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Abstract: We study the stochastic resource-constrained project scheduling problem or SRCPSP, where

project activities have stochastic durations. A solution is a scheduling policy, and we propose a new class of

policies that is a generalization of most of the classes described in the literature. A policy in this new class

makes a number of a-priori decisions in a preprocessing phase while the remaining scheduling decisions are

made online. A two-phase local search algorithm is proposed to optimize within the class. Our computational

results show that the algorithm has been efficiently tuned towards finding high-quality solutions, and that

it outperforms all existing algorithms for large instances. The results also indicate that the optimality gap

even within the larger class of elementary policies is very small.
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1 Introduction

A project is a temporary endeavor to achieve clearly defined goals. Project management

deals with the planning, organization, execution, monitoring (controlling) and closing of a

project in order to attain the project’s objectives [42]. A project entails a set of activities

that have to be executed while respecting precedence constraints and resource and time

limitations. Project scheduling belongs to the planning phase of project management, in

which a schedule is developed that decides when to start and finish the activities in order

to achieve the project’s goals. Practical project management is usually confronted with

scarceness of the resources available for processing the activities. Over the last decades, this

has given rise to a large body of literature on resource-constrained project scheduling, with

the so-called resource-constrained project scheduling problem (RCPSP) as a central problem.

In practice some of the scheduling parameters may be uncertain. The exact duration

of an activity, for instance, might not be known at the beginning of the project. One of

the earliest sources for this observation is Malcolm et al. [37]. Similarly, the number of

available resources is another parameter that may not be known before project execution.
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These uncertainties may be due to different sources, including estimation errors, unforeseen

weather conditions, late delivery of some required resources, unpredictable incidents such

as machine breakdown or worker accidents, etc. For further motivation for the study of

uncertainty in project scheduling we refer to [32, 55, 57].

In the classic problem RCPSP, the goal is to find a schedule with minimum schedule

length, or makespan. This is indeed by far the most frequently studied objective in the

project-management literature, although other objectives such as net present value and

weighted earliness/tardiness have also received some attention. The stochastic RCPSP or

SRCPSP is the optimization problem that results when the activity durations in RCPSP

are modeled as stochastic variables. The uncertainty in processing times can have various

causes, among which machine breakdowns (see Pinedo [41]). Since makespan is a function

of the activity durations, the goal in SRCPSP is to minimize the expected makespan, and

this will also be the objective in this article. All other parameters of RCPSP, in particular

the resource requirements and availabilities, are assumed to be fully known at the time of

scheduling. For examples of other objective functions in stochastic project scheduling, we

refer to [6, 9, 15, 33, 54].

Based on the foregoing, SRCPSP can be seen as a generalization of the deterministic

problem RCPSP. Since RCPSP is NP-hard [8], the stochastic counterpart can also be

expected to be intractable. Additionally, solution procedures for RCPSP may not be valid

anymore; the main reason is that a solution to SRCPSP can no longer be represented as

a single schedule [51]. Indeed, it needs to be decided for each possible scenario of activity

durations when to start which activities, and so different schedules may result for different

scenarios. A solution to SRCPSP is therefore a policy : a set of rules that prescribe how

to dynamically schedule the activities in each possible scenario [44]. We will formalize this

concept and discuss different policy classes in Section 2.

We distinguish three main strategies for tackling uncertainty in scheduling problems.

Firstly, the decision maker may try to find a schedule that can tolerate minor deviations

from the predicted values for the activity durations. This approach is typically called robust

or proactive scheduling. The robustness of a schedule increases with its ability to absorb

variability. For an example, see Artigues et al. [2]. The resulting schedule is often called a

baseline schedule, predictive schedule or pre-schedule for short.

The second strategy, reactive scheduling, iteratively “repairs” an initial schedule in order

to adjust it to the realizations of the underlying stochastic variables, which are progressively

observed during the execution of the project. This repair step focuses on rendering the

schedule feasible again, minimizing the effect of disruptions, and maintaining a good score
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on the initial objective (e.g., low makespan). In proactive scheduling, some simplifying

assumptions are typically made about this repair step. In particular, it is to be noted that

proactive and reactive scheduling are not mutually exclusive, but rather that they can be

complementary. For more details, see [11, 16, 53].

The third type of strategy for executing a project in the context of SRCPSP is often

called stochastic scheduling, and this is also the approach followed in this article. Here, no

pre-schedule is built before the execution of the project, but starting from an empty initial

schedule, a complete schedule (containing all activities) is constructed gradually as time

progresses by means of a scheduling policy, exploiting the information that was gathered

up until the current time (e.g., realized activity durations) as well as the a-priori available

information on the uncertainty of activity durations. The policies that we study are static

(not modifiable during project execution), but decision making using a policy is dynamic,

meaning that the policy typically responds differently in various scenarios, leading to different

final schedules. Due to the absence of a baseline schedule, this approach is sometimes

referred to as a purely reactive or online strategy. Scheduling policies can also be applied

if a baseline schedule is used. This latter combination only appears rather rarely in the

literature, however; see [34] for an example.

The main contributions of this work are fourfold. (1) A new class of policies is pro-

posed that is a generalization of most of the classes described in the literature. (2) Our

computational results show that our proposed procedure, optimizing within this new class,

outperforms all existing algorithms. (3) The results also indicate that the algorithm has

been efficiently tuned towards finding high-quality solutions in the larger search space of

the new class. In particular, for small instances, the optimality gap even within the larger

class of elementary policies is very small – which is also a sign that the policy class itself

contains very good elementary policies. (4) As an alternative to simulation-based evaluation

of scheduling policies, we also examine an exact Markov-chain evaluation subroutine. To this

aim, a generalization of the Kulkarni-Adlakha Markov chain [31] is proposed to include start-

to-start precedence constraints. Next to these four main contributions, we also describe a

counterexample that shows that the class of elementary policies does not necessarily include

a globally optimal policy within the class of static policies. Although we mainly evaluate

our proposed algorithm based on the number of generated schedules during simulation, we

also report our computation times as an alternative measure of computational effort, which

can be useful for future works that are not merely based on simulation.

The remainder of this article is organized as follows: a number of definitions are provided

in Section 2, together with a description of RCPSP, SRCPSP and scheduling policies. Sec-
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tion 3 outlines our ideas to extend the class of so-called preprocessor policies, and solution

evaluation is the subject of Section 4. A two-phase metaheuristic algorithm is proposed in

Section 5 that allows us to find high-quality members within the newly proposed class of

policies. Extensive computational results are reported in Section 6. A summary and some

conclusions are given in Section 7.

2 Definitions

We first introduce the problem RCPSP in Section 2.1. Subsequently in Section 2.2, we

provide a formal statement of SRCPSP. We then introduce different scheduling policies in

Section 2.3, and in Section 2.4 we describe why so-called elementary policies are not globally

optimal.

2.1 The deterministic case

One of the inputs of an instance of RCPSP is a set of activities N = {0, . . . , n} with known

deterministic durations di ∈ N for each activity i ∈ N . In SRCPSP, which is the central

problem of this work, the assumption of known values for activity durations is relaxed, and

the durations are modeled as random variables (see Section 2.2). All activities are executed

without preemption, which means that once an activity is started, it is executed without

interruption until its completion. Furthermore, K is a set of renewable resource types; each

type k ∈ K has a finite capacity ak that remains unchanged throughout the project. Each

activity i ∈ N occupies rik units of each resource type k ∈ K for the entire duration of its

execution; we assume 0 ≤ rik ≤ ak. Activities 0 and n are dummy activities, serving as

start and end of the project, with zero duration (d0 = dn = 0) and without resource usage

(r0k = rnk = 0 for all k ∈ K).

