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Abstract 

One of the main objectives of many empirical studies in the social and behavioral sciences is to 

assess the causal effect of a treatment or intervention on the occurrence of a certain event. The 

randomized controlled trial is generally considered as the gold standard to evaluate such causal 

effects. However, because of ethical or practical reasons, social scientists are often bound to the 

use of non-experimental, observational designs. When the treatment and control group are 

different with regard to variables that are related to the outcome, this may induce the problem 

of confounding. A variety of statistical techniques, such as regression, matching and 

subclassification, is now available and routinely used to adjust for confounding due to measured 

variables. However, these techniques are not appropriate for dealing with time-varying 

confounding, which arises in situations where the treatment or intervention can be received at 

multiple time points. In this article, we explain the use of marginal structural models and inverse 

probability weighting to control for time-varying confounding in observational studies. We 

illustrate the approach with an empirical example of grade retention effects on mathematics 

development throughout primary school.  

Keywords: time-varying treatment, marginal structural models, grade retention 
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This article results from our research experience in dealing with time-varying 

confounding in the evaluation of a grade retention policy. Confounding refers to the 

phenomenon whereby common causes of the treatment and the outcome distort the association 

between both to the extent that it does not equal the corresponding causal effect. The example 

in this article investigates the effects of early grade retention on development in mathematics 

achievement throughout primary education. Grade retention is the practice of holding back 

struggling children for one school year.  

Assessing the effects of grade retention yields the following issues. First, a clear choice 

of the comparison strategy is important. In general, two approaches can be used. In a same-

grade comparison, the outcomes of grade repeaters are compared with those of their one-year-

younger grade-mates. This strategy answers the question of how, at the cost of one extra year 

of education, grade repeaters develop compared to similar promoted grade-mates who are one 

year younger (e.g., Wu, West & Hughes, 2008a). In a same-age comparison, on the other hand, 

the outcomes of grade repeaters are compared with their one-grade-higher age-mates. A same-

age comparison aims to address the counterfactual question of how the retainees would have 

developed had they been promoted instead (e.g., Hong & Raudenbush, 2005). The drawback of 

both strategies is that retention effects can be ascribed to at least one other difference between 

the retained and promoted group under study. In a same-grade comparison, the effects of grade 

retention can be attributed to age, for example, retainees score initially higher because they are 

one year older compared to similar grade-mates. In a same-age comparison, the effects can be 

ascribed to the grade, for example, promoted students score higher because they are confronted 

with higher level learning material in a higher grade. Both types of comparisons are informative, 

but they clearly answer different questions (Wu, West & Hughes, 2008a). Depending on the 

question one wishes to answer, one or the other strategy may be more satisfying, as has been 

contended by multiple researchers in the field of grade retention research. For example, while 
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Lorence (2006) argues that same-grade comparisons are a more valuable comparison because 

they compare retained students to their new peers, Hong and Raudenbush (2005) see this as a 

drawback because such comparison does not show how the retained students would fare had 

they been promoted instead.  

A second issue in grade retention research is that retainees and promoted children differ 

with regard to a large number of variables. For example, compared to children who are 

promoted to first grade, children who are retained in kindergarten are on average younger, have 

lower scores in mathematics, language and psychosocial skills, speak more often a foreign 

language, and have a lower socio-economic status (Vandecandelaere, Schmitt, Vanlaar, De 

Fraine, & Van Damme, 2015a). This raises concerns that the observed effects of grade retention 

may be confounded. Third, children who are on the edge of being retained but who are promoted 

anyway, are likely to be retained in the next grade instead (Jacob & Lefgren, 2009; 

Vandecandelaere, Schmitt, Vanlaar, De Fraine, & Van Damme, 2014; Wu, West, & Hughes, 

2008a). In other words, children can be retained at different points in time. Acknowledging the 

time-dependent nature of grade retention, the practice may influence some of the confounding 

factors (e.g., mathematics scores). This issue suggests that confounders may lie on the causal 

path from grade retention to later outcomes. Conventional regression methods are not generally 

appropriate to deal with such confounders (Robins, 1989; Robins, Hernán, & Brumback, 2000).  

This article starts with a brief description of the setting in studies with a time-fixed 

treatment. We then show how marginal structural models can be used to deal with time-varying 

treatments. This is followed by our empirical example of marginal structural models with regard 

to grade retention effects on mathematics development throughout primary education. 

Studies with a Time-fixed Treatment 

We first define the notation. For N independent subjects, we observe a treatment Z, 

which might affect the outcome Y. This is illustrated in Figure 1, which demonstrates a time-
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fixed causal model. Let X be a vector of time-fixed covariates which might confound the 

relationship between Z and Y. U represents a vector of unmeasured variables, affecting the 

outcome.  

 

Figure 1. Causal diagram of treatment Z into outcome Y, representing a time-fixed causal 

model. X represents a vector of time-fixed covariates which might confound the relationship 

between Z and Y. U represents a vector of unmeasured variables, affecting the outcome. The 

missing arrow from U to Z encodes the assumption that there is no unmeasured confounding, 

an assumption that is routinely made in the analysis of most observational studies. 

 

Potential Outcomes Framework 

To formalize marginal structural models, we make use of the potential outcomes 

framework (Hernán, 2004; Hong, 2015; Imbens & Rubin, 2015; Rubin, 1974). Consider for 

example the causal effect of kindergarten retention on math achievement one year later. Imagine 

that we could observe mathematics achievement for every child in the population concurrently 

under two conditions: math achievement after kindergarten retention (treatment 1) and math 

achievement after promotion to first grade (treatment 0). In Table 1, the potential outcomes of 

six hypothetical children are displayed. The individual treatment effect is then the difference 

between these two potential outcomes: Y(1)-Y(0). The average treatment effect (ATE) is the 

mean of these differences: E[Y(1)-Y(0)], which encodes the average difference in outcome if 

the entire population was retained versus if the entire population was promoted. In Table 1, the 
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ATE of kindergarten retention is negative (-2.5). We may alternatively calculate the ATE as 

the difference between the marginal means of the potential outcomes under the two conditions: 

E[Y(1)]-E[Y(0)], which is equal to E[Y(1)-Y(0)]. In Table 1, the marginal mean if all children 

were retained is 43, and the marginal mean if all children were promoted is 45.5, which gives 

an ATE of -2.5. 

 

Table 1 

Potential outcomes of six hypothetical students. 

Student Y(1) Y(0) Y(1)-Y(0) 

1 47 51 -4 

2 50 54 -4 

3 44 48 -4 

4 39 40 -1 

5 38 38 0 

6 40 42 -2 

Mean 43 45.5 -2.5 

Y(1) = outcome when treated; Y(0) = outcome when untreated 

 

In reality, of course, one of the two outcomes is an unobservable potential outcome or 

counterfactual. The fact that each individual has some potential outcomes missing, defines what 

is called the fundamental problem in causal inference (Holland, 1986).  

The observed potential outcomes of our six hypothetical students are displayed in Table 

2. When using only the observed outcomes, the difference in marginal means might be biased. 

This problem arises when there is a confounder X that simultaneously influences the treatment 

(and thus determines what potential outcome is observed) and the outcome. For example, 

consider a dummy variable X, indicating whether or not a child speaks the language of 

instruction at home. Suppose that non-native speakers are more likely to be retained and have 

generally lower math achievement scores. In Table 2, we observe more potential outcomes 

under the retention condition in the non-native group than in the native group. As a 
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consequence, the difference in marginal means of the observed potential outcomes gives a 

biased estimate of the ATE. Kindergarten retention appears more harmful (-5.6) than when we 

used the true marginal means (-2.5).  

 

Table 2  

Observed outcomes, propensity scores and weights of six hypothetical students. 

Student Z X Y(1) Y(0) Y(1)-Y(0) PS W 

1 1 1 47 ? ? 1/3 3 

2 0 1 ? 54 ? 2/3 1.5 

3 0 1 ? 48 ? 2/3 1.5 

Mean   47 51 -4   

4 0 0 ? 40 ? 1/3 3 

5 1 0 38 ? ? 2/3 1.5 

6 1 0 40 ? ? 2/3 1.5 

Mean   39 40 -1   

Overall mean   41.7 47.3 -5.6   

Z = treatment; X = covariate; Y(1) = outcome when treated; Y(0) = outcome when untreated; PS 

= propensity score; W = weight 

 

Marginal Structural Models in a Time-fixed Setting 

A marginal structural mean model is a model for the population average of the potential 

outcomes at each treatment level Z (Robins et al., 2000); for instance,  

(1) 

E[Y(z)] = β0 + β1z,  

for z=0,1, in which β0 = E[Y(0)] is the marginal mean if all subjects in the population received 

treatment 0, and β1 = E[Y(1)]-E[Y(0)] is the ATE of Z. 

The example in Table 2 illustrates how not adjusting for X can lead to a spurious 

relationship between treatment and outcome due to a violation of the so-called exchangeability 

assumption. Exchangeability between treatment groups implies that the treated, had they been 

untreated, would have experienced the same average outcome as the untreated did, and vice 

versa. Exchangeability holds when treatment assignment is independent of both potential 
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outcomes, as in a randomized controlled trial (RCT). Although it does not generally hold in 

observational studies, in such studies, exchangeability may sometimes still be met within more 

homogenous covariate strata, in which case we say that the treated and untreated populations 

are conditionally exchangeable. In that case, treatment assignment is independent of the 

potential outcomes, given measured covariates. This assumption is typically referred to as the 

no unmeasured confounding assumption, because it implies that no confounding remains after 

conditioning on those measured covariates. Such conditioning is most easily achieved by 

calculating separate treatment effects for the different covariate strata. However, it becomes 

unfeasible when there are several potential confounders, of which some can be continuous, for 

then, the number of subgroups becomes very large. Pretreatment differences that confound the 

treatment-outcome relationship can then be adjusted by means of regression. Using regression, 

the missing potential outcomes can be predicted for each possible covariate combination. In our 

simple example with only one covariate, we can postulate a model for the average math 

achievement score as a function of Z and X; for instance: 

(2) 

E[Y|Z,X] = β0 + β1Z + β2X 

 

Regression adjustment is appropriate in simple settings (see e.g., Rubin, 2001). 

