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Probabilistic Programs

® [wo questions:
® can we synthesise them !

® can we use them during the search ?



Overview

® |ntro to PLP
® some part on continuous distributions

® Probabilistic ILP

® rule learning for Probabilistic Logic
Programs

® Affordances

® |earning with continuous distributions



PART |:Intro PLP



Probabilistic Logic

Programming

Distribution Semantics [Sato, ICLP 95]:

probabilistic choices + logic program
— distribution over possible worlds

OVERVIEW paper [Kimmig, De Raedt, MLJ 15]

eg PRISM, ICL, ProbLog, LPADs CP-logic, ..

N causal-
multi-valued /probablllstlc srobabilistic
switches facts WS
probabilistic annotated

alternatives

disjunctions



Extensions of basic PLP

continuous RVs

programming

decisions T
constructs
—
Distribution Semantics [Sato, ICLP 95]:
probabilistic choices + logic program
constraints — distribution over possible worlds I
prob.

/ 3
semiring

time & dynamics labels

rule learning



ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)



ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

probabilistic fact: heads is true with
0.4 :: heads. probability 0.4 (and false with 0.6)



ProbLog by example:

A bit of gambling

® toss (biased) coin &|draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

0.4 :: heads. annotated disjunction: first ball is red
with probability 0.3 and blue with 0.7

0.3 :: col(l,red); 0.7 :: col(l,blue) <- true.



ProbLog by example:

A bit of gambling

® toss (biased) coin &|draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

0.4 :: heads.

0.7 col (1,blue) <- true.
0.3 :: col(2,green);

0.5 :: col(2,blue) <- true.
annotated disjunction: second ball is red with
probability 0.2, green with 0.3, and blue with 0.5

3 :: col(l,red);
2

0.
0. col (2, red) ;

7



ProbLog by example:

A bit of gambling

0| (200

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball)|or (two balls of same color)

0.4 :: heads.

0.3 col(l, red); 0.7 col (1,blue) <- true.
0.2 col(2,red); 0.3 :: col(2,green);

0.5 col (2,blue) <- true.
win :- heads, col( ,red). logical rule encoding

background knowledge
7
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ProbLog by example:

A bit of gambling

0| (200

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

:: heads. probabilistic choices

col (1l,red); col (1,blue) <- true.

0.7
col(2,red); 0.3 :: col(2,green);
0.5

col (2,blue) <- true.

win :- heads, col( ,red).

win :- col(1,C), col(2,C). consequences
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win
win

:: col(l,red); 0.7
:: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true.

Questions

: : heads.

:: col(l,blue) <- true.

:- heads, col( ,red).
:- col(l1,C), col(2,C).

marginal probability
® Probability ofilwin)
conditional probability

® Probability of win given/col (2 ,green)|!

® Most probable world where win is true!
MPE inference



Possible VWorlds

0.4 :: heads.

0.3 :: col(l,red); 0.7 :: col(l,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 ::
win :- heads, col(_,red).

win :- col(1,C), col(2,C).

0.4 x0.3 x0.3
HQEC
W

(1-0.4)x0.3 x0.2

00
W

9

col (2,blue) <- true.

(1-0.4)x0.3 x0.3

OC




All Possible VWWorlds
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Distribution Semantics

(with probabilistic facts)

[Sato, ICLP 95]

query sum over possible worlds

\ / where Q is true

PQ = >» Jl»H)]]1-p0

FUREQ Jjelr  Jebk
/ \ probability of
subseF .Of. Prolog possible world
probabilistic rules

facts



constraints



cProbLog: constraints
on possible worlds

weight (skis, 6) .

weight (boots,h4) .
weight (helmet, 3) .
weight (gloves, 2) .

P::pack(Item) :-
weight (Item,Weight),
P is 1.0/Weight.

excess (Limit) :- ...

not excess (10).
pack (helmet) v pack (boots).

K [Fierens et al, PP 12; Shterionov et al]
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cProbLog: constraints
on possible worlds

weight (skis, 6) .

weight (boots, 4) . . . .

weight (helmet,3) . dlstrlbutlop

weight (gloves,2). over all possible
worlds

P::pack(Item) :-
weight (Item,Weight),
P is 1.0/Weight.

excess (Limit) :- ...

not excess (10).

pack (helmet) v pack (boots).
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not excess (10).

pack (helmet) v pack (boots).

constraints
as FOL formulas
treat as evidence
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sbh ||sb
e(l % e(10)
s h ||s
e<|§
b g|| bh || b
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cProbLog: constraints
on possible worlds

weight (skis, 6) .

weight (boots,4) . sbh sb

weight (helmet, 3) . e( | O)

weight (gloves,K2).

P::pack (Item) :- S gllS h S
weight (Item,Weight), e( |

P is 1.0/Weight.

excess (Limit) :- ... b g bh b

not excess (10).
pack (helmet) v pack (boots).

hg gll h

constraints
as FOL formulas
treat as evidence E [Fierens et al, PP 12; Shterionov et al]




cProbLog: constraints
on possible worlds

weight (skis, 6) .

weight (boots,h4) . S b

weight (helmet, 3) .

weight (gloves,K2).

