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ABSTRACT

The objective of this paper is to improve the performance of a hydrologic model through the assimilation
of observed discharge. Since an observation of discharge at a certain time is always influenced by the
catchment wetness conditions and meteorology in the past, the assimilation method will have to modify both
the past and present soil wetness conditions. For this purpose, a bias-corrected retrospective ensemble
Kalman filter has been used as the assimilation algorithm. The assimilation methodology takes into account
bias in the forecast state variables for the calculation of the optimal estimates. A set of twin experiments has
been developed, in which it is attempted to correct the model results obtained with erroneous initial
conditions and strongly over- and underestimated precipitation data. The results suggest that the assimi-
lation of observed discharge can correct for erroneous model initial conditions. When the precipitation used
to force the model is underestimated, the assimilation of observed discharge can reduce the bias in the
modeled turbulent fluxes by approximately 50%. This is due to a correction of the modeled soil moisture.
In the case of an overestimation of the precipitation, an improvement in the modeled wetness conditions is
also obtained after data assimilation, but this does not lead to a significant improvement in the modeled
energy balance. The results in this paper indicate that there is potential to improve the estimation of
hydrologic states and fluxes through the assimilation of observed discharge data.

1. Introduction

The study of the relationship between precipitation
and catchment discharge has always been one of the
major interests in hydrology. Models describing this re-
lationship have been developed conceptually, meaning
that the complex physical reality is simplified using spe-
cific hypotheses and assumptions (Beven 2000). The
drawback of such models is that their range of applica-
bility is limited to the conditions under which they have
been developed. To better model the rainfall-runoff be-
havior of a catchment, physically based models have
been developed. More specifically, the goal of this type
of model is to describe the partitioning of the incoming
solar and atmospheric radiation into latent, sensible,
and ground heat fluxes, and the partitioning of the pre-
cipitation into surface runoff, infiltration, and evapo-
transpiration. The study of these processes has led to

the development of soil–vegetation–atmosphere trans-
fer schemes (SVATS). A general overview of the over-
all performance of a number of these models can be
found in Wood et al. (1998).

It is well known that results from SVATS are prone
to errors due to a variety of reasons, which can be
errors or oversimplifications in the formulation of the
model physics, and/or errors in the meteorological forc-
ing data. Other reasons include the lack of soil, vegeta-
tion, and topographic data at a sufficiently high resolu-
tion and/or errors in these datasets and the derived
parameters. Remote sensing of surface state variables
(e.g., soil temperature, soil moisture) or surface fluxes
(e.g., latent heat fluxes) forms an excellent opportunity
to update SVATS with external datasets (Troch et al.
2003). The update of the model state with externally
measured variables is commonly referred to as data
assimilation.

A wide variety of studies have put data assimilation
into practice. The most frequently used methods to up-
date the soil moisture state of land surface models are
direct insertion (Heathman et al. 2003), Newtonian
nudging (Houser et al. 1998; Pauwels et al. 2001; Pani-
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coni et al. 2002), optimal interpolation (Seuffert et al.
2004), Kalman filtering (Galantowicz et al. 1999;
Hoeben and Troch 2000; Walker and Houser 2001;
Walker et al. 2001; Reichle et al. 2002a,b; Margulis et al.
2002; Crow and Wood 2003), Kalman smoothing
(Dunne and Entekhabi 2005), and variational data as-
similation (Castelli et al. 1999; Reichle et al. 2001a,b;
Boni et al. 2001; Caparrini et al. 2003, 2004; Margulis
and Entekhabi 2003; Crow and Kustas 2005). Several of
these studies have used remotely sensed data, including
radar and radiometric data. Recently, remotely sensed
latent heat fluxes have been assimilated into a hydro-
logic model in order to update the soil moisture state
(Schuurmans et al. 2003). Other studies have focused
on the assimilation of surface temperature (Boni et al.
2001; Lakshmi 2000), or have assimilated both the soil
moisture content and surface temperature (Walker et
al. 2001).

The application of hydrologic models at large spatial
scales renders the use of in situ observations difficult
for the update of the model state. In this case remote
sensing data are better fitted for the observation of the
system state. Although it has been shown that the as-
similation of remotely sensed data can lead to an over-
all increase in model performance, the use of remotely
sensed data suffers from some significant drawbacks.
Remote sensing data usually have a larger uncertainty
than in situ observations and are usually available at a
coarse temporal (e.g., daily, weekly, or monthly prod-
ucts) and spatial (10 m to 50 km) resolution. Because of
these drawbacks, an alternative to using remote sens-
ing observations is the use of catchment discharge ob-
servations in order to update the model soil wetness
state at the catchment scale. Discharge observations
represent the integrated effect of point-scale runoff-
generating processes and catchment topography, and
are an excellent indication of the catchment wetness
conditions. The major advantage of the use of discharge
observations for the updating of hydrologic models is
that these observations are generally available at a high
temporal resolution. Further, catchment discharge is
usually monitored with a reasonable degree of confi-
dence (Boiten 2000). Discharge measurements are also
available across different spatial scales, in contradiction
to remotely sensed observations of, for example, soil
moisture, and they can thus be used for the improve-
ment of model results across different spatial scales.
The use of measured river discharge values for the up-
dating of the state of hydrologic models through Kal-
man filtering has been given a good deal of attention in
the past. Kalman filtering and observed discharge data
have been used to update the state variables and/or
parameters of simple linear (mostly time series) (Todini

