with 9p24.1 amplification

Case	Sex/Age	Diagnosis	Sample	Karyotype ${ }^{\text {a }}$	JAK2 BA pattern	Range of amplicon	QRT-PCR		
							JAK2	PDL1	PDL2
2.1	F/37	PMBCL	Med/D	$\begin{aligned} & \text { 46,XX,add(6)(q27),der(9)(9qter->hsr9p24::hsr9p24- } \\ & >9 \text { qter), der(16)t(10;16)(q11;p13)[2],+mar[3] } \end{aligned}$	2 amplicons on der(9)	9pter<->NFIB	4.9-fold up	17.3-fold up	14.7-fold up
2.2	M/35	PMBCL	Med/D	$\begin{aligned} & \text { 50-51,XY,der(7)t(7;7)(p22;q11)[8],+der(9) } \\ & \text { add(9)(p24)hsr(9)(p24),add(14)(q32),+2-5 mar,inc[9] } \end{aligned}$	high-level amplification on add(9p24) and 2 signals on mar1	JAK2<->RANBP6	NL	6.8-fold up	5.0-fold up
2.3	F/27	PMBCL	Med/D	$\begin{aligned} & \text { 48-50,XX,+X, del(3)(q25),add(3)(q27),der(7)del(7) } \\ & \text { (p15)ins(7;?)(q22;?),+der(9)add(9)(p24)hsr(9)(p24), } \\ & \text { add(14)(q32),add(18)(q22)[2],add(19)(p13),add(22) } \\ & \text { (q13)[2],+2mar[cp10] } \end{aligned}$	triplicated signals on der(9), $\operatorname{add}(14), \operatorname{add}(18)$ and $\operatorname{add}(22)$	9pter<->NFIB	ND	ND	ND
2.4	F/31	PMBCL	Med/D	$\begin{aligned} & 50, X X,+X,+5, \operatorname{add}(9)(p 21), \operatorname{add}(14)(q 32), \operatorname{del}(18)(q 21),+ \\ & 2 \operatorname{mar}[4] \end{aligned}$	amplicons on two markers	NA	7.2-fold up	30.6-fold up	10.4-fold up
2.5	F/46	PMBCL	Med/D	$\begin{aligned} & \text { 45-50,XX,add(2)(p24)[9],del(3)(q23)[8],del(6) } \\ & \text { (q23q25)[6],+7[9],hsr(9)(p24),+12[7],add(14)(q32)[4], } \\ & +\operatorname{del}(18)(q 21)[3],+20[7],+21[8],+\operatorname{mar} 1[6],+\operatorname{mar2[2]} \\ & \text { [cp16] } \end{aligned}$	1 amplicon on hsr(9p24)	JAK2<->KMD4C	ND	ND	ND
2.6	M/62	PTCL NOS/ CLL	S/D	46, XY, add(1)(p36)[8],del(4)(q31q34), del(6) (q13q23), der(9)add(9p24)hsr(9)(p24), $\operatorname{der}(17)$ t(5;17)(q13;p11)[18].ish.del(13)(q14/RB1) (67\%)	1 amplicon on der(9) (high-level amplification)	JAK2<->KMD4C	3.5-fold up	3.4-fold up	NL
2.7	M/38	PTCL NOS	BM/P	46, XY, add(5)(q35), hsr(9)(p24), add(21)(p13)[6]	4 amplicons on hsr(9p)	JAK2<->NFIB	ND	ND	ND
2.8	M/40	ALK- ALCL	LN/P	Polyploid (4N), add(1)(p36), add(2)(p24),dup(4)(q?), del(5)(p12), del(6)(q23),dup(7)(p22p15),hsr(9)(p24), dup(11)(q23q24),add(13)(q34),add(14)(q31),+>10mar ,inc[13]	1 amplicon on hsr(9p24)	JAK2<->KMD4C	ND	ND	ND
2.9	M/9	ALK+ ALCL	LN/D	$\begin{aligned} & \text { 48,XY,+X,t(2;5)(p23;q35),hsr(9)(p24),del(17)(p11), } \\ & +19[10] \end{aligned}$	1 amplicon on hsr(9p24)	JAK2<->KMD4C	down	2.7-fold up	down