However, when adjustment for a large number of covariates is needed, the degrees of freedom 

for the estimation of the treatment effect can become relatively small. Moreover, when treated 

and untreated subjects are very different in pretreatment characteristics, then regression 

adjustment is prone to extrapolation, a problem that may easily go undiagnosed (Vansteelandt 

& Daniel, 2014). In view of these concerns, alternative techniques to deal with confounding 

have been developed and have been increasingly used in social and behavioral sciences, of 

which propensity score methods are very popular. Propensity score methods enable adjustment 
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for confounding in a way that is not susceptible to extrapolation and allows for diagnosing lack 

of overlap in pretreatment characteristics between treatment groups (Ho, Imai, King, & Stuart, 

2007; Schafer & Kang, 2008).  

Inverse probability weighting. Propensity score methods enable adjustment for 

confounding by explicitly modelling, and thus acknowledging, that the probability to be 

assigned to the treatment condition may depend on pretreatment characteristics. In particular, 

the propensity score (PS) is the probability to be in the observed treatment condition, given the 

pretreatment covariates: Pr(Z=1|X) (Rosenbaum & Rubin, 1983). Propensity scores summarize 

all potential confounders into a scalar summary, and thereby allow for simple adjustment 

methods based on stratification, regression adjustment, matching or weighting. In this article, 

we focus on inverse probability weighting (IPW), since this is the default estimation method 

for marginal structural models in a time-varying setting. IPW changes the empirical distribution 

of the observed outcomes to make it representative of the complete dataset of potential 

outcomes. Each subject is weighted by W=P[Z|X]-1, being the inverse of the probability to be in 

the treatment condition he or she is really in, given the covariates. The weights are thus defined 

as P[Z=1|X]-1 for the treated subjects and as P[Z=0|X]-1 for the control subjects. 

The use of IPW is comparable to the use of survey sampling weights which are routinely 

employed to make samples representative of a particular population (Austin, 2011). IPW creates 

a pseudo-population. This is a population in which each subject appears under each treatment 

condition, thereby mimicking data as they would have looked if they originated from a RCT 

(provided the conditional exchangeability assumption holds). Each subject contributes W copies 

of itself to the pseudo-population. For instance, in Table 2, student 1 has a propensity score of 

1/3 because 1 out of 3 students in the native language group is retained. His data are thus 

weighted 3 times, one time for himself and 2 additional times for students 2 and 3 for whom 

Y(1) is missing. In contrast, the data for students 2 and 3 are weighted by the reciprocal of 2/3, 
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i.e. 1.5 times, 1 time for themselves, and 0.5 times to make up for student 1 for whom Y(0) is 

missing. The weighting ensures that treatment status becomes independent of measured 

pretreatment characteristics in the weighted dataset, as in a RCT, although it does not eliminate 

possible associations with unmeasured pretreatment characteristics, unlike in a RCT. The 

weighting thus eliminates the arrow leaving from X into Z in Figure 1, so that X no longer 

induces confounding. The weighted data can therefore be analyzed as an RCT, ignoring data 

on measured confounding variables. It follows in particular that the MSM (1) can be fitted by 

regressing Y on Z on the weighted data (Hernán, Brumback, & Robins, 2000). In our artificial 

example, using the aforementioned weights, the parameters of the MSM can be estimated as: 

E[Y(1)] = ((3 x 47) + (1.5 x (38 + 40)))/6 =43 , and E[Y(0)] = ((1.5 x (54 + 48)) + (3 x 40))/6 = 

45.5, which again returns the ATE using the complete dataset. Note that, using IPW, we have 

actually doubled our number of observations. On average, each student is replaced by two 

copies in the pseudo-population: one under the retention condition and one under the control 

condition.  

Studies with a Time-varying Treatment 

In observational studies, the treatment is often not fixed in time. Examples of time-

varying treatments are drug use, behavioral therapy, instructional programs, or grade retention, 

which is the empirical example in this article. Figure 2 illustrates a time-varying confounded 

setting with two treatment occasions. In a time-varying setting, we have a vector of time-

varying covariates Lt at each time t (e.g., prior math achievement), which may affect variables 

after time t. X0 now indicates a vector of time-fixed covariates (e.g., gender, month of birth) 

which may affect all other variables. Important is that the variables in Lt are measured prior to 

Zt. We use overbars to indicate the history of treatments 𝑍̅ and covariates 𝐿̅, prior to t.  
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The potential outcomes framework in a time-varying setting becomes more complicated 

because now there are potential outcomes for every treatment pattern. In grade retention 

research, this means for example that we have a potential outcome for each school trajectory a 

student may follow. In principle, every possible school trajectory forms a different treatment 

pattern, associated with a potential outcome. The average treatment effect at a given time t may 

then be defined as the difference between the marginal means of two or more potential outcomes 

at time t. For example, E[Yt(𝑧̅)]-E[Yt(𝑧̅′)] represents the difference at time t between the potential 

outcome if the population was treated according to regime 𝑍̅ (e.g., Year 6 math achievement 

after being retained once, in kindergarten) and the potential outcome if the population was 

treated according to treatment regime 𝑍̅′ (e.g., Year 6 math achievement after never being 

retained).  

 

Figure 2. Time-varying causal model with two treatment occasions Z1 and Z2. L1 and L2 

represent a vector of time-varying covariates at time t=1 and t=2 respectively, which may affect 

variables after time t. X0 indicates a vector of time-fixed covariates which may affect all other 

variables. Y represents the end-of-study outcome. 

 

The Problem with Standard Methods 

In a time-varying setting, standard regression methods to adjust for confounding can 

become problematic for two reasons, both resulting from the inclusion of time-varying 
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covariates in the regression model. First, the treatment at time t might affect potential 

confounders at later times (we will refer to these as intermediate confounders as they might 

have been affected by earlier treatment). Simply controlling for earlier treatment or intermediate 

confounders through standard regression (i.e., by means of including these variables as 

covariates in the outcome model), blocks the effect of earlier treatment on the outcome via those 

intermediate variables, so that only part of the overall treatment effect is maintained 

(Rosenbaum, 1984). Second, controlling for an intermediate confounder can induce collider 

stratification bias. A collider is a common effect of two variables. In Figure 2, L2 is a common 

effect of Z1 and U2. Also, U2 is a common cause of L2 and Y. Thus, conditioning on L2 might 

induce collider stratification bias, a form of selection bias that alters the relationship between 

Z1 and Y, and which may even lead one to systematically conclude that Z1 and Y are associated 

in the absence of an effect (Hernán, Hernández-Diaz, & Robins, 2004; Morgan & Winship, 

2015). For example, imagine that kindergarten retention has no effect on math achievement. 

Consider an unmeasured variable, illness, and a measured variable, low self-esteem. Now 

suppose kindergarten retention and illness are the only two causes of a low self-esteem, and 

that these two variables are not themselves related in the population. Then within the group of 

children with a low self-esteem, a negative correlation may be expected between kindergarten 

retention and illness: children who have low self-esteem but who were not retained must have 

been ill (as it must be their illness that explains their low self-esteem). Even if kindergarten 

retention were not to affect math achievement and even if retention were randomized, adjusting 

for self-esteem might thus induce an association via underlying illness. Specifically, when 

looking at the group of children with low self-esteem, kindergarten retention will show a 

positive relation with math achievement, because the children in that group who were retained 

in kindergarten were less likely ill, and therefore were more likely to have higher math scores.  
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Conditional exchangeability in a time-varying setting. In a time-varying setting, 

conditional exchangeability means that at each time t, there are no prognostic factors of the 

outcome that are differentially distributed between the treatment and the control group, given 

the treatment history 𝑍̅t-1, the baseline covariates X0, and the covariate history 𝐿̅t . This is also 

called the sequential randomization assumption. The assumption would hold if at each time, 

treatment were randomly assigned with randomization probabilities that are possibly depending 

on the treatment and confounder history (Robins & Hernán, 2008).  

Marginal Structural Models to deal with Time-varying Confounding 

In the previous section, we explained how both ignoring time-varying confounding and 

using standard regression to control for time-varying confounding can lead to biased results. 

Robins, Hernán and Brumback (2000) introduced inverse probability weighting under marginal 

structural models to deal with time-varying confounding. This has become a popular approach 

in epidemiology, however, relatively few applications are found in the behavioral sciences (e.g., 

Barber, Murphy, & Verbitsky, 2004; Hong & Raudenbush, 2008; VanderWeele, Hawkley, 

Thisted, & Cacioppo, 2011). The approach proposed by Robins et al. (2000) is to mimic data 

from a sequentially randomized experiment by reweighting the treatment groups at each point 

in time. Indeed, the weights are such that, after reweighting, as in a sequentially randomized 

experiment, treatment at each time t is no longer associated with the history of treatment and 

potential confounders prior to that time, but the effect of treatment on outcome is the same. The 

weights make use of time-varying propensity scores that model the relationship between 

treatment and the history of treatment and potential confounders prior to each time, but do not 

adjust for covariates measured at later times in order to avoid similar problems as with 

regression adjustment. Because the weighting creates balance (with regard to the history of 

treatment and potential confounders) between treatment groups at each time point, treatment 

effects can now be estimated by regressing the outcome on the treatment history using the 
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reweighted data, without further regression adjustment for potential confounders. By not 

conditioning on time-varying covariates in the model for the outcome, the two problems 

inherent to standard methods (i.e. blocking intermediate treatment effects via those covariates; 

collider stratification bias) are overcome (Robins et al., 2000; Hong & Raudenbush, 2008). The 

full set of assumptions underlying weighting is given in the Appendix.  

We can formulate a MSM for the end-of-study outcome Y in a setting with two 

measurement occasions as 

(3) 

𝐸[𝑌(𝑧2̅)] = β0 + β1𝑧1 + β2𝑧2  + β3𝑧1𝑧2  

where z1 and z2 are binary (0/1) treatment indicators. Here, β0 is the marginal mean of the 

outcome when the population was never treated (0,0) and β1 corresponds to the average change 

in Y under treatment regime (1,0) (relative to treatment (0,0)), i.e., when the population was 

treated at time 1 but not at time 2. Accordingly, β2 and β3 refer to the average change in Y under 

treatment regimes (0,1) and (1,1) (relative to treatment (0,0)), i.e., when the population was 

only treated at time 2 or at both times 1 and time 2, respectively.  