P::pack (Item) :- S gllS h S
weight (Item,Weight), e( |

P is 1.0/Weight.

excess (Limit) :- ... b g bh b

not excess (10).
pack (helmet) v pack (boots).

hg gll h

constraints
as FOL formulas
treat as evidence E [Fierens et al, PP 12; Shterionov et al]




cProbLog: constraints
on possible worlds

weight (skis, 6) .

weight (boots,h4) . S b
weight (helmet, 3) .

weight (gloves,K2).

P::pack (Item) :- S gllS h S

weight (Item,Weight),
P is 1.0/Weight.

excess (Limit) :- ... bhg b g bh b

not excess (10).
pack (helmet) v pack (boots).

hg gll h

constraints
as FOL formulas
treat as evidence E [Fierens et al, PP 12; Shterionov et al]




cProbLog: constraints
on possible worlds

weight (skis, 6) .

weight (boots,h4) . S b
weight (helmet, 3) .

weight (gloves,K2).

P::pack(Item) :- S f\ S

weight (Item,Weight),
P is 1.0/Weight.

excess (Limit) :- ... bhg b g bh b

not excess (10).
pack (helmet) v pack (boots).

hg gll h

constraints
as FOL formulas
treat as evidence E [Fierens et al, PP 12; Shterionov et al]




cProbLog: constraints
on possible worlds

weight (skis, 6) .
weight (boots,h4) . S b
weight (helmet, 3) .
weight (gloves, 2) .

P::pack(Item) :- s h
weight (Item,Weight),
P is 1.0/Weight.

excess (Limit) :- ... bhg b g bh b

not excess (10).
pack (helmet) v pack (boots).

hg gll h

constraints
as FOL formulas
treat as evidence E [Fierens et al, PP 12; Shterionov et al]




cProbLog: constraints
on possible worlds

weight (skis, 6) .
weight (boots,h4) . S b
weight (helmet, 3) .
weight (gloves, 2) .

P::pack(Item) :- s h
weight (Item,Weight),
P is 1.0/Weight.

excess (Limit) :- ... bhg b g bh b

not excess (10).
pack (helmet) v pack (boots).

hg h

constraints
as FOL formulas
treat as evidence E [Fierens et al, PP 12; Shterionov et al]




cProbLog: constraints
on possible worlds

weight (skis, 6) .
weight (boots,h4) . S b
weight (helmet, 3) .
weight (gloves, 2) .
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excess (Limit) :- ... bhg b g bh b
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cProbLog: constraints
on possible worlds

weight (skis, 6) .

weight (boots, 4) . ﬁ S b
weight (helmet,3) . normalized distribution
weight (gloves,k 2) . .
=g over restricted set of
P::pack(Item) :- Possible Worlds S h

weight (Item,Weight),
P is 1.0/Weight.

excess (Limit) :- ... bhg b g bh b

not excess (10).
pack (helmet) v pack (boots).

hg h

constraints
as FOL formulas
treat as evidence E [Fierens et al, PP 12; Shterionov et al]




[Vennekens et al, ICLP 04]

Alternative view:
CP-Logic

0.5: : throws (mary) . probabilistic causal laws

0.8 :: break <- throws (mary).
0.6 :: break <- throws(john).

John throws||.0
Window breaks doesn’t break

P(break)=0.6%0.5%0.8+0.6%x0.5%0.2+0.6%0.5+0.4x0.5%0.8

|4



CP-logic [Vennekens et al. ]

E.g.,” a rock at a glass breaks it with
probability 0.3 and misses it with probability

(Broken(G):0.3) v (Miss 0.7) «

ote that the actual non-deterministic event (“rock flying at glass”) is implicit

’»

Slides CP-logic courtesy Joost Vennekens



Semantics

¢ = ThrowdtG) - (Broken(G) 0.3) v (Miss 0.7)

®
N\ *
\ 2K [ I |
I U{Broken(G)} TU{Miss}

Probability tree is an execution model of theory iff:
e Fach tree-transition matches causal law
* The tree cannot be extended
e Each execution model defines the same probability
distribution over final states

Slides CP-logic courtesy Joost Vennekens



Continuous
Distributions



Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

18 [Gutmann et al, TPLP 1 I; Nitti et al, IROS 13]



Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

random variable with Gaussian distribution

length (Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).

18 [Gutmann et al, TPLP 1 I; Nitti et al, IROS 13]



Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

length (Obj) ~ gau351an(6 0,0.45) :- type(Obj,glass).
' : comparing values of
~width (OBot) 2 =~width (OTop) . random variables

18 [Gutmann et al, TPLP 1 I; Nitti et al, IROS 13]



Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

length (Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable (OBot,OTop) :-
~]length (OBot) 2 =~length (OTop),
~width (OBot) 2 =~width (OTop) .
ontype (Obj,plate) ~ finite ([0 : glass, 0.0024 : cup,
O : pitcher, 0.8676 : plate,
0.0284 : bowl, 0 : serving,
0.1016 : nonel])
:— obj(Obj), on(0Obj,02), type(02,plate).

random variable with

discrete distribution
18 [Gutmann et al, TPLP | |; Nitti et al, IROS 3]




Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

length (Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable (OBot,OTop) :-
~]length (OBot) 2 =~length (OTop),
~width (OBot) 2 =width (OTop) .
ontype (Obj,plate) ~ finite ([0 : glass, 0.0024 : cup,
O : pitcher, 0.8676 : plate,
0.0284 : bowl, 0 : serving,
0.1016 : nonel])
:- obj(Obj), on(0Obj,02), type(02,plate).

