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Probabilistic Programs

• Two questions:

• can we synthesise them ? 

• can we use them during the search ? 



Overview

• Intro to PLP

• some part on continuous distributions

• Probabilistic ILP

• rule learning for Probabilistic Logic 
Programs

• Affordances

• learning with continuous distributions



PART 1: Intro PLP



Probabilistic Logic 
Programming

Distribution Semantics [Sato, ICLP 95]:
probabilistic choices + logic program
→ distribution over possible worlds

e.g., PRISM, ICL, ProbLog, LPADs, CP-logic, … 

multi-valued 
switches

probabilistic 
alternatives

probabilistic 
facts

annotated 
disjunctions

causal-
probabilistic 

laws

OVERVIEW paper [Kimmig, De Raedt, MLJ 15]



Extensions of basic PLP

Distribution Semantics [Sato, ICLP 95]:
probabilistic choices + logic program
→ distribution over possible worlds

continuous RVs
decisions

constraints

time & dynamics

programming 
constructs

semiring 
labels

prob.
rule learning



ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

7



0.4 :: heads.  

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

probabilistic fact: heads is true with 
probability 0.4 (and false with 0.6)
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0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue) <- true.

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

annotated disjunction: first ball is red 
with probability 0.3 and blue with 0.7
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0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue) <- true.  

annotated disjunction: second ball is red with 
probability 0.2, green with 0.3,  and blue with 0.5

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)
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0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue) <- true.  

win :- heads, col(_,red). logical rule encoding 
background knowledge

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)
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0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue) <- true.  

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

logical rule encoding 
background knowledge

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)
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0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue) <- true.  

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

probabilistic choices

consequences
7



Questions

• Probability of win?  
 

• Probability of win given col(2,green)?  
 

• Most probable world where win is true?

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue) <- true. 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true. 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

marginal probability

conditional probability

MPE inference
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Possible Worlds

W
R RH

W
R R G

×0.3

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue) <- true. 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true. 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

×0.30.4 ×0.2×0.3(1−0.4) ×0.3×0.3(1−0.4)

G
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All Possible Worlds

W
R R

H
W

R B

H
W

R G

H
W

R R

R G

R B H
W

BB

H GB

H
W

RB RB

GB

W
BB

0.024

0.036

0.060

0.036

0.054

0.090

0.056 0.084

0.084 0.126

0.140 0.210
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Distribution Semantics 
(with probabilistic facts)

11

[Sato, ICLP 95]

P (Q) =
X

F[R|=Q

Y

f2F

p(f)
Y

f 62F

1� p(f)

query

subset of 
probabilistic 

facts

Prolog 
rules

sum over possible worlds 
where Q is true

probability of 
possible world



constraints



weight(skis,6).  
weight(boots,4).  
weight(helmet,3).  
weight(gloves,2). 

P::pack(Item) :-  
  weight(Item,Weight),   
  P is 1.0/Weight. 

excess(Limit) :- ... 

not excess(10).  
pack(helmet) v pack(boots).

cProbLog: constraints 
on possible worlds

[Fierens et al, PP 12; Shterionov et al]13
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weight(skis,6).  
weight(boots,4).  
weight(helmet,3).  
weight(gloves,2). 

P::pack(Item) :-  
  weight(Item,Weight),   
  P is 1.0/Weight. 

excess(Limit) :- ... 

not excess(10).  
pack(helmet) v pack(boots).

cProbLog: constraints 
on possible worlds

[Fierens et al, PP 12; Shterionov et al]

constraints 
as FOL formulas
treat as evidence

sb

s h

bhg b g bh b

hg h

normalized distribution 
over restricted set of 

possible worlds

13



Alternative view: 
CP-Logic

14

[Vennekens et al, ICLP 04]

throws(john). 
0.5::throws(mary). 

0.8 :: break <- throws(mary). 
0.6 :: break <- throws(john).

probabilistic causal laws

John throws
Window breaks

Window breaks Window breaks

doesn’t break

doesn’t break doesn’t break

Mary throws Mary throwsdoesn’t throw doesn’t throw

1.0

0.6 0.4

0.50.5
0.5 0.5

0.80.8
0.20.2

P(break)=0.6×0.5×0.8+0.6×0.5×0.2+0.6×0.5+0.4×0.5×0.8



CP-logic [Vennekens et al. ]

E.g., “throwing a rock at a glass breaks it with 
probability 0.3 and misses it with probability 0.7”

(Broken(G):0.3) ∨ (Miss:0.7) ← ThrowAt(G).
Note that the actual non-deterministic event (“rock flying at glass”) is implicit

Slides CP-logic courtesy Joost Vennekens



Semantics
(Broken(G):0.3) ∨ (Miss:0.7) 

← ThrowAt(G).

