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[1] It is well known that the presence and development stage of vegetation largely
influences the soil moisture content. In its turn, soil moisture availability is of major
importance for the development of vegetation. The objective of this paper is to
assess to what extent the results of a fully coupled hydrology–crop growth model can be
optimized through the assimilation of observed leaf area index (LAI) or soil moisture
values. For this purpose the crop growth module of the World Food Studies (WOFOST)
model has been coupled to a fully process based water and energy balance model
(TOPMODEL-Based Land-Atmosphere Transfer Scheme (TOPLATS)). LAI and soil
moisture observations from 18 fields in the loamy region in the central part of Belgium
have been used to thoroughly validate the coupled model. An observing system simulation
experiment (OSSE) has been performed in order to assess whether soil moisture
and LAI observations with realistic uncertainties are useful for data assimilation purposes.
Under realistic conditions (biweekly observations with a noise level of 5 volumetric
percent for soil moisture and 0.5 for LAI) an improvement in the model results can be
expected. The results show that the modeled LAI values are not sensitive to the
assimilation of soil moisture values before the initiation of crop growth. Also, the
modeled soil moisture profile does not necessarily improve through the assimilation of
LAI values during the growing season. In order to improve both the vegetation and soil
moisture state of the model, observations of both variables need to be assimilated.
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1. Introduction

[2] Water stored in the near-surface unsaturated soil zone
is generally referred to as soil moisture. In several research
domains soil moisture is an important variable. From a
hydrologic point of view, soil moisture determines the
partitioning of the precipitation into runoff, evaporation,
and infiltration, and the partitioning of the net radiation into
latent, sensible, and ground heat fluxes [Pauwels et al.,
2002]. In numerical weather prediction and climate studies
the predicted precipitation is highly sensitive to the soil
moisture conditions [Betts et al., 1996]. In agriculture,
numerous studies have shown the importance of the soil
moisture content on the development of agricultural crops
[Shepherd et al., 2002; Anwar et al., 2003; Patil and
Sheelavantar, 2004]. On the other hand, vegetation has
shown to have a strong effect on the soil moisture content

[Fu et al., 2003], demonstrating the need for a good
representation of the land cover properties in hydrologic
models for an accurate estimation of the soil moisture
content.
[3] In most hydrologic models, vegetation properties

such as the leaf area index (LAI) and the rooting depth,
are obtained off-line, and are considered as vegetation
parameters. These can then be kept constant throughout a
model simulation, or can be regularly updated, using a look-
up table. The disadvantage of this approach is that these
parameters will always be kept constant throughout a
certain period, while in reality they are continuously evolv-
ing. Such simplification will thus lead to errors in the model
results. In order to overcome this problem, the hydrologic
model should be enhanced with a module able to simulate
vegetation development. The coupling of hydrologic and
crop growth models is also encouraged by the conclusions
from Eitzinger et al. [2004], who stated that crop growth
models which accurately model soil water flow processes
should be preferred to other models, and that even those
crop growth models can be improved by a proper modeling
of the evapotranspiration. Since all these processes are
represented in hydrologic models, the coupling of hydro-
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logic and crop growth models can be expected to be
beneficial for both hydrology and agronomy. Dynamic
vegetation effects have already been incorporated into
hydrologic models using relatively simple models, for
example, in the ISBA-A-gs model [Calvet et al., 1998;
Calvet and Soussana, 2001] or in the Common Land Model
[Dai et al., 2003]. Efforts have already been made to couple
crop growth and hydrologic models [Boegh et al., 2004],
but at this point, no fully coupled hydrologic–crop growth
models are available that are adequate for ensemble-based
data assimilation purposes.
[4] The errors in the land cover parameters are not the

only cause for errors in hydrologic model results. Other
sources of errors are found in the meteorological forcings,
soil parameters, topographic data, and errors or oversimpli-
fications in the model physics. For this reason, Kostov and
Jackson [1993] suggested that the ideal approach to esti-
mate soil moisture is the combination of hydrologic models
with observed soil moisture, thus minimizing the errors
associated with both methods. This methodology is com-
monly referred to as data assimilation.
[5] With respect to hydrology, a wide variety of studies

have put data assimilation into practice. The most frequently
used methods to update the soil moisture state of land
surface models are direct insertion [Walker et al., 2001a;
Heathman et al., 2003], statistical correction [Houser et al.,
1998; Pauwels et al., 2002], Newtonian nudging [Houser et
al., 1998; Pauwels et al., 2001; Paniconi et al., 2002],
optimal interpolation [Seuffert et al., 2004], Kalman filter-
ing [Hoeben and Troch, 2000; Walker and Houser, 2001;
Walker et al., 2001b, 2001a; Reichle et al., 2002a, 2002b;
Margulis et al., 2002; Walker et al., 2002; Crow and Wood,
2003; Crow, 2003; Reichle and Koster, 2003; Walker and
Houser, 2004; Pauwels and De Lannoy, 2006], Kalman
smoothing [Dunne and Entekhabi, 2005, 2006], and varia-
tional data assimilation [Reichle et al., 2001a, 2001b;
Caparrini et al., 2003, 2004; Margulis and Entekhabi,
2003; Crow and Kustas, 2005].
[6] Currently, remotely sensed vegetation parameters are