and Wallis 1978; Wood 1978; Grigoriu 1978; Katayama
1980; Bras 1980; Ganendra 1980) and nonlinear rain-
fall-runoff models (Logan et al. 1978; Katayama 1980;
Bras 1980). Recently, the possibility to improve the
forecasts of simple conceptual rainfall-runoff models
has been indicated by Aubert et al. (2003). In their
study, the results from a simple lumped rainfall-runoff
model, consisting of two reservoirs (a soil and routing
reservoir) for the entire catchment, and requiring only
four input parameters, have been updated through the
assimilation of observed soil moisture values and/or dis-
charge records. The objective of all these studies was to
improve runoff forecasts, not the modeled soil moisture
state or energy balance terms.

The overall goal of this paper is to improve the per-
formance of a fully process-based lumped water and
energy balance model [the TOPMODEL-Based Land–
Atmosphere Transfer Scheme (TOPLATS; Famiglietti
and Wood 1994)] through the assimilation of observed
discharge values. More specifically, the first objective of
this study is to correct the modeled soil wetness condi-
tions and turbulent fluxes if the initial conditions are
wrong. Further, it is known that precipitation is the
most important variable in the determination of the soil
wetness conditions, which in turn are very important in
the calculation of evapotranspiration rates. For this rea-
son, the second objective of this paper is to assess
whether the assimilation of observed discharge can cor-
rect modeled soil moisture values, and consequently
improve the modeled energy balance, when the precipi-
tation used to force the model is either over- or under-
estimated. All model applications are done over the
Zwalm catchment in Belgium, using hourly observed
forcing data from 1994 through 1998.

The paper is organized as follows. First, the assimi-
lation algorithm is explained. Then, a short description
of the hydrologic model, runoff routing algorithm, test
site, and datasets is given. After this the results of the
various model applications are analyzed. Finally, a sum-
mary of the obtained results and conclusions that can
be drawn from this work are given.

2. The assimilation algorithm

In the ensemble Kalman filter (EnKF) (Evensen
1994), the following system is considered:

�Xk�1 � fk�Xk, uk� � wk

Yk � HkXk � �k

, �1�

where Xk is the system state vector with ns entries, Yk

is the system observation vector with no entries, uk is
the system forcing, wk is the process noise, �k is the
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measurement noise, and k indicates the time step. In
our case, Xk consists of the soil moisture content (of the
upper and lower soil layers) and catchment-averaged
water table level, and Yk consists of the measured dis-
charge; Hk relates the system state to the observation of
this system state (in our case it thus relates the soil
water content and water table level to the discharge)
and is calculated numerically. The statistics of wk and �k

can be summarized as follows:

�
E�wk� � 0, E��k� � 0

E�wkwk
T� � Qk � 0, E��k�k

T� � Rk � 0

E�wkwl
T� � 0, E��k�l

T� � 0, �k � l

E�wk�l
T� � 0, �k, l

,

�2�

where Qk is the process noise covariance, Rk is the
measurement noise covariance, and T stands for the
transpose operator. Given the above definitions, Eq.
(1) is an accurate description of the system for the pur-
pose of assimilating data that are, at each measurement
time step, determined by the system state at the same
time step. However, runoff generated at a certain time
and location in a catchment will only reach the catch-
ment outlet after a certain time period. For this reason,
a runoff observation at a certain time is determined by
the state of a catchment at a number of previous time
steps. Thus, if runoff time series are assimilated into a
hydrologic model, not only the state of the catchment
for a given location at the current time step, but also the
state at a number of different locations and previous
time steps, have to be updated and propagated forward
to the current time step. For this reason, the system
state vector Xk is augmented so that it contains not only
the system state at time step k, but also the system state
at time steps k � 1, k � 2, . . . , k � (nc � ny � 1). Here
nc is the number of time steps in the concentration time
of the catchment (the number of time steps it takes for
surface runoff generated at the point in the catchment
farthest from the outlet to reach the outlet), and ny is
the number of time steps with observed discharge val-
ues in the observation vector. Using this representation,
an observation at time step k will thus be used to up-
date the model state at time steps k through k � nc. If
observations at time step k and k � 1 are used, the
model state at time steps k through k � nc � 1 will be
updated. These model states at time steps k � i, with i
ranging from zero to nc, are in fact the initial conditions
for time step k � i � 1. Using these initial conditions,
the model is then reapplied for time steps k through
k � nc � 1, from which the modeled fluxes are calcu-
lated. The approach of distributing the system state

vector in time, and the use of observed data to update
the model state at a number of time steps prior to the
observation time steps, using the traditional EnKF
equations, is referred to as retrospective ensemble Kal-
man filtering (REnKF).