Abbreviations: F, female; M, male; PMBCL, primary mediastinal B-cell lymphoma; PTCL NOS, peripheral T-cell lymphoma, not otherwise specified; CLL,
chronic lymphocytic leukemia; ALK, anaplastic lymphoma kinase; ALCL, anaplastic large cell lymphoma; Med, mediastinum; S, spleen; BM, bone marrow; LN, lymph node; D, diagnosis; P, progression; NL, normal; ND, not determined;
${ }^{\text {a }} 9 \mathrm{p}$ aberrations appear in bold characters

Table 3. FISH analysis of selected Hodgkin lymphoma cases with 9p24.1 aberrations

Case	Diagnosis	FISH results	Conclusion
3.1	NSHL	JAK2 BACEP 8 (SA): 3F4R/3B 5'JAK2 (SG)/PDL1-PDL2 (SO): 3F3R CIITA BA: 3-4F LSI IGH: 3-4F	unbalanced t(9p24.1) with bkpt between JAK2 (lost) and PDL1/2
3.2	NSHL	JAK2 BACEP8 (SA): 3F1R/2B 5JAK2 (SG)/PDL1-PDL2 (SO): 3F1G CIITA BA: 3F IGHBA: 3F	unbalanced t(9p24.1) with bkpt between JAK2 (lost) and PDL1/2
3.3	NSHL	$\begin{aligned} & \text { JAK2 BA: 5-7F2R } \\ & \text { 5'JAK2 (SG)/PDL1-PDL2 (SO): 3-7F1-2R } \\ & \text { CIITA BA: 3F } \\ & \text { IGHBA: 3F } \\ & \hline \end{aligned}$	unbalanced t(9p24.1) with bkpt between JAK2 (lost) and PDL1/2
3.4	NSHL	JAK2 BACEP8 (SA): 1F2R/3B RP11-509D8 (SG)/RP11-140C18 (SO): 1F PDL1/PDL2: 3F CIITA BA: 3F IGHBA: 3F	unbalanced t(9p24.1) with bkpt between JAK2 (lost) and PDL1/2
3.5	NSHL	JAK2 BACEP8 (SA): 5-8F/3B; 5-7F 1amp(Rpred)/3B	copy number gain of JAK2 BAP and a suclonal amplification of PDL1/2
3.6	NSHL	JAK2 BA:2-4F1amp(Rpred)	amplification of 9p24.1 with a predominant gain of PDL1/2
3.7	HL NOS	JAK2 BACEP8 (SA): 2F2amp(Rpred)/3-4B;4-7F4-5amp(Rpred)/5-11B	amplification of 9p24.1 with a predominant gain of PDL1/2
3.8	MCHL	JAK2 BACEP8 (SA):3-5F2GRamp/3B	amplification of PDL1/2

Abbreviations: NSHL, nodular sclerosis Hodgkin lymphoma; HL NOS, Hodgkin lymphoma, not otherwise specified; MCHL, mixed cellularity Hodgkin lymphoma; BA, break apart; SA, spectrum aqua (blue); SG, spectrum green (green); SO, spectrum orange (red); F, fused signal; R4, red signal; G, green signal; B, blue signal; amp, amplified signal; Rpred, predominant red signal; bkpt, breakpoint

Figrue 1

Figure 2

Figure 3

Figure 4

Supporting Information

Four Supporting Tables:

Supplemental Table S1. FISH analyses of B-cell leukemia/lymphoma cases with structural 9p24 abnormalities.