A solution to (an instance of) RCPSP is a schedule, which is denoted by a vector s =

(s0, . . . , sn), in which si is the starting time of activity i ∈ N in the schedule. Without loss of

generality, we restrict starting times to integer values. The starting times have to respect a

given set of precedence constraints, which are described by a directed acyclic graph G(N,A),

with A a partial order relation on N (a binary relation that is transitive and irreflexive).

Below we will call such a relation A on N a precedence relation. Activity 0 is predecessor

and activity n is successor of all other activities.
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We can now provide the following conceptual formulation of RCPSP:

minimize sn

subject to

si + di ≤ sj ∀(i, j) ∈ A (1)∑
i∈A(s,t)

rik ≤ ak ∀t ∈ N0,∀k ∈ K (2)

si ∈ N ∀i ∈ N (3)

The constraint set (1) describes the precedence constraints between the activities. These are

all of the finish-to-start (FS) type: the successor cannot be started before the predecessor is

finished. Later in this text, we will also use start-to-start (SS) constraints: if activity pair

(i, j) ⊂ N × N defines an SS-constraint, then this implies si ≤ sj. Eq. (2) represents the

resource constraints, where set A(s, t) contains the activities that are in process during time

period t (time interval [t− 1, t]) according to schedule s:

A(s, t) = {i ∈ N : si ≤ (t− 1) ∧ (si + di) ≥ t}.

A schedule s that respects constraints (1)–(3) is called a feasible schedule.

Surveys of solution methods for RCPSP are provided in [17] and [39]. While various exact

methods have been described in the literature for obtaining optimal solutions for RCPSP,

development of heuristic procedures has also received extensive attention as the computation

time required for finding a guaranteed optimal solution becomes unacceptably large as the

size of the instances grows. Priority rules are among the fastest of these heuristics; they build

feasible schedules using a Schedule Generation Scheme (SGS). Such SGSs are important for

this text because some of the scheduling policies for SRCPSP are derived from them. We

discuss the two major types of SGS below. Both types take an activity (priority) list (i.e., a

complete ordering of N) as input, and both stepwise add activities to a partial schedule.

1. The parallel SGS iteratively moves from one decision point to the next at which ac-

tivities can be added (time incrementation). These decision points correspond with

the beginning of the time horizon and with the completion times of already scheduled

activities, and thus at most n decision points need to be considered. At each decision

point, each eligible activity is selected in the order of the priority list and it is scheduled
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on condition that no resource conflict arises. An activity is eligible if it is unscheduled

and if all its predecessors according to A have been completed.

2. The serial SGS picks the next activity in the priority list in each iteration (activity

incrementation) and the earliest possible starting time is assigned such that no prece-

dence and resource constraints are violated. Consequently, exactly n iterations are

needed to obtain a compete schedule.

It should be noted that the parallel SGS produces non-delay schedules, which are schedules

in which activities cannot start earlier without delaying another activity even if activity

preemption is allowed. The serial scheme, on the other hand, produces active schedules,

which are schedules in which none of the activities can start earlier without delaying another

activity without activity preemption. Any non-delay schedule is an active schedule, but

the opposite is not true. While it can be shown that for each RCPSP instance there is at

least one optimal active schedule, an optimal non-delay schedule does not necessarily exist.

Additionally, for each active schedule there exists at least one activity list that will yield the

schedule using the serial SGS, and similarly each non-delay schedule can be found via the

parallel SGS. We refer to [28, 29, 50] for details and applications.

2.2 The stochastic RCPSP

Contrary to RCPSP, in SRCPSP the duration of activity i ∈ N is a random variable (r.v.)

Di, following a known probability distribution. If we denote the probability of event e by

Pr[e] then ∀i ∈ N we have Pr[Di < 0] = 0; we also assume Pr[D0 = 0] = Pr[Dn = 0] = 1.

The distributions may be fitted using historical data or experts’ judgments; for a detailed

discussion of the selection of a suitable distribution see [1, 10, 14, 48, 49]. All durations are

gathered in r.v. vector D = (D0, D1, . . . , Dn).

A scheduling policy decides at each decision point which activities, if any, should be

started. Decision points are typically the beginning of the time horizon and the completion

time of each activity [22]. At each decision point t, a policy can only use information that

has become available up to t, together with a-priori knowledge of the distributions. This

restriction is called the non-anticipativity constraint [51]. Fernandez et al. [21] note that

commercial solvers fail to take this constraint into account and consequently may produce

misleading results. For further comments we refer to [18, 46, 56].

A realization or scenario is a vector d = (d0, d1, . . . , dn), where each value di is a real-

ization of Di. Radermacher [44] proposes to view a policy Π as a function Rn+1
≥ → Rn+1

≥
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that maps scenarios d of activity durations to feasible schedules s = Π(d). Thus, for a given

scenario d, [Π(d)]i represents the starting time of activity i under policy Π; the makespan

of schedule Π(d) is then [Π(d)]n. The goal of SRCPSP is to find a policy that minimizes

E[[Π(D)]n], where E[·] is the expectation operator with respect to D. This minimization is

often restricted to a search over a specific class of policies. We will introduce a number of

such classes that are of direct interest to this text in Section 2.3.

2.3 Scheduling policies

Scheduling policies may be optimized prior to project execution, with all the parameters

decided and unchanged during the realization of the project. Such policies are referred to

as static (open-loop) policies and their class is denoted by CS. Alternatively, a dynamic

(closed-loop) policy runs an optimization routine for selecting the best set of starting ac-

tivities at each decision point, based on the latest system information. While closed-loop

policies are adaptive and more flexible than open-loop policies, they are generally perceived

as being computationally intractable. In recent work, Li and Womer [35] propose an ap-

proximate dynamic-programming algorithm to find closed-loop policies for SRCPSP. Their

computational results indicate that at the cost of significantly higher runtimes, the closed-

loop algorithm outperforms open-loop algorithms for instances with asymmetric duration

distributions, although open-loop policies remain superior for other instances.

In this work we focus on open-loop policies. One particular subset of CS are the ele-

mentary policies (EL-policies), whose class is denoted by CEL. An elementary policy starts

jobs only at completion times of other activities and at time 0. Direct optimization over

class CEL has only rarely been considered in the literature. In a recent article, Creemers [12]

models SRCPSP with phase-type distributions as a Markov decision process and proposes

an exact algorithm for finding an optimal elementary policy. Unfortunately, an elementary

policy does not always have a representation that is compact (polynomial) in the size of the

instance, which limits optimization (either exact or heuristic) to small and medium-size in-

stances. Below, we present some subclasses of elementary policies that have a more compact

combinatorial structure.

2.3.1 RB-policies

Resource-based policies (RB-policies) are a direct extension of priority rules with the parallel

SGS for RCPSP. An RB-policy takes an activity list as input and at each decision point

tries to start each eligible activity in the order of the priority list. These policies are fast and
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easy to implement, but they have some disadvantages. In the function view of policies [44]

RB-policies are neither monotone nor continuous. One reason is that they suffer from so-

called Graham anomalies [24]: there is a possibility of increasing the project makespan when

the duration of one or more activities is decreased. Additionally, even with deterministic

processing times, there are instances for which no activity list yields an optimal schedule

following an RB-policy. These observations are referred to by some researchers (e.g., Möhring

[38]) as “unsatisfactory stability behavior” or “inadequate structural firmness,” and have

been invoked by some as a motivation to eliminate these policies from further study. We

denote the class of RB-policies by symbol CRB.