I � {Miss}

Probability tree is an execution model of theory iff:
• Each tree-transition matches causal law
• The tree cannot be extended
• Each execution model defines the same probability 
distribution over final states

Slides CP-logic courtesy Joost Vennekens

I [ {Miss}I [ {Broken(G)}

•
0.3

��

0.7

��
• •

I |= ThrowAt(G)



Continuous 
Distributions



• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]18



• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]

random variable with Gaussian distribution

18



• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable(OBot,OTop) :-  
      ≃length(OBot) ≥ ≃length(OTop),  
      ≃width(OBot) ≥ ≃width(OTop).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]

comparing values of 
random variables

18



• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable(OBot,OTop) :-  
      ≃length(OBot) ≥ ≃length(OTop),  
      ≃width(OBot) ≥ ≃width(OTop).
ontype(Obj,plate) ~ finite([0 : glass, 0.0024 : cup,  
                            0 : pitcher, 0.8676 : plate, 
                            0.0284 : bowl, 0 : serving,  
                            0.1016 : none])  
                        :- obj(Obj), on(Obj,O2), type(O2,plate).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]

random variable with 
discrete distribution

18



• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable(OBot,OTop) :-  
      ≃length(OBot) ≥ ≃length(OTop),  
      ≃width(OBot) ≥ ≃width(OTop).
ontype(Obj,plate) ~ finite([0 : glass, 0.0024 : cup,  
                            0 : pitcher, 0.8676 : plate, 
                            0.0284 : bowl, 0 : serving,  
                            0.1016 : none])  
                        :- obj(Obj), on(Obj,O2), type(O2,plate).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]18



• Defines a generative process (as for CP-logic)

• Tree can become infinitely wide 

• Sampling 

• Well-defined under reasonable assumptions

• See Gutmann et al TPLP 11, Nitti et al. 15

19

Distributional Clauses (DC)
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Magnetic scenario
● 3 object types: magnetic, ferromagnetic, nonmagnetic

● Nonmagnetic objects do not interact

● A magnet and a ferromagnetic object attract each other

● Magnetic force that depends on the distance

● If an object is held magnetic force is compensated.
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Magnetic scenario
● 3 object types: magnetic, ferromagnetic, nonmagnetic

● 2 magnets attract or repulse

 
 

● Next position after attraction

type(X)t ~ finite([1/3:magnet,1/3:ferromagnetic,1/3:nonmagnetic]) ←              
object(X).

interaction(A,B)t ~ finite([0.5:attraction,0.5:repulsion]) ←  
object(A), object(B), A<B,type(A)t = magnet,type(B)t = magnet.

pos(A)t+1 ~ gaussian(middlepoint(A,B)t,Cov) ← 
near(A,B)t, not(held(A)), not(held(B)), 

interaction(A,B)t = attr,
c/dist(A,B)t

2 > friction(A)t.                                      

pos(A)t+1 ~ gaussian(pos(A)t,Cov) ← not( attraction(A,B) ).



Probabilistic Programs

• Distributional clauses / PLP similar in spirit

• to e.g. BLOG, ... but embedded in existing 
logic and programming language 

• to e.g. Church but use of logic instead of 
functional programming ... 

• natural possible world semantics and link 
with prob. databases.

• somewhat harder to do meta-programming



Markov Logic

Key differences

• programming language

• Dist. Sem. uses least-fix point semantics

• can express transitive closure of relation

• this cannot be expressed in FOL (and Markov 
Logic), requires second order logic

• p(X,Y) :- p(X,Z), p(Z,Y). 



Inference in PLP

• As in Prolog and logic programming

• proof-based

• As in Answer Set Programming

• model based

• As in Probabilistic Programming

• sampling



Logical Reasoning: 
Proofs in Prolog

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

26
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Logical Reasoning: 
Proofs in Prolog

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

proof = facts used in successful derivation: 
influences(bob,carl)&influences(ann,bob)&stress(ann)

Y=bob

Y1=ann

26



Proofs in 
ProbLog

0.8::stress(ann). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

influences(bob,carl)&influences(ann,bob)&stress(ann)

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=ann

probability of proof = 0.2 × 0.6 × 0.8 = 0.096
27



influences(bob,carl)  
& influences(ann,bob)  

& stress(ann)

Proofs in 
ProbLog

0.8::stress(ann). 
0.4::stress(bob). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=ann

0.2×0.6×0.8  
= 0.096
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influences(bob,carl)  
& influences(ann,bob)  

& stress(ann)

Proofs in 
ProbLog

0.8::stress(ann). 
0.4::stress(bob). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=ann

0.2×0.6×0.8  
= 0.096

28



influences(bob,carl)  
& influences(ann,bob)  