Figure 1 explains this system representation in more
detail. Assume a catchment has a unit hydrograph that
lasts for 10 time steps. If one wants to assimilate a
runoff observation at a certain time step, the system
state up to 10 time steps before the runoff observation
has to be updated. If, for example, one wants to assimi-
late six consecutive runoff observations (this could be
any number; in this example the number six was ran-
domly chosen), the system state starting 10 time steps
before the first observation, up to the state at the time
of the last observation, thus in total 16 time steps, has to
be updated. The size of the assimilation window (the
number of observations taken into account) can be cho-

FIG. 1. Schematic of the data assimilation algorithm. (top) The
comparison between the discharge simulations and observations.
(middle) The precipitation time series that were used to obtain
the discharge simulations. (bottom) The unit hydrograph of the
catchment.
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sen based on computational efficiency, or an optimal
value can be determined based on a comparison be-
tween the results of the assimilation procedure and ob-
servations. The objective of this paper is to examine the
data assimilation algorithm with an assimilation win-
dow of one observation. An examination of the optimal
size of the assimilation window is the purpose of a fur-
ther study.

A number of other methods are available to update
state variables at a certain time step using observations
from different time steps and that potentially could be
used for the assimilation of runoff observations, by
making the observations Y at time step k in Eq. (1)
dependent not only on the state X at time step k, but
also at time steps k � 1, k � 2, and so on. For example,
Cohn et al. (1994) developed a Kalman smoothing ap-
proach, in which the system state vector is not distrib-
uted in time, but in which the cross covariances be-
tween the errors at the current and the previous time
steps have to be propagated in order to allow the cal-
culation of the Kalman gain factors. In this method, a
different gain factor is calculated for every time step at
which the model state variables have to be updated.
Todling and Cohn (1998) developed and analyzed a
number of simplifications to this fixed-lag Kalman
smoother. Another method to update the system state
at a certain time before the observation was developed
by Evensen and van Leeuwen (2000), in which a first
guess for the analysis is the result of the application of
the ensemble Kalman filter. This first guess is then
propagated backward in time by using the ensemble
error cross covariances. In other words, every time a
new dataset becomes available during the forward in-
tegration, an analysis is first computed for that time
step using the ensemble Kalman filter solutions. Since
the covariances between the states at the observation
time steps and the states at previous time steps are
known, the update at the observation time step can be
propagated backward in time for all time steps up to
that time. The approach of distributing the system state
vector in time was recently used by Dunne and En-
tekhabi (2005) for the assimilation of surface soil mois-
ture in a reanalysis approach. In their study, soil mois-
ture observations with a temporal resolution of 3 days,

and an assimilation window of three observations, were
used. They concluded that for the purpose of assimilat-
ing soil moisture data their method can yield an im-
proved state estimate as compared to traditional filter-
ing. Because of these promising results, and the relative
simplicity of implementation, the approach of distrib-
uting the system state vector in time is used in this
study.

An additional difficulty in the assimilation of dis-
charge records in this experiment is the representation
of forecast bias. If the meteorological data used to force
the model are biased, or if certain model parameters
are wrong (e.g., the hydraulic conductivity), the mod-
eled soil wetness, and consequently the modeled energy
balance, will also be biased. If this forecast bias is not
adequately represented in the assimilation algorithm,
the resulting state estimates will not be optimal. In this
paper, we use the online forecast bias estimation and
correction with feedback approach described in Dee
and Da Silva (1998). In this approach, forecast bias
estimate and the state estimate are modeled separately,
and observations of the system state are used to opti-
mize both estimates.

The data assimilation algorithm works as follows. To
apply the REnKF, an ensemble of N system state vec-
tors has to be propagated in parallel. Each system state
vector represents one single realization of the possible
model trajectories and bias.

