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ABSTRACT
Since the seminal paper by Cook and Weisberg [9], local influence,
next to case deletion, has gained popularity as a tool to detect influ-
ential subjects and measurements for a variety of statistical models.
For the linearmixedmodel the approach leads to easily interpretable
and computationally convenient expressions, not only highlighting
influential subjects, but also which aspect of their profile leads to
undue influence on the model’s fit [17]. Ouwens et al. [24] applied
the method to the Poisson-normal generalized linear mixed model
(GLMM). Given the model’s nonlinear structure, these authors did
not derive interpretable components but rather focused on a graph-
ical depiction of influence. In this paper, we consider GLMMs for
binary, count, and time-to-event data, with the additional feature of
accommodating overdispersionwhenever necessary. For each situa-
tion, three approaches are considered, basedon: (1) purely numerical
derivations; (2) using a closed-form expression of the marginal like-
lihood function; and (3) using an integral representation of this like-
lihood. Unlike when case deletion is used, this leads to interpretable
components, allowing not only to identify influential subjects, but
also to study the cause thereof. Themethodology is illustrated in case
studies that range over the three data types mentioned.
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1. Introduction

Next to linear mixed models (LMMs) for hierarchical Gaussian data [26], generalized
linear mixed models (GLMMs; [2,19,28]) have become a standard tool for the analysis of
hierarchical data of a variety of data types. Routinely, after formulating and fitting amodel,
an assessment of model fit and a diagnostic analysis is advisable. Here, we are concerned
with the detection of influential subjects.

A large variety of diagnostic tools is available for (generalized) linear models. Cook
and Weisberg [9] and Chatterjee and Hadi [3] provide early treatises. In linear regression,
Cook’s distances [5–7] have been used extensively. They capture how much a parameter
changes based on the contribution from one particular individual. If unduly large, the
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2 T. W. RAKHMAWATI

subject is considered influential. LMMs, unlike linear models, generally do not allow for
closed-form parameter estimators. Further, residual analysis is not straightforward, given
the presence of both fixed- and random-effects, so that even uniquely defining residuals is
not possible. For these and related reasons, Lesaffre andVerbeke [17], chose local influence
[1,8] to examine influence in LMMs. Lesaffre and Verbeke [17] studied how much case-
weight perturbation impacts parameter estimates; such perturbations refer to infinitesimal
deviations from a subject’s contribution to the log-likelihood. Their proposal has several
attractive features. First, it distinguishes influence in fixed-effects parameters from that in
variance components. Second, for each of these parameter subsets, influence is decom-
posed in interpretable components. Third, the influence diagnostics are computationally
inexpensive, once the mixed model is fitted.

The GLMM has received less attention, even though Ouwens et al. [24] applied local
influence to count data. An important complication is that the (log-)likelihood function
does not admit a closed form. Hence, their derivations were numerical in nature, which
makes it less evident to derive meaningful influence components.

Here, we extend local influence for the GLMM in several ways. First, we consider out-
comes of binary, count, and time-to event type. Second, using the extension proposed by
Molenberghs et al. [20,21], we flexibly allow for overdispersion in the GLMM, by introduc-
ing conjugate random effects, in addition to normal ones. This model is referred to as the
combined model. Third, apart from numerical derivations of local influence, we examine
two alternative routes: (a) closed forms for the marginal likelihood such as proposed in
Molenberghs et al. [21] and (b) the marginal likelihood with integral form. The closed
forms in (a) do not always exist; while they are available for the probit-(beta-)normal,
Poisson-(gamma-)normal, andWeibull-(gamma-)normal, they are not for the logit-(beta-
)normal. Even when they do, they may be somewhat unwieldy and therefore, route (b) is
more promising. Fourth, interpretable components are derived, allowing to get a better
perspective on the data-analytic consequences of candidate influential subjects. In other
words, once influential subjects have been identified, it can be examined precisely which
aspects lead to such influences.

The paper is organized as follows. In Section 2 four case studies are introduced, two
counts, one made up of binary, and one of time-to-event type. Their analyses are reported
in Section 6. Section 3 describes the generalized model based on the exponential fam-
ily. Section 4 reviews the essence of local-influence theory. The LMM case is sketched
in Section 5.1, and we show that using the integral form of the log-likelihood leads to
exactly the same expressions. The Poisson, probit, logit, and Weibull cases are studied in
Sections 5.2–5.5.

2. Case studies

2.1. A clinical trial in epileptic patients

The data considered here are obtained from a randomized, double-blind, parallel group
multi-center study for the comparison of placebo with a new anti-epileptic drug (AED),
in combination with one or two other AED’s. The study is described in Faught et al. [12].
The randomization of epilepsy patients took place after a 12-week baseline period that
served to stabilize the use of AED’s, and duringwhich the number of seizures were counted.
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JOURNAL OF APPLIED STATISTICS 3

After that period, 45 patients were assigned to the placebo group, 44 to the active (new)
treatment group. Patients were then measured weekly. Patients were followed during 16
weeks, after which they were entered into a long-term open-extension study. Some patients
were followed for up to 27weeks. The outcomeof interest is the number of epileptic seizures
experienced during the most recent week. The research question is whether or not the
additional new treatment reduces the number of epileptic seizures.

2.2. Headache study

This data set has been reported byMcKnight andVanDen Eeden [18]. The experiment has
been done using a two-treatment, double-blind crossover design; the number of headaches
per week is repeatedly measured during 5 weeks of experiment. The study objective was to
investigate whether aspartame causes headaches in subjects who believe they experience
aspartame-induced headaches. Twenty-seven volunteers who responded to newspaper
advertisements were randomized to one of four treatment regimens. Each regimen began
with a seven-day placebo run-in period followed by four treatment periods of seven days
each. Each treatment period was separated by a ‘washout day’. Both aspartame (A), given
at 30mg/kg/day, and placebo (P) were administered in capsules of three doses per day. The
four possible orderings of treatment after the run-in period were APAP, APPA, PAPA and
PAAP. Most of the run-in periods were done within 7 days, yet some of the periods were
smaller.

2.3. A clinical trial in onychomycosis

These data come from a randomized, double-blind, parallel group, multicenter study for
the comparison of two oral treatments (experimental and standard) for toenail dermato-
phyte onychomycosis (TDO; [10]). TDO is a common toenail infection, difficult to treat,
with prevalence exceeding 2% [25]. Anti-fungal compounds, classically used for treatment
of TDO, need to be taken until the whole nail has grown out healthily. The development
of such new compounds, has reduced the treatment duration to 3 months. The aim of
the present study was to compare the efficacy and safety of 12 weeks of continuous ther-
apy with experimental or standard treatment. Twice 189 patients were randomized. In this
paper, we restrict the analysis to those patients for which the target nail was one of the two
big nails. This reduces the samples to 148 and 146 subjects for experimental and standard
treatment, respectively. Subjects were followed during 3 months of treatment and followed
further until month 12. Measurements were taken at 0, 1, 2, 3, 6, 9, and 12 months. The
outcome of interest is severity of infection (1: severe; 0: non-severe). The estimand is the
difference in slope over time between the arms.