& stress(ann)

Proofs in 
ProbLog

0.8::stress(ann). 
0.4::stress(bob). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=anninfluences(bob,carl)  
& stress(bob)

0.2×0.6×0.8  
= 0.096

0.2×0.4  
= 0.08
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influences(bob,carl)  
& influences(ann,bob)  

& stress(ann)

Proofs in 
ProbLog

0.8::stress(ann). 
0.4::stress(bob). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=anninfluences(bob,carl)  
& stress(bob)

0.2×0.6×0.8  
= 0.096

0.2×0.4  
= 0.08

proofs overlap!  
cannot sum probabilities  
(disjoint-sum-problem)
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Part II : Synthesising 
Probabilistic Programs



Information Extraction in NELL

30 NELL:  http://rtw.ml.cmu.edu/rtw/

instances for many 
different relations

degree of certainty



Rule learning in NELL (1)

• Original approach

• Make probabilistic data deterministic

• run classic rule-learner (variant of FOIL)

• re-introduce probabilities on learned 
rules and predict



Rule learning in NELL (2)

• Newer Page Rank Based Approach (Cohen et al.) -- 
ProPPR 

• Change the underlying model, from random graph /
database to random walk one; 

• No longer “degree of belief ’’ assigned to facts;

• more like stochastic logic programs

• Learn rules / parameters



Probabilistic Rule Learning

• Learn the rules directly in a PLP setting

• Generalize relational learning and inductive 
logic programming directly towards 
probabilistic setting

• Traditional  rule learning/ILP as a special case

• Apply to probabilistic databases like NELL

• ILP 10, IJCAI 15



Pro Log
       surfing(X) :- not pop(X) and windok(X). 

       surfing(X) :-  not pop(X) and sunshine(X). 

       pop(e1).          windok(e1).        sunshine(e1).          B 

?-surfing(e1). 

  B U H |=\= e      (H does not cover e) 

H

e

An ILP example

no



ProbLog
p1:: surfing(X) :- not pop(X) and windok(X). 

p2:: surfing(X) :-  not pop(X) and sunshine(X). 

0.2::pop(e1).     0.7::windok(e1).    0.6::sunshine(e1).          B 

?-P(surfing(e1)). 

gives  (1-0.2) x 0.7 x p1 + (1-0.2) x 0.6 x (1-0.7) x p2 = P(B U H |= e) 
           not pop   x windok x p1  + not pop x sunshine x (not windok) x p1 

H

e

probability that the example is covered 

a probabilistic Prolog



Inductive Probabilistic Logic Programs

Given 

a set of example facts e ∈ E together with the 
probability p that they hold  

a background theory B in ProbLog 

a hypothesis space L (a set of clauses)

Find 

arg min
H

loss(H,B, E) = arg min
H

�

ei�E

|Ps(B �H |= e)� pi|

36

argmin
H

loss(H,B,E) = argmin
H

X

ei2E

|Ps(B [H |= e)� pi|



Observations
Propositional versus first order

• traditional rule learning = propositional

• inductive logic programming = first order

Deterministic case

• all probabilities 0 or 1

• traditional rule learning / ILP as special case



Analysis
1) the true positive part
tpi = min(pi, ph,i),
2) the true negative part
tni = min(ni, nh,i),
3) the false positive part
fpi = max(0, ni � tni), and
4) the false negative part
fni = max(0, pi � tpi).

38

Inducing Probabilistic Logic Programs from Probabilistic Examples? 7

pH,i

tnH,i
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Fig. 1: The true and false positive and negative part of a single example (left) and the probabilistic
contingency table (right).

Fig. 2: The true and false positive and negative part of an entire dataset for the probabilistic case
(left), and for the deterministic case (right).

The di↵erent notions are graphically displayed in Figure 2, in which the x-axis contains the
examples and the y-axis their probability and all the examples are ordered according to increasing
target probability1. The areas then denote the respective rates. The deterministic case is illustrated
in the Figure 2 (right), which shows that in this case the examples take on 1/0 values. Figure 2
(left) illustrates this for the probabilistic case. From this picture, it may be clear that the notions
of TP ,TN ,FP and FN correspond to the usual notions of true/false positive/negative rates from
the literature in classification, yielding a probabilistic contingency table as shown in Figure 1
(right). Because the TP and FP rates form the basis for ROC space and PN-space, the traditional
ROC analysis (as described in, for instance, [16]), used in rule learning can be applied to the
probabilistic rule learning setting that we study in this paper and can be interpreted in a similar
way as in traditional rule learning. Therefore, ROC analysis techniques, the analysis of heuristics
and measures such as AUC essentially carry over to the probabilistic case.