used more and more frequently as inputs for hydrologic

models. These remotely sensed parameters are prone to
errors, so if they have to be used in a hydrologic model,
some correction needs to be made. On the other hand, if the
evolution of these parameters can be also be described by
the hydrologic model, a weighted average between the
remote sensing data and the modeled parameters can be
made. The question of the required observational frequency
and accuracy thus arises. The objective of this study is
to assess to what extent the results of a fully coupled
hydrology–crop growth model can be optimized through
the assimilation of observed leaf area index (LAI) and soil
moisture values under realistic error levels and accuracies.
The paper will focus on the resulting LAI time series and
soil moisture profiles and time series, but the modeled
evapotranspiration will also be analyzed. The crop growth
module of the World Food Studies (WOFOST) [Van Diepen
et al., 1989] model is first coupled to the TOPMODEL
[Beven and Kirkby, 1979] based Land-Atmosphere Transfer
Scheme (TOPLATS [Famiglietti and Wood, 1994]). The
coupled model is then thoroughly validated using LAI and
soil moisture observations from 18 agricultural fields. An
observing system simulation experiment (OSSE) is per-
formed, for the assessment of the accuracy requirements
of LAI and soil moisture observations in order to be useful
for data assimilation purposes. An ensemble Kalman filter
(EnKF) is used as data assimilation algorithm.
[7] The paper is organized as follows. First, an overview

of the study site and the data sets used in this study is given.
The hydrologic and crop growth models, and their coupling,
are then described, after which the coupled model is
validated using observed soil moisture and LAI values.
Then the data assimilation algorithm is explained. After
this, the results of the data assimilation study are described.
Finally, the conclusions that can be drawn from this work
are summarized.

2. Site and Data Description

[8] The data used for this study were all collected in the
Loamy region in the central part of Belgium. Figure 1
shows an overview of the study site. The site is an intensive

Figure 1. Location of the study site and the measured fields.
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agriculture area with a uniform soil texture and an altitude
ranging from 100 to 200 m asl. Eighteen agricultural fields
were intensively monitored throughout the study period,
which lasted from January through July 2003. These fields
were covered with four crop types: corn (four fields, crop
code ma), sugar beet (three fields, crop code sb), winter
barley (three fields, crop code wb), and winter wheat (eight
fields, crop code ww).
[9] The soil of the Loamy region is a Pleistocene loam

deposit with a very stable textural composition. Its thickness
varies between one to tens of meters. The predominant soil
type in this region is Gray Brown Podzolic Soil with
favorable drainage condition. Only for a few fields (ma1,
ma2, ma3, and ww6, see Figure 1), the drainage conditions
are not good and some gleyic properties (properties asso-
ciated with prolonged wetness) are present. However,
during the study period such a prolonged wetness was not
observed.
[10] Soil moisture values at 5 cm depth were measured

using the gravimetric method and then converted into
volumetric soil moisture using field averaged values for
the bulk density. For each field a minimum of eight
locations, and three repetitions per location, were sampled.
LAI values were measured using a LiCor LAI 2000 instru-
ment (LI-COR, Cambridge, UK) on three locations per
field, for each location 10 measurements were taken in
two perpendicular directions. The uncertainty (standard
deviation of the observation error) associated with the
measurements was approximately 0.04 volumetric for the
soil moisture and 0.3 for the LAI values. These uncertainties
have been calculated as the standard deviation of the
measurements inside each field.
[11] Meteorologic data were recorded by the meteorologic

station of the Institut d’Astronomie et de Géophysique
Georges Lemaı̂tre at Louvain-la-Neuve (latitude 50�3905500,
longitude 4�3703000m, altitude 148 m asl). Available data
were air temperature and humidity, precipitation, wind
speed and direction, atmospheric pressure, and solar radia-
tion. Longwave radiation (also needed by the model in
addition to solar radiation) was calculated using the air tem-
perature and humidity following the approach of Brutsaert
[1975].

3. Model Description

3.1. Hydrologic Model

[12] The hydrologic model used in this study, the TOP-
MODEL-Based Land-Atmosphere Transfer Scheme (TOP-
LATS), has as its foundation the concept that shallow
groundwater gradients set up spatial patterns of soil mois-
ture that influence infiltration and runoff during storm
events, and evaporation and drainage between these events.
The assumption is made that these gradients can be esti-
mated from local topography (through a soil topographic
index [Sivapalan et al., 1987]). From this foundation, the
model was expanded to include infiltration and resistance-
based evaporation processes, a surface vegetation layer and
a surface energy balance equation with an improved ground
heat flux parameterization, and the effect of atmospheric
stability on energy fluxes [Famiglietti and Wood, 1994;
Peters-Lidard et al., 1997]. The model was originally
developed to simulate the surface water and energy balance

for warm seasons [Famiglietti and Wood, 1994; Peters-
Lidard et al., 1997]. More recently, winter processes (frozen
ground and a snowpack), an improved water and energy
balance scheme for open water bodies, and a two-layer
vegetation parameterization were added [Pauwels and
Wood, 1999a]. For a detailed model description, we refer
to Famiglietti and Wood [1994], Peters-Lidard et al. [1997],
and Pauwels and Wood [1999a]. Application to the Zwalm
catchment [Pauwels et al., 2001, 2002; Pauwels and De
Lannoy, 2006], the Upper Kuparuk River Basin in Alaska
[Dery et al., 2004], and the Red-Arkansas River Basin
[Crow et al., 2001; Crow and Wood, 2002] and to field
experiments such as FIFE [Peters-Lidard et al., 1997],
BOREAS [Pauwels and Wood, 1999b, 2000], SGP97
[Crow and Wood, 2003], SGP99 [Gao et al., 2005], and
SMEX02 [Crow et al., 2005] have shown that the model
can adequately simulate surface energy fluxes, soil temper-
ature, and soil moisture.