The required sample size for MSMs is dependent upon how strongly individuals within 

different treatment patterns are different from each other in terms of measured time-varying 

covariates. When individuals in different treatment patterns are comparable, as would be the 

case if treatment were randomly assigned at each time, then similar sample sizes to a 

randomized experiment with the same number of time points and the same outcome model 

would be needed. As usual, smaller sample sizes are then required when the treatment effect is 

large. The choice of model can also be very influential. For instance, when very few subjects 

switch treatment from time 1 to time 2, then the data will carry very little information about β3 

so that large sample sizes may be needed to fit model (3). This can be remedied by deleting the 

interaction term z1z2, at the cost of needing to assume this term is 0. When individuals in 
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different treatment patterns are very different in terms of measured time-varying covariates, 

then large sample sizes may be needed (e.g., at least 500 subjects) as the inverse probability 

weights may then become extreme (close to 0 or 1) for some individuals. Unfortunately, no 

general sample size requirements can be given. The required sample size is heavily dependent 

on the choice of model, number of time points, magnitude of the treatment effect, outcome 

variation, and the propensity scores. The width of confidence intervals for the parameters of 

interest gives the necessary guidance as to how reliable the results are.  

The procedure for fitting the MSM (3) consists of three steps. First, at each time t, a 

weight is calculated for each subject. Weights can be calculated using the ‘ipw’ package in R 

by making use of time-varying propensity scores (van der Wal & Geskus, 2011). Second, at 

each time t, the weights and the resulting covariate balance are evaluated. The first two steps 

involve an iterative process of evaluation of the weight distribution and covariate balance and 

modification of the weight model. In the final step, the measurements for each subject at each 

time are reweighted by the time-specific weights estimated in the previous steps to estimate the 

parameters of the MSM.  

Estimation of the weights. At each time t, a weight W is estimated for each subject:  

(4) 

𝑊t = ∏ P[𝑍s| 𝑍s−1, 𝐿̅𝑠, 𝑋0]−1

t

s=1

 

Equation (4) is a product of time-specific weights, from baseline up to time t, for each subject. 

Each term in the denominator represents the probability of the observed treatment Zs at time 

s<t, given the treatment history up to the previous time point 𝑍̅s-1, the covariate history 𝐿̅𝑠, and 

the baseline covariates X0. Table 3 illustrates the weights at each time t for three hypothetical 

subjects.  
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Table 3  

Unstabilized and stabilized weights of three hypothetical subjects. 

ID t Zt W SW 

1 1 1 W1 = P[Z1=1|X, 𝐿̅1]-1 W1 = (P[Z1=1])/ (P[Z1=1|X, 𝐿̅1]) 

1 2 1 W2 = W1 / P[Z2=1|Z1=1, X, 𝐿̅2] W2 = W1 (P[Z2=1| Z1=1])/ (P[Z2=1|Z1=1, X, 𝐿̅2]) 

1 3 1 W3 = W2 / P[Z2=1|Z2=1, Z1=1, X, 𝐿̅3] W3 = W2 (P[Z3=1| Z2=1, Z1=1])/ (P[Z3=1| Z2=1, Z1=1, 

X, 𝐿̅3]) 

 

2 1 0 W1 = P[Z1=0|X, 𝐿̅1]-1 W1 = (P[Z1=0])/ (P[Z1=0|X, 𝐿̅1]) 

2 2 0 W2 =W1 / P[Z2=0|Z1=0, X, 𝐿̅2] W2 = W1 (P[Z2=0| Z1=0])/ (P[Z2=0|Z1=0, X, 𝐿̅2]) 

2 3 1 W3 =W2 / P[Z3=1|Z2=0, Z1=0, X, 𝐿̅3] W3 = W2 (P[Z3=1| Z2=0, Z1=0])/ (P[Z3=1|Z2=0, Z1=0, 

X, 𝐿̅3]) 

     

3 1 0 W1 = P[Z1=0|X, 𝐿̅1]-1 W1 = (P[Z1=0])/ (P[Z1=0|X, 𝐿̅1]) 

3 2 0 W2 =W1 / P[Z2=0|Z1=0, X, 𝐿̅2] W2 = W1 (P[Z2=0| Z1=0])/ (P[Z2=0|Z1=0, X, 𝐿̅2]) 

3 3 0 W3 =W2 / P[Z3=0| Z2=0, Z1=0, X, 𝐿̅3] W3 = W2 (P[Z3=0| Z2=0, Z1=0])/ (P[Z3=0| Z2=0, Z1=0, 

X, 𝐿̅3]) 

W = weight; P = probability; Zt = treatment at time t; X = vector of baseline covariates; 𝐿̅ = 

covariate history; SW = stabilized weight 

 

With time-varying treatments, the product of the probabilities can vary greatly. For 

example, when some of the probabilities (which are included in the denominator of the weight) 

are close to zero, some of the inverse probability weights can become very large. In later steps 

of the procedure, this can lead to imprecision in the estimators of the parameters of the MSM. 

Robins et al. (2000) therefore strongly recommend to use stabilized inverse probability weights 

(SWt), which are obtained by multiplying the time-specific weights with P[𝑍𝑠 |𝑍𝑠−1,  𝑋0], being 

the probability to be in the observed treatment condition, given the treatment history. 

Additionally, one may include baseline covariates in the numerator of the weight model, which 

makes the numerator and the denominator of the weights agree better, and consequently leads 

to reduced variability in the weights. By including treatment history and covariates in the 

numerator, the weighting mimics a RCT in which the probabilities are allowed to vary 

according to the treatment trajectory and baseline covariates, but have no residual dependence 

on the time-varying covariate history. Table 3 illustrates the stabilized weights for three 

hypothetical subjects. 

Equation (5) gives the formula for stabilized weights SWt.  
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(5) 

𝑆𝑊t = ∏
P[𝑍s|𝑍s−1,  𝑋0]

P[𝑍𝑠|Zs−1, 𝐿̅𝑠, 𝑋0]

t

s=1

 

The denominator is the same as in equation (4), and the numerator is equal to the 

denominator but without adjusting for the time-varying covariate history. Robins et al. (2000) 

demonstrate that the use of stabilized weights is valid as long as the MSM correctly includes 

the baseline covariates X0. This approach mimics a RCT in which the treatment trajectories do 

not necessarily have the same sample size. Stabilized weights maintain the original sample size 

in the weighted sample and alleviate the problem of extreme weights.  

Evaluation of the weights and the resulting balance. The next step is to evaluate the 

weights and the balancing properties. The weights can be evaluated by examining their 

distribution at each time t. Because stabilized weights keep the size of the pseudo-population 

on average equal to the size of the study population, the mean of the weights is expected to be 

one. When the mean is far from one, this might indicate a violation of the so-called positivity 

assumption or might signal misspecification of the propensity score model (Cole & Hernán, 

2008). The positivity assumption refers to the condition that all treatment options are possible 

at every level of the covariates. When there is a covariate combination at which it is impossible 

to be treated, a structural zero probability of receiving treatment will occur. One way to deal 

with nonpositivity is to restrict the sample to subjects who exceed a minimum probability of 

treatment or no treatment at each time point given the baseline covariate information (Cole & 

Hernán, 2008). In the empirical example presented in this article, the analytic sample was 

restricted to children who had a probability of at least 5% of being retained in kindergarten.  

As was mentioned, stabilized weights are one way to reduce extreme weights. When 

there are extreme weights after stabilization, one may choose to further reduce the variability 

by means of resetting or truncating the weights below a chosen percentile to the weight at that 
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percentile. For example, weights below the first percentile can be set to the weight at percentile 

1 and weights above percentile 99 can be set to the weight at percentile 99. Truncation leads to 

reduced variability in the weights but may leave residual confounding bias. If truncation is 

considered, it is important to carefully evaluate the bias-variance trade-off by means of 

exploring the behavior of different truncation values with regard to the distribution of the 

weights and the covariate balance (Cole & Hernán, 2008).  

When the weight model is correctly specified and the sample is sufficiently large, the 

weighted sample is balanced in terms of measured covariates across the treatment groups at 

each time t. Balance refers to the similarity of the covariate distributions (Harder, Stuart, & 

Anthony, 2010). For example, in a subset of children with the same probability to be retained 

at time t, retained and promoted children have similar distributions of the covariate history at 

time t. Balance diagnostics are frequently examined in propensity score studies, however, in 

MSM studies this step is often ignored. This may be due to the complexity of the time-varying 

weights. Nevertheless, in the typical case in which the true probability to be treated is not 

known, it is important to verify that the balancing property holds, i.e., that the weighted 

treatment groups are similar with regard to their covariate histories. Covariate balance between 

treatment regimes can be examined by evaluating their standardized mean differences (SMD) 

in the weighted sample. The SMD is the difference in covariate means, divided by the pooled 

standard deviation (Rubin, 2001). 

Specifically, suppose we want to evaluate balance at time 2 between treatment regimes 

(0,0) and (0,1). We then first calculate the product of time-specific weights up to time 2. Next, 

we use these weights to calculate the weighted SMDs between the two regimes with regard to 

baseline covariates (that are not incorporated into the numerator of the weights), time-1 

covariates and time-2 covariates. A SMD of 0.25 is commonly considered as a maximum 

acceptable value of imbalance (Ho et al., 2007); however, this should be considered as a rule 
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of thumb rather than a strict cut-off (Harder et al., 2010). Another way of examining balance is 

to plot the covariate distributions of the treatment and control group before and after weighting 

at time t. The central tendencies of the covariates should be closer after weighting. If the balance 

diagnostics indicate serious imbalance for some covariates, then that result may signal that the 

propensity score model is not correctly modelling those covariates. It should then be modified 

by including interactions or higher order terms with regard to those covariates, by transforming 

covariates, or by exploring machine learning approaches to estimating propensity scores (see 

Austin, 2011; Caliendo & Kopeinig, 2008; Cham & West, in press; Lee, Lessler & Stuart, 

2010). Importantly, note that balance of the treatment groups at each time should only be 

assessed with respect to the history of treatments and covariates at that time, and not with regard 

to future covariates.  