18 [Gutmann et al, TPLP 1 I; Nitti et al, IROS 13]



Distributional Clauses (DC)

® Defines a generative process (as for CP-logic)
® T[ree can become infinitely wide

® Sampling
® Well-defined under reasonable assumptions

® See Gutmann et al TPLP I I, Nitti et al. I5



Magnetic scenario

3 object types: magnetic, ferromagnetic, nonmagnetic

Nonmagnetic objects do not interact

A magnet and a ferromagnetic object attract each other

B L

Magnetic force that depends on the distance

If an object is held magnetic force is compensated.

/ E =
__pi ' E

20
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Magnetic scenario

3 object types: magnetic, ferromagnetic, nonmagnetic

type(X), ~ finite([1/3:magnet,1/3:ferromagnetic,1/3:nonmagnetic]) «
object(X).
2 magnets attract or repulse

interaction(A,B), ~ finite([0.5:attraction,0.5:repulsion]) «
object(A), object(B), A<B,type(A), = magnet,type(B), = magnet.

Next position after attraction

pos(A),,, ~ gaussian(middlepoint(A,B),,Cov) «

-—' ‘—- near(A,B),, not(held(A)), not(held(B)),

interaction(A,B), = attr,

-- c/dist(A,B),2 > friction(A),.

pos(A),,,; ~ gaussian(pos(A),,Cov) + not( attraction(A,B) ).

22



Probabilistic Programs

® Distributional clauses / PLP similar in spirit

® to e.g. BLOG,...but embedded in existing
logic and programming language

® to e.g. Church but use of logic instead of
functional programming ...

® natural possible world semantics and link
with prob. databases.

® somewhat harder to do meta-programming



Markov Logic

Key differences
® programming language
® Dist. Sem. uses least-fix point semantics
® can express transitive closure of relation

® this cannot be expressed in FOL (and Markov
Logic), requires second order logic

® p(X,Y) :- p(X,Z), p(£,Y).



Inference in PLP

® As in Prolog and logic programming
® proof-based

® As in Answer Set Programming
® model based

® As in Probabilistic Programming

® sampling



Logical Reasoning:
Proofs in Prolog

26

stress(ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),
smokes (Y) .
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Logical Reasoning: :zues... ..,
influences (bob,carl).

PrOOfS in PrOIOg smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),

?- smokes (carl). smokes (Y) .
?- stress(carl). ?—~influ?nces(Y,carl),smokes(Y).

\

?- smokes (bob) .

/ ~— Yl=ann

?- stress (bob) . ?-l influences (Y1l,bob)/, smokes (Y1) .

///,/"

?- smokes (ann) .
— \

?-| stress (ann) . ?—- influences (Y2,ann),b smokes (Y2).

|

proof = facts used in successful derivation:

influences (bob,carl) &é&influences (ann,bob) &stress (ann)
26



0.8::stress(ann).

Pro Ofs I n 0.6::influences (ann,bob) .

0.2::influences (bob,carl).

P ro b LO smokes (X) :- stress (X).
g smokes (X) :-

influences (Y, X),

?- smokes (carl). smokes (Y) .
O Y=bob
?—- stress(carl). ?—~influ§nces(Y,carl),smokes(Y).

\

?- smokes (bob) .

/ ~—_ Yl=ann

?- stress (bob) . ?- influences (Y1l ,bob)/, smokes (Y1) .

/

?- smokes (ann) .
— \

?-| stress (ann) . ?- influences (Y2, ann) ,b smokes (Y2).

|

influences (bob,carl) &influences (ann,bob) &stress (ann)

probability of proof = 0.2 x 0.6 x 0.8 = 0.096



: :stress (ann) .
: :stress (bob) .
: :influences (ann,bob) .

Proofs in
ProblLog 2 nthnees et

smokes (X) :-

o O OO
N o & 0

?- smokes (carl). influences (Y, X),
/ \ Y=bob smokes (Y) .
?- stress(carl). ?—~influ§nces(Y,carl),smokes(Y).

\

?- smokes (bob) .

/ ~— Yl=ann

?- stress (bob) . ?- influences (Y1l ,bob) , smokes (Y1) .

[ —

?- smokes (ann) .

— N

?- stress(ann). ?- influences (Y2, ann) ,b smokes (Y2).

|

influences (bob,carl) O 2)(0 6)(0 8

& influences (ann,bob)

& stress (ann) — 0 096
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: :stress (ann) .
: :stress (bob) .
: :influences (ann,bob) .