3.2. Crop Growth Model

[13] WOFOST simulates crop production potentials as
dictated by environmental conditions (soils, climate), crop
characteristics, and crop management (irrigation, fertilizer
application). The overall goal of the model is to simulate the
plant development stage and the crop growth. In the original
version, WOFOST uses the Simple and Universal Crop
growth Simulator (SUCROS) approach for potential pro-
duction conditions, and uses the Penman equation, plus a
crop factor, for water-limited production. A soil water
balance was calculated using a tipping bucket approach
with three compartments, i.e., a root zone, a transmission
zone, and a groundwater zone. For a detailed model
description we refer to van Ittersum et al. [2004].

3.3. Coupling of the Models

[14] In the coupled version, the original Penman approach
for water-limited evapotranspiration has been replaced by
the full energy and water balance formulation from TOP-
LATS, and the soil water balance has been replaced by the
TOPLATS method. The calculated vegetation parameters,
more specifically rooting depth and LAI, are then used as
input for TOPLATS.
[15] The coupling has been performed as follows. While

WOFOST has been designed to operate at a daily time step,
TOPLATS uses an hourly time step. Thus WOFOST is
called every 24 time steps in TOPLATS. Before calling
WOFOST, TOPLATS calculates the daily average evapo-
transpiration, soil moisture, solar radiation, precipitation,
water table level, and the daily maximum and minimum
temperature. These variables are then used as inputs for
WOFOST. Every 24 time steps WOFOST calculates the
rooting depth and the LAI, which are then used as inputs for
the next 24 simulations of TOPLATS. This way, both
models are fully coupled in a computationally efficient
manner.

4. Model Validation

[16] The coupled model was validated using observed
soil moisture and LAI values from the 18 different fields
described in section 2. The model was applied at each field
separately using the observed meteorological data described
in section 2. The soil parameters were assigned based on the
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soil texture, following Rawls et al. [1982]. The land cover
parameters were determined based on the vegetation type,
following Peters-Lidard et al. [1997]. The parameters for
the crop growth module were taken from the sample input
files [Supit and van der Goot, 2003]. The depths of the soil
layers were taken to be 5, 10, and 20 cm, for the upper,
second, and third layer, respectively. The fourth layer
extends from the bottom of the third layer to the ground-
water table. The initial seed weight, and the sowing dates were

determined from field observations. A LAI value of 0 and a
rooting depth of 0 m were used as initial conditions. For the
remainder of the simulations, these values were calculated by
the crop growth module of the model. Simulations were
performed at an hourly time step from January through July
2003. The soil, vegetation, and crop growth parameters were
kept uniform for each vegetation type.
[17] Figure 2 shows the validation for the LAI of the

coupled model for three fields of each crop type. The

Figure 2. Validation of the LAI from the coupled model for three fields of each crop type. The solid
lines are the results of the baseline run, and the diamonds are the in situ observations.
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temporal evolution of the LAI observations is adequately
matched (meaning that the maxima correspond and that
there is no time shift) by the simulations. Figure 3 shows the
validation for the soil moisture of the coupled model for the
same fields as Figure 2. With some exceptions, the tempo-
ral evolution of the soil moisture is adequately matched.
Table 1 shows the root-mean-square error (RMSE) between

the observations and the simulations for the model valida-
tion. This RMSE is calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

si � oið Þ2
s

ð1Þ

Figure 3. Validation of the soil moisture from the coupled model for three fields of each crop type. The
solid lines are the results of the baseline run, and the diamonds are the in situ observations.
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n is the number of observations, si are the model
simulations, and oi are the observations. The relatively
low values for both RMSE values indicate that the model
can simulate the soil water content and the LAI with an
acceptable accuracy (meaning that the RMSE is of the same
order of accuracy as for remotely sensed data sets, for which
values are listed in section 7.2).
[18] The main objective of the paper was to assess up to

what level the results of the coupled hydrology–crop
growth model can be improved by the assimilation of
external data. Therefore a data assimilation study is per-
formed, in order to assess the accuracy and frequency
requirements of these external data sets.

5. Assimilation Method

[19] In order to meet the objective of this study, the soil
moisture and LAI state modeled by the coupled hydrology–
crop growth model have to be updated, using observations
of either both or only one of these variables, depending on
the availability of the observations. For this purpose a
flexible assimilation technique is needed. The ensemble
Kalman filter (EnKF) assimilation method was chosen for
this study. In this section only a brief description of the
EnKF will be given. For a more detailed description we
refer to Reichle et al. [2002b].
[20] In the EnKF, an ensemble of state vectors is propa-

gated forward in time. Each state vector x̂k
i , with i the

ensemble member number and k the time step, consists of
the modeled state variables. Each time an observation
becomes available, the state vector of each ensemble
member is updated by taking a weighted average between
the observxations and the model simulations:

x̂iþk ¼ x̂i�k þKk yk �Hk x̂
i�
k þ vik

� �
ð2Þ

yk is the vector with the observations from time step k. x̂k
i+ is

the a posteriori state vector for ensemble member i, i.e.,
after the assimilation of the observations, while x̂k

i� is the a

priori state vector, i.e., before the assimilation. Hk is the
observations transition matrix, and describes the relation-
ship between the state vector and the vector with
observations. vk

i is a random realization of the measurement
error [Burgers et al., 1998]. Kk is the Kalman gain factor,
and is calculated as follows:

Kk ¼ P�
k H

T
k HkP

�
k H

T
k þ Rk

� ��1 ð3Þ

Rk is the measurement noise covariance matrix, of which
the diagonal elements are the standard deviation of the
measurement noise for each observed variable, and the off-
diagonal elements are zero. The superscript T indicates the
transpose operator. Pk

� is the a priori error covariance, and is
calculated as follows:

P�
k ¼ 1

N � 1
DkD

T
k ð4Þ

with N the ensemble size (the number of parallel model
trajectories), and D is the matrix with the deviations from
the mean state for each ensemble:

Dk ¼ x̂1�k � �̂x�k . . . x̂N�
k � �̂x�k

� �
; �̂x�k ¼ 1

N

XN
i¼1

x̂i�k ð5Þ

For this study, the state vector consists of the modeled soil
moisture at four different depths, and the modeled LAI:

x̂i ¼ qik;1q
i
k;2q

i
k;3q

i
k;4LAI

i
k

h iT
ð6Þ

qk,j
i is the volumetric soil moisture content at time step k for
layer j and ensemble member i. LAIk

i is the modeled LAI
value for time step k and ensemble member i. If both LAI
and soil moisture observations at 5 cm are available, yk and
Hk can be written as follows:

yk ¼
qok
LAIok


 �
;Hk ¼

1 0 0 0 0

0 0 0 0 1


 �
ð7Þ

qk
o and LAIk

o are the observed upper layer soil moisture value
and LAI for time step k, respectively. If only soil moisture
observations are available, the first row of yk and Hk is
retained. If only LAI observations are available, only the
second row is retained.

6. Synthetic Experiment

6.1. Experiment Design

[21] The objective of the data assimilation study is to
assess to what extent the results of the coupled model can be
optimized through the assimilation of LAI and soil moisture
observations. In other words, the required accuracy and
assimilation frequency of these observations has to be
determined. The most convenient manner to do this is to
perform and OSSE. Basically, instead of in situ observed
data, synthetically generated data are used, with varying
assumed accuracies. The experiment has been set up as
follows.
[22] As a first step, the results from the model applica-

tions from section 4 are treated as the synthetic truth. An a

Table 1. RMSE Between the in Situ Observations and the

Simulations for the Model Validation

Field

Soil Moisture LAI

RMSE
Number of
Observations RMSE

Number of
Observations

ma1 0.0407 8 0.79 6
ma2 0.0431 8 0.72 5
ma3 0.0491 6 0.34 6
ma4 0.0375 6 0.74 6
sb1 0.0455 10 0.53 7
sb2 0.0411 9 0.64 7
sb3 0.0473 8 0.80 7
wb1 0.0524 11 0.30 6
wb2 0.0685 8 0.27 5
wb3 0.0708 10 0.57 5
ww1 0.0516 11 1.09 8
ww2 0.0421 11 0.76 8
ww3 0.0473 12 0.49 8
ww4 0.0510 10 0.56 8
ww5 0.0542 10 0.46 7
ww6 0.0677 10 0.59 7
ww7 0.0641 10 0.52 7
ww8 0.0646 10 0.56 6

6 of 17

W04421 PAUWELS ET AL.: ASSIMILATION OF LAI AND SOIL MOISTURE W04421



priori defined observation error is added to the synthetically
true LAI and upper layer soil moisture, and the resulting
values are treated as synthetic observations. Then, the most
important crop (the sowing date and the initial seed weight)
and soil parameters (the hydraulic conductivity, the param-
eter which describes the exponential decay of the hydraulic
conductivity with depth, and the saturated base flow) have
been perturbed, which leads to errors in the model results.
These parameters were identified through a sensitivity
analysis. This ensemble model run is referred to as the
baseline run. At regular temporal intervals, the synthetic
observations are assimilated into the coupled model. These
model runs are referred to as the assimilation runs. The
impact of different temporal intervals and observation
accuracies on the modeled evolution of the LAI and soil
moisture is then assessed. It should be noted that for all the
synthetic experiments the RMSE values are calculated
across the entire time series at hourly intervals, which is
possible because the synthetic truth is known at each hourly
time step.
[23] In order to mimic the possibility to invert radar

backscatter observations under bare soil or small vegetation,
and not under more developed vegetation, synthetically
observed soil moisture values were assumed to be available
when the synthetically observed LAI was lower than 0.1.
Above this threshold, only synthetic observations of the
LAI were assumed to be available. Synthetic observations
of the LAI and soil moisture were thus assumed to be not
available simultaneously.
[24] The experiment has been performed on one field for

each crop type, more specifically on fields ma1, sb1, ww1,
and wb1.

6.2. Ensemble Generation

[25] An important issue in data assimilation using the
EnKF is the generation of the ensemble of model trajecto-
ries (the ensemble members). In this study, the ensemble
members are generated by disturbing the most important
soil and vegetation parameters, and the meteorological
forcings. Following Reichle et al. [2002b], the meteorolog-
ical forcings are disturbed by adding a random number with
zero mean and a specified standard deviation to the input
values. This standard deviation is 5 K for the air and dew
point temperatures, 1 m s�1 for the wind speed, 50 W m�1

for the shortwave radiation, 25 W m�1 for the longwave
radiation, 1 kPa for the atmospheric pressure, and 50% of
the magnitude for the precipitation. Care was taken that the
perturbation did not yield negative radiation, wind speed,
atmospheric pressure, and precipitation, and that the pertur-
bation did not yield relative humidities above 100%.
[26] The land cover parameters were disturbed by adding

a zero mean Gaussianly distributed random number to the
most important parameters. As stated in the previous
section, a sensitivity analysis led to the conclusion that
the sowing date, the initial seed weight, and the temperature
sums required to finish the different development stages, are
the most important vegetation parameters. The standard
deviation of the random number was set to 50% of the
parameter value.
[27] The soil parameters were also disturbed by adding a

mean zero random number to the soil hydraulic conductiv-
ity, the parameter which describes the exponential decay of
the hydraulic conductivity with depth, and the saturated

base flow. For these parameters, the standard deviation of
the random number was set to 25% of the parameter value.