2.4. Recurrentmuscle soreness

These data come from Hosmer and Lemeshow [14]. The study of two treatment modal-
ities was aimed at reducing the occurrence of muscle soreness among 400 middle-aged
men in the beginning of weight training. Subjects were randomized over two instructional
programs designed to prevent muscles soreness. The control treatment consisted of stan-
dard written brochures and instructions used by the health club to explain the proper
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4 T. W. RAKHMAWATI

technique, including the suggestions for frequency and duration of training. The new
method included 1 hour with a personal trainer as well as brochures. The subjects were
followed for some time and the dates on which muscles soreness limited the prescribed
workout were recorded, converted to number of days between soreness episodes. All sub-
jects had between one and fourmuscle soreness episodes. The start and end of each episode
is recorded, together with the status indicator to denote whether the end of the episode
corresponds to a muscle soreness or not.

3. Generalized linear mixedmodels

The GLMM [2,11,28] is arguably the most frequently used random-effects model in the
context of (non-)Gaussian repeatedmeasurements, extending both GLMMs for univariate
outcomes and LMMs [26].

Let Yij be the jth outcome for subject i = 1, . . . ,N, j = 1, . . . , ni and group the ni
measurements into vector Y i. Assume that, given q-dimensional random effects

bi ∼ N(0,D), (1)

the Yij’s are independent with model

fi(yij | bi, ξ ,φ) = exp{φ−1[yijλij − ψ(λij)] + c(yij,φ)},
η[ψ ′(λij)] = η(μij) = η[E(Yij | bi, ξ)] = x′

ijξ + z′
ijbi (2)

for a known link function η(·), with xij and zij p- and q-dimensional vectors of known
covariate values, ξ a p-dimensional vector of unknown fixed regression coefficients, and
with φ a scale (overdispersion) parameter. Let φ(bi |D) be the multivariate normal density
with mean 0 and variance D. The marginal likelihood function is:

L(ϑ ,D) =
N∏
i=1

∫ ni∏
j=1

fij(yij | ϑ , bi)φ(bi |D) dbi.

Here, ϑ groups all parameters in the conditional model for Y i given the random effects.
Not always is there a closed form for the integral expression of the marginal likelihood
function, nor for the corresponding moments. The most notorious counterexample is the
logit-normal model, where Equation (2) uses the logit link. While a suite of computational
techniques has been derived to approximate the likelihood numerically, for example, using
Taylor series expansions and numerical integration, it poses further challenges when addi-
tional calculations are requested.We are in this position, because local influence starts from
the likelihood (see Section 4).

3.1. The LMM for gaussian data

The hierarchically specified linear mixed-effects model takes the form [26]:

Y i | bi ∼ N(Xiξ + Zibi,�i), (3)

where ξ is a vector of fixed effects, andXi andZi are designmatrices. The rows ofXiξ + Zibi
are made up by the linear predictors (2). Evidently, bi is as specified in Equation (1). The
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JOURNAL OF APPLIED STATISTICS 5

correspondingmarginal model, needed for maximum likelihood estimation and hence the
corner stone for local influence [17] obtains easily and is, again, of a multivariate normal
form:

Y i ∼ N(Xiξ ,Vi = ZiDZ′
i +�i). (4)

3.2. The Poisson-normal and Poisson-gamma-normalmodels for count data

From the general developments above, the Poisson-normal model is:

Yij ∼ Poi(λij), (5)

λij = exp(x′
ijξ + z′

ijbi), (6)

and bi as in Equation (1). Molenberghs et al. [20,21] derived a closed form for themarginal
model:

P(Yi = yi) = 1∏ni
j=1 yij!

∑
t

(−1)
∑ni

j=1 tj∏ni
j=1 tj!

· exp
⎡⎣ ni∑

j=1
(yij + tj)x′

ijξ

⎤⎦
× exp

⎧⎨⎩1
2

⎡⎣ ni∑
j=1
(yij + tj)z′

ij

⎤⎦D

⎡⎣ ni∑
j=1
(yij + tj)zij

⎤⎦⎫⎬⎭ . (7)

The vector-valued index t = (t1, . . . , tni) ranges over all non-negative integer vectors.
When overdispersion is accommodated, as in Molenberghs et al. [20,21], Equation (5)

changes to

Yij ∼ Poi(θijλij), (8)

with λij as in Equation (6) and θij ∼ Gamma(αj,βj). The joint distribution now is:

P(Yi = yi) =
∑
t

⎡⎣ ni∏
j=1

(
yij + tj
yij

)
·
(
αj + yij + tj − 1

αj − 1

)
· (−1)tj · βyij+tj

j

⎤⎦
× exp

⎛⎝ ni∑
j=1
(yij + tj)x′

ijξ

⎞⎠
× exp

⎧⎨⎩1
2

⎡⎣ ni∑
j=1
(yij + tj)z′

ij

⎤⎦D

⎡⎣ ni∑
j=1
(yij + tj)zij

⎤⎦⎫⎬⎭ . (9)

For identification, write βj = 1/αj. The modeler may choose αj and βj terms free of j.
While Zeger et al. [29] derived a closed form for the mean function only, Molenberghs

et al. [21] thus provided closed forms for all of the moments and for the joint marginal
distribution; they did so for the combined-model extension of the GLMM, and hence for
the GLMM itself. This opens avenues for local influence and corresponding interpretable
components, which goes well beyond what was done in the literature thus far (e.g. [24]).
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6 T. W. RAKHMAWATI

3.3. The probit-normalmodel for binary and binomial data

A probit-normal model is specified by Yij ∼ Bin(λij, nij) and

λij = 
1(x′
ijξ + z′

ijbi). (10)

Molenberghs et al. [21] showed that the marginal joint distribution is:

fni(yi = 1) = 
ni(Xiξ ; L−1
ni ), (11)

with Lni = Ini − Zi(D−1 + Z′
iZi)

−1Z′
i . Of course, this is only the probability of a (so-called

success) sequence consisting of ones. All other joint probabilities are derived by the usual
combination rules [21]. When overdispersion is allowed for, then again λij is multiplied by
θij ∼ Beta(α,β) and the joint distribution becomes:

fni(yi = 1) =
(

α

α + β

)ni
·
ni(Xiξ ; L−1

ni ). (12)

Should the logit link be used, there is no closed form available. Of course, the approxima-
tion rule for the logit by the probit function can be used [16,21,29]:

fni(yi = 1) ≈ 
ni(cXiξ ; L̃−1
ni ), (13)

with L̃ni = Ini − c2Zi(D−1 + Z′
iZi)

−1Z′
i and c = (16

√
3)/(15π).

3.4. TheWeibull-normalmodel for time-to-event data

In the Weibull case, the corresponding model is

f (yi | θ i, bi) =
ni∏
j=1
λρyρ−1

ij ex
′
ijξ+z′

ijbi e−λy
ρ
ij e

x′ijξ+z′ijbi
, (14)

with bi as in Equation (1). The joint distribution is [21]:

f (yi) =
∑

(t1,...,tni )

ni∏
j=1

(−1)tj

tj!
λtj+1ρy(tj+1)ρ−1

ij exp
{
(tj + 1)

[
x′
ijξ + 1

2
(tj + 1) · z′

ijDzij
]}

.

(15)

Similar to the Poisson case, (t1, . . . , tni) ranges over all non-negative integer vectors.When
overdispersion is allowed for, the Weibull-Gamma-Normal model is:

f (yi | θ i, bi) =
ni∏
j=1
λρθijy

ρ−1
ij ex

′
ijξ+z′

ijbi e−λy
ρ
ijθij e

x′ijξ+z′ijbi
, (16)

with now also θij ∼ Gamma(αj,βj), leading to the closed form:

f (yi) =
∑

(t1,...,tni )

ni∏
j=1

(−1)tj

tj!