Supplemental Table S2. Additional FISH probes
Supplemental Table S3: Primers used in QRT-PCR and RT-PCR experiments
Supplemental Table S4: Summary of IHC results

Two Supporting Figures:

Supporting Figure S1. The 9p24.1 alterations in patient 1.7. (A) Partial karyotype illustrating involvement of $9 p$ in two aberrations: ins $(3 ; 9)(p ? 24.3 ; p 24.1 p 13)$ (red arrows) and $t(5 ; 9)(q 13 ; p 21)$ (blue arrows). (B) Examples of FISH with the JAK2 BA assay (left) and WI2-1621G6-SO/WI2-2110N11-SG covering PDL1 (right). Note loss of the JAK2/green signal and presence of PDL1 signals on ins $(3 ; 9)$ and der(5). (C) aCGH profile of chromosome 9 with two microdeletions detected at 9p21/CDKN2A and 9p24.1/JAK2. (D) The centromeric breakpoint of the 9p24.1 deletion located between JAK2 and PDL1/2 (marked in pink).

Supporting Figure S2. Examples of immunohistochemistry using antisera against PDL1 and PDL2 in different lymphoma types harboring structural and numerical 9p24.1 aberrations. (A-C) PDL1 is expressed in the diffuse neoplastic cells in cases with B-cell NHL, PMBCL and T-cell lymphoma. Due to the predominance of neoplastic cells, expression of PDL1 in the accompanying stromal cells cannot be evaluated. PDL2 is weakly expressed in the nucleus (and or cytoplasm) of lymphomas, but no obvious expression in the stromal cells. (D-E) In the Hodgkin/Reed-Sternberg cells (HRS, circled) PDL1 is strongly expressed in a combined membranous and cytoplasmic pattern. A weaker cytoplasmic PDL1 expression is seen in the cytoplasm of the majority of stromal cells. (T: tumor cells; S: stromal cells; N : necrosis). Note a strong expression of PDL2 in the cytoplasm (and potentially nucleus) of the HRS cells, and weaker, partial cytoplasmic expression in the accompanying stromal cells.

Supplemental References

1. Knight SJ, Lese CM, Precht KS, Kuc J, Ning Y, Lucas S, Regan R, Brenan M, Nicod A, Lawrie NM, Cardy DL, Nguyen H, Hudson TJ, Riethman HC, Ledbetter DH, Flint J. 2000. An optimized set of human telomere clones for studying telomere integrity and architecture. Am J Hum Genet 67:320-332.
2. Poulsen TS, Silahtaroglu AN, Gisselo CG, Gaarsdal E, Rasmussen T, Tommerup N, Johnsen HE. 2001. Detection of illegitimate rearrangement within the immunoglobulin locus on 14q32.3 in B-cell malignancies using end-sequenced probes. Genes Chromosomes Cancer 32:265-274.
3. Poulsen TS, Silahtaroglu AN, Gisselo CG, Tommerup N, Johnsen HE. 2002. Detection of illegitimate rearrangements within the immunoglobulin light chain loci in B cell malignancies using end sequenced probes. Leukemia 16:2148-2155.

Supporting Tables

Table S1. FISH analyses of B-cell leukemia/lymphoma cases with structural 9p24 abnormalities.