Estimation of the MSM. The MSM can be fitted by regressing the outcome at each 

measurement time on the predictors in the MSM (treatment history, time, and possibly baseline 

covariates), thereby weighting the contribution of each subject at each time t using the weights 

(4) or (5) retrieved from the previous steps. Important here is that the standard errors must 

account for the fact that there are repeated outcome measures per individual over time, as well 

as for the uncertainty in fitting models for the weights. Robust variance estimation, ignoring 

the estimation of the weights, is most commonly used as it is relatively simple and known to 

deliver standard errors that are not too small, although generally somewhat conservative (Joffe, 

Ten Have, Feldman, & Kimmel, 2004; Robins et al., 2000). This can be done by fitting the 

MSM using software for generalized estimating equations (GEE) with an independence 

working correlation structure (Zeger & Liang, 1986). Weighted analyses with robust 

(conservative) standard errors could also be performed using typical software for survey 

analysis (Robins & Hernán, 2008). GEE with an independence working correlation structure 

estimates the parameters in a way that treats each subject at each time as separate observations. 
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However, in the estimation of the standard errors, one accounts for the correlation of 

observations within a subject (Robins, 2000). GEE is here preferred over the use of mixed 

models, which are more familiar to social and behavioral researchers, because the former does 

not invoke the implicit assumption that the outcome at a particular measurement occasion is 

independent of future treatment exposure, which is often not justified in the time-varying 

treatment setting (Vansteelandt, 2007). For the same reason, GEE analyses should not use other 

choices of working correlation structure than independence (Vansteelandt, 2007).   

Empirical Example 

We illustrate the use of MSMs with an empirical study about the effects of grade 

retention on the mathematics achievement scores throughout primary education. Grade 

retention is the practice of holding back children or students who have not mastered their 

grade’s curriculum. By letting them repeat a grade, they have more time to master particular 

knowledge, skills or competencies, which could prevent failure and frustration in later years. In 

European countries like Belgium, Spain, France, the Netherlands and Luxembourg, this idea is 

supported by the teaching profession, the school community and parents (Eurydice network, 

2011). Over the past decades, grade retention has been a major issue in the field of educational 

effectiveness research. The general premise in the research base is that children do not benefit 

from repeating a grade. This belief largely stems from widespread meta-analyses (i.e., Holmes 

(1989) and Jimerson (2001)), in which grade retention was characterized as an ineffective or, 

in some cases, even harmful practice. This conclusion gave rise to policy interventions aiming 

to reduce retention rates. However, the meta-analyses in turn have been criticized for being 

based on studies that show significant methodological shortcomings (e.g., Allen, Chen, 

Willson, & Hughes, 2009; Lorence, 2006), questioning the validity of these conclusions. A 

recent generation of studies has used techniques to adjust for pre-treatment differences. Recent 

studies using same-age comparisons have found that at-risk children may benefit more from 
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receiving intellectual challenges that are offered in a higher grade (Goos, Van Damme, 

Onghena, Petry, & De Bilde, 2013; Hong & Yu, 2007; Hong & Raudenbush, 2005; Hong & 

Raudenbush, 2006; Vandecandelaere et al., 2015a; Vandecandelaere, Vansteelandt, De Fraine 

& Van Damme, 2015b; Wu et al., 2008a; Wu, West & Hughes, 2008b). Recent research using 

same-grade comparisons has demonstrated that grade repeaters, compared to their younger 

grade-mates, score better in math during the retention year. In the long term, the advantage 

disappears or even reverses (Dong, 2010; Goos et al., 2013; Moser, West & Hughes, 2012; Wu 

et al., 2008a).  

An important limitation in previous research is that grade retention usually is treated as 

a fixed, one-time intervention. Typically, the achievement of students who were retained in a 

specific grade is compared with that of equivalent peers who were not retained. In reality, 

however, low performing students who were promoted after the grade of interest are much more 

likely to repeat a later grade, which demonstrates the time-varying nature of grade retention. 

Simply ignoring students’ post-treatment trajectories impedes a clear understanding of post-

treatment outcome differences. When outcomes are compared at a given number of years after 

retention, it is possible that children who were promoted after the grade of interest are in the 

same grade as children who were retained in the grade of interest. In our empirical example, 

31.89% of the children with at least 5% probability to be retained in kindergarten but who 

promoted anyway were retained in first grade instead. In this scenario, at least a part of the 

‘promoted’ group should more accurately be considered as a ‘delayed retention’ group. This 

delayed treatment situation should be accounted for when children who were retained after the 

grade of interest are included in the sample. On the other hand, estimating treatment effects 

based on samples excluding students who were not continuously promoted after the treatment, 

only tells part of the story and may induce selection bias. Vandecandelaere et al. (2014) 

elaborated on this issue and, using a same-age comparison with the present sample, compared 
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math development after kindergarten retention with math development in two alternative 

treatment regimes: first-grade retention and continuous promotion. The results indicated that 

retainees would perform better if they would be promoted each year; kindergarten retention was 

found to be less harmful than first-grade retention. The study was limited in that the alternative 

trajectories were not handled together in one model, and that only two retention regimes were 

addressed. Moreover, retention was still treated as a time-fixed event in the sense that the 

treatment groups were assumed to be exchangeable within levels of baseline covariates, 

assessed before anyone was retained.  

The research questions that we address in the present article are: 

a) How do children who are at least 5% at risk to be retained in kindergarten develop 

throughout primary education with regard to their mathematics achievement, under the 

following treatment patterns: no retention, kindergarten retention, first-grade retention, 

and second-grade retention? The children compared are of the same age.  

b) Does the impact of grade retention vary by the grade in which the student was retained?  

Each year, a child can be retained or can be promoted to the next grade. In Flanders, 

there is no national standardized testing. In general, the retention decision heavily relies on the 

teachers’ consideration of the child’s cognitive and non-cognitive skill set. The retention 

decision lies with the parents who receive advice from the teacher-team and the pupil guidance 

center. The four treatment regimes 𝑍̅ considered in this study are presented in Table 4. Of 

course, more treatment regimes are possible. For example, children can be retained after Year 

3 or might spend one or more years in a separate school for special education. Because of the 

small number of students in these trajectories, the data for children in these groups were 

censored. Our approach for dealing with censored students (along with the corresponding 

assumptions) is explained later in this article.  
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Table 4  

Treatment regimes 𝑍̅ considered in this study. 

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 

K retention (KR) K G1 G2 G3 G4 G5 

G1 retention (G1R) G1 G1 G2 G3 G4 G5 

G2 retention (G2R) G1 G2 G2 G3 G4 G5 

No retention (noR) G1 G2 G3 G4 G5 G6 

Italic= one year delay compared to continuously promoted children. K= kindergarten; G1-G6 

= Grade 1 through Grade 6 

 

Students in different treatment regimes were compared at multiple time points. As we 

explained in the introduction of this article, two approaches can be used: a same-age comparison 

or a same-grade comparison. Because our research question involves the causal question of how 

at-risk children would perform under four treatment patterns, we conducted a same-age 

comparison. All math achievement scores (seven measurement occasions) were equated on the 

same scale. The test scores were vertically linked using Item Response Theory and estimated 

with a Bayesian model. Vertical equating of scores enabled us to assess the mathematics 

achievement scores of each child over time, and to compare the mathematics scores of children 

from different grade levels. 

Data   

The research questions were answered through analyses of the data from the large-scale 

longitudinal SiBO-project. A cohort of approximately 6,000 Flemish children was followed, 

from kindergarten (age 5-6; school year 2002-2003) until eighth grade (age 13-14; school year 

2010-2011). For ease of presentation, in the remainder of this article, school years 2002-2003 

to 2008-2009 are referred to as Year 0 to Year 6 respectively. In Year 0, all children were in 

kindergarten. In Year 6, continuously promoted children were in Grade 6, and grade repeaters 

were in Grade 5. This is illustrated in Table 4.  
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A wide variety of information was collected at the school, teacher, class and student 

level. Achievement tests for mathematics were administered at the end of each year in primary 

school. Each test consisted of 50 to 80 items and covered the following domains: number sense 

(e.g., “In the middle of 12 and 16 lies the number …… ”), number procedures (e.g., “Fill in: 20 

= 4 + 5 + 6 + ……”), measurement (e.g., “What time is missing in the following time table? 

All trains take the same time to travel the same distance.”), geometry (e.g., “How many corners 

does a rectangle have?”), and applied math problem solving (e.g., “Polly is saving money for a 

new bike. The bike costs EUR 425. She already saved EUR 280. How much does she still 

need?”). Cronbach’s α coefficients of the mathematics tests ranged between .88 and .93. 

Retention policies vary across regions within a country and across countries. To 

conceptualize the present study, information about the Flemish educational context is provided 

in the supplementary online material.  