(αj + tj + 1)β tj+1
j


(αj)
λtj+1ρy(tj+1)ρ−1

ij

× exp
{
(tj + 1)

[
x′
ijξ + 1

2
(tj + 1) · z′

ijDzij
]}

. (17)
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JOURNAL OF APPLIED STATISTICS 7

4. Review of general theory for local influence

4.1. Standard approach

Local influence was presented by Cook [8] and used by many authors since. The impact
of individuals and measurements on the analysis is assessed by comparing standard max-
imum likelihood estimates with those resulting from slightly perturbing the contribution
of an individual or measurement. The method is to be contrasted with global influence
(case deletion), where impact is assessed by simply deleting an individual or measure-
ment. While local influence comes with a certain amount of technicality, it is easy and fast
to calculate, and in many cases leads to interpretable components of influence. The exis-
tence of such interpretable components is often, and also here, a major rationale for using
the method. Lesaffre and Verbeke [17] introduced influence assessment for the LMM. A
review of several diagnostic procedures for the LMM is given in Mun and Lindstrom [22].
Verbeke et al. [27] used local influence for longitudinal Gaussian data with dropout, while
incomplete binary data were studied by Jansen et al. [15]. Verbeke and Molenberghs [26]
and Molenberghs and Verbeke [19] reviewed the method and provide ample references.

Ouwens et al. [24] applied local influence to the Poisson-normal model. We will fol-
low their steps, but with extensions in three directions. First, we will provide closed-form
expressions, based on an analytical form for the marginal likelihood function, as well as
based on an integral form for the said likelihood. Second, we consider three important
cases: binary, count, and time-to-event. Third, extensions will be constructed to allow for
overdispersion in all of these settings. Some authors considered specific extensions as well.
For example, Chen et al. [4] considered local influence for zero-inflated Poisson mixtures.

Let the log-likelihood for the GLMM or its combined extension take the form

�(θ) =
N∑
i=1

�i(θ), (18)

in which �i(θ) is the contribution of the ith individual to the log-likelihood. Let

�(θ | ω) =
N∑
i=1

ωi�i(θ), (19)

now denote the perturbed version of �(θ), depending on an N-dimensional vector ω of
weights, assumed to belong to an open subset � of IRN . The original log-likelihood (18)
follows forω = ω0 = (1, 1, . . . , 1)′. Other perturbation schemes are possible [26]. Let θ̂ be
the maximum likelihood estimator for θ , obtained by maximizing �(θ), and let θ̂ω denote
the estimator for θ under �(θ | ω). Cook [8] proposed to measure the distance between
θ̂ω and θ̂ by the likelihood displacement: LD(ω) = 2(�(θ̂)− �(θ̂ω)). LD(ω) will be large
if �(θ) is strongly curved at θ̂ . A graph of LD(ω) versus ω brings out information on the
influence of case-weight perturbations. The graph is the geometric surface formed by the
values of the (N + 1)-dimensional vector

ξ(ω) =
(

ω

LD(ω)

)
as ω varies throughout�. Following Cook [8] and Verbeke andMolenberghs [26], we will
refer to ξ(ω) as an influence graph.

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

1:
22

 0
9 

M
ay

 2
01

6 



8 T. W. RAKHMAWATI

Zhu and Lee [30] and Zhu et al. [31] proposed another approach to deal with the
measurement of the distance between θ̂ω and θ̂ . Instead of using the observed-data log-
likelihood, theirmethod is applied to the objective function that features in the expectation
step of the EM algorithm. Because this function is usually denoted by Q, their method
is known as Q-displacement. In this paper, we focused on the used of the likelihood
displacement LD(ω) [8].

Cook [8] derived a convenient computational scheme. Let�i be the s-dimensional vec-
tor of second-order derivatives of �(θ | ω), w.r.t. ωi and all components of θ , and evaluated
at θ = θ̂ and ω = ω0. Also, write � for the s × r matrix with �i in the ith column. Let
L̈ denote the s × s matrix of second derivatives of �(θ), evaluated at θ = θ̂ . For any unit
vector h in�, it follows that:

Ch = 2|h′�′L̈−1�h|. (20)

Various choices for h have received attention. First, as will be done here, one can focus on
subject i only, by choosing h = hi, the zero vector with a sole 1 in the ith position. Local
influence then is

Ci ≡ Chi = 2|�′
iL̈

−1�i|. (21)

Second, h = hmax can be considered, the direction of maximal normal curvature [26].
Expressions can be derived when only a sub-vector of the parameter vector is of interest.
See Supplementary Materials (Section S.1).

4.2. Proceedingwhen facedwith a complicated likelihood

As will be reviewed in Section 5.1.1, Lesaffre and Verbeke [17] proceeded by deriving local
influence based on the explicit expression of the marginalized linear mixed model. While
there are marginal expressions available for the Poisson, probit, and Weibull cases (Sec-
tions 3.2–3.4), these are involved. This is why we also proceed in two alternative ways. The
first one consists of using integral expression of the marginal likelihood function, essen-
tially combined with the property that integration and derivation can be interchanged
under mild regularity conditions. Importantly, this route still allows for the derivation
of interpretable components. A further alternative consists of choosing a fully numerical
route, as in Ouwens et al. [24].

5. Local influence for generalized linear mixed and combinedmodels

5.1. Local influence for the LMM

5.1.1. Standard approach, based on themarginal likelihood.
The backdrop for our developments is the method as derived for the LMM [26]. They
started from the marginal likelihood (4) directly. For this model, this is easy to do and
hence a natural choice. We will review their derivations, with details relegated to the Sup-
plementary Appendix Materials (Section S.2). We will then proceed alternatively by an
integral-based approach. This will provide the basis for the analogous calculations in the
non-Gaussian cases.

For the covariance structure, we assume conditional independence, that is,�i = σ 2Ini ,
with Ini the ni × ni identity matrix.
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It is advantageous that Ci admits closed form (21). Lesaffre and Verbeke [17] decom-
posed Ci into five interpretable components. LetRi, Xi, and Zi denote the ‘standardized’
residuals and covariates for the ith individual, defined by Ri = V−1/2

i ri, Xi = V−1/2
i Xi,

and Zi = V−1/2
i Zi, respectively, with ri = yi − Xîξ . Further, for a matrix A, let ‖A‖ =√

tr(A′A) be the Frobenius norm of A [13]. The interpretable components in Ci are then

‖XiXi
′‖, ‖Ri‖, ‖ZiZi

′‖, ‖I − RiRi
′‖, ‖V−1

i ‖. (22)

First, ‖XiXi
′‖ measures the ‘length’ of the standardized covariates in the mean structure

and ‖Ri‖ is an overall measure for how well the observed data for the ith subject are
predicted by the mean structure Xiξ . Second, the components ‖ZiZi

′‖ and ‖I − RiRi
′‖

have a similar meaning, but then for the covariance structure. For example, ‖I − RiRi
′‖

will be zero only if Vi equals riri′. Note that riri′ is an estimate for var(yi), which only
assumes the mean to be correctly modeled as Xiξ . Therefore, ‖I − RiRi