2.3.2 AB-policies

Activity-based policies (AB-policies, also referred to as “job-based policies” [51]). These

policies proceed similarly as RB-policies with the addition of the SS-constraints:

[Π(d;L)]i ≤ [Π(d;L)]j, ∀{i, j} ⊂ N ; i ≺L j.

In words, for a given scenario d, an RB-policy defined by an activity list L cannot start an

activity j earlier than any of its predecessors i in L. Value [Π(d;L)]i is the starting time

of activity i obtained from policy Π. Elimination of the SS-constraints yields a simple RB-

policy with Graham anomalies, but the extra constraints improve the stability. AB-policies

require more attention for the specification of the priority list. Define a feasible instance

of SRCPSP to be an instance for which there exists at least one feasible schedule under at

least one scenario. For a feasible instance, an RB-policy with an arbitrary input list will

generate a feasible schedule for each scenario, but this is not always true for AB-policies.

More precisely, for AB-policies, the activity list L should define a linear extension of the

input order A, meaning that i ≺L j for each (i, j) ∈ A. AB-policies are derived logically

from priority rules with the serial SGS for RCPSP, and this is why they are sometimes

referred to as “stochastic serial SGS” [4]. This class is denoted by CAB.

2.3.3 ES-policies

The class of earliest-start policies (ES-policies), denoted by CES, was first proposed by Ra-

dermacher [44] and Igelmund and Radermacher [27]. For a binary relation E on N , let T (E)

denote its transitive closure, which is the (inclusion-)minimal transitive relation such that

T (E) ⊆ E. A forbidden set F ⊂ N is a set of activities that are pairwise not precedence-

related (@{i, j} ⊂ F : (i, j) ∈ A), but that cannot be processed simultaneously due to the
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resource constraints (∃k ∈ K :
∑

i∈F rik > ak). A minimal forbidden set (MFS ) is an

inclusion-minimal forbidden set. We denote the set of MFSs for precedence relation E by

F(E). A policy Π ∈ CES is parameterized by a set of activity pairs X ⊂ (N × N) \ A
such that F(T (A ∪ X)) = ∅ and G(A ∪ X) is acyclic. Such a policy is said to “break”

all MFSs, meaning that for each F ∈ F(A) there will be at least one pair {i, j} ∈ F such

that (i, j) ∈ T (A ∪ X): in effect, we are adding additional FS-constraints via X such that

all potential resource conflicts are resolved beforehand. What remains is a new scheduling

instance without resource constraints but with a denser precedence graph. This new instance

is trivially solved in any scenario d by starting each activity as early as possible, as follows:

[Π(d;X)]j = max(i,j)∈A∪X{[Π(d;X)]i + di}, ∀j ∈ N \ {0},

and [Π(d;X)]0 = 0. ES-policies are convex, monotone and continuous. Furthermore, Rader-

macher [45] shows that any convex policy is an ES-policy. For further details and definitions

we refer to [27, 43, 44, 51].

2.3.4 Preprocessor policies

The class CPP of preprocessor policies (PP-policies) was first introduced by Ashtiani et al. [3].

A PP-policy Π ∈ CPP is defined by a set of activity pairs X ⊂ N×N together with an activity

list L, with G(N,A∪X) acyclic. Each pair in X induces an additional FS-constraint, and all

remaining sequencing decisions are made dynamically during project execution by an RB-

policy defined by L for the graph G(N,A∪X). Consequently, a PP-policy makes a number

of a-priori sequencing decisions before the project is started in a preprocessing step under

the form of X. Note that this class is defined without specific attention to MFSs: an extra

edge in X may or may not resolve resource conflicts, so that 0 ≤ |F(T (A ∪X))| ≤ |F(A)|.
In fact, the inclusion of edges that do not break any MFS may also have a beneficial effect

on the expected makespan [3].

2.3.5 Comparison

A major computational disadvantage of ES-policies, in comparison to policies using activity

lists, is their dependence on computing all MFSs, the number of which grows exponential

with n. Stork [51] concludes that, for large instances, using AB-policies is the only remaining

alternative since they do not require the representation of resource constraints by MFSs. He

considers RB-policies to be “inadequate” based on the statement that a minimal requirement

for a policy is monotonicity and continuity (in view of policies as functions). We do not
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follow this argument: in line with Ashtiani et al. [3], we conjecture that this absence of

theoretical qualities hardly, if ever, constitutes an issue to a practical decision maker when

the expected makespan is appropriately low. Let ρτ be the minimum expected makespan for

policy class Cτ . Stork compares the minimum makespan for different classes of policies in the

deterministic case and concludes that ρES = ρAB ≤ ρRB. For stochastic environments, on

the other hand, he finds that the foregoing three policy classes are incomparable, providing

examples with ρ1 < ρ2 as well as with ρ2 > ρ1 for each pair of classes {C1, C2} out of CRB,

CAB and CES.

The computational disadvantage of enumerating MFSs for extension of the precedence

graph was circumvented by Ashtiani et al. [3] by eliminating the requirement that extra

precedence constraints break MFSs in the definition of PP-policies. Ashtiani et al. show

that combining the SS-constraints that are inherent in AB-policies with the FS-constraints

that come with ES-policies in the same way as PP-policies were formed, leads to a new

class that is not a proper generalization of CES, which is why they prefer to combine ES-

policies with RB-policies rather than with AB-policies. Clearly, (CRB ∪ CES) ⊂ CPP : PP-

policies combine the computational benefits and real-time dispatching features of CRB with

the structural stability and unconditional sequencing decisions of CES. This does not mean,

however, that CPP automatically contains better solutions than CAB or an extension of that

class, although Ashtiani et al. do provide empirical evidence that PP-policies tend to be

better than AB-policies, especially for medium to high-variability duration distributions.

2.4 Elementary policies are not globally optimal

To the best of our knowledge, the recent literature on computational solutions for SRCPSP

has always focused on optimizing over CEL or over a subset of this class. It should be noted,

however, that the class of elementary policies does not necessarily include the optimal policies

with respect to all static policies. In the remainder of this text, we refer to an optimal static

policy as a globally optimal policy. For the instance depicted in Figure 1, the optimal

elementary policy is dominated by a non-elementary (static) policy. Each node in the graph

corresponds with one activity, with activity durations drawn from the finite set ωi and

resource requirement ri for each i ∈ N . The network is the transitive reduction of the graph

G(N,A), meaning that transitive edges such as (1, 4) are not included (although (1, 4) ∈ A).

For activity 2, each of the two values in ω2 has equal probability of 0.5, the other activities

only have one possible duration. There is one renewable resource type with availability

a1 = 2.
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Figure 1: A counterexample to show that elementary policies are not necessarily globally
optimal.

D2 Πalt
EL Π∗EL Π1

1 10 13 10
9 18 14 14

average 14 13.5 12

Table 1: The makespan for three policies, dependent on the duration of activity 2.

Table 1 summarizes the makespan values of three different policies. The optimal elemen-

tary policy Π∗EL starts activities 2 and 3 in parallel, followed by activities 4 and 5 (in series).