First, for each ensemble member i, the state and bias
estimates are propagated:

�
X̂k

i� � fk�1�X̃k�1
i� , uk�1

i �

B̂k
i� � B̂k�1

i�

X̃k
i� � X̂k

i� � B̂k
i�

, �3�

where Bk is the forecast bias, defined as the average
modeled state variable minus the truth. The hat indi-
cates an estimate of the variable, the tilde an unbiased
state estimate, the superscript � the a priori estimate
(forecast, before the assimilation of the observations),
and the superscript � the a posteriori estimate (analysis,
after the assimilation). The a priori system state vector
X̃i�

k of each ensemble member i is used to calculate the
a priori state error covariance as follows:

�
Pk

� �
1

N � 1
Dk

�Dk
�T

Dk
� � �X̃k

1� � X̃k
� , . . . , X̃k

i� � X̃k
� , . . . , X̃k

N� � X̃k
��

X̃k
� �

1
N 	

i�1

N

X̃k
i�

, �4�
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where P�
k is the a priori error covariance matrix. The

assimilation algorithm first updates the bias estimate,
after which the state estimate is updated. As explained
by Dee and Da Silva (1998), the forecast error covari-
ance S�

k , and the bias prediction error covariance Sb�
k ,

can be calculated as

�Sk
� � �1 � ��Pk

�

Sk
b� � �Pk

�
, �5�

where 
 is estimated by comparing the root-mean-
square error (rmse) between the modeled and observed
state variables to the rmse between the modeled states
variables with removal of the bias and the observations.
Division of the second by the first rmse will provide a
rough estimate of 
. This is further explained in section
6d. The Kalman gain factor for the bias estimates is
then calculated:

Lk � Sk
b�Hk

T�HkPk
� Hk

T � Rk��1. �6�

The estimate of the bias is updated as follows:

B̂k
i� � B̂k

i� � Lk�Yk � HkX̃k
i� � �k

i �, �7�

where �i
k is a random realization of the measurement

error (Burgers et al. 1998). The a priori error covari-
ance is then used to calculate the Kalman gain factor:

Kk � Sk
� Hk

T�HkSk
� Hk

T � Rk��1. �8�

The a posteriori state vector of each ensemble member
is then calculated as follows:

X̃k
i� � X̃k

i� � B̂k
i� � Kk�Yk � Hk�X̃k

i� � B̂k
i�� � �k

i �.

�9�

If observations are not available, no update is per-
formed. The system state at each time step is simply the
average of the a posteriori system states of all ensemble
members.

3. Model description

TOPLATS has as its foundation the concept that
shallow groundwater gradients set up spatial patterns of
soil moisture that influence infiltration and runoff dur-
ing storm events, and evaporation and drainage be-
tween storm events. The assumption is made that these
gradients can be estimated from local topography
[through a soil–topographic index (Sivapalan et al.
1987)]. From this foundation, the model was expanded
to include infiltration and resistance-based evaporation
processes, a surface vegetation layer and a surface en-
ergy balance equation with an improved ground heat
flux parameterization, and the effect of atmospheric
stability on energy fluxes (Famiglietti and Wood 1994;

Peters-Lidard et al. 1997). The model was originally
developed to simulate the surface water and energy
balance for warm seasons (Famiglietti and Wood 1994;
Peters-Lidard et al. 1997). More recently, winter pro-
cesses (frozen ground and a snowpack), an improved
water and energy balance scheme for open-water bod-
ies, and a two-layer vegetation parameterization were
added (Pauwels and Wood 1999a). Application to the
Zwalm catchment (Pauwels et al. 2001, 2002) and to
field experiments such as the First International Satel-
lite Land-Surface Climatology Project (ISLSCP) Field
Experiment (FIFE) (Peters-Lidard et al. 1997) and the
Boreal Ecosystem Atmosphere Study (BOREAS)
(Pauwels and Wood 1999b, 2000) has shown that the
model can adequately simulate surface energy fluxes,
soil temperatures, and soil moisture.

The soil column in divided into a thin upper layer
(depth 5 cm) and a lower layer. Water for bare-soil
evaporation is supplied by the thin upper layer, while
water for vegetation transpiration can be supplied by
either layer, depending on the distribution of the roots
in the soil column. This distribution is specified for each
land-cover class as a model parameter. Surface runoff is
generated using both the saturation and infiltration ex-
cess mechanisms. When the rate of net precipitation
exceeds the infiltration capacity of the soil [which de-
pends on the soil moisture content (Philip 1957)], infil-
tration excess runoff is generated. When the capillary
layer above the groundwater table reaches the surface,
the net precipitation cannot infiltrate and is considered
to be saturation excess runoff. Baseflow is calculated
using the TOPMODEL approach (Beven and Kirkby
1979), which states that the baseflow varies exponen-
tially with the depth to the water table. The total catch-
ment discharge is then the sum of the baseflow and the
saturation and infiltration excess runoff. For a more
complete description of the model physics at the point
scale we refer to Pauwels et al. (2002).