Selection of the Analytic Sample  

All children in the SiBO dataset who were for the first time in kindergarten in Year 0 

were considered (N=5,616). Children in alternative schools and children who had missing 

treatment or outcome information from Year 0 or Year 1 onwards were excluded from the 

sample, before calculating treatment and censoring weights. This resulted in a sample of 4,196 

children of whom 846 (20%) were retained at least once in elementary school. To guarantee 

sufficiently similar treatment groups in view of the positivity assumption, we chose to further 

restrict the analytic sample to those children who, on the basis of baseline covariates, were 

predicted to have at least a 5% probability of being retained in kindergarten. This was done 

prior to fitting the final weights and outcome models. This strategy prevented violation of the 

positivity assumption, and also implies that the effect of retention is evaluated for a group of 

children for whom retention may be meaningful. Using logistic regression, we estimated the 

probability of being retained in kindergarten as a function of pretreatment characteristics. As 



TIME-VARYING TREATMENTS IN OBSERVATIONAL STUDIES 

25 
 

we explain later in this article, the potential set of characteristics was initially identified based 

on a literature review. Stepwise logistic regression was used to select the characteristics in the 

final prediction model. The 5% cut-off was based on two criteria: 1) the overlap in the 

distributions of the probability to be retained in kindergarten of the four treatment groups and 

2) the covariate balance after applying time-varying IPW. We started with a 1% cut-off and 

progressively increased this percentage until we achieved acceptable weight and balance 

diagnostics at a 5% cut-off. The density plots of the distributions of the propensities for 

kindergarten retention before and after the selection are shown in Figure 3. The 5% probability 

criterion gave a good overlap between the treatment regimes under consideration. It is clear 

from Figure 3 that the probability to be retained in kindergarten is most predictive for 

kindergarten retention. The selection resulted in an analytic sample of 857 children of whom 

200 were retained in kindergarten, 199 were retained in first grade, and 61 were retained in 

second gradei. By selecting this sample, our empirical example reports on the effects of early 

grade retention for the population of children who had a probability of kindergarten retention 

of at least 5%. In the remainder of this article, the term ‘at-risk children’ refers to this group. 
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Figure 3. Density plots of the logit of propensity scores of kindergarten retention before 

(upper) and after (lower) selection. The vertical line indicates the 5% probability of retention 

cut-off. On average, the retained students have a higher propensity score compared to the 

promoted students. After the selection, the distributions demonstrate a clear overlap.  

 

Application of MSMs 

Estimation of the weights. The weights were estimated as a function of both time-fixed 

information and time-varying information from Year 1 through Year 3. Variables were gathered 

from official records, achievement tests, teacher questionnaires about the child, and parent 

questionnaires. Based on a literature review on predictors of early grade retention and academic 

growth, we identified the potential set of covariates that might be confounders of the retention-

achievement relationship. The covariates in the final prediction model were selected by means 

of stepwise logistic regression. The final model yielded 22 pretreatment covariates. Table 5 

provides a list of the covariates. The covariates were measured every yearii, except for Year-2 

anxious behavior and Year-3 cooperative behavior, prosocial behavior and attitude to work. To 

allow these covariates to be time-varying, we used the most recent available score (last score 

carried forward). For example, unmeasured Year-2 anxious behavior was replaced with 
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measured Year-1 anxious behavior. This strategy is used in the fitting of MSMs because it is 

not obvious how to impute incomplete time-varying covariate data in a way that is compatible 

with the postulated propensity score models and the MSM. Furthermore, we assumed these 

psychosocial and attitudinal variables were relatively stable within the same person. If this 

assumption were violated, then the results from our MSM analysis might be biased, but only to 

the extent that these specific covariates both changed over time and confounded the association 

between treatment and outcome. In the initial dataset (N=5,616), other missing values in the 

covariates were multiply imputed using chained equations, under a missing at random (MAR) 

assumption (Azur, Stuart, Frangakis, & Leaf, 2011). The mean proportion of missing covariate 

information in this dataset increased from 9.9% (sd=5.9) in Year 1 up to 27.3% in Year 3 

(sd=5.6). The imputation was performed using the MICE package in R (Buuren & Groothuis-

Oudshoorn, 2011). Given the computational burden, the data were imputed ten times. This was 

deemed sufficient in the sense that it yielded a relative efficiency of at least 95% for all 

parameters (Rubin, 1987). Subsequent analysis steps were performed on each imputed dataset 

and combined using Rubin’s (1987) rules.  

Of importance, note that our analysis allows for the math score in Year t in the outcome 

model to be a potential confounder in Year t+1 in the weight model. For example, mathematics 

achievement measured in Year 1, which is the outcome in Year 1, was used as a Year-2 

covariate in the weight model (a potential confounder between the relationship of grade 

retention in Year 2 and later math achievement). At the same time, math achievement in Year 

1 was the outcome in Year 1. The adjustment for previous math scores was important because 

our analysis aims to contrast retained and promoted children with similar histories, in particular 

similar pre-treatment mathematics scores.  

 The weights were created using the ‘ipw’ package in R (van der Wal & Geskus, 2011) 

(the R code is provided in the online supplementary material). For continuously promoted 
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children, the treatment trajectory of continuous promotion from Year 1 to Year 6 was coded as 

(0,0,0,0,0,0). For kindergarten, first-grade and second-grade repeaters, the treatment trajectories 

were coded (1,1,1,1,1,1), (0,1,1,1,1,1) and (0,0,1,1,1,1) respectively (see Table 4): 0 means no 

delay, whereas 1 means delay. In other words, we considered only treatment regimes in which 

children, once retained, stayed delayed for one year compared to promoted children. For each 

year, within the subgroup of children who were not (yet) retained, weights were estimated by 

means of a logistic regression predicting the risk to be retained the next year. From the retention 

year onwards, the treatment weights of retained children remained constant. This is because the 

probability of being delayed at time t for children who were retained at time t -1 was equal to 

1, hence, their time-specific weight at time t is 1 (i.e., regardless their pre-treatment history, all 

children who were retained at time t stay delayed from time t onwards). From Year 3 onwards, 

the weights remained constant for all children. The probability of being in the particular 

treatment regime, given the treatment history, is equal to 1 from then onwards (i.e., as can be 

seen in Table 6, there is no longer variation in the treatments from Year 3 onwards). 

As mentioned above, the estimation and evaluation of the weights was a recursive 

process. We first estimated the weights as a function of the covariates, without any interactions. 

Next, we repeatedly extended the weight model by including meaningful interactions, followed 

by an evaluation of the weights and balance diagnostics. In particular, previous research has 

shown an interaction between month of birth and achievement scores with regard to the 

probability to be retained (Vandecandelaere et al., 2015b). At-risk children who are older have 

on average a lower math score compared to at-risk children who are younger. Other interactions 

that were considered were the interaction between month of birth and socio-economic status, 

and between socio-economic status and math achievement, since these covariates are known to 

be important predictors of early grade retention. The model including all covariates and an 

interaction of time-varying math achievement and month of birth led to the best weight and 
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balance diagnostics. We additionally included covariate-time interactions in the propensity 

score model to allow the coefficients for every time-varying covariate in that model to vary by 

time. Because some extreme weights occurred in two of the ten imputed datasets, weights below 

percentile 0.1 and above percentile 99.9 were truncated.  

 

Table 5 

Description and information source of time-fixed and time-varying covariates.  

Name Description 

Information 

source 

Time fixed covariates  

Month of 

birth Month in which the child was born 

PQ 

Gender  Gender of the child PQ 

SES Socioeconomic status: score computed by means of confirmatory 

factor analysis based on 7 indicators: (1) Highest diploma father, (2) 

Highest diploma mother, (3) Employment status father, (4) 

Employment status mother, (5) Occupational level father, (6) 

Occupational level mother and (7) Income. 

PQ 

Home 

Language 

Language spoken at home (1: only other language; 2:Dutch and other 

language; 3: only Dutch)  

PQ 

Ethnicity  Ethnic background (1: the Maghreb and Turkey; 2: other non West-

European; 3: West-European; 4: Belgium) 

PQ 

High risk 

student  

Identified by the Flemish government as high risk student: A student 

meeting at least one out of five equal opportunity indicators:  

1. The parent is a barge skipper, fairground worker, circus artist or a 

caravan dweller.  

2. The mother has no qualification of secondary education.  

3. The child is temporarily or permanently living outside the family.  

4. The family lives on a replacement income.  

5. The language the child speaks with his family at home is not 

Dutch. 

OR 

Time-varying covariates  

Math   Mathematics achievement  AT 

Independent  Scale score of 4 items measuring ability to take initiative and to act 

autonomously with regard to school tasks 

TQC 

Cooperative  Scale score of 4 items measuring socially responsible behavior and 

ability to deal with authority in the classroom 

TQC 

Hyperactive  Scale score of 4 items measuring display of restless classroom 

behavior and lack of attention 

TQC 

Asocial  Scale score of 4 items measuring preference for solitary play and 

tendency to isolate from peers 

TQC 

Aggressive  Scale score of 4 items measuring the frequency of negative and 

dominating behavior 

TQC 
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K = kindergarten; PQ = parent questionnaire; TQC = teacher questionnaire about the child; 

AT: achievement test; OR: official records; SES=socio-economic status; TR = teacher-rated 

 

 

Evaluation of the weights distribution and balance properties. The means of the 

stabilized weights were close to one. More specifically, in Year 1, 2 and 3, the average stabilized 

weight was 1.00, 0.94 and 0.90 respectively. The stabilized weights (after truncation) ranged 

between 0.28-4.36 in Year 1, 0.19-18.59 in Year 2, and 0.19-18.93 in Year 3iii.  

Balance diagnostics consisted of the SMDs between the retained and promoted group, 

at each time sequence. The results are shown in Table 6. Figures 4, 5, and 6 present dot plots 

of SMDs in Year 1, 2 and 3 respectively, sorted according to the unweighted SMD. The weights 

were estimated ten times, for each of the ten imputed datasets. The diagnostics presented are 

based on the pooled estimates.   

From the figures it is clear that the weighting substantially improved balance. In Year 

1, all SMDs were below the threshold of 0.25. It should be noted that restricting the research 

sample to children who had at least 5% probability to be retained in kindergarten already 

reduced the unweighted covariate imbalance in Year 1 to a large extent. In Year 2, six of the 45 

Attitude 

work  

Scale score of 3 items measuring accuracy and ability to stay on task 

for a period of time 

TQC 

Self-

confidence  Item measuring child’s self-confidence 

TQC 

Peer 

relations  

Scale score of 4 items measuring peer-acceptance and ability to get 

along with peers 

TQC 

Well-being Scale score of 4 items measuring wellbeing of the child at school TQC 

Anxious  Scale score of 4 items measuring anxious-fearful behavior TQC 

Prosocial  Scale score of 7 items measuring the extent to which the child is 

prosocial with peers 

TQC 

TR 

language   Teacher-rated language ability  

TQC 

TR math Teacher-rated math ability  TQC 

Prognosis 

SE Teacher’s prognosis of success in secondary education 

TQC 

% High risk 

students  

School-level variable: Percentage of high risk students at school in 

Year 0. Since children can change schools, this variable was used as a 

time-varying covariate.  