′‖ can be inter-
preted as a residual, capturing how well the covariance structure of the data is modeled
by Vi = ZiDZ′

i + σ 2Ini . Finally, the fifth component ‖V−1
i ‖ will be large if Vi has small

eigenvalues, indicating that the ith subject has little variability.
The decomposition of Ci immediately suggests a practical procedure to find an expla-

nation for the influential nature of an individual, that is, when Ci is large, we examine
the diagnostics. Such plots are useful to graphically inspect the individuals in view of
their influence. Thus, it is sensible to start with an index plot of Ci. Following this, the
index plots of (22) can be examined. A recurrent practical difficulty with diagnostics is to
establish a threshold above which an individual is defined as ‘remarkable’. It follows from
Equation (21) that

N∑
i=1

Ci = −2 tr

(
L̈−1

N∑
i=1

�i�
′
i

)
,

which converges to 2 s, for N approaching infinity. As with leverage in linear regression
[23, pp. 395–396], one could classify an individual for which Ci is larger than twice the
average value (larger than 4s/N, forN large) as influential. However, unlike for the leverage
situation, 2s is only the approximate sum of the Ci, which will not be accurate if the model
is not correctly specified (such that L̈−1∑N

i=1 �i�
′
i does not converge to Is) or if N is too

small for the asymptotic results to be reliable. In such cases, Lesaffre and Verbeke [17]
proposed to replace 2s by the actual sum; we then call the ith subject influential if Ci is
larger than the cutoff value 2

∑N
i=1 Ci/N.

Given decomposition result (S.1.1), it is interesting to consider sub-vectors ξ and α of
fixed effects and variance components, respectively, with corresponding influences Ci(ξ)

andCi(α), respectively. Given that the fixed effects and variance components are asymptot-
ically independent, it follows that Ci ≈ Ci(ξ)+ Ci(α). Lesaffre and Verbeke [17] further
showed that Ci(ξ) can be decomposed using only the first two components ‖XiXi

′‖ and
‖Ri‖, while the last three, ‖ZiZi

′‖, ‖I − RiRi
′‖, and ‖V−1

i ‖, feature in the decomposi-
tion of Ci(α). Asymptotically therefore, influence for the fixed effects and for the variance
components can be scrutinized by studying the first two and the last three interpretable
components, respectively.
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10 T. W. RAKHMAWATI

5.1.2. Integral-based expression.
As mentioned in Section 4, the integral-based approach can be used as an alternative way
to alleviate complexities with the explicit marginal likelihood expressions. To prepare for
developments of Poisson, probit, logit, and Weibull cases, the calculations have been done
first for the LMM setting. Details are in Supplementary Section S.2.2. This integral-based
result is identical to the standard one of Lesaffre and Verbeke [17], reported in the previous
section. Evidently, the same interpretable components as in Equation (22) ensue.

5.1.3. Fully numerical route.
The third and final method examined proceeds fully numerically. Observe that Equation
(20) is based on the first- and second-order derivatives of the log-likelihood function.
Methodologically, a fully numerical derivation is based on replacing derivatives by appro-
priately precise finite differences of the first and second order, for the score vector and
Hessian matrix, respectively. Conveniently, such calculations are routinely done in sta-
tistical software packages as part of the log-likelihood maximization process. All that is
needed is extracting this information from the package. For the score, individual subjects’
contributions are needed, as is clear in particular from Equation (21). The advantage of
this approach is straightforward implementation for the models considered here but also
for other models with perturbation scheme (19) for the log-likelihood, provided that the
score and Hessian functions are numerically available.

Even though jointly considering the numerical approach and the explicit route appears
redundant, it is beneficial tomake use of both.We referred to the computational ease of the
numerical method. At the same time, the explicit calculations can be used to also calculate
the influence components, for enhanced interpretation. This route is followed, using the
SAS procedure NLMIXED.

5.2. Local influence for the Poisson-normalmodel

In this section, local influence for the Poisson-normal model is studied. In the Supplemen-
tary Materials (Section S.3.1), it is shown that, while one could set out from the explicit
marginal distribution, the infinite sum that it contains inhibits both convenient expres-
sions and interpretable components. We therefore prefer an integral-based approach, the
details of which are given in the Supplementary Materials (Section S.3.2). Writing

Ii =
∫

exp{f̃ (yi)+ f̃ (bi)} dbi,

f̃ (yi) =
ni∑
j=1

{cijyij − exp(γij + cij)},

f̃ (bi) = −1
2
bi′D−1bi,

Ai = exp{f̃ (yi)+ f̃ (bi)},
it follows that

∂�i(ξ ,D)
∂β

=
ni∑
j=1

{yij − E(yij | bi)}xij =
ni∑
j=1

rijxij,

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

1:
22

 0
9 

M
ay

 2
01

6 



JOURNAL OF APPLIED STATISTICS 11

∂�i(ξ ,D)
∂djk

= −1
2
(2 − δjk){(D−1)jk − (D−1D−1)jkVar(bi)},

where djk is a component of D and δjk is one if j is equal to k, and zero otherwise. Also, by
Var(bi) we mean

∑q
k=1 Var(bik).

Interpretable expressions can now be derived. To this end, in the Supplementary
Materials (Section S.3.2), we first show that

‖�i‖2 =
⎛⎝ ni∑

j=1
rijxij

⎞⎠⎛⎝ ni∑
j=1

rijxij

⎞⎠′

+
∑
k,l

{
−1
2
(D−1)kl + 1

2
(D−1D−1)klVar(bi)

}2
.

Let Ci = C1i + C2i with:

C1i = 2‖L̈−1‖ ‖rixi‖2 cos(ϕi), (23)

C2i = 1
2‖L̈−1‖ ‖(D−1)kl − (D−1D−1)klVar(bi)‖2 cos(ϕi), (24)

where rixi = ∑ni
j=1 rijxij. Note that C1i and C2i are the contributions of subject i to local

influence Ci from β and D, respectively. Now, C1i and C2i can be shown to equal:

C1i = 2‖L̈−1‖ ‖xix′
i‖ ‖ri‖2 cos(αi) cos(ϕi), (25)

C2i = 1
2‖L̈−1‖ cos(ϕi)× [tr{(D−1)2kl} − tr{2(D−1)kl(D−1D−1)klVar(bi)}
+ tr{(D−1D−1)2klVar(bi)

2}], (26)

where cos(αi) is the angle between vec(xix′
i) and vec(riri′), and ϕi is the angle between

vec(−L̈−1) and vec(�i�
′
i). Hence, the interpretable components of Ci in the case of the

Poisson-normal model can be described using the ‘length of the fixed effect’ (‖xix′
i‖),

the ‘squared length of the residual’ (‖ri‖2), and the ‘squared of random effect variability’
(Var(bi)2).

5.3. Local influence for the probit-normalmodel

Given the numerical approach of Section 5.1.3, we will focus on the explicit calcula-
tions, using only the integral method. Derivations are in the Supplementary Materials
(Section S.4). The binomial probability, conditional on the random effects, is:

P(yi | ξ , bi) =
ni∏
j=1
λ
yij
ij (1 − λij)

(1−yij), (27)

where λij is defined by Equation (10). The joint marginal probability of success is:

f (yi = 1) = 1
(2π)q/2|D|1/2

∫ ⎛⎝ ni∏
j=1

ni(X

′
iξ + Z′

ibi)

⎞⎠ exp
(

−1
2
bi′D−1bi

)
dbi. (28)
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12 T. W. RAKHMAWATI

The first derivatives are:

∂�i(ξ ,D)
∂ξ

= [I − (Xiβ)
−1]Xi,

∂�i(ξ ,D)
∂djk

= 3
2
L−1 (Ini − ZiMiM′

i(D
−1D−1)jkZ′

i
)
,

whereMi = (D−1 + Z′
iZi)

−1. It also follows that

‖�i‖2 = [I − (Xiβ)
−1]2XiX′

i +
∑
k,l

9
4L2

(Ini − ZiMiM′
i(D

−1D−1)jkZ′
i)
2.