Horizontal transport of water is implicitly modeled
through the TOPMODEL formulation. At the end of
each time step the sum of the fluxes to and from the
water table are calculated, after which the new aver-
age water table depth over the catchment is calculated.
This catchment-average water table depth is then
used to calculate the local water table depth using
TOPMODEL (Sivapalan et al. 1987).

While the model can be run in two different modes
(distributed and statistical), the statistical mode is used
in this study. The statistical mode has been developed
under the similarity concept that locations within the
domain (or macroscale grid), with the same soil–
topographic index and vegetation, respond similarly.
Using the statistical distributions of these controlling
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factors, rather than applying the model for each grid,
considerably reduces the computational effort.

4. The runoff routing algorithm

The runoff routing algorithm was developed by
Troch et al. (1994). The algorithm is based on a solution
of the de Saint Venant equations, neglecting the accel-
eration terms. When the upstream boundary condition
is given by the Dirac function, Brutsaert (1973) solved
these equations as follows:

q�x, t� �
x

�2�bt3�2
exp��

�x � at�2

2b2t
�, �10�

where q is the discharge per unit width of channel (s�1),
x is the distance along the channel (m), t is the time (s),
a is the drift velocity (m s�1), and b2 is the diffusion
coefficient (m2 s�1); a and b are calculated as

�
a � �1 � a0�V

b2 �
V3

gS0F2 �1 � a0
2F2�

, �11�

where V is the vertically averaged channel velocity
(m s�1), S0 is the channel bed slope (�), F is the di-
mensionless Froude number, g is the gravity constant
(9.81 m s�1), and a0 is equal to 2/3.

Equation (10) describes the response in the channel
at a distance x from the origin of the instantaneous unit
perturbation. Using the normalized width function, the
response of the entire channel network can be ex-
pressed as (Mesa and Mifflin 1986)

fc�t� � �
0

�

qc�x, t�W�x� dx. �12�

The normalized width function W(x) (m�1) represents
the distribution of runoff entering the network at a dis-
tance x from the outlet and can be written as

W�x� �
1

LT
Nc�x�, �13�

where Nc(x) is the number of channel links at a given
distance from the outlet and LT is the total channel
length (m).

Troch et al. (1994) expanded this method to calculate
the channel flow to calculate the overland flow. Instead
of calculating the distribution of runoff entering the
network at a distance x, the distribution of runoff gen-
erated at a distance x from the channel network is cal-
culated. This distribution is represented by the normal-
ized hillslope function H(x) (m�1):

H�x� �
I	Nx

P	2 , �14�

where � is the resolution at which the normalized hill-
slope function is calculated (m), I is the number of cells
in the channel, and P is the number of cells in the
hillslope; Nx is calculated as

Nx �
1
I 	i�1

I

Nx�i�, �15�

where Nx(i) is the number of cells that drain directly to
cell i at an overland flow distance x. Using Eq. (10) with
adapted parameters a and b for the overland flow, and
Eq. (12) with H(x) instead of W(x), the response of the
hillslopes fh(t) (s�1) to an instantaneous unit input of
water can be calculated.

The response of the catchment to an instantaneous
unit input of water [ fb(t), s�1] can then be calculated
through convolution:

fb�t��
0

�

fh�t � 
�fc�
� d
. �16�

The channel and overland parameters were optimized
through a study of the time lag between the simulated
and the observed discharge. Figure 2 shows the normal-
ized hillslope and width functions, and the resulting
unit hydrograph for the Zwalm catchment.

5. Site and data description

Figure 3 shows the location of the Zwalm catchment.
For a complete description of the Zwalm catchment we
refer to Troch et al. (1993) as only a short overview will
be given here. The total drainage area of the catchment
is 114 km2 and the total length of the perennial chan-
nels is 177 km. The maximum elevation difference is
150 m. The average year temperature is 10°C, with
January the coldest month (mean temperature 3°C)
and July the warmest month (mean temperature 18°C).
The average yearly rainfall is 775 mm and is distributed
evenly throughout the year. The annual actual evapo-
ration is approximately 450 mm.

Meteorological forcing data with an hourly resolu-
tion (the model time step) from 1994 through 1998 are
used in this study. These data were prepared based on
daily observations of air temperature and humidity, so-
lar radiation, wind speed, and precipitation, from the
climatological station located in Kruishoutem, Belgium,
approximately 5 km outside the catchment (KMI 1994–
1998). Pauwels et al. (2002) give a detailed description
of the processing of the meteorological forcings. Dis-
charge observations at the outlet of the catchment, used
for the validation of the model, were recorded at an
hourly time step. Finally, a 30-m-resolution digital el-
evation model (DEM), a soil texture map from the Bel-
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gian National Geographic Institute, and a Systeme pour
l’Observation de la Terre (SPOT)-derived land cover
classification map from 3 August 1998, were used to
define model parameters. Soil parameters were derived
using the relationship with soil texture given by Rawls
et al. (1982), and the vegetation parameters were de-
rived for each land-cover classification following Pe-
ters-Lidard et al. (1997). The catchment base flow pa-
rameters (the base flow at saturation and the paramater
of the exponential decay in the saturated hydraulic con-

ductivity with depth) were taken from Troch et al.
(1993).