	Probes	Localization (Mb)	Case 1.1		Case 1.2		Case 1.3			Case 1.4		Case 1.5		Case 1.6		Case 1.7		Case 1.8		Case 1.9 ${ }^{\text {a }}$	
			der(9)	der(22)	der(9)	der(14)	der(9)	der(14)	mar ${ }^{\text {b }}$	der(9)	der(1)	der(9)	der(6)	der(9)	der(4)	der(9)	der(3)	der(4)	der(9)	inv(9)	inv(9)
Chr 9	$9 p$ subtel	(1)	ND	$+$	-	ND	ND	ND	ND	$+$	-	ND	ND	ND	ND						
	RP11-307114	4,721,083-4,831,655	-	+	-	+	-	+	+	-	-	-	+	-	+	-	-	+	-	+	+
	RP11-125K10	4,831,656-5,001,841	-	+	-	+	-	+	+	-	-	-	+	-	+	-	-	+	-	+	+
	W2-732N1	4,942,238-4,979,354	-	$+$	ND	ND	-	$+$	$+$	ND	ND	ND	ND	-	+	-	-	ND	ND	ND	ND
	W2-358505	4,982,186-5,022,801	-	$+$	ND	ND	-	$+$	+	ND	ND	ND	ND	-	+	-	-	ND	ND	ND	ND
	RP11-509D8	5,001,842-5,018,809	-	+	-	+	-	+	+	-	-	-	$+$	-	+	-	-	+	-	dim/mv	dim/mv
	RP11-154E21	5,017,179-5,144,221	ND	-	-																
	W2-2850C2	5,026,385-5,066,923	-	+	ND	ND	-	+	+	ND	ND	ND	ND	-	+	-	-	ND	ND	ND	ND
	W2-1990K3	5,078,327-5,116,150	-	$+$	ND	ND	-	+	$+$	ND	ND	ND	ND	-	$+$	-	-	ND	ND	ND	ND
	RP11-140C18	5,189,856-5,298,020	-	+	-	+	-	$+$	$+$	-	-	-	+	-	$+$	-	-	$+$	-	-	-
	W2-1787H24	5,260,851-5,300,296	ND	ND	ND	ND	-	$+$	$+$	ND	ND	ND	ND	-	$+$	-	-	ND	ND	ND	ND
	W2-424114	5,303,176-5,337,602	ND	ND	ND	ND	-	$+$	+	ND	ND	ND	ND	-	+	-	-	ND	ND	ND	ND
	W2-1790114	5,339,442-5,379,592	ND	ND	ND	ND	-	+	+	ND	ND	ND	ND	-	+	-	+	ND	ND	ND	ND
	w2-1621G6	5,408,033-5,445,949	-	+	-	+	-	+	+	-	-	-	+	-	+	-	+	+	-	ND	ND
	W2-1844L21	5,445,912-5,485,647	+	-	-	+	+	-	+	+	-	ND	ND	-	+	ND	ND	-	+	ND	ND
	W2-2110N11	5,470,306-5,509,331	+	-	$+$	-	+	-	+	+	-	-	+	-	+	-	+	-	+	+/mv	+/mv
	W2-592M24	5,485,309-5,525,738	ND	ND	+	-	ND	ND	ND	+	-	$\begin{gathered} + \\ \text { (weak) } \end{gathered}$	+	ND							
	W2-2834C19	5,501,423-5,543,929	ND	ND	+	-	ND	ND	ND	ND	ND	+	-	+	-	-	+	-	+	+/mv	+/mv
	W2-2532G16	5,539,271-5,582,268	ND	+	-	ND	ND	-	+	ND	ND	ND	ND								
	RP11-480124	5,571,006-5,760,432	ND	ND	+	-	ND	-	+	ND	ND										
	W2-163102	5,587,603-5,630,859	ND	+	-	+	-	+	-	-	+	ND	ND	ND	ND						
	RP11-635N21	5,600,740-5,649,598	+	-	$+$	-	+	-	$+$	+	-	+	-	$+$	-	-	+	-	+	+/mv	+/mv
	RP11-717B10	5,789,062-5,937,516	ND	ND	$+$	-	ND														
	RP11-21817	6,005,678-6,072,142	+	-	$+$	-	+	-	+	ND	ND	ND	ND	ND	ND	-	+	-	+	ND	ND
	RP11-41J05	6,223,060-6,398,690	ND	ND	$+$	-	ND														
	RP11-247G05	6,363,061-6,508,614	ND	ND	$+$	-	ND														
	RP11-723E16	6,493,417-6,641,755	ND	ND	$+$	-	ND														
	RP11-580K10	7,295,409-7,450,317	ND	ND	+	-	ND														