Proofs in
ProblLog 2 nthnees et

smokes (X) :-

o O O O
N o & 0

?- smokes (carl). influences (Y, X),
/ \ Y=bob smokes (Y) .
?- stress(carl). ?—~influ§nces(Y,carl),smokes(Y).

\

?- smokes (bob) .

/ ~— Yl=ann

?- stress (bob) . ?- influences (Y1l ,bob) , smokes (Y1) .

[ —

?- smokes (ann) .

— N

?- stress(ann). ?- influences (Y2, ann) ,b smokes (Y2).

|

influences (bob,carl) O 2)(0 6)(0 8

& influences (ann,bob)

& stress (ann) — 0 096

28



Proofs in
ProbLog

?- smokes (carl).

//’/////’

0.8::stress(ann) .
0.4::stress (bob) .
0.6::1influences (ann,bob) .
0.2::influences (bob,carl).
smokes (X) :- stress(X).

smokes (X) :-
influences (Y, X),

Y=bob smokes (Y) .

?—- stress(carl). ?—~influ§nces(Y,carl),smokes(Y).

\

influences (bob, carl) ?- smokes (bob) .

& stress (bob)
?+ stress (bob)

0.2x0.4 [

~— Yl=ann

?- influences (Y1l ,bob) , smokes (Y1) .

///,/"

?- smokes (ann) .

= 0.08

—

N

?- stress(ann). ?- influences (Y2, ann) ,b smokes (Y2).

|

influences (bob,carl) O 2)(0 6)(0 8

& influences (ann,bob)

& stress (ann) — 0 096

28



: :stress (ann) .
: :stress (bob) .
: :influences (ann,bob) .

Proofs in
Problog it e

smokes (X) :-

o O O O
N o & ©

?- smokes (carl). influences (Y, X),
/ \ =bob smokes (Y) .
?- stress(carl). ?—Qinflusnces(Y,carl),smokes(Y).

\

influences (bob,carl) ?- smokes (bob) . Y=

\

?- stress?gob) ?- influences (Y1l ,bob) , smokes (Y1) .

0.2x0.4 | —

?- smokes (ann) .

= 0.08 - N

?- stress(ann). ?- influences (Y2, ann) ,b smokes (Y2).
|
influences (bob,carl)
Proofs overIaP! & influences(ann,bob 0.2x0.6x0.8

& stress (ann) — O 096

cannot sum probabilities
(disjoint-sum-problem)

28
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Information Extraction in NELL

Recently-Learned Facts Swittes Rafrash
instance iteration date learned confidence

kelly andrews is a female 826 29-mar-2014 98.7 @ @
investment next year is an economic sector 829 10-apr-2014 95.3 f@ @
shibenik is a geopolitical entity that is an organization 829 10-apr-2014 97.2 @ @
quality web design work is a character trait 826 29-mar-2014 91.0 f@ @
mercedes benz cls by carlsson is an automobile manufacturer 829 10-apr-2014 95.2 l’@ QF
social work is an academic program at the university rutgers university 827 02-apr-2014 93.8 f@ @
dante wrote the book the divine comedy 826 29-mar-2014 93.8 l’@ QF
willie_aames was born in the city los_angeles 831 16-apr-2014 100.0 l’@ QF
kitt peak is a mountain in the state or province arizona 831 16-apr-2014 96.9 f@ QF
greenwich is a park in the city london 831 16-apr-2014 100.0 @ @

instances for many degree of certainty
different relations

30  NELL: http://rtw.ml.cmu.edu/rtw/



Rule learning in NELL (1)

® Original approach
® Make probabilistic data deterministic
® run classic rule-learner (variant of FOIL)

® re-introduce probabilities on learned
rules and predict



Rule learning in NELL (2)

® Newer Page Rank Based Approach (Cohen et al.) --
ProPPR

® Change the underlying model, from random graph /
database to random walk one;

® No longer “degree of belief” assigned to facts;
® more like stochastic logic programs

® | earn rules / parameters



Probabilistic Rule Learning

® | earn the rules directly in a PLP setting

® Generalize relational learning and inductive
logic programming directly towards
probabilistic setting

® Traditional rule learning/ILP as a special case
® Apply to probabilistic databases like NELL
o |[LP IO, lJCAI IS



Pro Log

surfing(X) :- not pop(X) and windok(X).
surfing(X) :- not pop(X) and sunshine(X).

pop(el). windok(e1). sunshine(e1).

?-surfing(el).
no

BUH|=\=e (H does not cover e)

An |LP example



PronlLog

a probabilistic Prolog

o1:: surfing(X) :- not pop(X) and windok(X).
p2:: surfing(X) :- not pop(X) and sunshine(X).

0.2::pop(el). 0.7::windok(e1). 0.6::sunshine(el).