6. Results of the model applications

a. Validation of the model

A model run is first established, in which the mod-
eled discharge is compared to the observations. The
model is run from 1994 through 1998, at an hourly time
step. The distribution of the topographic indices con-

FIG. 2. The runoff routing functions for the Zwalm catchment. (top) The normalized width
function. (middle) The normalized hillslope function. (bottom) The resulting unit hydrograph.
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sists of 13 intervals. Figure 4 shows the comparison
between the measured and simulated discharge for the
entire simulation period. The average modeled dis-
charge is 1.47 m3 s�1 as compared to 1.52 m3 s�1 for the
observations. The correlation coefficient between the
observations and the simulations is 0.80. These statis-
tics, together with the comparison in Fig. 4, indicate
that the model is capable of representing the rainfall-
runoff dynamics of the Zwalm catchment.

b. Description of the twin experiments

In the validation of the assimilation algorithm obser-
vations of the energy and water balance variables are
needed. Although some observations of, for example,
soil moisture content, evapotranspiration, and water

table levels were made during the study period, these
observations have not been done with a sufficient fre-
quency and spatial resolution to be useful for a 5-yr
model validation. For this reason a twin experiment is
developed, in which the routed discharge from the
model run described in section 6a is used as observation
of the catchment discharge. For the remainder of this
paper, we refer to this discharge as the synthetically
observed discharge. The modeled energy and water
balance terms from this model application are used as
the observations of these terms, and are for the remain-
der of this paper referred to as synthetical data.

The ensemble members are generated following the
approach of Reichle et al. (2002a). The meteorological
forcings are perturbed by adding Gaussian white noise

FIG. 3. The location of the Zwalm catchment.
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to the observed meteorological data used to force each
ensemble member. The standard deviation of the noise
is 5 K for the air and dewpoint temperatures, 1 m s�1

for the wind speed, 50 W m�2 for the shortwave radia-

tion, 25 W m�2 for the longwave radiation, 10 mbar for
the surface pressure, and 50% of the magnitude for the
precipitation. Furthermore, the saturated hydraulic
conductivity, the exponential decay parameter of the

FIG. 4. Comparison between the modeled and simulated discharge for the entire study period.
Observations are in solid lines and simulations are in dashed lines.
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hydraulic conductivity with depth, and the catchment-
averaged base flow at saturation are also perturbed
with a random number with mean zero and a standard
deviation of 50% of their magnitude. The additional
perturbation is based on De Lannoy et al. (2006) in
which it is shown that a perturbation of only the me-
teorological forcings will lead to an unrealistic en-
semble spread, and consequently an unrealistic error
covariance. The initial conditions for the different en-
semble members were not disturbed. The number of
ensemble members is set to the number of entries in the
system state vector, in this case 1570. This number is
obtained by multiplying 6 (the number of land cover
classes) by 13 (the number of intervals in the distribu-
tion of the soil–topographic index), by 2 (both the up-
per- and lower-layer soil water content), adding 1 (the
catchment-averaged water table depth) to this number,
and then multiplying this number by 10 (the number of
time steps in the unit hydrograph). Only the catchment-
averaged water table depth needs to be updated, since
the TOPMODEL approach calculates the local water
table depth using the catchment-averaged water table
depth and the topographic indices. Therefore, an up-
date of the average water table depth will be distributed
to an update of the local water table depth through the
TOPMODEL formulations.

Four different experiments are run. In the first two
experiments, the capability of the data assimilation al-
gorithm to correct for erroneous initial conditions is
assessed. In the first experiment, the initial water table
level is lowered by 0.3 m, and the synthetically observed
discharge from section 6a is assimilated into the model.
The impact of the assimilation on the modeled water
table levels and soil moisture contents is assessed. In
the second experiment, the initial water table is raised
by 0.3 m, and again the synthetically observed discharge
is assimilated. It should be noted that the change in the
initial water table depth will automatically lead to a
change in the initial soil moisture values, since these are
calculated based on the assumption of equilibrium ini-
tial conditions and the water table depth.