For information, we also include the details of an alternative elementary policy Πalt
EL, which

starts activity 3 together with activity 5 after the completion of activity 4. Finally, we also

consider the following non-elementary policy Π1, which starts activity 2 at time t = 0, and in

which the decision when to start activity 3 is made at t = 1. If activity 2 is finished at t = 1,

then activity 4 is started immediately and activity 3 will be started together with activity 5

afterwards. Otherwise, activity 3 is started at t = 1. This policy is not elementary because

when D2 = 9 then the decision point t = 1 is not the completion time of any activity.

The table shows that Π1 dominates its two elementary counterparts when it comes to

expected makespan. Similar counterexamples can be constructed with continuous duration

distributions, but these are typically less intuitive. In spite of this undesirable feature of

elementary policies, the new policy class that we propose in Section 3 is also elementary

because this will allow for a concise and structured description of the class, which makes it

easier to develop an efficient optimization procedure.
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3 Generalized preprocessor policies

3.1 Definition

We propose the new class of generalized preprocessor policies (GP-policies), denoted by CGP .

A policy Π ∈ CGP is defined by an activity list L together with two sets of activity pairs

X, Y ⊂ N × N . Each activity pair (i, j) ∈ X defines an FS-constraint from activity i to

activity j, while each (i, j) ∈ Y induces an SS-constraint from i to j. The sets X and Y

thus contain sequencing decisions made before the project starts. All remaining decisions

are made dynamically during project execution by an RB-policy defined by L that respects

all precedence constraints in A ∪ X ∪ Y . The reasons why the inclusion of SS-constraints

(next to FS-constraints) might be beneficial for makespan minimization are explained in

Section 3.3.

We say that GP-policy Π(D;L,X, Y ) is feasible if for any realization of D, the embedded

parallel SGS (in the RB-policy) produces a feasible schedule given the constraints in L, X

and Y . Theorem 1 states a necessary and sufficient condition for feasibility of a GP-policy.

Theorem 1. A policy Π ∈ CGP is feasible if and only if G(N,A ∪X ∪ Y ) is acyclic.

Proof: Assume there is a cycle in G(N,A ∪ X ∪ Y ). First consider the case where all

constraints (i, j) forming the cycle are of type SS. If there are sufficient available resources

to start all activities of the cycle at the same time then a feasible schedule might exist, but

it cannot be produced by an RB-policy. This is due to the fact that using an SGS, activities

of the priority list are scanned one at a time, and for each activity to be eligible, all of its

predecessors should already be started. In other words, starting all activities of the cycle

simultaneously is not considered by the SGS. The case with one or more FS-constraints

(i, j) in the cycle can be discussed in a similar fashion, with the additional observation that

a feasible schedule will certainly not exist in scenarios with Di > 0.

Now assume that the policy Π(D;L,X, Y ) ∈ CGP is not feasible, so there exists at least

one scenario for which the parallel SGS cannot produce a feasible schedule. Since we only

consider instances where maxi∈N rik ≤ ak, ∀k ∈ K, the resource constraints alone cannot

cause this infeasibility, as one can always process all the activities consecutively, one at a

time. Consider a scenario in which the SGS cannot produce a feasible schedule. Applying

the SGS in this scenario, we gradually construct a partial schedule up to the point where

the remaining activities cannot be scheduled. At the end of the latest finishing activity in

this partial schedule, the SGS scans all the unscheduled activities one at a time in the order
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Figure 2: Hierarchy of different policy classes.

of L to see if any is eligible, but no such activity is found. Thus, for each unscheduled

activity j there is another activity i that has not yet been started and that needs to be

either started (for an SS-constraint) or completed (for an FS-constraint) before j could be

scheduled. In the graph induced by the nodes corresponding with the unscheduled activities,

the edges corresponding with these SS-constraints and FS-constraints necessarily contain a

cycle (since the activities cannot be linearly ordered). �

3.2 Hierarchy

The hierarchy of the policy classes is graphically depicted in Figure 2. An arc from one class

to another means that the first class is included in the second one. The class of GP-policies

encompasses CPP as well as CAB, and therefore the new class theoretically dominates CPP

and CAB. From a computational point of view, however, we need to verify whether a search

procedure can be developed that is able to find solutions within the new class GP that are

better than those found in the subclasses with the same computational effort, because the

search area of the generalized class of policies is substantially larger than the search area of

its subsets. The heuristic search procedure will be presented in Section 5, and computational

results will be shown in Section 6.

3.3 Illustration and discussion

In essence, the functionality of additional FS-constraints in CES is to “break” MFSs. Once

all MFSs are resolved, an SGS is actually redundant since earliest possible start times can

be obtained by means of CPM calculations, disregarding resource constraints altogether. In

this case, FS-constraints have a clear advantage over SS-constraints in the sense that any

single FS-constraint between two activities of an MFS resolves the MFS, while this is not

necessarily true for SS-constraints. In CPP , however, not all MFSs need to be resolved by the

13



4

{3, 5}

1

1

{0}

0

3

{3, 5}

1

2

{3}

2

5

{3, 5}

1

6

{5}

1

7

{3}

0

8

{0}

0

i

ωi

ri1

a1 = 4

Figure 3: A project instance where a feasible ΠGP outperforms an optimal Π∗PP .

extra FS-constraints, and resource constraints cannot be neglected (hence the priority list),

and so the reasoning above for superiority of FS-constraints over SS-constraints does not

hold. In any case, we know that the SS-constraints inherent in a serial SGS can sometimes

help to find an optimal schedule for the deterministic RCPSP. Moreover, Ashtiani et al. [3]

have shown that FS-constraints in CPP that do not break any MFS can still help to achieve

superior solutions. Below we further illustrate the potential use of SS-constraints.

The first example, depicted in Figure 3, shows a case where a feasible GP-policy out-

performs an optimal member of CPP . In this example, each of the possible durations in ω3,

ω4 and in ω5 has equal probability 0.5. It is optimal to postpone activity 2 to be started

not earlier than activities 3, 4 and 5, and also to postpone activity 6 to be started not

earlier than activity 2. This policy assures that activity 2 is started following whichever

activity with uncertain duration that finishes the earliest, and also that it is not postponed

because of activity 6. Define L1 = (1, 3, 4, 5, 2, 6, 7, 8). For shorthand notation, through-

out the remainder of the text, we will often identify the class of a policy by a subscript

and omit the argument if there is no danger of confusion, so ΠRB(L1) is an RB-policy

with parameter L1. It can be shown that ΠRB(L1) and ΠPP (L1, {(3, 6)}) are both optimal

within their class. While E[[ΠRB(L1)]n] = 10.00 and E[[ΠPP (L1, {(3, 6)})]n] = 9.75, we have

E[[ΠGP (L1, ∅, {(2, 6)})]n] = 9.63.