4.2 Calculating x

ToDo: check the notation w.r.t. x :: target body

Algorithm 1 builds a set of clauses incrementally, that is, given a set of clauses H, it will search
for the clause c(x) = (x :: c) that maximizes the local scoring function, where x 2 [0, 1] is a multiplier

1 The predicted probability is not necessarily monotone.



Analysis

39



Rule learning
Interesting properties

• adding a rule is monotonic, this can only increase the probability of 
an example 

• adding a condition to a rule is anti-monotonic, this can only 
decrease the probability of an example

• several rules may be needed to cover an example

• use all examples all of the time (do not delete them while 
learning), do not forget the positives

• disjoint sum problem



ProbFOIL

Quinlan’s well-known FOIL algorithm combined 
with ProbLog and probabilistic examples and 
background knowledge

Essentially a vanilla sequential covering 
algorithm with m-estimate as local score and 
accuracy as global score.



Criteria

42

precision =
TP

TP + FP

m-estimate =
TP +m · P

N

TP + FP +m

recall =
TP

TP + FN

accuracy =
TP + TN

TP + TN + FP + FN

local score

global 
score

Avoiding overfitting using significance test



ProbFOIL

43

Inducing Probabilistic Logic Programs from Probabilistic Examples? 5

4 ProbFOIL+

We now present our algorithm for learning probabilistic clauses, which is a generalization of the
mFOIL rule learning algorithms. The outline of the algorithm is shown as Algorithm 1. It follows
the typical separate-and-conquer approach (also known as sequential covering) that is commonly
used in rule learning algorithms. The outer loop of the algorithm, labeled ProbFOIL, starts from
an empty set of clauses and repeatedly adds clauses to the hypothesis until no more improvement
is observed with respect to a global scoring function. The clause to be added is obtained by the
function LearnRule, which greedily searches for the clause that maximizes a local scoring function.
The resulting algorithm is very much like the standard rule-learning algorithm known from the
literature (cf. [16,31]).

Algorithm 1 The ProbFOIL+ learning algorithm

1: function ProbFOIL+(target) . target is the target predicate
2: H := ;
3: while true do

4: clause := LearnRule(H, target)
5: if GlobalScore(H) < GlobalScore(H [ {clause}) then

6: H := H [ {clause}
7: else

8: return H
9: function LearnRule(H, target)
10: candidates := {x :: target true} . Start with an empty (probabilistic) body
11: bestrule := (x :: target true)
12: while candidates 6= ; do . Grow rule
13: nextcandidates := ;
14: for all x :: target body 2 candidates do

15: for all literal 2 ⇢(target body) do . Generate all refinements
16: if not RejectRefinement(H, bestrule, x :: target body) then . Reject unsuited

refinements
17: nextcandidates := nextcandidates [ {x :: target body ^ l}
18: if LocalScore (H, x :: target body ^ literal) > LocalScore(H, bestrule) then

19: bestrule := (x :: target body ^ literal) . Update best rule

20: candidates := nextcandidates
21: return bestrule

A key di↵erence with the original ProbFOIL is that the hypothesis space Lh now consists
of probabilistic rules. While ProbLog and Prolog assumes that the rules are definite clauses, in
ProbFOIL+ we use probabilistic rules of the form x :: target  body. Such a rule is actually a
short hand notation for the deterministic rule target  body ^ prob(id) and the probabilistic fact
x :: prob(id), where id is an identifier that refers to this particular rule. Notice that all facts for such
rules are independent of one another, and also that the probability x will have to be determined by
the rule learning algorithm. Each call to LocalScore returns the best score that can be achieved
for any value of x. Finally, when returning the best found rule in line 21, the value of x is fixed to
the probability that yields the highest local score.

As the global scoring function, which determines the stopping criterion of the outer loop, we use
accuracy which is defined as

accuracyH =
TPH + TNH

M
, (1)

where M is the size of the dataset.



Extended rule learning
Learn rules with probability x:: head :- body

What changes ? 

• value of x determines prob. of coverage of 
example

x=0 

x=1 

8 Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, Mathias Verbeke

indicating the clause probability of clause c. The local score of the clause c is obtained by selecting
the best possible value for x, that is, we want to find

probc = argmax
x

TPH[c(x) +m P
N+P

TPH[c(x) + FPH[c(x) +m
, (3)

In order to find this optimal value, we need to be able to express the contingency table of H[c(x) in
function of x. As before, we use pi to indicate the target value of example ei. We see that pH[c(x),i

is a monotone function in x, that is, for each example ei and each value of x, pH[c(x),i � pH,i and
for each x1 and x2, such that x1  x2, it holds that pH[c(x1),i  pH[c(x2),i. We can thus define the
minimal and maximal prediction of H [ c(x) for the example ei as

li = pH,i ui = pH[c(1),i.