OR 
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covariates had weighted SMDs larger than 0.25. In Year 3, 12 of the 61 variables had weighted 

SMDs larger than 0.25. The imbalance in the pre-treatment measurement of math achievement 

requires scrutiny when interpreting the results, since this is the strongest potential confounder 

of retention status and later math achievement. Prior to being retained, second-grade repeaters 

scored lower compared to promoted children.  

 

Table 6  

Standardized mean differences before and after weighting.  

Treatment 

regime 

000000 vs. 111111 

Year 1 

000000 vs. 011111 

Year 2 

000000 vs. 001111 

Year 3 

 Unweighted Weighted Unweighte

d 

Weighte

d 

Unweighte

d 

Weighted 

 
Time-fixed 

covariates 

      

Month of 

birth 

0.20 0.00 -0.29 -0.07 -0.18 -0.07 

Boys -0.05 -0.04 0.01 -0.04 0.00 -0.01 

Girls 0.06 0.04 -0.01 0.04 0.00 0.01 

SES -0.08 0.00 -0.27 -0.17 -0.73 -0.13 

Home 

language1 

0.09 -0.01 0.03 -0.05 -0.12 -0.13 

Home 

language2 

-0.02 -0.01 0.00 0.00 0.19 -0.03 

Home 

language3 

-0.06 0.01 -0.02 0.03 -0.08 0.11 

Etnicity1 0.04 0.00 0.06 -0.05 0.28 0.07 

Etnicity2 0.05 0.01 -0.06 -0.01 -0.27 -0.19 

Etnicity3 0.03 0.00 -0.02 0.00 -0.21 -0.18 

Etnicity4 -0.07 -0.01 0.00 0.04 -0.08 0.04 

High risk0 -0.08 -0.05 -0.18 -0.09 -0.39 -0.09 

High risk1 0.08 0.05 0.18 0.08 0.41 0.09 

       

Time-varying covariates      

Math Y1 -0.61 -0.05 -0.40 -0.14 -0.30 0.07 

TR language 

Y1 

-0.37 -0.01 -0.27 -0.17 -0.31 -0.25 

TR math Y1 -0.77 0.06 -0.22 0.06 -0.39 -0.37 

Independent 

Y1 

-0.38 0.04 -0.41 -0.19 -0.02 0.21 

Cooperative 

Y1 

-0.09 0.01 -0.11 0.00 0.08 0.24 

Hyperactive 

Y1 

0.14 -0.02 0.29 0.12 0.00 0.11 

Asocial Y1 0.14 0.02 0.16 0.29 0.02 -0.29 

Aggression 

Y1 

0.01 -0.10 0.01 -0.01 0.00 -0.02 

Attitude Y1 -0.24 -0.04 -0.37 -0.24 -0.05 0.26 

Self 

confidence 

Y1 

-0.23 -0.09 -0.20 -0.05 -0.06 0.28 

Peer relations 

Y1 

-0.20 -0.08 -0.18 -0.15 -0.25 -0.18 

Welbeing Y1 -0.22 -0.02 -0.06 -0.06 -0.04 0.32 

Anxious Y1 0.10 0.05 0.08 0.00 -0.11 -0.18 

Prosocial Y1 -0.16 -0.01 -0.12 -0.08 0.13 0.39 
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Prognosis SE 

Y1 

-0.32 0.02 -0.43 -0.20 -0.33 -0.14 

% High risk 

Y1 

0.10 0.03 -0.01 0.05 0.18 -0.08 

Math Y2   -0.76 -0.21 -0.39 -0.16 

TR language 

Y2 

  -1.32 -0.30 -0.03 0.20 

TR math Y2   -1.66 -0.50 -0.45 -0.25 

Independent 

Y2 

  -1.15 -0.46 -0.66 -0.33 

Cooperative 

Y2 

  -0.37 -0.06 0.06 0.01 

Hyperactive 

Y2 

  0.56 0.18 0.14 0.17 

Asocial Y2   0.17 0.03 0.02 0.18 

Aggression 

Y2 

  0.19 0.05 -0.08 -0.23 

Attitude Y2   -0.84 -0.32 -0.31 -0.31 

Self 

confidence 

Y2 

  -0.47 -0.08 -0.59 -0.23 

Peer relations 

Y2 

  -0.32 -0.11 0.03 0.11 

Welbeing Y2   -0.52 -0.12 0.12 0.04 

Anxious Y2   -0.14 -0.01 0.10 -0.09 

Prosocial Y2   -0.18 -0.01 0.02 0.01 

Prognosis SE 

Y2 

  -1.21 -0.44 -0.49 0.04 

% High risk 

Y2 

  -0.04 0.03 0.16 -0.11 

Math Y3     -0.67 -0.33 

TR language 

Y3 

    -0.74 -0.16 

TR math Y3     -1.55 -0.58 

Independent 

Y3 

    -1.11 -0.17 

Cooperative 

Y3 

    0.08 0.23 

Hyperactive 

Y3 

    0.37 -0.03 

Asocial Y3     0.34 -0.16 

Aggression 

Y3 

    -0.16 -0.38 

Attitude Y3     -0.29 -0.09 

Self 

confidence 

Y3 

    -0.67 -0.06 

Peer relations 

Y3 

    -0.32 0.16 

Welbeing Y3     -0.32 0.08 

Anxious Y3     0.29 -0.03 

Prosocial Y3     0.04 0.25 

Prognosis SE 

Y3 

    -1.26 -0.67 

% High risk 

Y3 

    0.17 -0.14 

For continuously promoted children, the treatment trajectory was coded as (0,0,0,0,0,0). For 

kindergarten, first-grade and second-grade repeaters, the treatment trajectories were coded 

(1,1,1,1,1,1), (0,1,1,1,1,1) and (0,0,1,1,1,1) respectively (see Table 4): 0 means no delay, 

whereas 1 means delay. Y1 = Year 1, Y2 = Year 2, Y3 = Year 3; SES = socio-economic status; 

TR = teacher-rated; bold = absolute standardize mean difference (SMD) > 0.25; SMD with 

negative sign indicates lower score for retainees 
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Figure 4. Standardized mean differences (SMDs) before and after weighting in Year 1, sorted 

according to the unweighted SMD. The SMDs indicate the difference in covariate means, 

divided by the pooled standard deviation (Rubin, 2001). Y1=Year-1 covariate. TR=teacher-

rated. SES=socio-economic status. SE=secondary education.  
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Figure 5. Standardized mean differences (SMDs) before and after weighting in Year 2, sorted 

according to the unweighted SMD. The SMDs indicate the difference in covariate means, 

divided by the pooled standard deviation (Rubin, 2001). Y1=Year-1 covariate, Y2=Year-2 

covariate. TR=teacher-rated. SES=socio-economic status. SE=secondary education. 
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Figure 6. Standardize mean differences (SMDs) before and after weighting in Year 3, sorted 

according to the unweighted SMD. The SMDs indicate the difference in covariate means, 

divided by the pooled standard deviation (Rubin, 2001). Y1=Year-1 covariate, Y2=Year-2 

covariate, Y3=Year-3 covariate. TR=teacher-rated. SES=socio-economic status. SE=secondary 

education. 

 

 

For some covariates, the results indicate an increased SMD after weighting. For 

example, after weighting in Year 3, Year-1 prosocial behavior became imbalanced. Such an 

increase should be interpreted by the researcher considering its relative influence as a potential 

confounder (Harder et al., 2010). We were minimally concerned about this variable (prosocial 
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behavior) since it involves a distal Year-1 covariate and the more proximal measures of Year-

2 and Year-3 prosocial behavior were balanced. Since the two most recent measurements of 

prosocial behavior were balanced, we assumed that later differences in mathematics could not 

be ascribed to differences in prosocial behavior three years earlier. 

 

Missing data. Common in longitudinal research is the problem of missing data. In the 

current study, two types of missingness occurred. First, some children had temporarily missing 

outcome information at one or more measurement occasions (between 10% and 16% each year). 

This form of missingness was mainly due to absenteeism at the time of measurement. We 

assumed these missing data to be missing completely at random (MCAR). No further steps 

were taken for this type of missingness. Second, several children dropped out of the study 

(attrition) from one measurement occasion onwards (from 11% in Year 2 up to 51% in Year 6). 

These children were censored in the data analysis. Attrition occurred when children were 

retained after Year 3, retained for the second time, changed schools, or were transferred to 

special education. A comparison of this group with children who did not drop out indicated that 

these children had less favorable profiles; they scored lower on achievement tests and had a 

lower SES. Thus, we concluded that it was necessary to adjust these data for possible selection 

bias, which we did under the assumption that the missing data are MAR. To adjust for 

censoring, we selected the uncensored records and adjusted for possible selection bias by 

reweighting the (remaining) sample by the inverse of the probability of censoring, given the 

covariate history, treatment history, and other relevant potential confounders. The use of inverse 

probability weighting to address attrition under the MAR assumption has been used in previous 

research (Cole & Hernán, 2008; Hernán, Brumback & Robins, 2002; Robins et al., 2000). From 

Year 1 through Year 6, indicators for censoring were regressed on baseline covariates and pre-

censoring treatment, outcome history and covariate history (amongst children who were 

previously uncensored). In addition to the covariates listed in Table 5, two dummies were 
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included as time-varying covariates, one indicating whether a child was delayed for at least one 

year and the second indicating that a child was in special education. The weights were stabilized 

(i.e., the weights were multiplied by the probability of being censored, given the censoring 

history). It is important to note that we could only adjust for MAR missingness to the extent 

that our measured time-varying covariates, e.g., history of retention and achievement scores, 

capture all predictors of censoring that are also associated with math achievement. If the 

previously stated conditional exchangeability assumption concerning retention is satisfied, then 

our adjustment for censoring due to retention after Year 3 – which is the main cause of censoring 

– is justified. The validity of our adjustment for nonrandom missingness is thus largely 

dependent upon the plausibility of the exchangeability assumption on which our entire analysis 

relies.  