Secondly, from an optimization point of view, there are also indications that, with the

same computational effort, we are more likely to find high-quality solutions within the larger
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Figure 4: A project instance to demonstrate the importance of SS-constraints.

search space of CGP (which is empirically confirmed in Section 6). The example depicted in

Figure 4a shows a case where a given activity list L is only improvable via SS-constraints

and not by FS-constraints. In this example, each of the durations in ω5 and in ω6 has equal

probability 0.5. For any elementary policy, it is a dominant decision to postpone activity 3 to

be started not earlier than activities 5 and 6. This ensures that activity 3 is started following

the earliest finish from among activities 5 and 6. Table 2 compares different policies that

achieve this. Define activity lists L1 = (1, 2, 4, 5, 6, 3, 7) and L2 = (1, 2, 3, 4, 5, 6, 7), and

sets of additional SS-constraints Y1 = {(5, 3), (6, 3)} and FS-constraints X1 = {(2, 3), (4, 3)}.
It can be shown that ΠRB(L1), ΠRB(L2) and ΠPP (L1, X1) are each optimal within their

class, and that ΠPP (L2, ∅) is the best PP-policy with list L2. We observe that while both

RB-policies are improvable via additional SS-constraints, only one of them (ΠRB(L1)) is

also improvable with FS-constraints. This insight is important in view of the two-stage

algorithm proposed Section 5, which selects an activity list in a separate stage prior to

adding precedence constraints. If we worked with CPP , selection of L2 rather than L1 in the

first stage would then lead to a local optimum.

Finally, the example depicted in Figure 4b presents a case where given an activity list

that is improvable by both SS- and FS-constraints, it is easier to find the the set Y1 of SS-

constraints rather than the set of FS-constraints required for equivalent performance. The

example is an extension of the previous example where activities 2 and 4 are divided into
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(D5, D6) ΠRB(L1) ΠGP (L1, ∅, Y1) ΠPP (L1, X1) ΠRB(L2) ΠGP (L2, ∅, Y1) ΠPP (L2, X1)

(4,4) 9 10 10 9 10 9
(4,10) 15 11 11 15 11 15
(10,4) 11 11 11 11 11 11
(10,10) 15 16 16 15 16 16
average 12.5 12 12 12.5 12 12.75

Table 2: Makespan for some RB-, PP- and GP-policies under different scenarios.

three parallel activities, each with the same duration and resource requirements as before.

Hence, the number of the predecessors of 5 and 6 is increased. Consequently, to adapt

ΠPP (L1, X1) so as to stay equivalent with ΠGP (L1, ∅, Y1) (green arrows), X1 must include

all the FS-constraints from the sets of activities 2 and 4 to activity 3 (red arrows). In this

example, from an optimization point of view, finding the set Y1 (with |Y1| = 2) with the

same optimization effort is more likely than identifying X1 (with |X1| = 6).

4 Solution evaluation

Apart from the speed of convergence to optimality, the efficiency of optimization efforts for

SRCPSP is also dependent on the accuracy and runtime for the evaluation of a policy. In

line with the recent literature on SRCPSP, we will assess the quality of a scheduling policy

based on the percentage difference between the expected makespan and the critical path

length using the average durations. We will test two different calculation methods for the

expected makespan, namely using simulation and using a Markov chain.

Simulation is commonly used for expected-makespan estimation. Stork [51] uses a large

set of scenarios (200) in each evaluation in order to increase the precision, while other

researchers (for instance Ballest́ın [4] and Ashtiani et al. [3]) opt for a rather low number of

replications (e.g., 10) in order to investigate more policies within the same simulation budget.

The latter choice implies less accuracy for a given evaluation, but Ballest́ın [4] shows that

examining a larger set of policies is favorable for obtaining a better final outcome.

Creemers [12] proposes an exact algorithm for SRCPSP with phase-type activity dura-

tions by making optimal decisions via dynamic programming in a Markov decision process;

one of the prominent features of this procedure is efficient memory management for storing

all required states of the decision process. Although this algorithm by itself is not compu-

tationally viable for large instances, we can derive from this procedure an exact evaluation

subroutine that models the project execution as a Markov chain, and which can serve as
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an alternative to simulation. Some modifications are needed to the original procedure, for

instance the inclusion of SS-constraints. More details on this Markov chain are provided in

Appendix 1.

5 A two-phase metaheuristic algorithm for CGP

Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve

complex optimization problems [7]. In this section, we devise a two-phase metaheuristic that

consists of a Greedy Randomized Adaptive Search Procedure (abbreviated as GRASP) and a

Genetic Algorithm (GA) to find high-quality ΠGP (L,X, Y ).

GRASP, which was introduced by Feo and Resende [20], consists of iterations made

up from successive constructions of a greedy randomized solution and subsequent iterative

improvements through local searches and self-learning techniques. Considering sequences as

individuals, for example, each new sequence is divided into a number of subsequences. In

order to fill each subsequence, a reference will be chosen. A reference may be to fill the

elements of a subsequence randomly or according to another already-built randomly chosen

sequence.

The population-based adaptive search procedure known as GA was introduced by Holland

[26], and is a heuristic search algorithm that mimics the process of natural evolution. A GA

starts with the construction of an initial population (often called “first generation”) and

computes the next generations by applying crossover, mutation and selection operators.

The initial population is randomly divided into pairs (parents); the crossover operator then

produces two new offspring per pair, followed by the mutation operator. Lastly, the next

generation is created by invoking the selection operator, that determines which individuals

are carried over to the next generation and which ones are eliminated. We refer to Goldberg

[23] for a detailed discussion on GAs. The overall structure of the proposed two-phase

metaheuristic is described in Section 5.1. Phase 1 is discussed in detail in Section 5.2, and

Phase 2 is the subject of Section 5.3.

5.1 Global structure of the algorithm

Our search procedure consists of two phases. The first phase produces adequate activity

lists by means of a GRASP, and in the second phase a GA finds additional constraints to

obtain a GP-policy with each list. Throughout the procedure, we distinguish between high-

variability (HV) and low-variability settings (LV); our detailed criteria to distinguish between
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Algorithm 1 Overall structure

if HV then
ElectList = RB-GRASP
for i = 1 to NoList do

Arc-Add-GA(ElectList(i))
end for

else if LV then
ElectList = AB-GRASP
for i = 1 to NoList do

Arc-Remove-GA(ElectList(i))
end for

end if
Return the best solution found

HV and LV are described in Section 6.1. This distinction is motivated by the observation

that AB-policies (which impose numerous additional SS-constraints) are globally optimal for

deterministic durations and also perform quite well for LV in general, whereas RB-policies

have empirically been found to be far better for HV (see [3, 5]). This is only logical, because

the latter class retains more flexibility for managing unforeseen circumstances. Thus, for

instances with HV, GRASP looks for a good RB-policy, whereas in LV, the first phase

produces a good AB-policy. In both cases, the output is a set of activity lists, which is passed

to the next phase. The overall structure of the proposed method is depicted in Algorithm 1:

the set ElectList holds the best NoList solutions passed from Phase 1 to Phase 2.

5.2 Phase 1: activity lists

A general overview of the procedure RB-GRASP is shown in Algorithm 2, where the set

CurSolPop is the current solution population. The LV-version of the function (AB-GRASP)

is completely similar. The key element of the procedure is the BuildNewList function, which

produces new individuals. A justification technique is employed in order to improve the

quality of newly produced activity lists. A more detailed description of the main concepts

follows.

Individuals and fitness. Each individual is a precedence-feasible activity list L. An RB-

or AB-policy Π then associates an expected makespan value E[[Π(D;L)]n] with this

list, which is the fitness indicator of L. This fitness value can be computed via exact

methods such as a Markov chain, or estimated by means of simulation.
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Algorithm 2 RB-GRASP
CurSolPop = ∅
while TerminationCriterion not met do
L = BuildNewList(CurSolPop)
s = ΠAB(E[D];L)
s = Justification(s)
L = ScheduleToList(s)
Compute E[[ΠRB(D;L)]n]
if Cardinality(CurSolPop) < PopSize1 then

CurSolPop = CurSolPop ∪ {L}
else if L is better than the worst solution L′ ∈ CurSolPop then

CurSolPop = (CurSolPop \ {L′}) ∪ {L}
end if

end while
ElectList = the NoList best solutions of CurSolPop
Return ElectList

Building new lists. The BuildNewList function builds new individuals. An overview of this

function is provided in Algorithm 3. Firstly, each list is divided into multiple sublists.