Note that ui is the prediction that would be made by the original ProbFOIL algorithm.
For each example ei, we can decompose tpH[c(x),i and fpH[c(x),i in

tpH[c(x) = tpH,i + tpc(x),i fpH[c(x),i = fpH + fpc(x),i,

where tpc(x),i and fpc(x),i indicate the additional contribution of clause c(x) to the true and false
positive rates.

As illustrated in Figure 3, we can divide the examples in three categories:

E1 : pi  li, i.e., the clause overestimates the target value for this example, irrespective of the value
of x. For such an example tpc(x),i = 0 and fpc(x),i = x(ui � li).

E2 : p � u, i.e., the clause underestimates the target value for this example, irrespective of the value
of x. For such an example tpc(x),i = x(ui � li) and fpc(x),i = 0.

E3 : li < pi < ui, i.e., there exists a value of x for which the clause predicts the target value for this
example perfectly. We call this value xi and it can be computed as

xi =
pi � li
ui � li

.

Figure 4 shows the values of tpc(x),i and fpc(x),i in function of x. The formulae for these functions
are

tpc(x),i =

⇢
x(ui � li) if x  xi,

pi � li if x > xi
and fpc(x),i =

⇢
0 if x  xi,

x(ui � li)� (pi � li) if x > xi
.

1

0

ui

pi

li

1

0

ui

li
pi

1

0

pi

ui

li

(a) (b) (c)

Fig. 3: Values for li, ui and pi where (a) it is still possible to perfectly predict pi with the right
value of x, or where pi will always be (b) overestimated or (c) underestimated.

x=0 

x=1 



Extended rule learning

Express local score as a function of x

Compute optimal value of x 
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6.1 Dataset

In order to test probabilistic rule learning for facts extracted by NELL, we used the NELL athlete
dataset8, which has already been used in the context of meta-interpretive learning of higher-order
dyadic Datalog [36]. This dataset contains 10130 facts. The number of facts per predicate is listed
in Table 5. The unary predicates in this dataset are deterministic, whereas the binary predicates
have a probability attached9.

Table 5: Number of facts per predicate (NELL athlete dataset)

athletecoach(person,person) 18 athleteplaysforteam(person,team) 721
athleteplayssport(person,sport) 1921 teamplaysinleague(team,league) 1085

athleteplaysinleague(person,league) 872 athletealsoknownas(person,name) 17
coachesinleague(person,league) 93 coachesteam(person,team) 132

teamhomestadium(team,stadium) 198 teamplayssport(team,sport) 359
athleteplayssportsteamposition(person,position) 255 athletehomestadium(person,stadium) 187

athlete(person) 1909 attraction(stadium) 2
coach(person) 624 female(person) 2
male(person) 7 hobby(sport) 5

organization(league) 1 person(person) 2
personafrica(person) 1 personasia(person) 4

personaustralia(person) 22 personcanada(person) 1
personeurope(person) 1 personmexico(person) 108

personus(person) 6 sport(sport) 36
sportsleague(league) 18 sportsteam(team) 1330

sportsteamposition(position) 22 stadiumoreventvenue(stadium) 171

Table 5 also shows the types that were used for the variables in the base declarations for the
predicates. As indicated in Section 4.5, this typing of the variables forms a syntactic restriction
on the possible groundings and ensures that arguments are only instantiated with variables of the
appropriate type. Furthermore, the LearnRule function of the ProbFOIL algorithm is based on
mFOIL and allows to incorporate a number of variable constraints. To reduce the search space, we
imposed that unary predicates that are added to a candidate rule during the learning process can
only use variables that have already been introduced. Binary predicates can introduce at most one
new variable.

6.2 Relational probabilistic rule learning

In order to illustrate relational probabilistic rule learning with ProbFOIL+ in the context of NELL,
we will learn rules and report their respective accuracy for each binary predicate with more then
500 facts. In order to show ProbFOIL+’s speed, also the runtimes are reported. Unless indicated
otherwise, both the m-estimate’s m value and the beam width were set to 1. The value of p for
rule significance was set to 0.9. The rules are postprocessed such that only range-restricted rules
are obtained. Furthermore, to avoid a bias towards to majority class, the examples are balanced,
i.e., negative examples are added to balance the number of positives. Anton: negative examples
are removed?

8 Kindly provided by Tom Mitchell and Jayant Krishnamurthy (CMU).
9 The dataset in ProbFOIL+ format can be downloaded from [removed for double-blind review].



athleteplaysforteam

Inducing Probabilistic Logic Programs from Probabilistic Examples? 17

(a) (b)

(c) (d)

Fig. 5: Histogram of probabilities for each of the binary predicates with more then 500 facts: (a)
athleteplaysforteam; (b) athleteplayssport; (c) teamplaysinleague; and, (d) athleteplaysinleague.