Estimating the parameters of the MSM using inverse-probability-of-treatment 

weighting. We fitted a multivariate response model, in which the dependent variables were the 

seven measurements of mathematics achievement. This model is different from that in most 

applications using MSMs, in which the outcome is only measured at the final time point. Our 

approach amounts to a weighted regression of the repeated measures of the outcome on the 

history of treatment, time and baseline covariates. The model was fitted using GEE with an 

independence working correlation matrix. This was done by means of the ‘geepack’-package 

in R (Halekoh, Hojsgaard, & Yan, 2006). From Year 1 through Year 6, the available 

observations were weighed by a product of their treatment weight and their censoring weight 

up to the considered Year. Although the individual treatment weights remained constant from 

Year 3 onwards, their product with the individual censoring weights was time-varying up to 

Year 6. Time was treated as a categorical variable. Interactions between time and treatment 

regime were included as predictors in the model. The model for the outcome under the four 

treatment regimes is illustrated below:  
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(6) 

No retention:     𝐸(𝑌t000
) =  𝛽𝑡 

Kindergarten retention:   𝐸(𝑌t111
) =  𝛽𝑡 + 𝛼𝑡 

First-grade retention:    𝐸(𝑌t011
) =   𝛽𝑡 + 𝛾𝑡 

Second-grade retention:   𝐸(𝑌t001
) =   𝛽𝑡 + 𝛿𝑡 

 

where 𝛽𝑡 indicates the average math score in Year t under the no retention treatment regime. 

Parameters 𝛼𝑡, 𝛾𝑡, and 𝛿𝑡 refer to the average change in math score in Year t under the treatment 

regimes kindergarten retention, first-grade retention, and second-grade retention, respectively, 

relative to the no retention treatment regime. Contrasts were tested to examine at each time 

point the difference between the (up to) four treatment regimes. The outcome analysis was 

repeated ten times, once for each imputed dataset. The contrasts and outcome estimates for each 

of the ten datasets were combined according to Rubin’s rules (Rubin, 1987).  

 

Table 7 

Contrast estimates of the comparisons in mathematics achievement. 

Time Contrast Estimate  SE z ES 

Year 1 noR-KR 11.91 *** 1.44 8.26 1.33 

Year 2 noR-KR 11.30 *** 1.51 7.48 1.20 

 noR-G1R 7.83 *** 1.33 5.89 0.83 

 KR-G1R -3.47 ** 1.22 -2.85 -0.37 

Year 3 noR-KR 6.80 *** 1.48 4.60 0.77 

 noR-G1R 7.11 *** 1.24 5.72 0.80 

 noR-G2R 2.21  2.32 0.95 0.25 

 KR-G1R 0.31  1.47 0.21 0.04 

 KR-G2R -4.59  2.48 -1.85 -0.52 

 G1R-G2R -4.90 * 2.36 -2.07 -0.55 

Year 4 noR-KR 7.96 *** 2.13 3.74 0.84 

 noR-G1R 8.99 *** 1.63 5.51 0.95 

 noR-G2R 4.97 ** 1.88 2.65 0.53 

 KR-G1R 1.03  2.05 0.50 0.11 

 KR-G2R -2.99  2.35 -1.27 -0.32 

 G1R-G2R -4.02 * 1.94 -2.07 -0.43 
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Year 5 noR-KR 5.47 ** 2.09 2.62 0.60 

 noR-G1R 7.89 *** 1.61 4.91 0.87 

 noR-G2R 6.26 *** 1.72 3.65 0.69 

 KR-G1R 2.42  2.16 1.12 0.27 

 KR-G2R 0.79  2.26 0.35 0.09 

 G1R-G2R -1.64  1.82 -0.90 -0.18 

Year 6 noR-KR 4.95 * 2.47 2.00 0.54 

 noR-G1R 8.91 *** 1.81 4.93 0.97 

 noR-G2R 6.02 * 2.79 2.16 0.66 

 KR-G1R 3.96  2.58 1.54 0.43 

 KR-G2R 1.07  3.37 0.32 0.12 

 G1R-G2R -2.89  2.81 -1.03 -0.32 

Notes. noR = no retention; KR = kindergarten retention; G1R = first grade retention ; G2R = 

second grade retention. ES represents the effect size measure Cohen d, estimated in terms of 

the respective standard deviations of the outcome that year. Cohen (1988) labeled d values of 

0.20, 0.50 and 0.80 as small, medium and large effect sizes respectively. *** p<0.001; ** 

p<0.01; * p<0.05 

 

 

 

Figure 7. Same-age comparison of repeated measures of mathematics achievement for four 

treatment regimes. noR=no retention. KR=kindergarten retention. G1R=Grade 1 retention. 

G2R=Grade 2 retention. 
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The mathematics growth in each of the four treatment regimes is depicted in Figure 7. 

The contrast estimates are shown in Table 7. For example, a value in the row “KR - G1R” 

represents the estimated average score if all at-risk children were to repeat kindergarten (KR) 

minus the estimated average score if all at-risk children were to repeat first grade (G1R). In 

Year 1, it appears that significantly higher scores would be obtained if all children were 

promoted to first grade rather than being retained in kindergarten (estimate = 11.91, SE = 1.44, 

d = 1.33). In Year 2, three conditions were compared: promotion, kindergarten retention and 

first-grade retention. The contrasts indicated that by the end of Year 2, higher scores would be 

obtained if all children were promoted rather than being retained in kindergarten (estimate = 

11.30, SE = 1.51, d = 1.20) or first grade (estimate = 7.83, SE = 1.33, d = 0.83). The advantage 

of being continuously promoted compared to kindergarten and first-grade retention was 

observed until the end of primary school. Further, in Year 2, lower scores would be obtained if 

all children were retained in kindergarten rather than in first grade (estimate = -3.47, SE = 1.22, 

d = -0.37). In Year 3, there was no longer a significant difference between kindergarten 

retention and first-grade retention. Nevertheless, in the same year, significantly lower scores 

were observed after first-grade retention in comparison with second-grade retention (estimate 

= -4.90, SE = 2.36, d = -0.55). This advantage of second-grade retention compared to first-grade 

retention disappeared from Year 5 onwards. By the end of Year 6, the final measurement, it 

appeared that significantly higher scores would be obtained if all children were continuously 

promoted rather than being retained in kindergarten (estimate = 4.95, SE = 2.47, d = 0.54), first 

grade (estimate = 8.91, SE = 1.81, d = 0.97) or second grade (estimate = 6.02, SE = 2.79, d = 

0.66). Any differences in math achievement among the three retention conditions failed to reach 

statistical significance (α = .05).  

In sum, the results indicate that children at risk for grade retention would score higher 

on mathematics throughout their entire primary school career if they were promoted each year. 
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The scores for kindergarten and first-grade repeaters, compared to continuously promoted 

children, were significantly lower from the end of their retention year onwards. Children who 

repeated second grade fell less behind during their retention year than children who repeated 

kindergarten or first grade. The advantage for promoted children in contrast with second-grade 

repeaters was significant from Year 4 onwards. By the end of primary school, kindergarten and 

second-grade repeaters appeared to score slightly higher in mathematics achievement than first-

grade repeaters, but the effect sizes were small and the results were not statistically significant. 

Discussion 

In the social and behavioral sciences, one of the main objectives is to disentangle the 

causal connection between an event or intervention and the outcome. In the absence of 

randomization, researchers must adjust for variables that confound the relationship between the 

treatment and the outcome. When the treatment is initiated at different times for different 

subjects, confounding may also become time-varying. In the present study, we explained the 

use of marginal structural models, fitted by means of inverse probability weighting, to deal with 

time-varying treatments in the presence of time-varying confounding. Unlike conventional 

regression techniques, MSMs allow valid adjustment for time-varying variables that potentially 

confound the relationship between the (time-varying) treatment and the outcome. By means of 

reweighting the research sample at each treatment occasion, a pseudo-population is created in 

which confounding is removed (provided all relevant confounding factors were available and 

correctly modelled in the propensity score models). Although this approach has been widely 

used in epidemiologic research, applications in social and behavioral sciences to date have been 

limited. Given the increase of accessible software packages with which to apply MSMs, we 

believe that this approach will be of great value in future social and behavioral research. In this 

study, we illustrated the use of MSMs with an empirical example of the effects of grade 

retention on math achievement scores during primary school. Using a population of children 
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who had a probability of at least 5% of being retained in kindergarten, we compared the 

marginal distribution of mathematics achievement in four treatment regimes: no retention, 

kindergarten retention, first-grade retention and second-grade retention. In other words, 

children could be retained at three different points in time. To adjust for time-varying 

confounding, time-specific treatment weights were estimated at each of the three treatment 

times. The sample was reweighted each year using the product of time-specific weights up to 

each time t .  

When the treatment can be received at multiple time points, the number of potential 

treatment patterns strongly increases. An increase in the number of treatment patterns and 

covariates may hamper achieving a good balance across all those combinations. In our empirical 

example, the reweighted standardized mean differences in the covariate history between 

retained and promoted children gave an indication of the amount of remaining imbalance at 

each time point. The weighting led to a good covariate balance in the first year. In the second 

and third year, the weighting failed to balance some covariates to an acceptable level. Although 

the balance improved dramatically relative to an unadjusted analysis, we thus cannot exclude 

some residual confounding bias.  