Abbreviations: +, present; -, absent; ND, not determined; dim, diminished; sep, separated; mv, moved
aWe postulate a number of complex genetic events that occurred in this patient, including
(i) Three microdeletions at $9 p 24.1,9 p 23$ and $9 p 21 / C D K N 2 A / B$; the former spans the 3 ' end of JAK2 and the region flanking the 5 ' end of PDL1.
 of the centromeric breakpoint of inv(9) is challanging due to a small region which was targeted by the inversion.
 are illustrated in Figure 1C-E.
${ }^{\mathrm{b}}$ Extra copy of JAK2 BAP signal was found on a marker chromosome. Array CGH detected a duplication of the 9p24.3-9p24.1 region (1 Mb-7,487,100 Mb) harboring JAK2, PDL1 and PDL2.
${ }^{\circ}$ Vysis LSI CDKN2A was applied to validate aCGH/SNP array findings of mono-/bi-allelic deletion of CDKN2A and CDKN2B detected in $5 / 7$ analyzed cases.
${ }^{\text {d}}$ separation of RP11-89F18/-111P21 signals indicate that the 9p24.1 region was inserted at 3p21.31p24.3 centromeric to RP11-89F18 and telomeric to RP11-111P21.
Breakpoint region
Monoallelic deletion
Biallelic deletion
Duplication
Region of insertion

Table S2. Additional FISH probes

Cytoband/gene	Probes	Genomic localization (hg 19)	Reference
9p24.1 (KMD4C)	RP11-151G19 (SO)	$6043367-6219086$	www.ensembl.org
	RP11-346G4 (SO)	$6270398-6466928$	www.ensembl.org
	RP11-927L8 (SG)	$7080501-7274185$	www.ensembl.org
	RP11-958H5 (SG)	$7291535-7471568$	www.ensembl.org
9p23/22.3 (NFIB)	RP11-1107G7	$14148116-14343128$	www.ensembl.org
9p13.2 (PAX5)	RP11-243F8	$36844939-37033208$	www.ensembl.org

Table S3: Primers used in QRT-PCR and RT-PCR experiments

JAK2 ex22-F	5'-AGA ACC TGG TGA AAG TCC CAT ATT-3'
JAK2 ex23-R	5'-TGA GGC CAC AGA AAA CTT GCT-3'
RLN1 ex2-F	5'-CGA CCC TAC GTG GCA CTG T-3'
RLN1 ex2-R	5'-GCA ATA TTT AGC AAG AGA CCT TTT GG-3'
C9orf46 ex2-F	5^{\prime} '-GCG TCC TCT AAC ACA TTC AGA CTA CA-3'
C9orf46 ex2-3-R	5'-TAT AAA CCC CAT TTT GAC CTC TTT CT-3'
PDL1 ex5-F	5'-CCT TGG TGT AGC ACT GAC ATT CA-3'
PDL1 ex6-R	5'-TGG ATG CCA CAT TTT TTC ACA-3'
HPRT1 ex6-F	5'-TGA CAC TGG CAA AAC AAT GCA-3'
HPRT1 ex6-7-R	5'-GGT CCT TTT CAC CAG CAA GCT-3'
JAK2-PDL1 Pair 1-F	5'-GGT ATC CAC CCA ACC ATG TCT TCC A-3'
JAK2-PDL1 Pair 1-R	5'-TGC CGG GCG TTG GAC TTT CC-3'
JAK2-PDL1 Pair 2-F	5'-TCC ATC TGG GGA GTA TGT TGC AGA-3'
JAK2-PDL1 Pair 2-R	5'-GCC GGG CGT TGG ACT TTC CT-3'

Table S4: Summary of IHC results

Cases no.	Diagnosis	No of analyzed cases	\mathbf{N}° of cases positive for	
		PDL1 $^{\text {a }}$	PDL2 $^{\text {a }}$	
1.1-1.9	various	6	4	5
$2.1-2.5$	PMBCL	5	5	5
$2.6-2.9$	T-NHL	3	3	2
$3.1-3.5$	CHL	5	4	3
$3.6-3.8$	CHL	3	3	3

${ }^{\text {a }}$ Expression of at least one PDL protein was detected in almost all cases analyzed

A

3

5

B

C

D

\square

Figure S2