Each sublist is then filled according to a specific reference. A random reference fills a

sublist by randomly choosing activities from the set of eligible activities E. An eligible

activity is an unselected activity for which all of the predecessors have already been

selected. If LFT is chosen as a reference, biased random selection is applied, where

activities have a higher chance of being selected if they have a small CPM-based latest

finish time LFT. In order to make such selections, we incorporate regret-based biased

random sampling (RBRS) such that:

πj =
ρj + 1∑

k∈E(ρk + 1)
, ∀j ∈ E,

where πj is the selection probability of activity j and ρj = maxk∈E{LFTk} − LFTj.
The third reference type, pattern, is to choose activities from E according to another

already built activity list. The functioning period (FP) of a reference is the maximum

number of times that the reference is allowed to be used before we choose a new one.

For random or LFT patterns FP = 1, while for a pattern reference, it is chosen randomly

from [FPmin,FPmax]. A new list is produced when all its sublists are filled.

Selecting reference. Function SelectReference is used in order to assign references to sub-

lists. To ensure sufficient diversity of the initial population, the reference type for the
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Algorithm 3 BuildNewList(CurSolPop)

i = 0
FP = 0
while i < n do

if FP = 0 then
reference = SelectReference(CurSolPop)
if reference 6= LFT or random then

FP ∈ [FPmin,FPmax]
end if

else
FP = FP− 1

end if
Select an activity j ∈ E according to the reference
L(i) = j
i = i+ 1

end while
Return the activity list L

first PopSize1 (population size in Phase 1) solutions is restricted to random (with prob-

ability pRandom) and LFT (with probability 1 − pRandom). For the next solutions,

choosing pattern as a reference is possible (with probability 1− pRandom− pLFT). For

this type, a reference activity list L ∈ CurSolPop is randomly chosen.

Justification. In order to improve each new activity list, we apply a double justification

technique (see Li and Willis [36] and Özdamar and Ulusoy [40]). Valls et al. [52] show

that justification is an effective technique to enhance RCPSP solutions without sub-

stantially more computational efforts. Both for HV as well as LV, a schedule s is first

built by applying the serial SGS to the list over a single scenario with expected dura-

tions. A double justification consists of shifting activities to the right as far as possible

in nonincreasing order of their finish times without altering the start of activity n and

then re-shifting them to the left. The justified s is then reconverted into a list via

ScheduleToList by ordering activities in nondecreasing order of their starting times.

Preliminary experiments have indicated that using the parallel SGS for the justifica-

tion of activity lists significantly decreases the diversity of the produced solutions in a

population and leads to undesirable convergence to local optima.

20



5.3 Phase 2: additional precedence constraints

The second phase comprises a GA that finds sets of additional precedence constraints, which

together with each activity list L in ElectList form a complete GP-policy. Dependent on

the variability setting, the details of this phase differ slightly. For HV, we identify sets X

and Y of additional FS- and SS-constraints to form ΠGP (L,X, Y ) that improves upon the

RB-policy ΠGP (L, ∅, ∅). In LV, on the other hand, starting from ΠGP (L, ∅, Ŷ ) we look for

a set Y ⊂ Ŷ that leads to a good policy ΠGP (L, ∅, Y ), where Ŷ = {(i, j)|i ≺L j}. The two

variants of the algorithm are further elaborated in Section 5.3.1 and Section 5.3.2.

5.3.1 Phase 2 in HV

The goal is to find sets X and Y of additional precedence constraints such that

E[[ΠGP (D;L,X, Y )]n] < E[[ΠRB(D;L)]n].

For each L ∈ ElectList, the GA produces an initial population and then iteratively builds

new populations via crossover and mutation operators. Each population has size PopSize2.

Individuals. An individual Z = {X, Y } contains two unordered sets of activity pairs

(i, j) /∈ A. The individual is said to be feasible if and only if G(N,A ∪ X ∪ Y ) is

acyclic.

Initial population. Each initial population member contains between one and npairs ac-

tivity pairs, with all cardinalities having equal probability. Note that members of

subsequent generations can contain a number of elements that is not in {1, . . . , npairs}.
First, ΠRB(E[D];L) is constructed, where at each decision point t we encounter a set

Nt ⊂ N of activities that are either eligible to be started or are already in process. The

set CSS of candidate SS-constraints then contains each (i, j) ∈ Nt×Nt encountered at

any decision point t for which the following criterion holds:

[ΠGP (E[D];L,∅, {(i, j)})]n < [ΠGP (E[D];L,∅,∅)]n

and the same for CFS with the following condition:

[ΠGP (E[D];L, {(i, j)},∅)]n < [ΠGP (E[D];L,∅,∅)]n.

The initial population is then constructed with individuals Z = {X, Y } such that
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X ⊂ CFS and Y ⊂ CSS, and the more improving candidates have a higher selection

probability.

Crossover. The crossover operators for lists cannot be applied here, hence we use a uniform

crossover as follows. The two parents are randomly selected from the current popula-

tion, with selection probability proportional to their quality. Each edge in the father

is assigned to the son with probability pcross, otherwise it is added to the daughter.

Each edge in the mother is analogously assigned to either daughter or son.

Mutation. The mutation operator modifies some individuals in order to retain diversity in

the population. Each solution Z is mutated with probability pmut. If mutation occurs,

then one randomly selected pair is removed with probability px; a random pair from

CFS \X and CSS \ Y is added to Z, otherwise.

Selection. The selection operator is the same as in Phase 1: the solutions are ranked

according to their objective value. The first PopSize2 solutions are then retained as the

new generation.

5.3.2 Phase 2 in LV

In Phase 2 for LV, we search for a good policy ΠGP (L, ∅, Y ), so we only add SS-constraints

and no FS-constraints. Each population again has size PopSize2, and the initial population

is constructed as follows: PopSize2 − 1 solutions are generated similarly as in HV but with

candidate set Ŷ , and one initial solution is the output of a greedy subroutine. For any j ∈ N
let Yj = {(i, j)|i ∈ N, i ≺L j} be the set of all SS-constraints imposed on activity j. Starting

from Y ′ = Ŷ , the greedy subroutine iteratively evaluates the condition

E[ΠGP (D;L,∅, Y ′ \ Yj)]n] < E[ΠGP (D;L,∅, Y ′)]n]

for each j ∈ N in order of list L. If the condition is satisfied, then Y ′ is updated as

Y ′ := Y ′ \ Yj. The algorithm stops when no further improvement is possible.

Similarly to Section 5.3.1, GA produces a final set Y by adding and/or removing con-

straints, and new generations are again iteratively constructed using similar crossover, muta-

tion and selection functions. The algorithm halts when the simulation budget of the second

phase is fully used.
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6 Computational results

6.1 Experimental setup

All experiments have been performed on a personal computer with Intel i7-3770 CPU with

3.40 GHz clock speed and 8.00 GB of RAM. The algorithms are coded in Microsoft Visual

Studio C++. Our main dataset is the J120 instance set from the PSBLIB library, which was

generated using the ProGen generator (Kolisch and Sprecher [30]). It includes 600 RCPSP

instances with 120 non-dummy activities each. We will also use the J30 and J60 sets from

the same library, which contain 480 instances with 30, resp. 60, activities each.