The results indicate that at-risk children benefit most from being continuously 

promoted. Compared to same-age children who were one grade higher and who were therefore 

confronted with new subject matter, children who were delayed for one year scored lower on a 

measure of mathematics achievement. It seems that at-risk children may benefit more from 

receiving intellectual challenges that are offered in a higher grade. This is in line with previous 

research in which academic outcomes of early grade repeaters are compared with those of same-

age peers who are one grade higher (Goos et al., 2013; Hong & Yu, 2007; Hong & Raudenbush, 

2005; Hong & Raudenbush, 2006; Vandecandelaere et al., 2015a; Vandecandelaere et al., 

2015b; Wu et al., 2008a; Wu et al., 2008b). Some authors argue that a same-age comparison is 
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unfair since we cannot expect grade repeaters know the material to which their same-age peers 

who are one grade higher have been exposed (Lorence, 2006; Moser et al., 2012). To control 

for this difference in instruction, the grade repeaters and promoted children can be compared 

when they are in the same grade. Previous research on early grade retention using a same-grade 

comparison has demonstrated that grade repeaters, compared to their younger grade-mates, 

score better in math during the retention year. However, in the long term, this initial advantage 

disappears or even reverses (Dong, 2010; Goos et al., 2013; Moser et al., 2012; Wu et al., 

2008a). In this study, we did not compare the relative position of the retained students to that 

of their younger classmates. A same-grade comparison would require shifting back the 

promoted children one year in such a manner that all of the children are being compared in the 

same grade. This comparison would involve a different operationalization of the treatment 

patterns in estimating the treatment and censoring weights. To illustrate this, in Figure 8, we 

graphically shifted back the growth of the promoted children. This figure gives a rough 

indication of what the results of a same-grade comparison would look like. It is an approximate 

depiction because the corresponding shifted covariates were not used. The figure seems to 

indicate that, in the long term (in Grade 5), grade repeaters scored lower compared to their 

younger grade-mates. This lower mathematics score is of course at the cost of an extra year of 

primary school for the retained children. Future research is needed to investigate this result in 

more detail.  
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Figure 8. Same-grade comparison of repeated measures of mathematics achievement for four 

treatment regimes. The achievement scores of the promoted children in Figure 7 were 

graphically shifted back. It is an approximate depiction since the corresponding shifted 

covariates were not used. noR=no retention. KR=kindergarten retention. G1R=Grade 1 

retention. G2R= Grade 2 retention. 
 

 

Our results differ from a preceding study using the same data, in which we found 

kindergarten retention to be significantly less harmful compared to first-grade retention for 

mathematics achievement (Vandecandelaere et al., 2015a). In the current study, the difference 

was not statistically significant. These conflicting results might be explained by the different 

approaches of the two analyses. In the previous study, we matched treatment groups only with 

respect to baseline covariates, measured before anyone was ever retained (in Year 0). In the 

present analysis, we also balanced first-grade repeaters and promoted children with respect to 
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covariates measured right before they were retained (in Year 1, and thus after they could have 

been retained in kindergarten). In other words, we now also adjusted for time-varying 

confounding. We speculate that this adjustment for more recent differences between first-grade 

repeaters and promoted children improved the balancing properties and led to more accurate 

estimates. On the other hand, compared to a matching approach, weighted analyses introduce 

more variation and come with conservative standard errors, which might lead to increased 

uncertainty about the estimates.  

Our results rely on the exchangeability assumption, meaning that we assume that all 

prognostic factors of the outcome that are also associated with the treatment condition and 

censoring were adjusted for in the respective propensity scores and censoring models. Our 

findings are unbiased only to the extent that the treatment and censoring models were correctly 

specified and included all these prognostic factors. An important challenge for future research 

is to explore ways to examine the sensitivity of parameters estimated in a MSM to possible 

violations of the exchangeability assumption that result from non-availability of relevant 

prognostic factors.  

Due to the remaining imbalance of some covariates, it is possible that the negative effect 

of retention in second grade is overestimated. In particular, the weighting substantially reduced 

the standardized mean difference in pre-treatment math, yet, second-grade repeaters, compared 

to promoted children, still scored lower on mathematics before they were retained. Caution 

must be exercised in interpreting any outcome differences that might be due to covariates that 

remain imbalanced after weighting. This finding underscores the vital importance of evaluating 

covariate balance, something that has regularly been ignored in previous studies using MSMs. 

Indeed, one drawback of using observational data is the untestable, and often unrealistic 

assumption of exchangeability. Although we cannot completely rule out the existence of bias 

due to the possible violation of this assumption, it is important to evaluate and report the extent 
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to which, after weighting, balance - and thus exchangeability - has been attained in terms of the 

measured covariates. This way, estimated causal effects can be interpreted more correctly, and 

the research community can weigh the validity of the findings.  

Recent work of Imai and Ratkovic (2014) offers promising perspectives with respect to 

improved covariate balance. The authors demonstrate an alternative approach to the estimation 

of the weights. By means of the generalized method of moments, their estimation procedure 

produces covariate balancing propensity scores (CBPS) which incorporate the key covariate 

balancing property of propensity scores (i.e., the mean independence between the treatment and 

covariates after weighting). Software to apply this approach in a longitudinal setting is quickly 

developing and might enhance the use of CBPS with MSMs in the future. 

Finally, it should be noted that because GEE analyses do not specify the full conditional 

likelihood, they assume that possibly incomplete outcomes are MCAR (Ghisletta & Spini, 

2004). The bias produced under MAR mechanisms may often not be large in magnitude, 

however (Fitzmaurice, Laird, & Rotnitzky, 1993). Furthermore, valid GEE analyses under 

MAR can be obtained via the use of censoring weights, as illustrated in this article. The 

assumption underlying censoring weights is comparable to the MAR assumption.  

This study demonstrated the usefulness of MSMs in investigating questions in the 

context of time-varying grade retention. We believe that this approach is promising for social 

and behavioral researchers who wish to investigate interventions that may occur at multiple 

points in time. An important advantage of MSMs is its straightforward implementation as it is 

a weighted version of standard approaches. In this article, we also demonstrated the 

complications that may arise, and the need (a) to carefully explore the bias-variance trade-off 

and (b) to evaluate the balancing properties in order to allow valid interpretations of the 

estimated parameters in the MSM. The challenge is to select potential confounders that reduce 
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substantial bias, but which do not lead to high variance, and, at the same time, that satisfy the 

exchangeability assumption (Robins & Hernán, 2008).  
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i Of the 460 children who were retained in kindergarten, first grade or second grade, 43 children were retained a 

second time. These children were censored from the second retention year onwards. 
ii For clarity, note that the most recent measurement of time-varying covariates that predict treatment in Year t in 

fact took place in the preceding school year (i.e., Year t-1). For example, the most recent score for wellbeing in 

the prediction model for retention in Year 1, was measured six months before the start of Year 1. In other words, 

although we refer to this covariate as Year 1-wellbeing, this variable was in fact measured at the end of Year 0.   
iii Note that the means and ranges of the weights slightly changed in Year 4 through Year 6 because each year, 

the group of censored students expanded (as explained later in the article, we dealt with censored students by 

means of censoring weights). The means of the weights in Year 4, 5 and 6 were equal to 0.88, 0.87 and 0.87 

respectively. The ranges in these years were equal to 0.19 – 18.92, 0.19 – 11.20, and 0.20 – 11.10. 

 

Appendix. Assumptions underlying weighting 

There are several key assumptions underlying the use of inverse probability weighting in a time-

varying setting.  

1. Exchangeability assumption 

Exchangeability between treatment groups, or the assumption of no unmeasured 

confounding, requires that the treated, had they been untreated, would have experienced the 

same average outcome as did the untreated, and vice versa. In the same way, the exchangeability 

assumption between censored and uncensored subjects, requires that the censored subjects, had 

they been uncensored, would have experienced the same average outcome as did the uncensored 

subjects, and vice versa. Exchangeability holds when treatment assignment or censoring is 

independent of both potential outcomes, as in a randomized controlled trial (RCT). In a time-

varying setting, this assumption implies that at each time t, there are no prognostic factors of 

the outcome that have different distributions in the treatment and the control groups, given the 

treatment history 𝑍̅t-1, the baseline covariates X, and the covariate history 𝐿̅t . For censoring, the 

assumption implies that at each time t, there are no prognostic factors of the outcome that have 

different distributions in the censored and the uncensored groups, given the censoring history, 

baseline covariates, and the covariate history. This assumption is also called the sequential 

randomization assumption. The assumption would hold if at each time, treatment or censoring 
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were randomly assigned with randomization probabilities that are possibly depending on the 

treatment/censoring and confounder history (Robins & Hernán, 2008).  

In the empirical example, we additionally assumed that once a student is delayed for one 

year, the student stays delayed. As a consequence, we did not need to assume that children who 

remain and do not remain delayed were exchangeable. Hence, our estimates did not require the 

assumption of exchangeability after grade retention.  

The exchangeability assumption implies that we assume that the measured covariates are 

sufficient to adjust for both confounding and for selection bias due to loss to follow-up 

measurement. Unfortunately, as is the case in all observational studies, this assumption cannot 

be tested based on the data. Results will be unbiased only to the extent that the treatment and 

censoring models included all relevant confounders. An important challenge for future research 

is to explore ways to examine the sensitivity of estimated parameters in a MSM (Marginal 

Structural Model) to possible violations of the exchangeability assumption.   

 

2. Consistency assumption  

The consistency assumption requires that the counterfactual outcome of a subject, under the 

observed treatment or censoring history, is precisely the observed outcome (Cole & Hernán, 

2008).   

 

3. Positivity assumption  

The positivity assumption refers to the condition that treatment or censoring is possible at 

every level of the covariates. This is also referred to as the experimental treatment assumption. 

When there is a covariate combination at which it is impossible to be treated or not treated, a 
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structural zero probability of receiving treatment will occur. One way to deal with nonpositivity 

is to restrict the sample to subjects who meet a minimum probability of being treated or not 

treated on the basis of baseline covariate information (Cole & Hernán, 2008). In the empirical 

example included in this article, we limited the analytic sample to children who had at least a 

5% predicted probability of being retained in kindergarten.  

 

4. No model misspecification  

The fourth assumption requires that the series of propensity score models used to estimate 

the treatment and the censoring weights are correctly specified. A necessary condition for 

correct model specification is that the stabilized weights have a mean of one (Cole & Hernán, 

2008).  

 

Under these assumptions, Robins (1999) demonstrated that inverse probability weighting 

(IPW) can be used to consistently estimate the mean potential outcome, allowing researchers to 

compute the average outcome under any treatment pattern.  

It should be noted that the assumptions of MSMs are less restrictive than those of standard 

methods. For example, MSMs do not require the absence of time-dependent confounding by 

variables affected by previous exposure (Hernán, Brumback, & Robins, 2002).  

 

 