Thus, also for this case, the components ‖Xi‖2 and ‖ZiZi
′‖2 turn up.

5.4. Local influence for the logit-normalmodel

The derivations for the logit-normal case are given in the Supplementary Materials
(Section S.5).

Evidently, the same binomial expression (27) is used, but now with logit(λij) = x′
ijξ +

z′
ijbi. The marginal joint density function is:

f (yi = 1) = 1
(2π)q/2|D|1/2

∫ ni∏
j=1
λij exp

(
−1
2
bi′D−1bi

)
dbi.

The derivatives take the form:

∂�i(ξ ,D)
∂β

=
ni∑
j=1

xij
∫

1
1 + exp(μij)

τ̃ (bi | yi) dbi,

∂�i(ξ ,D)
∂djk

= −1
2
(2 − δjk){(D−1)jk − (D−1D−1)jkVar(bi)},

where μij = x′
ijξ + z′

ijbi. It also follows that

‖�i‖2 ∝
⎧⎨⎩

ni∑
j=1

xij

⎞⎠⎛⎝ ni∑
j=1

xij

⎞⎠′

+
∑
k,l

(
−1
2
(D−1)kl + 1

2
(D−1D−1)klVar(bi)

}2
.

Reconstructing the fixed- and random-effects components, respectively, like in the Poisson
case, leads to C1i = 2‖L̈−1‖ ‖xi‖2 cos(ϕi) and C2i as in Equation (26). Hence, the inter-
pretable components of Ci for the logit-normal model can be described using the length
of fixed effect (‖xi‖2) and the squared random-effects variability, Var(bi)2 (i.e. the sum
of all variances), in analogy with the Poisson-normal model. The same is true for the
Weibull-normal model, as will be seen next.
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JOURNAL OF APPLIED STATISTICS 13

5.5. Local influence for theWeibull-normalmodel

The general Weibull model is given by Equation (14). By means of the derivations given in
the Supplementary Materials (Section S.6), the derivatives take the form:

∂�i(ξ ,D)
∂β

=
ni∑
j=1

xij − λ

ni∑
j=1

yρijxij exp(μij),

∂�i(ξ ,D)
∂djk

= −1
2
(2 − δjk)[(D−1)jk − (D−1D−1)jkVar(bi)],

where δjk = 1 if j= k and 0 otherwise. It further follows that

‖�i‖2 =
⎛⎝ ni∑

j=1
xij

⎞⎠⎛⎝ ni∑
j=1

xij

⎞⎠′

− 2
ni∑
j=1

xijQ′
i + QiQ′

i

+
∑
k,l

{
−1
2
(D−1)kl + 1

2
(D−1D−1)klVar(bi)

}2
,

where Qi = λ
∑ni

j=1 y
ρ
ijxij exp(μij). Like in the Poisson-normal and binary-normal

cases, a decomposition Ci = C1i + C2i follows, with C1i = 2‖L̈−1‖ {‖xi‖2 − 2xiQi +
‖Qi‖2} cos(ϕi) and C2i as in Equation (26). Hence, interpretable components analogous
to the earlier settings arise.

6. Analysis of case studies

6.1. A clinical trial in epileptic patients

We start from the Poisson-normal (P-N) and Poisson-gamma-normal (PGN) models
formulated by Molenberghs et al. [20,21], with Poisson parameter:

ln(λij) =
{
(ξ00 + bi)+ ξ01tj if placebo
(ξ10 + bi)+ ξ11tj if treated,

(29)

where Yij represent the number of epileptic seizures patient i experienced during week j,
tj is the time point at which Yij was measured, and with random intercept bi ∼ N(0, d).
Parameter estimates are given in Table 1. Index plots (versus patient ID) for various local
influence analyses are given in Figure 1. The top row of the plot represents the total
local influence, with subsequent rows representing influence for sub-vectors: fixed effects,
random-intercept variance d, and, for the (PGN), the overdispersion parameter α, respec-
tively. Patients #38, #49, and #62 stand out with large total influence Ci when compared to
other patients. Importantly, influences show a major drop when switching from (P-N) to
(PGN). This is most prominently seen for #38. For an explanation, turn to the right hand
panel of Figure 2. Patient #38 (and to some extent also #62 on the left hand side) alter-
nates periodically between very high numbers of episodes and periods virtually without.
This implies that their mean, variance, and association structure are rather different from
the majority of subjects. The impact on the mean structure, by way of the fixed effects, is
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14 T. W. RAKHMAWATI

Table 1. Parameter estimates (standard errors) for the generalized linear mixed and combined models.

Epilepsy P-N PGN

Effect Par. Full #(38, 49, 62) Full #(38, 49, 62)

Interc. plac. ξ00 0.818 (0.168) 0.903 (0.157) 0.911 (0.176) 0.907 (0.163)
Slope plac. ξ01 −0.014 (0.004) −0.031 (0.005) −0.025 (0.008) −0.031 (0.008)
Interc. treat. ξ10 0.648 (0.170) 0.492 (0.162) 0.656 (0.178) 0.510 (0.169)
Slope treat. ξ11 −0.012 (0.004) −0.007 (0.005) −0.012 (0.007) −0.009 (0.007)
Treat. eff. ξ11 − ξ10 0.002 (0.006) 0.024 (0.007) 0.013 (0.011) 0.022 (0.011)
Treat. eff. ξ11/ξ10 0.840 (0.398) 0.236 (0.170) 0.475 (0.335) 0.281 (0.250)
Std. rand. int. σ 1.076 (0.086) 0.982 (0.081) 1.063 (0.087) 0.969 (0.082)
Overdisp. par. α 2.464 (0.211) 3.109 (0.329)

Headache P-N PGN

Effect Par. Full #(4, 10, 13, 25) Full #(4, 10, 13, 25)

Intercept ξ0 −1.715 (0.172) −1.609 (0.136) −1.710 (0.174) −1.599 (0.139)
Treatment ξ1 0.283 (0.142) 0.187 (0.164) 0.289 (0.156) 0.187 (0.179)
Std. rand. int. σ 0.695 (0.140) −0.388 (0.120) 0.682 (0.144) −0.349 (0.137)
Overdisp. par. α 12.47 (16.53) 8.916 (9.982)

Onychomycosis L-N LBN

Effect Par. Full #(6, 30, 53) Full #(6, 30, 53)

Interc. plac. ξ0 −1.630 (0.435) −1.940 (0.523) −1.604 (4.026) −2.420 (3.089)
Slope plac. ξ1 −0.404 (0.046) −0.430 (0.049) −6.478 (1.439) −6.075 (1.264)
Interc. treat. ξ2 −1.749 (0.448) −1.604 (0.536) −16.21 (3.58) −15.21 (3.02)
Slope treat. ξ3 −0.563 (0.060) −0.872 (0.100) −8.075 (1.600) −8.755 (1.437
Treat. eff. ξ11 − ξ10 −0.159 (0.072) −0.442 (0.105) −1.596 (0.858) −2.680 (0.822)
Treat. eff. ξ11/ξ10 1.394 (0.206) 2.028 (0.302) 1.246 (0.148) 1.441 (0.171)
Std. rand. int. σ 4.015 (0.381) 4.814 (0.490) 60.88 (14.22) 56.47 (11.69)
Overdisp. par. α/β 0.281 (0.035) 0.231 (0.031)