In the third and fourth experiment, the possibility of
the data assimilation algorithm to correct the model
state under erroneous model forcings is assessed. For
this purpose, the precipitation used to force each en-
semble member is biased. In the third experiment, the
observed precipitation is multiplied by a random num-
ber with mean 1.5 and standard deviation 0.5. In the
fourth experiment, the mean and standard deviation of
this random number are both 0.5. The impact of the
data assimilation on the modeled soil water content and
water table level, and the modeled surface turbulent
fluxes, is assessed. In this case there are thus two per-

turbations of the forcing data: the first perturbation
consists of the multiplication of the observed precipita-
tion by a random number with average 1.5 or 0.5, and
the second perturbation consists of the addition of a
random number to all the forcings for each ensemble
member, as described in the second paragraph of this
section.

The application of the filter equations requires
knowledge about the statistics of the observation error,
�k. Since the objective of this study is to assess the
potential improvement in hydrologic model results
through the assimilation of observed discharge, as a
first step the observations are assumed to be perfect, so
a standard deviation of zero is used. All elements in Rk

are thus zero. A sensitivity analysis is then done, in
which the observation error is modified between 0.01
and 0.5 m3 s�1. The improvement in the modeled en-
ergy balance as a consequence of the assimilation of
erroneous discharge data is then assessed. The mea-
surement noise is assumed to be constant throughout
the simulation.

c. Correction for erroneous initial conditions

If a hydrologic model is forced with correct meteo-
rological data, and if the model formulations and pa-
rameters are correct, after a certain time period an er-
ror in the model initial conditions will disappear. Thus,
under these conditions, one can expect the long-term
model results to be unbiased. For this reason, the pa-
rameter 
 and initial estimate of the bias in the assimi-
lation algorithm are both set to zero, for the first and
second twin experiments. Figure 5 shows the impact of
the data assimilation on the modeled soil wetness con-
ditions for the model applications with erroneous initial
conditions. Both the initially lowered and raised water
tables are corrected quickly (after approximately one
day). The upper-layer soil moisture is, in both cases,
also corrected after approximately one day. The mod-
eled lower-layer soil moisture is strongly improved by
the assimilation algorithm, but becomes equal to the
synthetical observations only after approximately 50
days. Table 1 shows the impact of the corrected soil
wetness conditions on the modeled discharge. In both
cases the bias and rmse between the synthetical obser-
vations and the model results are basically eliminated.
Together with the regression line closer to the 1:1 line
and the increase in the correlation for the REnKF runs,
this shows that, as can be expected, the assimilation
procedure leads to a strong improvement in the mod-
eled discharge. From these two twin experiments we
can conclude that the assimilation of observed dis-
charge can correct for erroneous initial conditions.
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d. Correction of results under erroneous
precipitation

It is undisputed that precipitation is the most impor-
tant variable in the determination of discharge and soil

wetness conditions, and thus also the modeled evapo-
transpiration. On the other hand, it is also widely
known that this variable is very difficult to observe ac-
curately over large spatial scales, because of its high
intermittency and strong spatial variability. Because of

FIG. 5. Correction of erroneous initial conditions through the assimilation of synthetically
observed discharge. The synthetical observations are in thick solid lines, the results of the
baseline runs are in thin solid lines, and the results of the assimilation runs are in dotted lines.
UL stands for upper layer and LL for lower layer. If invisible, the dotted lines coincide with
the thick solid lines.
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these two reasons, estimates of precipitation over large
spatial scales will often be biased. One of the objectives
of this paper is to check whether the assimilation of
observed discharge can correct erroneous model results
obtained under biased precipitation.

The parameter 
 in Eq. (5) is calculated by dividing
the rmse between the modeled and synthetically ob-
served state variables with removal of the bias (thus
subtracting the bias from the modeled state) by the
rmse between the model results and synthetical obser-
vations without bias removal. The average value for the
three types of state variables (water table level, and
upper- and lower-layer water content) and both twin
experiments is approximately 0.6. This value was found
to be similar when it was calculated for 1994 only or for
the entire simulation period. For the remainder of this
section, a value of 0.6 for 
 is used. In section 6f the
sensitivity of the model results to the value for 
 is
examined.