6.2.1 athleteplaysforteam(person,team)

athleteplaysforteam(A,B) :- coachesteam(A,B).

0.875::athleteplaysforteam(A,B) :- teamhomestadium(B,C), athletehomestadium(A,C).

0.99080::athleteplaysforteam(A,B) :- teamhomestadium(B, ), male(A), athleteplayssport(A, ).

0.75::athleteplaysforteam(A,B) :- teamhomestadium(B, ), athleteplaysinleague(A,C), teamplaysinleague(B,C),

athlete(A).

0.75::athleteplaysforteam(A,B) :- teamplayssport(B,C), athleteplayssport(A,C), coach(A), teamplaysinleague(B, ).

0.97555::athleteplaysforteam(A,B) :- personus(A), teamplayssport(B, ).

0.762::athleteplaysforteam(A,B) :- teamplayssport(B,C), athleteplayssport(A,C), personmexico(A),

teamplaysinleague(B, ).

0.52571::athleteplaysforteam(A,B) :- teamplayssport(B,C), athleteplayssport(A,C), athleteplaysinleague(A, ),

teamplaysinleague(B, ), athlete(A), teamplayssport(B,C).

0.50546::athleteplaysforteam(A,B) :- teamplayssport(B, ), teamplaysinleague(B,C), athleteplaysinleague(A,C),

athleteplayssport(A, ).

0.50::athleteplaysforteam(A,B) :- teamplayssport(B, ), teamplaysinleague(B,C), athleteplaysinleague(A,C).

0.52941::athleteplaysforteam(A,B) :- teamplayssport(B, ), teamhomestadium(B, ), coach(A), teamplaysinleague(B, ).

0.55287::athleteplaysforteam(A,B) :- teamplayssport(B, ), teamplaysinleague(B,C), athleteplaysinleague(A,C),

athlete(A).

0.46875::athleteplaysforteam(A,B) :- teamplayssport(B, ), teamplaysinleague(B, ), coach(A),

teamhomestadium(B, ).



Experiments



Rule learning summary

Learning rules (or inducing logic programs) from uncertain/
probabilistic data 

A new problem formulation  

Traditional rule learning (ILP) is the deterministic special 
case 

Traditional rule learning principles apply directly (including 
ROC analysis)



Affordances with DCs



Affordances
● Model captures action opportunities 

● What can one do with an object? 
● Three main aspects: 

● Object (properties):  
– Measured from perceptual devices 
– shape, size, … 

● Action:  
– Applied physical manipulation 
– Tap, Push, Grab 

● Effects: 
– Measurable features after action  
– displacement, orientation, ...



Learning relational affordances
Learn probabilistic model 

From two object interactions 
Generalize to N  

  

Shelf

push

Shelf
tap

Shelf

grasp

Moldovan et al.  ICRA 12, 13, 14, PhD 15



Learning relational affordances
Learn probabilistic model 

From two object interactions 
Generalize to N  

  

Shelf

push

Shelf
tap

Shelf

grasp

Moldovan et al.  ICRA 12, 13, 14, PhD 15







What is an affordance ?

(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map
of the example shown in Figure 5. The orange points in the right-hand image show the points
that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their
associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling
phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by
the sum of the individual single-arm actions.
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• Formalism — related to STRIPS but models delta

• but also joint probability model over A, E, O

During this behavioural babbling stage, data for O, A and E are collected for
each of the robot’s exploratory actions. The robot executed 150 such exploratory
actions. One example of collected data during such an action is shown in Table 1.
Note that these values are obtained by the robot from its perception, which
naturally introduces uncertainty, which the relational a↵ordance model takes
into account (e.g., the displacement of OMain is observed to be a bit more than
10cm).

Table 1: Example collected O, A, E data for action in Figure 8

Object Properties Action E↵ects
shapeOMain : sprism
shapeOSec : sprism

distXOMain,OSec : 6.94cm
distYOMain,OSec : 1.90cm

tap(10)

displXOMain : 10.33cm
displYOMain : �0.68cm
displXOSec : 7.43cm
displYOSec : �1.31cm

During the babbling phase, we also learn the action space of each action. As
the iCub is not mobile, and each arm has a specific action range, each ai 2 A
can be performed when an object is located in a specific action space. An object
can be acted upon by both arms, by one arm but not the other, or it can be
completely out of the reach of the robot. If the exploratory arm action on an
object fails because no inverse kinematics solution was found, then that object is
not in that arm’s action space. We will show later how any spatial constraints,
such as action space, can be modelled with logical rules.