7. Results

7.1. Impact of the Number of Ensemble Members

[28] In data assimilation studies with the ensemble Kalman
filter, the number of ensemble members is an important
parameter. In order to test the sensitivity of the results of the
data assimilation to the ensemble size, the results of the data
assimilation runs were compared for an ensemble size of 16,
32, and 64 members. A first set of model applications
assimilated perfect observations, a second set used an error
level of 0.25 for the LAI and 0.025 for the soil moisture,
and a third set an error level of 0.5 and 0.05 for these
observations. Observations were assimilated with a weekly
interval. Figure 4 shows the results of these modeled LAI
values for the four crop types. From these plots it can be
concluded that the modeled LAI values are not sensitive to
the ensemble size if the ensemble size is larger than 32.
[29] Table 2 shows the impact of the ensemble size on the

modeled soil moisture values, for the simulations using an
observation error of 0.05 for the soil moisture. These
statistics are calculated over all time steps for the entire
period in which soil moisture data are assimilated. Again,
the ensemble size does not have a strong impact on the
model results, neither with respect to the resulting RMSE
nor to the bias, if the ensemble size is larger than 32. We
may thus conclude that with an ensemble size of 32
members equally good results are obtained as with 64
members. For the remainder of this study, an ensemble size
of 32 members is used.

7.2. Impact of the Observation Error

[30] An important aspect in data assimilation is the
quality of the observations. More specifically, the smaller
the degree of uncertainty of the observations, the more the
model results will be relaxed toward the observations. The
objective of this section is to assess whether observed data
under realistic conditions (high degree of error) are still
useful for data assimilation purposes. For this purpose the
measurement noise of the synthetic observations has been
set to a number of predetermined values, and the impact on
the model results has been quantified. For the LAI values,
the measurement noise has been set to 0 (perfect observa-
tions), 0.1, 0.25, 0.5, and 1. The latter values are typical
values for remotely sensed LAI observations [Fang et al.,
2003; Meroni et al., 2004; Casa and Jones, 2005]. For soil
moisture, this measurement noise has been set to 0 (perfect
observations), 0.01, 0.025, 0.05, and 0.1. The latter value is
a value that can be assumed to be typical for radar remotely
sensed soil moisture observations if the uncertainty in the
soil roughness is large (N. E. C. Verhoest et al., Soil
moisture retrieval from ERS SAR backscattering under soil
roughness uncertainty using a possibilistic approach, sub-
mitted to Water Resources Research, 2006). The syntheti-
cally observed values are assimilated with a weekly time
step. Before the onset of the growing season soil moisture
values are assimilated, after which LAI data are assimilated.
[31] Figure 5 shows the results of the assimilation run for

the modeled LAI values for all four crop types. As can be
expected, the correspondence between the simulations and
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Figure 4. Impact of the ensemble size on the simulated LAI values for the four crop types. The thick
solid line is the baseline run using 32 ensembles, which is almost identical to the baseline run using 64
ensembles. The diamonds indicate the synthetic truth.
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the synthetic truth improves as the degree of error of these
synthetic observations decreases. For all crop types there is
a strong improvement in the model results, even if the
standard deviation of the LAI observation error is 1. From
the results in Figure 5 we can thus conclude that even under
realistic LAI observation errors the coupled model benefits
from the assimilation of LAI observations. This implies that
the model errors caused by erroneous initial seed weights
and sowing dates (which cannot be determined through
remote sensing) can be corrected through the assimilation of
remotely sensed LAI values.
[32] Figure 6 shows the results of the assimilation run for

the modeled soil moisture content in all four soil layers, for
the four crop types. These RMSEs are calculated on an
hourly basis, during the entire period in which soil moisture
data are assimilated. As can be expected, the RMSE
between the synthetic truth and the model simulations for
the upper soil layer increases as the observation error
increases. The slope of this increase of the RMSE with
the observation error becomes relatively close to zero for an
observation error above 0.05. This can also been seen to a
lesser extent in the results from Walker and Houser [2004],
with the difference that in Figure 6 the results of the
assimilation runs are never more erroneous than the baseline
run, while in the work by Walker and Houser [2004] this
occurs for increasing soil moisture observation errors. This
can be explained by the use of the ensemble Kalman filter in
this paper, which is likely to yield a better estimate of the
model error covariance than the extended Kalman filter. The
bias in the model results (defined as the model result minus
the truth) is also strongly reduced by the assimilation of
perfect observations. For increasing observation errors this
improvement is reduced.
[33] The improvement in the upper layer soil moisture

content is also propagated toward the lower soil layers. The
potential to improve entire soil moisture profiles through the
assimilation of observations of the upper part of the profile
has been demonstrated in previous studies [e.g., Hoeben
and Troch, 2000]. For both the second and third soil layer

both the RMSE and the bias are reduced by the assimilation.
As can be expected, the improvement in the model results is
best for perfect observations, and decreases with increasing
observation errors.
[34] For the three topsoil layers it can thus be stated that