?-P(surfing(el)).

gives (1-0.2) x 0.7 x p1 + (1-0.2) x 0.6 x xp2=PBUH|=e¢e)

not pop x windok x p1 + not pop x sunshine x X P

probability that the example is covered



Inductive Probabilistic Logic Programs

Given
a set of example facts e € E together with the
probability p that they hold
a background theory B in ProbLog
a hypothesis space L (a set of clauses)
Find

argmhl[nlass(H, B,FE) = arg min EE:E P, (BUH =¢e)— p

36



Observations

Propositional versus first order

® traditional rule learning = propositional

® inductive logic programming = first order
Deterministic case

® all probabilities O or |

® traditional rule learning / ILP as special case



Analysis

0

under- target over-
estimate probability estimate
38



Analysis

P(TN)

current hypothesis

current hypothesis
target hypothesis *=

target hypothesis @

probability

pP(FP)

examples examples

39



Rule learning

Interesting properties

® adding a rule is monotonic, this can only increase the probability of
an example

® adding a condition to a rule is anti-monotonic, this can only
decrease the probability of an example

® several rules may be needed to cover an example

® use all examples all of the time (do not delete them while
learning), do not forget the positives

® disjoint sum problem



ProbFOIL

Quinlan’s well-known FOIL algorithm combined
with ProbLog and probabilistic examples and
background knowledge

Essentially a vanilla sequential covering
algorithm with m-estimate as local score and

accuracy as global score.



Criteria

TP
precision = o P
m-estimate = trtm. % local score
TP+ FP+m
recall = LR
TP+ FN
accuracy = TP+ TN global
TP+TN+ FP+FN  score

Avoiding overfitting using significance test

42



ProbFOIL

Algorithm 1 The ProbFOIL™ learning algorithm

1

11:
12:
13:
14:
15:
16:

17:
18:
19:

20:
21:

—_
SLXAPIELY

: function PROBFOIL™T (target)
H:=10
while true do
clause := LEARNRULE(H, target)

H := H U{clause}
else
: return H
: function LEARNRULE(H, target)
candidates := {x :: target < true}
bestrule := (x :: target < true)
while candidates # () do
nextcandidates := ()
for all x :: target < body € candidates do
for all literal € p(target < body) do

refinements

candidates := nextcandidates
return bestrule

> target is the target predicate

if GLOBALSCORE(H) < GLOBALSCORE(H U {clause}) then

> Start with an empty (probabilistic) body

> Grow rule

> Generate all refinements

if not REJECTREFINEMENT(H, bestrule, x :: target < body) then > Reject unsuited

nextcandidates := nextcandidates U {x :: target < body N I}
if LOCALSCORE (H, z :: target < body A literal) > LOCALSCORE(H, bestrule) then
bestrule := (x :: target < body A literal)

> Update best rule

43



Extended rule learning

Learn rules with probability x:: head :- body
What changes !

® value of x

1 1 1
X=| > I Ugq I Uy
Li
Pq

(a) (b) (c)



Extended rule learning

Express local score as a function of x

Compute optimal value of x



NELL

Table 5: Number of facts per predicate (NELL athlete dataset)

athletecoach(person,person)
athleteplayssport(person,sport)
athleteplaysinleague(person,league)
coachesinleague(person,league)
teamhomestadium (team,stadium)
athleteplayssportsteamposition(person,position)
athlete(person)
coach(person)
male(person)
organization(league)
personafrica(person)
personaustralia(person)
personeurope(person)
personus(person)
sportsleague(league)
sportsteamposition(position)

18
1921
872
93
198
255
1909
624
7
1
1
22
1
6
18
22

athleteplaysforteam(person,team)
teamplaysinleague(team,league)
athletealsoknownas(person,name)
coachesteam (person,team)
teamplayssport(team,sport)
athletehomestadium (person,stadium)
attraction(stadium)
female(person)
hobby (sport)
person(person)
personasia(person)
personcanada(person)
personmexico(person)
sport(sport)
sportsteam(team)
stadiumoreventvenue(stadium)

721
1085
17
132
359
187

SN \VIG) O\

108
36
1330
171




athleteplaysforteam

athleteplaysforteam(A,B) :- coachesteam(A,B).

0.875::athleteplaysforteam(A,B) :- teamhomestadium(B,C), athletehomestadium(A,C).
0.99080::athleteplaysforteam(A,B) :- teamhomestadium(B,_), male(A), athleteplayssport(A,_).
0.75::athleteplaysforteam(A,B) :- teamhomestadium(B,_), athleteplaysinleague(A,C), teamplaysinleague(B,C),
athlete(A).

0.75::athleteplaysforteam(A,B) :- teamplayssport(B,C), athleteplayssport(A,C), coach(A), teamplaysinleague(B,-).
0.97555::athleteplaysforteam(A,B) :- personus(A), teamplayssport(B,_).

0.762::athleteplaysforteam(A,B) :- teamplayssport(B,C), athleteplayssport(A,C), personmexico(A),
teamplaysinleague(B,-).

0.52571::athleteplaysforteam(A,B) :- teamplayssport(B,C), athleteplayssport(A,C), athleteplaysinleague(A,_),
teamplaysinleague(B,_), athlete(A), teamplayssport(B,C).

0.50546::athleteplaysforteam(A,B) :- teamplayssport(B,_), teamplaysinleague(B,C), athleteplaysinleague(A,C),
athleteplayssport(A,-).