5.2. Learning the Model

The model will be learnt from the data collected during the robot’s 150
exploratory actions, one instance of such data as illustrated in Table 1. We
will model the (relational) object properties: distX, distY (the x and y-axis
distance between the centroids of the two objects), and the e↵ects: displX and
displY (the x and y-axis displacement of an object) with continuous distribution
random variables. We will start by learning a Linear Conditional Gaussian
(LCG) Bayesian Network [26]. An LCG BN specifies a distribution over a
mixture of discrete and continuous variables. In an LCG, a discrete random
variable may have only discrete parents, while a continuous random variable may
have both discrete and continuous parents. A continuous random variable (X)
will have a single Gaussian distribution function whose mean depends linearly
on the state of its continuous parent variables (Y ) for each configuration of its
discrete parent variables (U) [26]. This LCG distribution can be represented
as: P (X = x|Y = y, U = u) = N (x|M(u) +W (u)T y,�2(u)), with M a table of
mean values, W a table of regression (weight) coe�cient vectors, and � a table
of variances (independent of Y ). [26]

To learn an LCG BN for our setting, we will approximate displX, displY ,
and distX and distY by conditional Gaussian distributions over the short dis-
tances over which objects interact. These distances will be enforced by adding
logical rules.
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Bayesian Network



Clip 4: Pipeline for table-top two-arm object manipulation.

• 1a) learn a Linear Continuous Gaussian (LCG) Bayesian Network (BN)
from single arm and simultaneous two-arm exploratory data,

• 1b) from the LCG model, build the two-arm continuous domain relational
a↵ordance model in a PPL,

• 2) build a state transition model from the relational a↵ordance model, and

• 3) infer best action to execute to reach goal (step repeated until goal
reached).

Thus, the planner will use the low level information it acquires from its
sensors, and employs the state transition model obtained from the previously
learnt relational a↵ordance model together with the set of given background
rules about its actions.

3.2. Contributions and Outline

The main contribution of the use of relational a↵ordances [1] is being able
to model multi-object scenes with a variable number of objects by generalising
and robustly learning from two-object interactions. By using PP, we are able
to generalise over objects and model probabilistic aspects. Furthermore, the
extension of relational a↵ordances to a continuous domain [3] by generalising
from a Linear Continuous Gaussian Bayesian Network allows for a more precise
modelling of a real-world setting. Relational a↵ordances allow modelling of
actions and e↵ects based also on the environment and relationships with other
objects (e.g., a fork a↵ords di↵erent actions if on the table or on the ground),
and modelling of action e↵ects on other objects in the environment with which
the object acted upon might interact (e.g., picking up that fork might also
move the knife next to it). As opposed to the previous methods of modelling
a↵ordances with BNs, the use of a PPL model works for any number of objects
in the scene, while also providing increased model comprehensibility.

10

Learning relational affordances



Remaining challenge

• Learn DC model directly

• Work on planning with DC (Nitti et al., 
ECML, EWRL 15)
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• PRISM http://sato-www.cs.titech.ac.jp/prism/

• ProbLog2 http://dtai.cs.kuleuven.be/problog/

• Yap Prolog http://www.dcc.fc.up.pt/~vsc/Yap/ includes

• ProbLog1

• cplint https://sites.google.com/a/unife.it/ml/cplint

• CLP(BN)

• LP2

• PITA in XSB Prolog http://xsb.sourceforge.net/

• AILog2 http://artint.info/code/ailog/ailog2.html 

• SLPs http://stoics.org.uk/~nicos/sware/pepl

• contdist http://www.cs.sunysb.edu/~cram/contdist/

• DC https://code.google.com/p/distributional-clauses

• WFOMC http://dtai.cs.kuleuven.be/ml/systems/wfomc
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Graphs & Randomness

ProbLog, Phenetic, Prism, ICL, Probabilistic 
Databases, ... 

• all based on a “random graph” model

Stochastic Logic Programs, ProPPR, PCFGs, ... 

• based on a “random walk” model

• connected to PageRank



Phenetic

l Causes: Mutations 
l All related to similar 

phenotype 
l Effects: Differentially expressed 
genes 
l 27 000 cause effect pairs

l Interaction network: 
l 3063 nodes 

l Genes 
l Proteins 

l 16794 edges 
l Molecular interactions 
l Uncertain

l Goal: connect causes to effects 
through common subnetwork 

l = Find mechanism 
l Techniques: 

l DTProbLog [Van den Broeck] 
l Approximate inference

[De Maeyer et al., Molecular Biosystems 13, NAR 15]

61Can we find the mechanism connecting 
causes to effects?

DT-ProbLog
decision theoretic version



[De Mayer et al., NAR 15]
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Which advertising 
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expected profit?