the effect of assimilating more accurate observations will
only lead to better results if the accuracy of the observations
is below 0.05. For observation errors above 0.05 no
improvement in the model results can be expected by the
use of more accurate data.
[35] The results for the bottom soil layer, however, behave

differently. The soil moisture content for this layer has been
overcorrected by the assimilation, as can be seen from Figure 6
(bottom right). The increase in the upper layer soil moisture
content is propagated toward this layer, which results in an
increase in its moisture content. For the corn and sugar beet
fields, the assimilation of perfect observations changes the
underestimation from the baseline run into an overestimation.
For the winter wheat field, the almost zero bias is increased.
For the winter barley field, the initial overestimation is
increased. For the two latter fields, this increase in bias leads
to the increase in RMSE if perfect observations are assimi-
lated. This increase in RMSE decreases with increasing
observation errors, and becomes negligible for error levels
of 0.05. For all other error levels the results for the assimi-
lation runs are comparable to the results from the baseline run.
[36] Table 3 shows that this improvement in the soil

moisture content and the modeled LAI leads to an improve-
ment in the modeled evapotranspiration. For the corn field,
the slight (approximately 15 mm per year) underestimation
by the baseline run is removed if perfect observations are
assimilated, and reduced by more than 50% if the most
erroneous observations are assimilated. Similar results are
obtained for the winter wheat field. For the other two crop
types, the underestimation of the evapotranspiration by the
baseline run is higher (approximately 70 mm per year for
the sugar beet field and 50 mm per year for the winter
barley), and the improvement caused by the assimilation of
the most erroneous observations is relatively lower.

Table 2. Impact of the Ensemble Size on the Modeled Soil Moisture for All Soil Layers for the Period in Which Soil Moisture Data Are

Assimilateda

Field Layer �X

Baseline Run 32 Members 64 Members

�Y RMSE �Y RMSE �Y RMSE

ma1 1 0.257 0.228 0.0298 0.231 0.0271 0.232 0.0271
ma1 2 0.260 0.230 0.0302 0.233 0.0274 0.234 0.0268
ma1 3 0.279 0.260 0.0196 0.265 0.0142 0.267 0.0133
ma1 4 0.372 0.365 0.0109 0.369 0.0088 0.371 0.0087
sb1 1 0.255 0.228 0.0285 0.229 0.0267 0.230 0.0267
sb1 2 0.258 0.229 0.0289 0.231 0.0270 0.231 0.0269
sb1 3 0.277 0.259 0.0185 0.263 0.0150 0.263 0.0147
sb1 4 0.369 0.365 0.0099 0.367 0.0097 0.368 0.0100
ww1 1 0.259 0.230 0.0292 0.232 0.0272 0.233 0.0272
ww1 2 0.261 0.232 0.0295 0.234 0.0274 0.235 0.0271
ww1 3 0.280 0.262 0.0179 0.267 0.0137 0.267 0.0130
ww1 4 0.367 0.366 0.0078 0.369 0.0080 0.370 0.0083
wb1 1 0.262 0.234 0.0292 0.235 0.0276 0.235 0.0276
wb1 2 0.264 0.235 0.0294 0.237 0.0277 0.237 0.0275
wb1 3 0.282 0.267 0.0165 0.270 0.0128 0.271 0.0124
wb1 4 0.364 0.368 0.0056 0.371 0.0084 0.372 0.0094

a�X (dimensionless) is the average of the synthetic truth, �Y (dimensionless) is the average of the assimilation run, and RMSE (dimensionless) is the root-
mean-square error between the results of the assimilation run and the synthetic truth. The baseline run has been calculated using 32 ensembles. These
statistics are calculated across all time steps.
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[37] From this section we can conclude that, even under
realistic error levels for both the LAI and soil moisture
observations, a general improvement in the model results
can be expected from the assimilation of observed LAI or
soil moisture values. However, for soil moisture and LAI
observation errors above 0.05 and 0.5, respectively, im-
proving the accuracy of the assimilated data will not lead to
a strong improvement in the accuracy of the model results.

7.3. Impact of the Observation Frequency

[38] Another important issue in data assimilation is the fre-
quency with which observations are available. In section 7.2
observations were assumed to be available with a weekly
temporal interval. In this section, the impact of an observation
interval of two and four weeks is assessed. An observation
error of 0.5 for the LAI and 0.05 for the soil moisture was
used for this purpose, in order to assess the impact of the
observation frequency under realistic conditions.
[39] Figure 7 shows the impact of the observational

frequency on the modeled LAI values for all four crop
types. For sugar beet, winter wheat, and winter barley, the
temporal evolution in the modeled LAI is approximately
similar if the assimilation frequency is two or four weeks.
The magnitude of the LAI is slightly better if the observa-

tion frequency is two weeks or less. For corn, the LAI is
underestimated during the four weeks between the end of
June and the beginning of July. This is caused by the
correction of the overestimation around day 165. However,
this underestimation is strongly reduced around day 190.
[40] For the modeled soil moisture values, similar results

were obtained. Table 4 shows the comparison between the
biases and the RMSEs between the model simulation and
the synthetic truth for the three observation frequencies, for
all soil layers. These statistics were calculated taking into
account the synthetic truth at every time step, not only at the
time steps at which synthetic observations were assimilated.
Table 4 and Figure 7 together lead to the conclusion that the
model results can benefit from the assimilation of LAI or
soil moisture values with a temporal interval of even one
month. However, it is better to assimilate the observations
with a temporal resolution of no more than two weeks, if the
temporal evolution of the LAI should be predicted accu-
rately, and if the modeled soil moisture should be signifi-
cantly improved.