Muscle soreness W-N WGN

Effect Par. Full Full

Intercept ξ0 −3.664 (0.1103) −3.870 (0.141)
Slope ξ1 0.352 (0.064) 0.404 (0.073)
Shape par. ρ 1.027 (0.027) 1.118 (0.045)
Std. rand. int. σ 0.242 (0.066) 0.199 (0.096)
Overdisp par. α 5.781 (2.174)

evident in the second row. For the (P-N) it is less clear when turning to d, but we gain a
lot of insight from the (PGN) results. Overall influence and influence on ξ reduce drasti-
cally, but there now is clear influence on d and α. What it means is that with these subjects
present, the overdispersion parameter helps capturing their anomalous behavior, which
‘deflates’ d. In other words, adding overdispersion protects the inferentially crucial fixed-
effects parameter vector.When removing these subjects, and also #49, little or no influence
is left.

Note that the (PGN) model fitted to the full data set exhibits a smaller value for α,
which corresponds tomore overdispersion (no overdispersion corresponds to α approach-
ing +∞), while it does not vanish with removal of the three subjects. Thus, there appears
to be genuine overdispersion in the data, further inflated by the influential subjects.

In agreement with Molenberghs et al. [20,21], we consider the treatment effect in addi-
tive (ξ11 − ξ01) and multiplicative (ξ11/ξ01) form. Important differences are seen on the
additive scale. (P-N) shows no significance (p=0.7106), which is sustained for (PGN),
with p=0.2225. Removing the influential subjects leads to a highly significant result for
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JOURNAL OF APPLIED STATISTICS 15

Figure 1. Epilepsy data. Local influence plots.

Figure 2. Epilepsy data. Individual profiles.

(P-N), with p=0.0009, which changes to the still significant p=0.0350 for (PGN). Hence,
the influential subjects mask a treatment effect. This is logical, because the influential sub-
jects exhibit an oscillating behavior, introducing an important source of variability. At the
multiplicative level, where the null hypothesis is for the ratio to be 1, the story is nicely con-
firmed, with p=0.6872 and p=0.1166 for (P-N) and (PGN), respectively; the counterparts
after deletion are p<0.0001 and p=0.0040, respectively.
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16 T. W. RAKHMAWATI

Figure 3. Epilepsy data. Plots of interpretable components of local influence.

To get further insight as to why these subject have higher influence than others, plots
with interpretable components are given in Figure 3: ‘squared length of the fixed effects’
‖xix′

i‖, ‘squared length of the residual’ ‖ri‖2, and ‘random-effect variability’ Var(bi)2. It is
hardly surprising that #38 stands out in terms of ‖ri‖2. Influences on #49 and #62 are less
pronounced.

Our analysis has provided insight not available from earlier analysis. The influential
subjects exhibit a cyclic behavior not observed in the majority of patients, but at the same
timewell documented. Based on these findings, a focused clinical discussion can take place,
to determine the course of action. Options include removal, retention, or even setting up
a dedicated study to further scrutinize this sub-population. In this case, a small group of
patients with oscillating behavior between two poles has been identified.

6.2. Headache study

For these data, the model of Ouwens et al. [24] is used again:

E(Yij | ξ , bi) = tij exp(ξ0 + Tijξ1 + bi), (30)

where Tij indicates whether either placebo or Aspartame is given to patient i at occasion j,
bi ∼ N(0, d), and tij is the length of this period in days. We consider (P-N) and (PGN).

Figure S.4 in Supplementary Material shows the individual profiles. From this figure,
and from some influence graphs in Figure S.5, patients #13, #25, #4, and #10 deserve fur-
ther investigation. The individual profiles show that the former two have more headaches
than is typically the case; the latter two have none. Subjects #4 and #10 show up in the
total influence and that on d for the (P-N), while #13 is influential for the fixed effects. No
further influences are seen after removal of these four patients. Also, the relatively strong
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JOURNAL OF APPLIED STATISTICS 17

influences in (P-N) essentially disappear when turning to the (PGN). In other words, these
influential subjects induce overdispersion which, when accommodated, strongly alleviates
their influential status. Parameter estimates (standard errors) are reported in Table 1.While
there is a borderline significant treatment effect in the (P-N) fitted to all data (p=0.0463),
and a borderline non-significant one in the (PGN) fitted to the full data (p=0.0639), it
disappears after removal (p=0.2542 for (P-N) and p=0.2962 for (PGN)). This under-
scores that a few subjects might drive the alleged treatment effect. Note that the effect of
removal in terms of significance is opposite to that in the epilepsy study. The interpretable
components do not lead to additional insight (Figures S.6 in Supplementary Material).

6.3. A clinical trial in onychomycosis

Molenberghs et al. [21] assumed Yij | bi ∼ Bernoulli(πij), where Yij is severity of infection
(1 for severe, 0 for non-severe) for patient i at occasion j, Ti is the treatment indicator
(1 for experimental, 0 for standard) for subject, tj is the time point (months) at which the
jth measurement has been taken, and bi ∼ N(0, d). The conditional success probability is
expressed as:

logit(πij) = ξ1(1 − Ti)+ ξ2(1 − Ti)tij + ξ3Ti + ξ4Titij + bi.

Both the logit-normal (L-N) and logit-beta-normal (LBN) are fitted. Parameter estimates
(standard errors) are displayed in Table 1, with local influence plots in Figure S.7 (in
Supplementary Material). Subjects #6, #30, and #53 are detected as influential, overall,
and with respect to the fixed effects, in the (L-N). Accommodating overdispersion, hence
turning to the (LBN), deflates the magnitude of influence. Likewise, influence is drasti-
cally diminished by removing these three subjects. Thus, in case the influential subjects
should remain in the analysis, the (LBN) may be the most sensible route forward. Alterna-
tively, in case they are considered anomalous, one can remove them. To decide on which
scenario is preferred in this case, we note that all three subjects are unusual: they set out
with a sequence of non-severe ratings, but then switch to a severe rating (‘0000111’ for #6,
‘0000011’ for #30, and ‘0000001’ for #53). Arguably, there is no reason to remove these
subjects from analysis, partly also to safeguard randomization. However, it is uncommon
to switch from non-severe to severe in this particular way, so these patients must be fur-
ther clinically scrutinized. Also for these data, the interpretable components do not lead to
further insight (Figure S.8 in Supplementary Materials).

The (L-N) and (LBN) lead to borderline significance when applied to the full data
[p=0.0268 additively and p=0.0560 multiplicatively for (L-N); p=0.0627 additively and
p=0.0964 multiplicatively for (LBN)]. When influential subjects are removed, these val-
ues all become highly significant [in the same order, p<0.0001, p=0.0007, p=0.0011,
and p=0.0099]. These findings are qualitatively similar to the epilepsy cases, but different
from the headache study.