0.50::athleteplaysforteam(A,B) :- teamplayssport(B,-), teamplaysinleague(B,C), athleteplaysinleague(A,C).
0.52941::athleteplaysforteam(A,B) :- teamplayssport(B,_), teamhomestadium(B,_), coach(A), teamplaysinleague(B,_).
0.55287::athleteplaysforteam(A,B) :- teamplayssport(B,_), teamplaysinleague(B,C), athleteplaysinleague(A,C),
athlete(A).

0.46875::athleteplaysforteam(A,B) :- teamplayssport(B,_), teamplaysinleague(B,_), coach(A),
teamhomestadium(B,.).



EXperiments

Table 4: Precision for different experimental setups and parameters (A: m = 1, p = 0.99, B: m = 1000, p = 0.90).

Setting athleteplaysforteam | athleteplayssport | teamplaysinleague | athleteplaysinleague | teamplaysagainstteam
train/test/rule A B A B A B A B A B

I: det/det/det 74.00 69.36 94.14 9347 96.29 82.15 80.95 74.14 73.40 73.86

2: det/prob/det 73.51 69.57 97.53 94.85 96.70 87.83 90.83 77.73 73.70 73.35

3: det/prob/prob 74.67 69.82 95.86 94.74 96.35 82.57 82.26 75.29 73.84 74.34

4: det/prob/prob 77.25 73.87 96.53 96.04 98.00 90.59 84.91 79.36 77.26 77.83

5: det/prob/prob 74.76 69.97 95.85 94.69 96.44 82.51 81.99 75.07 73.90 74.16

6: prob/prob/det 75.83 73.11 93.40 93.76 94.44 93.67 79.41 79.42 80.87 80.60

7: prob/prob/prob | 78.31 73.72 05.62 95.10 | 98.84 91.86 96.94 79.49 835.78 81.81

0.9375:
0.9675:
0.9375:
0.5109:

:athleteplaysforteam(A,B)
:athleteplaysforteam(A,B)
:athleteplaysforteam(A,B)
:athleteplaysforteam(A,B)

Table 3: Learned relational rules for the different predicates (fold 1).

athleteledsportsteam(A,B).

athleteledsportsteam(A,V 1), teamplaysagainstteam(B,V1).

athleteplayssport(A,V1), teamplayssport(B,V1).
athleteplaysinleague(A,V 1), teamplaysinleague(B,V1).

0.9070:

0.9070:

0.9070:

:athleteplayssport(A,B)
:athleteplayssport(A,B)

:athleteplayssport(A,B)

TTTT7T

1

athleteledsportsteam(A,V2), teamalsoknownas(V2,V 1), teamplayssport(V1,B),
teamplayssport(V2,B).
athleteplaysforteam(A,V?2), teamalsoknownas(V2,V 1), teamplayssport(V1,B),
teamplayssport(V2,B),teamalsoknownas(V1,V2).

athleteplaysforteam(A,V 1), teamplayssport(V1,B).

0.9286:
0.7868:
0.9384:
0.9024:

:athleteplaysinleague(A,B)
:athleteplaysinleague(A,B)
:athleteplaysinleague(A,B)
:athleteplaysinleague(A,B)

TTTTT

athleteledsportsteam(A,V 1), teamplaysinleague(V1,B).
athleteplaysforteam(A,V?2), teamalsoknownas(V2,V 1), teamplaysinleague(V1,B).
athleteplayssport(A,V2), athleteplayssport(V1,V2), teamplaysinleague(V1,B).

athleteplaysforteam(A,V 1), teamplaysinleague(V 1,B).



Rule learning summary

Learning rules (or inducing logic programs) from uncertain/
probabilistic data

A new problem formulation

Traditional rule learning (ILP) is the deterministic special
case

Traditional rule learning principles apply directly (including
ROC analysis)



Affordances with DCs



Affordances

- Model captures action opportunities
- What can one do with an object?

- Three main aspects:
- Obiject (properties):

- Measured from perceptual devices
- shape, size, ...
- Action:
— Applied physical manipulation
- Tap, Push, Grab
. Effects: g il
- Measurable features after action

- Actions

£ > -
v —~ > X
\ 7
\ /

<ol _ _ [nputs | Outputs Function
- dISp acement, orientation, ... [ (O, A) E ' Effect prediction
(O, F) A Action recognition/planning
(A, E) @, Object recognition/selection




Learning relational affordances

Learn probabilistic model

Learning relational

affordances
between
N — two objects
AE) | 0 | Otjet coprionebecion (learnt by experience)

From two object interactions

_ Moldovan et al. ICRA 12,13, 14,PhD 15
Generalize to N

S1 ]

B O

__E@




Learning relational affordances

Learn probabilistic model

Learning relational

affordances
between
N — two objects
AE) | 0 | Otjet coprionebecion (learnt by experience)

From two object interactions

_ Moldovan et al. ICRA 12,13, 14,PhD 15
Generalize to N

S1 ]

B O

__E@




Learning relational
affordances
between
two objects
(learnt by experience)

Right Arm

Examples



Learning relational
affordances
between
two objects
(learnt by experience)