7.4. Assimilation of Soil Moisture Only

[41] As soil moisture is an important variable in the crop
growth process, it was investigated whether an improve-

Figure 5. Impact of the LAI observation error on the simulated LAI values for the four crop types. The
numbers in the legend are the errors associated with the LAI observations. The asterisks indicate the
synthetic truth.
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Figure 6. Impact of the soil moisture observation error on the accuracy of the model results. The lines
represent the results of the assimilation runs, and the symbols represent the results of the baseline run.
(left) RMSE between the model results and the synthetic truth. (right) Bias in the model results.
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ment in the modeled soil moisture before the onset of the
crop growth can lead to an improvement in the modeled
LAI values. Thus the synthetic soil moisture observations
were assimilated at exactly the same dates as in section 7.2,
but no LAI values were used when the synthetic soil
moisture data were no longer available. In order to assess
the impact of the observation error, both perfect observa-
tions and observations with an uncertainty of 0.05 soil
moisture were assimilated into the coupled model.

[42] Figure 8 shows the results of this assimilation
study. For the ma1 field the modeled LAI magnitudes
are slightly worsened by the assimilation, while for the
wb1 field they are slightly improved. For the other two
fields, the modeled LAI is insensitive to the assimilation
of the soil moisture values before the growing season. In
all four cases, however, the temporal evolution of the
modeled LAI is unaltered.

Table 3. Impact of the Data Assimilation on the Modeled Evapotranspirationa

Field
Synthetic
Truth

Baseline
Run

Assimilation of Soil Moisture and LAI
Errors

Assimilation of LAI Only
Errors

Perfect
q = 0.01,
LAI = 0.1

q = 0.025,
LAI = 0.25

q = 0.05,
LAI = 0.5

q = 0.1,
LAI = 1 Perfect 0.1 0.25 0.5 1

ma1 240.2 225.3 240.3 239.0 239.5 237.7 234.7 241.7 241.5 239.3 237.0 235.4
sb1 327.6 261.8 322.8 307.1 296.6 288.5 280.5 323.1 304.6 293.4 284.0 273.4
wb1 387.3 339.7 385.5 354.7 349.5 347.5 345.3 386.5 353.6 348.8 347.3 345.9
ww1 365.3 344.1 365.6 356.7 352.6 351.0 351.3 366.8 360.5 354.8 350.1 344.5

aUnits are mm yr�1.

Figure 7. Impact of the assimilation frequency on the simulated LAI values for the four crop types. The
asterisks indicate the synthetic truth.
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Table 4. Impact of the Assimilation Frequency on the Modeled Soil Moisture for All Soil Layersa

Field Layer �X

Baseline Run Weekly Interval 2-Week Interval 4-Week Interval

�Y RMSE �Y RMSE �Y RMSE �Y RMSE

ma1 1 0.257 0.228 0.0298 0.231 0.0271 0.230 0.0283 0.229 0.0295
ma1 2 0.260 0.230 0.0302 0.233 0.0274 0.232 0.0287 0.230 0.0300
ma1 3 0.279 0.260 0.0196 0.265 0.0142 0.263 0.0166 0.260 0.0190
ma1 4 0.372 0.365 0.0109 0.369 0.0088 0.367 0.0086 0.366 0.0106
sb1 1 0.255 0.228 0.0285 0.229 0.0267 0.229 0.0270 0.228 0.0284
sb1 2 0.258 0.229 0.0289 0.231 0.0270 0.231 0.0273 0.229 0.0289
sb1 3 0.277 0.259 0.0185 0.263 0.0150 0.262 0.0155 0.259 0.0183
sb1 4 0.369 0.365 0.0099 0.367 0.0097 0.367 0.0076 0.365 0.0102
ww1 1 0.259 0.230 0.0292 0.232 0.0272 0.231 0.0281 0.230 0.0291
ww1 2 0.261 0.232 0.0295 0.234 0.0274 0.233 0.0284 0.232 0.0294
ww1 3 0.280 0.262 0.0179 0.267 0.0137 0.265 0.0157 0.263 0.0176
ww1 4 0.367 0.366 0.0078 0.369 0.0080 0.368 0.0064 0.367 0.0083
wb1 1 0.262 0.234 0.0292 0.235 0.0276 0.234 0.0287 0.234 0.0289
wb1 2 0.264 0.235 0.0294 0.237 0.0277 0.236 0.0290 0.236 0.0291
wb1 3 0.282 0.267 0.0165 0.270 0.0128 0.268 0.0155 0.268 0.0157
wb1 4 0.364 0.368 0.0056 0.371 0.0084 0.369 0.0060 0.369 0.0062

a�X (dimensionless) is the average of the synthetic truth, �Y (dimensionless) is the average of the assimilation run, and RMSE (dimensionless) is the root-
mean-square error between the results of the assimilation run and the synthetic truth.

Figure 8. Impact of the assimilation of observed soil moisture values before the initiation of crop
growth on the modeled LAI.
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Figure 9. Impact of the assimilation of observed LAI values during the growing season on the modeled
soil moisture profile for the four vegetation types. The lines represent the results of the assimilation runs,
and the symbols represent the results of the baseline run. (left) RMSE between the model results and the
synthetic truth. (right) Bias in the model results.
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[43] The conclusion from these model applications is that,
in order to improve the LAI estimates by the model, it is not
sufficient to assimilate the soil moisture values before the
growing season. During the growing season, LAI observa-
tions need to be assimilated also.