6.4. Recurrentmuscle soreness

The Weibull-normal (W-N) and Weibull-gamma-normal (WGN) models are considered,
with scale parameter λ = 1, and linear predictor ηij = ξ0 + bi + ξ1Ti, where Ti is an indi-
cator for treatment and bi ∼ N(0, d). Parameter estimates (standard errors) are in Table 1.

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

1:
22

 0
9 

M
ay

 2
01

6 



18 T. W. RAKHMAWATI

Local influence plots and interpretable components are displayed in Figures S.9 and S.10
in Supplementary Materials, respectively. Unlike in the three previous studies, no subjects
stand out. It is clear though, that influence goes down when turning from the (W-N) to the
(WGN). It is equally important to see no influence is detected when there happens to be
none.

7. Simulation study

In order to evaluate the relative performance of local influence in the context of the two dif-
ferent models, standard and combined, a small-scale simulation study was conducted. To

Table 2. Simulation study.

Source Mean Std. Dev. Mean Std. Dev.

Epilepsy P-N PGN

Total local influence (Ci) 6.630 1.122 8.180 0.890
Local influence (ξ ) 6.630 1.067 7.250 0.928
Local influence (d) 9.220 1.371 8.885 1.048
Local influence (α) 6.035 1.009

Onychomycosis L-N LBN

Total local influence (Ci) 23.920 4.820 33.538 7.947
Local influence (ξ ) 29.790 5.552 27.379 8.856
Local influence (d) 20.850 3.251 25.841 4.739
Local influence (α) 43.179 19.089

Muscle soreness W-N WGN

Total local influence (Ci) 21.195 3.350 39.610 4.476
Local influence (ξ ) 2.205 0.494 55.300 4.098
Local influence (ρ) 40.28 4.152 42.165 3.764
Local influence (d) 29.985 3.710 25.825 3.698
Local influence (α) 52.955 80.190

Note: The mean for total number of influence subjects across all simulations.

Table 3. Simulation study.

Source Mean Std. Dev. Mean Std. Dev.

Epilepsy P-N PGN

Total local influence (Ci) 0.663 1.052 0.219 0.011
Local influence (ξ ) 0.622 1.001 0.135 0.008
Local influence (d) 0.024 0.007 0.021 0.003
Local influence (α) 0.070 0.007

Onychomycosis L-N LBN

Total local influence (Ci) 0.048 0.002 0.042 0.152
Local influence (ξ ) 0.040 0.002 0.020 0.137
Local influence (d) 0.006 0.001 0.002 0.001
Local influence (α) 0.014 0.037

Muscle soreness W-N WGN

Total local influence (Ci) 1.446 0.091 0.023 0.001
Local influence (ξ ) 0.090 0.006 0.010 0.00001
Local influence (ρ) 0.034 0.002 0.005 0.00015
Local influence (d) 0.940 0.050 0.006 0.001
Local influence (α) 0.003 0.009

Note: The mean of local influence across all simulations.
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define realistic simulation scenarios, the various standard models were considered, for the
epilepsy data, the onychomycosis data, and the recurrentmuscle soreness data, respectively
(see Table 1). These parameter estimates were then used as true values in the simulations
and plugged into the corresponding model for each of the three data types. This model
is then used to generate the response variables Ynew

ij . Various sets of covariate values from
the original data set were considered; they were kept fixed across simulation runs. Some
predetermined influential subjects are chosen prior to the simulation study for each situa-
tion. We consider three types of predetermined influential subjects: high, medium, and
low. The local influence analysis is run for each simulated data set. A cut-off value for
local influence is defined as 2

∑N
i=1 Ci/N [17]. Every time, 200 replicated data sets were

generated.

Table 4. Simulation study.

Category Subject Not influential Influential Not influential Influential

Epilepsy P-N PGN

High #5 0 200 0 200
#38 1 199 0 200
#49 0 200 0 200
#62 0 200 0 200

Medium #2 174 26 1 199
#16 200 0 200 0
#60 173 27 151 49
#73 0 200 0 200

Low #11 200 0 145 55
#39 200 0 200 0
#63 23 177 12 188
#67 200 0 200 0

Onychomycosis L-N LBN

High #6 0 200 1 139
#30 0 200 1 144
#53 0 200 1 144
#198 0 200 2 143

Medium #3 0 200 1 143
#13 0 200 2 142
#276 0 200 2 139
#279 0 200 1 143

Low #244 94 106 139 1
#257 94 106 139 1
#272 152 48 136 1
#290 152 48 136 1

Muscle soreness W-N WGN

High #62 7 193 0 200
#169 27 173 0 200
#328 0 200 0 200
#378 0 200 0 200

Medium #31 200 0 0 200
#64 200 0 0 200
#259 0 200 0 200
#317 0 200 0 200

Low #30 200 0 198 2
#161 200 0 175 25
#237 0 200 0 200
#299 0 200 0 200

Note: Classification of predetermined influential subjects across all simulations.
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The simulation results are presented in Tables 2–4. Table 2 shows the summary statis-
tics. While convergence was unproblematic in the count and time-to-event cases, more
difficulties were encountered in the binary case: the combinedmodel gave valid result only
for 145 simulations. It is known that identifying overdispersion on top of data correlation
in the binary case is harder. From this table, it can be seen that the combined model for
all data types identified the influential subjects more frequently than the standard GLMM.
Observe that the mean of the local influence values for the combined models are lower
than those from the GLMM (Table 3). These findings are in line with the analysis from
the original data sets, showing that the local influence for combinedmodels are lower than
those from the GLMM.

A classification of the predetermined influential subjects is given in Table 4. Most of the
highly influential subjects are classified as influential, for both models and all three data
types. In contrast, medium- and low-influence subjects are not always recognized.

8. Concluding remarks

Local influence was studied before as a means to detect outlying subjects, and features
thereof, for the LMMand someGLMMs.Wehave extended this work in several ways. First,
local influence measures are derived for several GLMM: Poisson-normal, logit-normal,
probit-normal, and Weibull-normal. Second, also for the extensions of these model that
capture overdispersion, that is, the combinedmodel, influencemeasures are derived. Third,
using the integral form of the log-likelihood, it has been possible to derive interpretable
components of influence, like for the LMM, but unlike in earlier influence work for the
GLMM. Beyond identifying influential subjects, this allows us to scrutinize which aspects
leads to influence on important model parameters and conclusions based there upon.

In all four case studies analyzed, it is seen that accounting for overdispersion alleviates
influence, whether for a few outlying subjects or for the data set as a whole. When there
are outlying subjects in the GLMM, it is often seen that removing them leads to reductions
similar to switching to the combinedmodel. Of course, these actions are very different and
depend on whether one wants to either homogenize the original data or, conversely, retain
these subjects for analysis, but then change the model to one that allows for this without
undue influence. The combined model is a good candidate for this. This is underscored
by the fact that treatment effect assessment can change in different ways upon removing
influential subjects. In the epilepsy and onychomycosis studies, treatment effect turns from
non- to (highly) significant; in the headache study, a borderline significant effect disappears
after removing influential subjects.

Evidently, beyond the distributions considered here, others could be studied as well.
For example, with time-to-event data, it is not uncommon to use log-normal rather than
Weibull distributions. Our method is generic and has been applied to a collection of
distributions; similar calculations would lead to expressions for alternative distributions.

Web Appendices S.1–S.6, referenced in Section 5, are available in conjunction with this
paper.

The methodology developed here has been implemented in the SAS software system.
Fitting the models is done using the SAS procedure NLMIXED and macros have been
developed for the local influence calculations. The codes are available in the Supplementary
Materials.