Right Arm

Examples



What is an affordance ?

displYgs.. displiXgs..
diStYOMain,OSec I— displYomam T ——

OMain

dIStxDMain,OSEC diSPIKc:Main

Clip 8: Relational O before (1), and E after the action execution (r).
Table 1: Example collected O, A, E data for action in Figure 8

Object Properties Action Effects

shapeo,,... : SPrism displXo,,.,. : 10.33cm

shapeops,. : sSprism tap(10) displYo,,... : —0.68cm
dist X0, .050. - 6.94cm displXo,.,. : 7.43cm
distYo,,0im.05.. - 1.90cm displYo... 1 —1.31em

® Formalism — related to STRIPS but models delta

® but also joint probability model over A, E, O



Bayesian Network

TN Action Fehane(OhiSech
"Sh ObiMain) ) - As . ( Shape(ObjSec) )
\Sa??( J__E!------)/ (ObjMain,ObjSec) -
Displacement Relative Location Displacement
Orientation(ObjMain)/ \ (ObjMain,ObjSec)/ \Magnitude(ObjSec

Contact
Relative Orientation
(ObjMain,0bjSec) kJMaln Obﬁ@

Displacement

Displacement . : .
Orientation(ObjSec)

Magnitude(ObjMain)




Learning relational affordances

if goal not reached

i

’.-- —
ne-arm, two-objecis & Given O (perception) & k. -

Inputs: two-arm simultaneous ask constraints rules spatial relations goal Execute action
O, A, E babbling data

Output:

Best A to execute
towards goal

Step 3

Step 1a

Leamn LCG
model

Best action
inference

Generalise to
o-arm PPL mode

transition mode

B > - - o
Task (i): Learn relational Task (ii): Learn Task (iii): Planning
two-arm affordance model state transition
model

Clip 4: Pipeline for table-top two-arm object manipulation.

e la) learn a Linear Continuous Gaussian (LCG) Bayesian Network (BN)
from single arm and simultaneous two-arm exploratory data,

e 1b) from the LCG model, build the two-arm continuous domain relational
affordance model in a PPL,

e 2) build a state transition model from the relational affordance model, and

e 3) infer best action to execute to reach goal (step repeated until goal
reached).



Remaining challenge

® | earn DC model directly

® Work on planning with DC (Nitti et al.,
ECML, EWRL 15)
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Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.
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components but also the inherent uncertainties that are present in real-ife
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PRISM http://sato-www.cs.titech.ac.jp/prism/ P L P

ProbLog2 http://dtai.cs.kuleuven.be/problog/

Yap Prolog http://www.dcc.fc.up.pt/~vsc/Yap/ includes SYSte m S
® ProblLogl

® cplint https://sites.google.com/a/unife.it/ml/cplint
e CLP(BN)

e LP2

PITA in XSB Prolog http://xsb.sourceforge.net/
AlLog?2 http://artint.info/code/ailog/ailog2.html
SLPs http://stoics.org.uk/~nicos/sware/pepl
contdist http://www.cs.sunysb.edu/~cram/contdist/
DC https://code.google.com/p/distributional-clauses

WFOMC http://dtai.cs.kuleuven.be/ml/systems/wfomc
59



Graphs & Randomness

ProbLog, Phenetic, Prism, ICL, Probabilistic
Databases, ...

® all based on a“random graph” model
Stochastic Logic Programs, ProPPR, PCFGs, ...
® based on a “random walk” model

® connected to PageRank



/ Causes \ Phenet|C ~ Causes

Molecular phenotype
\ Effects / DT—PI’ObLOQ
decision theoretic version

e Causes: Mutations * Interaction network:
. » Goal: connect causes to effects

All related to similar 3063 nodes through common subnetwork
phenotype * Genes » = Find mechanism

* Effects: Differentially expressed < Proteins : _

genes * 16794 edges * Techniques;

« 27 000 cause effect pairs - Molecular interactions DTPropLog [\_/an den Broeck]

. Uncertain * Approximate inference

Can we find the mechanismeonnecting
[De Maeyer et al., Molecular Biosystems 13, NAR 15] causes to effects?



Interaction network

Probabilistic Sub-network
network generation inference

0'( -
7 1% Inferred
sub-network

Gene list

Molecular profiling

Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics’ data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide
variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into
a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

[De Mayer et al,, NAR 15]



Viral Marketing

Which advertising
strategy maximizes
expected profit!

. O

Ralph - [Van den Broeck et al,
: AAAI 10]



Viral Marketing

decide truth values of
some atoms

Ralph - [Van den Broeck et al,
: AAAI 10]



4
D I'ProblLog %\\\*2

*3

person (1) .
person (2) .
person (3) .
person (4) .

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

64



D I'ProblLog

:: marketed(P) |:- person(P).

decision fact: true or false?

64

person (1) .
person (2) .
person (3) .
person (4) .

friend(1l,2).
friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).



4
e IOPEOE Y

0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person (1) .
person (2) .
person (3) .
person (4) .

probabilistic facts friend(1,2) .