7.5. Impact of the Assimilation of LAI Values on the
Modeled Soil Moisture Profile

[44] The objective of this section is to assess whether it is
possible to improve the modeled soil moisture profile
through the assimilation of LAI observations during the
growing season. Observations with an error level of 0, 0.1,
0.25, 0.5, and 1, with a weekly interval, were assimilated
into the model. No soil moisture values were assimilated in
the period preceding the growing season. Figure 9 shows
the results of this assimilation study for the four
fields. These RMSE and bias values are calculated using
the data from all time steps during which LAI values were
assimilated.
[45] From Figure 9 it can be concluded that assimilating

LAI values does not necessarily improve the modeled soil
moisture profile. For the ma1 field, a decrease in the RMSE
between the true and modeled soil moisture values has been
obtained for all observation errors. An improvement in the
modeled bias has also been obtained. For the ww1 field, the
RMSE for the two top layers improves through the assim-
ilation, but not for the bottom layers when the observation
error is below 0.5. In all cases the bias only improves if the
observational error is high. For the sb1 and wb1 fields, the
assimilation procedure reduces the RMSE for the top two
layers, except for when perfect observations are used, in
which case the RMSE strongly increases. For the two
bottom layers, an improvement in the RMSE is obtained
only under high observational errors. Again, for perfect
observations the RMSE strongly increases. For these two
fields, the bias only improves if the observation error is
high.
[46] The correction of the modeled LAI does have a

beneficial impact on the modeled evapotranspiration, as can
be seen in Figure 4. If the observation error is above 0.5,
however, this improvement becomes negligible.
[47] The explanation for this discrepancy is the fact that

LAI values are not directly related to the soil moisture
content, as opposed to for example radar backscatter values

or brightness temperatures. However, the data assimilation
algorithm updates the soil moisture profile depending on the
difference between the observed and the modeled LAI.
These differences can be quite large (see, for example,
Figure 7). An excessive update of the soil moisture content
in all soil layers can thus occur, even if the value of the
Kalman gain for the soil layers is relatively low, as can be
seen in Table 5. From this section we can thus conclude that
assimilating LAI values during the growing season will not
necessarily lead to a better estimate of the soil moisture
content.

8. Conclusions

[48] The objective of this study was to assess to what
extent the results of a fully coupled hydrology–crop growth
model can be optimized through the assimilation of
observed LAI or soil moisture values. A crop growth model
(WOFOST) has been coupled to a hydrologic model (TOP-
LATS) for this purpose. Through an observed system
simulation experiment (OSSE), it has been found that the
assimilation of observed soil moisture values throughout the
period preceding the crop growth has a negligible impact on
the modeled LAI values. It is thus better to assimilate LAI
observations during the growing season in order to improve
the modeled LAI. On the other hand, the assimilation of
LAI observations does not necessarily lead to a better
estimation of the soil moisture profile. If both the vegetation
and soil moisture state of a model need to be improved,
observations of both variables need to be assimilated.
Further, the results indicate that even under realistic degrees
of error in the observations (an error of 0.1 for the soil
moisture and 1 for the LAI observations) the model results
benefit from the assimilation of soil moisture and LAI data.
However, the mismatch between the true and the modeled
soil moisture only decreases significantly if the observation
error is below 0.05. It is found that the model results
improve if observations are assimilated with a monthly
interval, but that an assimilation frequency of no more than
2 weeks should be used, if the temporal evolution of the
LAI should be predicted accurately, and if the modeled soil
moisture should be significantly improved. The better match
in the modeled LAI and soil moisture values has been found
to lead to an improvement in the modeled evapotranspira-

Table 5. Values of the Kalman Gain for the Soil Moisture State in Case LAI Values Are Assimilated

Time Step
(Day of Year)

Upper
Layer

Bottom
Layer

ma1 sb1 wb1 ww1 ma1 sb1 wb1 ww1

117 0.000 0.038 0.000 0.034 0.000 0.072 0.000 0.097
124 0.000 �0.012 0.000 �0.012 0.000 0.012 0.000 0.022
131 0.000 �0.007 0.000 �0.008 0.000 0.004 0.000 0.010
138 0.000 0.002 0.000 0.002 0.000 0.010 0.000 0.017
145 0.000 0.001 0.000 0.001 0.000 0.016 0.000 0.022
152 0.000 �0.014 0.000 �0.011 0.000 0.008 0.000 0.008
159 0.000 �0.005 0.000 �0.005 0.006 0.003 0.012 0.004
166 �0.010 �0.011 �0.010 �0.010 0.000 0.002 0.004 0.003
173 �0.015 �0.011 �0.014 �0.009 �0.002 0.001 0.001 0.002
180 �0.027 �0.001 �0.025 �0.001 �0.003 �0.001 0.000 0.002
187 �0.005 �0.002 �0.005 �0.002 �0.003 �0.001 �0.002 0.002
194 �0.024 �0.003 �0.022 �0.004 �0.003 �0.003 �0.001 0.001
201 �0.022 �0.001 �0.022 �0.002 �0.008 �0.007 �0.001 0.001
208 �0.009 �0.004 �0.009 �0.003 �0.013 �0.012 �0.001 0.001
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tion. The overall conclusion from this work is therefore that
there is real potential to improve the results of coupled
hydrologic/crop growth models through the assimilation of
remotely sensed LAI and soil moisture data under realistic
conditions, but that observations of both variables need to
be assimilated.
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