In line with Ashtiani et al. [3], Ballest́ın and Leus [5], Fang et al. [19], Stork [51] and

Ballest́ın [4], which are the most important works in the literature on SRCPSP that report

computational results on large instances, we choose uniform, beta and exponential distribu-

tions for the activity durations. The expected activity durations are equal to the determinis-

tic processing times d∗ ∈ Nn+1 in the PSPLIB datasets. We use five different distributions to

model the duration of an activity i ∈ N : two continuous uniform distributions with support

[d∗i −
√
d∗i ; d

∗
i +

√
d∗i ] and [0; 2d∗i ]; one exponential distribution with rate parameter d∗

−1

i ;

and two beta (generalized truncated) distributions with variance d∗i /3 and d∗
2

i /3, both with

support [d∗i /2; 2d∗i ]. In the remainder of this text we will refer to these five distributions as

U1, U2, Exp, B1 and B2, respectively. The variances of these distributions are, in the same

order, d∗i /3, d∗
2

i /3, d∗
2

i , d∗i /3 and d∗
2

i /3. Thus, U1 and B1 have relatively low variance, U2

and B2 have medium variability and Exp displays high variability. Below, we will work with

the HV setting of our algorithm for the last three distributions, and with LV for U1 and B1.

In both beta distributions, the parameter β = 2α; for B1 we use α = (d∗i /2)− (1/3) and for

B2 we have α = (d∗i /2)− (1/6).

Based on some preliminary experiments and on the findings of Ashtiani et al. [3], we

choose the probabilities pcross = px = 0.5 and pmut = 0.05, the population size in the

first phase PopSize1 = 40 and the number of returned activity lists NoList = 1. In the

second phase, we set the maximum number of additional constraints in the initial population

npairs = 7, the population size PopSize2 = 20 and the parameters FPmin = 1 and FPmax = 30.
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6.2 Policy evaluation

6.2.1 Simulation

The evaluation of the quality of an algorithm is based on the average percentage distance of

E[[Π(D)]n] from the critical path length CPL with deterministic durations d∗. The expected

makespan is estimated via simulation or is obtained by means of a Markov-chain evaluation

subroutine (see Section 4). In most of the existing literature, scenarios are generated via

simple Monte Carlo sampling, but Saliby [47] observes that simple random sampling may lead

to an imprecise description of known input distributions, which will increase the inaccuracy

of simulations. Especially since we intend to run only few generations, this problem might

become severe. Consequently, in line with Ashtiani et al. [3] and Ballest́ın and Leus [5],

we use descriptive sampling as a variance reduction technique, in which we use a random

permutation of quantiles of the distribution at hand.

In the literature on SRCPSP, in order to compare different proposed algorithms despite

the use of different computers, the optimization effort is controlled by allowing an equal

simulation budget. More precisely, algorithm A is better than algorithm B if it finds better

solutions with an equal number of generated schedules. In line with [3–5, 19], we use two

upper bounds on the number of generated schedules, namely 5000 and 25000. Ashtiani

et al. [3] observe that generating a schedule with a member from CRB or CPP requires

approximately twice as much time as CAB. Since GP-policies require the same computational

requirement as PP-policies, we decide to adopt the following counting convention: one GP-

policy in Phase 1 will be counted as 1 (schedule with RB-policy) + 2 (for applying the

justification operator) + nsim (number of simulations for evaluation) = nsim + 3. In Phase 2,

each iteration of GA and each iteration of the greedy subroutine correspond to nsim scenarios.

The number of iterations of the algorithm should be set based on this counting convention

and the upper bound (5000 or 25000) on the total number of schedule generations. In our

implementation, we will evenly distribute the total budget of generated schedules among the

two phases. Following Ashtiani et al. [3] and Ballest́ın and Leus [5], we opt for nsim = 10.

6.2.2 Comparison of simulation-based and exact policy evaluation

We have examined the effect of replacing the simulation subroutine of our two-phase meta-

heuristic procedure, subsequently referred to as GP-H, with an exact evaluation subroutine

based on a Markov-chain approach (see Section 4). Both versions of the algorithm, denoted

by GP-H(SIM) and GP-H(MC), have been applied to the J30 dataset with exponential du-
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J30
procedure makespan gap (%) CPU

GP-H(SIM) 75.22 0.91 0.07
GP-H(MC) 74.89 0.36 88.27

Exact 74.60 0.00 0.49

Table 3: Comparing E[[Π(D)]n] for GP-H(SIM), GP-H(MC) and Exact in J30.

rations. The simulation budget in GP-H(SIM) is limited to 25000 generated schedules; the

number of policies examined by GP-H(MC) is the same as for GP-H(SIM). The results are

then compared to the optimal elementary policies obtained by the exact algorithm proposed

by Creemers [12] (Exact). The details are provided in Table 3. The column labeled “gap”

contains the percentage gap between optimal and heuristic makespan; runtimes are expressed

in seconds. We observe that the Markov-chain evaluation consumes significantly more CPU

time (an increase by a factor of over 1000). The benefit, however, is that the average op-

timality gap is reduced to only one third of its value with simulation evaluation, so there

is a clear trade-off to be struck between runtime and quality of the solutions found. In the

remainder of this text, we will only apply the simulation subroutine to estimate expected

makespan because only in this way can comparisons be made with the published results for

other procedures.

6.3 Comparison with other policies

Table 4 compares our two-phase metaheuristic procedure (GP-H in the table) optimizing in

CGP with a GA for CAB proposed by Ballest́ın [4] (AB-GA), the GRASP algorithm for CAB

proposed by Ballest́ın and Leus [5] (AB-GR), the two-phase GA for CPP proposed by Ashtiani

et al. [3] (PP-GA) and the so-called “estimation-of-distribution” algorithm of Fang et al. [19]

(RB-EDA), for the J120 dataset. We observe that GP-H outperforms all other algorithms

in all five distributions. This supports the theoretical dominance of CGP over CAB and CPP

discussed in Section 3. Since the search space is significantly larger for CGP than for the

other policy classes, these results also indicate that the proposed two-phase algorithm has

been efficiently tuned towards finding high-quality solutions in this large search space.

The exact method of Creemers [12] (Exact) for finding optimal elementary policies cannot

be applied to this dataset due to excessive memory usage: the largest instances that can

be solved by the procedure have 30 to 60 activities. In Table 5, the results of the exact

algorithm are compared with GP-H and AB-GR applied to J30 and J60, considering only

exponential durations. The simulation budget in GP-H and AB-GR is limited to 25000
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distribution
procedure # schedules U1 U2 Exp B1 B2

5× 103 51.49 78.65 120.22 —– —–
AB-GA

25× 103 49.63 75.38 116.83 —– —–

5× 103 46.84 72.58 114.42 47.17 75.97
AB-GR

25× 103 45.21 70.95 112.37 45.60 74.17

5× 103 48.86 58.91 76.03 49.01 58.82
PP-GA

25× 103 47.21 58.07 74.56 47.25 57.95

5× 103 47.29 56.54 72.50 47.65 58.29
RB-EDA

25× 103 46.66 56.07 72.05 47.04 57.82

5× 103 46.71 55.95 71.71 46.87 55.95
GP-H

25× 103 44.98 55.37 71.29 45.12 55.42

Table 4: Average percentage difference between the makespan and CPL for different algo-
rithms for J120.