. friend(2,1).
+ logical rules friend(2,4) .

friend(3,4).
friend(4,2).

buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y).
buys (X) :- marketed(X), buy marketing(X).

64



4
e IOPEO Y

0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person (1) .

buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X). person (3) .
person (4) .
buys (P) => 5 :- person(P). friend(1,2).
marketed (P) => -3 :- person(P). friend(2,1).
utility facts: cost/reward if true rriend(2,4).

friend(3,4).
friend(4,2).

64



4
D I'ProblLog %\\\*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person (1) .

buys (X) :- friend(X,Y), buys(Y), b9y_trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X). person (3) .
person (4) .
buys (P) => 5 :- person(P). friend(1,2).
marketed (P) => -3 :- person(P). friend(2,1).

friend(2,4) .
friend(3,4).
friend(4,2).

64



4
D I'ProblLog %\\\*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person (1) .

buys (X) :- friend(X,Y), buys(Y), b9y_trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X). person (3) .
person (4) .
buys (P) => 5 :- person(P). friend(1,2).
marketed (P) => -3 :- person(P). friend(2,1).

friend(2,4) .
friend(3,4).
friend(4,2).

64



4
D T ProblLog %\\\*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person (1) .

buys (X) :- friend(X,Y), buys(Y), b9y_trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X). person (3) .
person (4) .
buys (P) => 5 :- person(P). friend(1,2).
marketed (P) => -3 :- person(P). friend(2,1).

friend(2,4) .
friend(3,4).
friend(4,2).

marketed (1) marketed (3)

64



4
D I'ProblLog %\\\*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person (1) .

buys (X) :- friend(X,Y), buys(Y), b9y_trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X). person (3) .
person (4) .
buys (P) => 5 :- person(P). friend(1,2).
marketed (P) => -3 :- person(P). friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).
marketed (1) marketed (3)

bt(2,1) bt (2,4) bm (1)
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4
D I'ProblLog %\\\*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person (1) .

buys (X) :- friend(X,Y), buys(Y), buy_trust(X,Y). person (2) .

buys (X) :- marketed(X), buy marketing(X). person (3) .
person (4) .

buys (P) => 5 :- person(P). friend(1,2).

marketed (P) => -3 :- person(P). friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

marketed (1) marketed (3)
bt(2,1) bt (2,4) bm (1)

buys (1) buys (2)
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4
e IOPEO Y

0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person (1) .

buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X). person (3) .
person (4) .
buys (P) => 5 :- person(P). friend(1,2).
marketed (P) => -3 :- person(P). friend(2,1).
utility =-3+-3+5+5=4 friend(2,4).
ope friend(3,4).
probability = 0.0032 friend(4,2).
marketed (1) marketed (3)
bt(2,1) bt (2,4) bm (1)

buys (1) buys (2)
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? :: marketed(P) :- person(P).

4
D I'ProblLog %\\\*2

*3

0.3 :: buy trust(X,Y)
0.2 :: buy marketing(P)

:— friend(X,Y).
:— person(P).

buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y).
buys (X) :- marketed(X), buy marketing(X).

buys (P) => 5

marketed (P) => -3

:— person(P).

:— person(P).

utility =—-3+-3+5+5=4
probability = 0.0032

‘ marketed (1)
bt(2,1)
buys (1)

marketed (3)
bt (2,4)
buys (2)

bm (1)
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person (1) .
person (2) .
person (3) .
person (4) .

friend(1l,2).
friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).

world contributes
0.0032%4 to
expected utility of

strategy



4
D I'ProblLog %\\\*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

_ person (1) .
buys (X) :- friend(X,Y), buys(Y), b9y_trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X). person (3) .

person (4) .

buys (P) => 5 :- person(P). friend(1,2).
marketed (P) => -3 :- person(P). friend(2,1) .

friend(2,4) .
friend(3,4).
friend(4,2).

task: find strategy that maximizes expected utility
solution: using ProblLog technology
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A true application

A tool for Computational Biology

Based on decision theoretic variation of ProbLog
ProblLog / Prob. Programming for prototyping
More specialised inference engine was needed

also some special purpose approximations
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Introduction.
Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.

Problog & a tool that allows you % intuitively build programs that do not only encode complex interactions between a large sets of heterogenous

components but also the inherent uncertainties that are present in real-ife

The engine tackies severa

a%es 35 COMPeX, probabfistic modess



PRISM http://sato-www.cs.titech.ac.jp/prism/ P L P

ProbLog2 http://dtai.cs.kuleuven.be/problog/

Yap Prolog http://www.dcc.fc.up.pt/~vsc/Yap/ includes SYSte m S
® ProblLogl

® cplint https://sites.google.com/a/unife.it/ml/cplint
e CLP(BN)

e LP2

PITA in XSB Prolog http://xsb.sourceforge.net/
AlLog?2 http://artint.info/code/ailog/ailog2.html
SLPs http://stoics.org.uk/~nicos/sware/pepl
contdist http://www.cs.sunysb.edu/~cram/contdist/
DC https://code.google.com/p/distributional-clauses
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