[Van den Broeck et al, 
AAAI 10]63
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DTProbLog
? :: marketed(P) :- person(P).  

decision fact: true or false?
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DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X).

probabilistic facts 
+ logical rules
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world contributes 
0.0032×4 to 

expected utility of 
strategy
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? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  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A true application

A tool for Computational Biology

Based on decision theoretic variation of ProbLog

ProbLog / Prob. Programming for prototyping

More specialised inference engine was needed

also some special purpose approximations
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• PRISM http://sato-www.cs.titech.ac.jp/prism/

• ProbLog2 http://dtai.cs.kuleuven.be/problog/

• Yap Prolog http://www.dcc.fc.up.pt/~vsc/Yap/ includes

• ProbLog1

• cplint https://sites.google.com/a/unife.it/ml/cplint

• CLP(BN)

• LP2

• PITA in XSB Prolog http://xsb.sourceforge.net/

• AILog2 http://artint.info/code/ailog/ailog2.html 

• SLPs http://stoics.org.uk/~nicos/sware/pepl

• contdist http://www.cs.sunysb.edu/~cram/contdist/

• DC https://code.google.com/p/distributional-clauses

• WFOMC http://dtai.cs.kuleuven.be/ml/systems/wfomc

PLP 
Systems

67



1

References

Bach SH, Broecheler M, Getoor L, O’Leary DP (2012) Scaling MPE inference for
constrained continuous Markov random fields with consensus optimization. In:
Proceedings of the 26th Annual Conference on Neural Information Processing
Systems (NIPS-12)

Broecheler M, Mihalkova L, Getoor L (2010) Probabilistic similarity logic. In: Pro-
ceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI-
10)

Bryant RE (1986) Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers 35(8):677–691

Cohen SB, Simmons RJ, Smith NA (2008) Dynamic programming algorithms as
products of weighted logic programs. In: Proceedings of the 24th International
Conference on Logic Programming (ICLP-08)

Cussens J (2001) Parameter estimation in stochastic logic programs. Machine
Learning 44(3):245–271

De Maeyer D, Renkens J, Cloots L, De Raedt L, Marchal K (2013) Phenetic:
network-based interpretation of unstructured gene lists in e. coli. Molecular
BioSystems 9(7):1594–1603

De Raedt L, Kimmig A (2013) Probabilistic programming concepts. CoRR
abs/1312.4328

De Raedt L, Kimmig A, Toivonen H (2007) ProbLog: A probabilistic Prolog and
its application in link discovery. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07)

De Raedt L, Frasconi P, Kersting K, Muggleton S (eds) (2008) Probabilistic Induc-
tive Logic Programming — Theory and Applications, Lecture Notes in Artificial
Intelligence, vol 4911. Springer

Eisner J, Goldlust E, Smith N (2005) Compiling Comp Ling: Weighted dynamic
programming and the Dyna language. In: Proceedings of the Human Language
Technology Conference and Conference on Empirical Methods in Natural Lan-
guage Processing (HLT/EMNLP-05)

Fierens D, Blockeel H, Bruynooghe M, Ramon J (2005) Logical Bayesian networks
and their relation to other probabilistic logical models. In: Proceedings of the
15th International Conference on Inductive Logic Programming (ILP-05)

Fierens D, Van den Broeck G, Bruynooghe M, De Raedt L (2012) Constraints
for probabilistic logic programming. In: Proceedings of the NIPS Probabilistic
Programming Workshop

Fierens D, Van den Broeck G, Renkens J, Shterionov D, Gutmann B, Thon I,
Janssens G, De Raedt L (2014) Inference and learning in probabilistic logic
programs using weighted Boolean formulas. Theory and Practice of Logic Pro-
gramming (TPLP) FirstView

Getoor L, Friedman N, Koller D, Pfe↵er A, Taskar B (2007) Probabilistic relational
models. In: Getoor L, Taskar B (eds) An Introduction to Statistical Relational
Learning, MIT Press, pp 129–174

Goodman N, Mansinghka VK, Roy DM, Bonawitz K, Tenenbaum JB (2008)
Church: a language for generative models. In: Proceedings of the 24th Con-
ference on Uncertainty in Artificial Intelligence (UAI-08)

Gutmann B, Thon I, De Raedt L (2011a) Learning the parameters of probabilis-
tic logic programs from interpretations. In: Proceedings of the 22nd European

2

Conference on Machine Learning (ECML-11)
Gutmann B, Thon I, Kimmig A, Bruynooghe M, De Raedt L (2011b) The magic

of logical inference in probabilistic programming. Theory and Practice of Logic
Programming (TPLP) 11((4–5)):663–680

Huang B, Kimmig A, Getoor L, Golbeck J (2013) A flexible framework for prob-
abilistic models of social trust. In: Proceedings of the International Conference
on Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP-13)

Jaeger M (2002) Relational Bayesian networks: A survey. Linköping Electronic
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