J30 J60
procedure makespan gap (%) CPU makespan gap (%) CPU

AB-GR 81.88 10.10 - 122.92 18.41 -
GP-H 75.22 0.91 0.07 112.13 1.19 0.30
Exact 74.60 0.00 0.49 110.59 0.00 831.58

Table 5: Comparing the output of AB-GR and GP-H with optimal elementary policies in J30
and J60.

generated schedules. Note that not all instances of J60 could be solved via Exact, so this

comparison only includes the solved instances (227 out of 480). As before, “gap” is the

percentage gap between optimal and heuristic makespan. Runtimes are expressed in seconds.

We observe that the gap between the solutions obtained using our proposed algorithm and

the optimal values is around 1% in both J30 and J60, while this gap for AB-GR is significantly

higher.

6.4 Runtimes

Although counting schedule generations is an accepted method for eliminating the impact

of different computation devices (see [25], for instance), it is incompatible with approaches

that are different from mere simulation-optimization (e.g., [12, 35]). The goal of this section

is therefore to report runtimes, as an alternative measure for computational effort, so that

future researchers can evaluate their algorithms based on these times as well. Table 6 contains

26



distribution
procedure # schedules U1 U2 Exp B1 B2

5× 103 92.7 93.4 94.8 207.6 201
GP-H(LV)

25× 103 394.8 401.6 395.2 518.2 524.5

5× 103 339 331 301.6 450.9 432
GP-H(HV)

25× 103 799.9 755.2 794.2 888.6 943.9

Table 6: Runtimes (in seconds) for GP-H under different settings for J120.
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Figure 5: The effect of the number of schedules on the performance of GP-H in J120.

the runtimes of GP-H applied to J120 for all five distributions. GP-H(LV) refers to the GP-H

algorithm with HV-setting (see Section 5.3.1), while GP-H(HV) is the LV-version described

in Section 5.3.2.

The higher runtimes for GP-H(HV) are mainly due to the inclusion of preprocessing

calculations in Phase 2 to create CSS and CFS. Also, due to the more time-consuming

generation of random numbers, both versions of the algorithm are slightly slower for the

beta distribution compared to U1, U2 and Exp.

6.5 Makespan as a function of computational effort

Recent work on SRCPSP using simulation-optimization methods has typically limited com-

putational effort to 5000 and 25000 schedules. In this section we examine how these bounds

affect the performance of the proposed algorithm. For this purpose, we have run GP-H on

J120 (all five distributions) and J30 (only exponential distribution), with the budget on

the schedule count varying from 103 to 200 × 103. Some of the parameters, including nsim,

PopSize and the number of iterations in GRASP and GA, are modified according to this

budget.
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Figure 6: The effect of the number of schedules on the performance of GP-H in J30 with
exponential durations.

Figure 5 and Figure 6 summarize our findings. In all plots, the horizontal and vertical

axis represent the number of schedules and the percentage difference between CPL and

E[[Π(D)]n], respectively. In Figure 6, the output of Exact and GP-H are compared for the

exponential distribution. As depicted in the figures, in LV (U1 and B1) and also for the small

instances (J30), a budget of 25 × 103 generated schedules seems to be sufficient to achieve

the best performance of the heuristic algorithm. In HV (U2, B2 and Exp), on the other

hand, a more extensive search yields a noticeably better final outcome. This suggests that

extending the upper bound on the number of schedules can be useful for these distributions.

7 Summary and conclusions

In this article, we have proposed the new class of generalized preprocessor policies (GP-

policies) for the stochastic resource-constrained-project scheduling problem (SRCPSP). The

class of GP-policies is a generalization of the existing classes of RB-, AB-, ES- and PP-

policies. A GP-policy makes a number of a-priori scheduling decisions in a preprocessing

phase under the form of additional precedence constraints, while the remaining decisions are

made online by adhering to a priority list.

We have developed a two-phase algorithm for finding high-quality GP-policies. Our

computational results show that the algorithm outperforms all existing procedures for large

instances, and that the algorithm has been efficiently tuned towards finding high-quality

solutions in the larger search space of the new class. In addition, for small instances, the

average optimality gap is very low although we compare with optimal elementary policies,

which belong to an even larger class. This indicates that class of GP-policies by itself also
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contains very good elementary policies.

As an alternative to simulation-based evaluation of scheduling policies, we have also

examined an exact Markov-chain evaluation subroutine. To this aim, we have generalized the

Kulkarni-Adlakha Markov chain in order to also include start-to-start precedence constraints.

We find that the Markov-chain evaluation is significantly more time-consuming but also

substantially increases the quality of the solutions found within the same number of evaluated

solutions.

In this article, the additional precedence constraints (representing preprocessing deci-

sions) are chosen by a local search algorithm with randomly evolving generations. For future

work, it would be interesting to focus on adding more intelligence in the search for addi-

tional constraints, for instance by describing specific settings under which extra precedence

constraints are particularly useful, or should be avoided.

Appendix 1 Exact evaluation of GP-policies for expo-

nential distributions

In this appendix, we describe an exact evaluation procedure for the expected makespan

of a feasible GP-policy Π(L,X, Y ), when each activity i has an exponentially distributed

duration with rate parameter λi.

We use a Markov chain in which a state is represented by a pair (I, O), where I and O

are the sets of idle and ongoing activities, respectively. The set F of finished activities is

fully defined by given choices for I and O. In a state (I, O), an activity i ∈ N is eligible to

start if the following three conditions hold:

(1) i ∈ I,

(2) j ∈ F for all j for which (j, i) ∈ A,

(3 ) rik ≤
(
ak −

∑
j∈O rjk

)
for all k ∈ K.

For a given state (I, O), let H denote the set of eligible activities, and W ⊆ H the set of

activities to be started in that state (following the given policy Π(L,X, Y )). Activities i ∈ H
are considered in order of L for inclusion into W , and are included if two conditions apply:

(1) j ∈ (O ∪ F ) for all j for which (j, i) ∈ Y ,
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(2) j ∈ F for all j for which (j, i) ∈ X.

If |W | > 0 then an immediate transition is made toward state (I \W,O ∪W ). Otherwise (if

W is empty), no activities are started and a transition takes place after completion of the

first activity in O. The probability that an activity i ∈ O finishes first equals λi/
∑

j∈O λj.

The time until the first completion is exponentially distributed and has expected value(∑
i∈O λi

)−1
.

With each state (I, O) we associate a value function G(I, O) that represents the expected

time when state (I, O) is visited, and π(I, O) denotes the probability that the state is visited.

We stepwise update both values. If W 6= ∅ then π(I \W,O∪W ) is increased by π(I, O) and

G(I \W,O∪W ) is increased by G(I, O)π(I, O). Otherwise (W = ∅), probability π(I, O\{i})
is increased by π(I, O)λi/

∑
j∈O λj, and value function G(I, O \ {i}) is augmented with(

G(I, O) +
(∑

i∈O λi
)−1)

π(I, O)λi/
∑

j∈O λj.

As observed in [12, 13], memory rather than computation time is the bottleneck when

evaluating a Markovian PERT network. In our implementation, we have used techniques

described in [12, 13] to delete states from memory when they are no longer needed.
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