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

1:
22

 0
9 

M
ay

 2
01

6 



JOURNAL OF APPLIED STATISTICS 21

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Financial support from the IAP research network #P7/06 of the Belgian Government (Belgian
Science Policy) is gratefully acknowledged.

References

[1] R.J. Beckman, C.J. Nachtsheim, and R.D. Cook, Diagnostics for mixed-model analysis of
variance, Technometrics 29 (1987), pp. 413–426.

[2] N.E. Breslow and D.G. Clayton, Approximate inference in generalized linear mixed models, J.
Amer. Statist. Assoc. 88 (1993), pp. 9–25.

[3] S. Chatterjee and A.S. Hadi, Sensitivity Analysis in Linear Regression, John Wiley & Sons, New
York, 1988.

[4] X.-D. Chen, Y.-Z. Fu, and X.-R. Wang, Local influence measure of zero-inflated generalized
Poisson mixture regression models, Stat. Med. 32 (2013), pp. 1294–1312.

[5] R.D. Cook, Detection of influential observations in linear regression, Technometrics 19 (1977),
pp. 15–18.

[6] R.D. Cook, Letter to the editor, Technometrics 19 (1977), p. 348.
[7] R.D. Cook, Influential observations in linear regression, J. Amer. Statist. Assoc. 74 (1979), pp.

169–174.
[8] R.D. Cook, Assessment of local influence, J. R. Stat. Soc. Ser. B 48 (1986), pp. 133–169.
[9] R.D. Cook and S. Weisberg, Residuals and Influence in Regression, Chapman & Hall, London,

1982.
[10] M. De Backer, P. De Keyser, C. De Vroey, and E. Lesaffre, A 12-week treatment for dermato-

phyte toe onychomycosis: terbinafine 250mg/day vs. itraconazole 200mg/day – a double-blind
comparative trial, Br. J. Dermatol. 134 (1996), pp. 16–17.

[11] B. Engel and A. Keen, A simple approach for the analysis of generalized linear mixed models,
Statist. Neerlandica 48 (1994), pp. 1–22.

[12] E. Faught, B.J. Wilder, R.E. Ramsay, R.A. Reife, L.D. Kramer, G.W. Pledger, and R.M. Karim,
Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-,
and 600-mg daily dosages, Neurology 46 (1996), pp. 1684–1690.

[13] G.H. Golub and C.F. Van Loan,Matrix Computations, 2nd ed., The Johns Hopkins University
Press, Baltimore, 1989.

[14] D.W.Hosmer and S. Lemeshow,Applied Survival Analysis: RegressionModelling of Time to Event
Data, John Wiley & Sons, Chichester, 1999.

[15] I. Jansen, G. Molenberghs, M. Aerts, H. Thijs, and K. Van Steen, A local influence approach
applied to binary data from a psychiatric study, Biometrics 59 (2003), pp. 410–419.

[16] N.L. Johnson and S. Kotz, Distributions in Statistics, Continuous Univariate Distributions, Vol.
2, Houghton-Mifflin, Boston, 1970.

[17] E. Lesaffre and G. Verbeke, Local influence in linear mixed models, Biometrics 54 (1998), pp.
570–582.

[18] B. McKnight and S.K. Van Den Eeden,A conditional analysis for two-treatment multiple-period
crossover designs with binomial or Poisson outcomes and subjects who drop out, Stat. Med. 12
(1993), pp. 825–834.

[19] G. Molenberghs and G. Verbeke, Models for Discrete Longitudinal Data, Springer, New York,
2005.

[20] G. Molenberghs, G. Verbeke, and C.G.B. Demétrio, An extended random-effects approach to
modeling repeated, overdispersed count data, Lifetime Data Anal. 13 (2007), pp. 513–531.

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

1:
22

 0
9 

M
ay

 2
01

6 



22 T. W. RAKHMAWATI

[21] G.Molenberghs, G.Verbeke, C.G.B.Demétrio, andA.M.C.Vieira,A family of generalized linear
models for repeated measures with normal and conjugate random effects, Statist. Sci. 25 (2010),
pp. 325–347.

[22] J. Mun and M.J. Lindstrom, Diagnostics for repeated measurements in linear mixed effects
models, Stat. Med. 32 (2013), pp. 1361–1375.

[23] J.Neter,W.Wasserman, andM.H.Kutner,Applied Linear StatisticalModels. Regression, Analysis
of Variance and Experimental Designs, 3rd ed., Richard D. Irwin, Inc, Homewood, IL, 1990.

[24] M.J.N.M. Ouwens, F.E.S. Tan, and M.P.F. Berger, Local influence to detect influential data
structures for generalized linear mixed models, Biometrics 57 (2001), pp. 1166–1172.

[25] D.T. Roberts, Prevalence of dermatophyte onychomycosis in the United Kingdom: Results of an
omnibus survey, Br. J. Dermatol. 126 (1992), pp. 23–27.

[26] G. Verbeke and G. Molenberghs, Linear Mixed Models for Longitudinal Data, Springer-Verlag,
New York, 2000.

[27] G. Verbeke, G. Molenberghs, H. Thijs, E. Lesaffre, and M.G. Kenward, Sensitivity analysis for
nonrandom dropout: A local influence approach, Biometrics 57 (2001), pp. 7–14.

[28] R.Wolfinger andM. O’Connell,Generalized linear mixed models a pseudo-likelihood approach,
J. Stat. Comput. Simul. 48 (1993), pp. 233–243.

[29] S.L. Zeger, K.-Y. Liang, and P.S. Albert, Models for longitudinal data: A generalized estimating
equation approach, Biometrics 44 (1988), pp. 1049–1060.

[30] H.-T. Zhu and S.-Y. Lee, Local influence for incomplete data models, J. R. Stat. Soc. Ser. B Statist.
Methodol. 63 (2001), pp. 111–126.

[31] H. Zhu, S. Lee, B.-C. Wei, and J. Zhou, Case-deletion measures for models with incomplete data,
Biometrika 88 (2001), pp. 727–737.

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

1:
22

 0
9 

M
ay

 2
01

6 


	1. Introduction
	2. Case studies
	2.1. A clinical trial in epileptic patients
	2.2. Headache study
	2.3. A clinical trial in onychomycosis
	2.4. Recurrent muscle soreness

	3. Generalized linear mixed models
	3.1. The LMM for gaussian data
	3.2. The Poisson-normal and Poisson-gamma-normal models for count data
	3.3. The probit-normal model for binary and binomial data
	3.4. The Weibull-normal model for time-to-event data

	4. Review of general theory for local influence
	4.1. Standard approach
	4.2. Proceeding when faced with a complicated likelihood

	5. Local influence for generalized linear mixed and combined models
	5.1. Local influence for the LMM
	5.1.1. Standard approach, based on the marginal likelihood.
	5.1.2. Integral-based expression.
	5.1.3. Fully numerical route.

	5.2. Local influence for the Poisson-normal model
	5.3. Local influence for the probit-normal model
	5.4. Local influence for the logit-normal model
	5.5. Local influence for the Weibull-normal model

	6. Analysis of case studies
	6.1. A clinical trial in epileptic patients
	6.2. Headache study
	6.3. A clinical trial in onychomycosis
	6.4. Recurrent muscle soreness

	7. Simulation study
	8. Concluding remarks
	Disclosure statement
	Funding
	References