Figure 6 shows the impact of the assimilation proce-
dure on the modeled water table levels, for the model
applications in which the precipitation was over- and
underestimated. Results are shown for 1994 only; for
the other years similar results were obtained. One can
immediately see that the assimilation leads to a larger
temporal variability in the catchment-averaged water
table level. These peaks can be explained by the way
the precipitation data are perturbed. Since the precipi-
tation is multiplied by a random number (with mean 1.5
or 0.5), the precipitation and synthetically observed dis-
charge will, during periods with nonzero precipitation,
be inconsistent with each other. When the precipitation
is overestimated, the assimilation algorithm will lower
the water table, thus reducing the amount of base flow
and the amount of saturated areas (thus reducing the
amount of surface runoff). The modeled soil moisture
will also be decreased, in order to increase the infiltra-
tion and reduce the amount of surface runoff. The
lower amount of base flow and surface runoff will then

assure that the modeled discharge is equal to the syn-
thetical observations. In case the precipitation is under-
estimated, the opposite will occur. The correction of the
modeled discharge, however, is limited, since, in the
case of underestimated precipitation, the amount of
base flow the model can generate is limited to the base
flow at saturation, and the amount of surface runoff is
always limited to the amount of precipitation. On the
other hand, if the precipitation is overestimated, the
model can only increase the amount of infiltration to
the maximum allowed for the soil type and lower the
water table to a level where the base flow becomes
insignificant.

During periods without precipitation, the assimila-
tion algorithm will set the water table level equal to the
synthetic data, correcting the base flow, and thus the
total amount of discharge, since under these conditions
no surface runoff occurs.

Table 1 shows that, for both model applications, the
bias in the modeled discharge is almost eliminated. The
rmse between the synthetically observed and modeled
discharge is strongly reduced, and the correlation be-
tween the synthetically observed and modeled dis-
charge is increased.

Figure 6 shows the impact of the assimilation proce-
dure on the modeled upper-layer soil moisture. Again,
results are shown for 1994 only given that similar results
were obtained for the other years. In both cases the
errors in the modeled soil moisture are basically elimi-
nated, although the impact of the errors in the precipi-
tation, and the consequent improvement in the mod-
eled soil moisture, is stronger when the precipitation is
underestimated. The stronger impact of an underesti-
mation of the precipitation on the modeled soil mois-
ture can be explained by the combined effect of evapo-
transpiration and infiltration. Table 2 explains this ef-
fect. Using the correct precipitation, approximately 500
mm of water infiltrates into the soil per year. When the
precipitation is overestimated, the infiltration is in-

TABLE 1. Results of the data assimilation on the modeled discharge. The synthetic observations are the independent variable (x axis),
and the model applications are the dependent variable ( y axis). Units are in m3 s�1. Application 1 is the model application with an
initially too deep water table, application 2 is the model application with an initially too shallow water table, application 3 is the model
application with overestimated precipitation, and application 4 is the model application with underestimated precipitation. The results
for applications 1 and 2 are for 1994 only; the results for the other model applications are for 1994 through 1998.

Application Run X Y Slope Intercept Rmse R

1 Base 1.18 0.96 0.90 �0.10 0.41 0.96
1 REnKF 1.18 1.18 1.00 �0.00 0.03 1.00
2 Base 1.18 1.37 0.97 0.22 0.29 0.98
2 REnKF 1.18 1.18 1.00 0.00 0.02 1.00
3 Base 1.53 2.55 1.91 �0.36 2.31 0.88
3 REnKF 1.53 1.68 1.30 �0.31 1.14 0.89
4 Base 1.53 0.61 0.27 0.20 1.47 0.79
4 REnKF 1.53 1.53 0.75 0.39 0.61 0.92
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creased to approximately 700 mm yr�1, and a reduction
in the precipitation leads to a reduction of the infiltra-
tion to approximately 285 mm yr�1. If the amount of
soil water that is discharged as base flow is subtracted
from the infiltration, approximately 215 mm yr�1 re-

mains available for transpiration when the precipitation
is correct. When the precipitation is overestimated, ap-
proximately 300 mm yr�1 remains available, and when
the precipitation is underestimated, approximately 150
mm yr�1remains. When the precipitation is overesti-

FIG. 6. Impact of the data assimilation on the modeled water balance variables in case of
erroneous meteorological forcings. The synthetical observations are in thick solid lines, the
results of the baseline runs are in thin solid lines, and the results of the assimilation runs are
in dotted lines. UL stands for upper layer and LL for lower layer.
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mated, the amount of soil water available for root up-
take is thus increased by approximately 85 mm, and
when the precipitation is underestimated, this amount
is reduced by approximately 150 mm yr�1. Since in all
cases the evapotranspiration remains below the poten-
tial evapotranspiration, the effect on the modeled soil
moisture will thus be more pronounced when the pre-
cipitation is underestimated.

Figure 6 shows the impact of the assimilation proce-
dure on the modeled lower layer soil moisture, again
for 1994 only. The same conclusions, as can be ex-
pected, can be drawn for the lower-layer soil moisture
as for the upper-layer soil moisture: in both cases the
error in the modeled soil moisture is reduced, but the
effect of the errors in the precipitation, and the conse-
quent improvement through data assimilation, is more
pronounced when the precipitation is underestimated.
Figure 6 shows that after the data assimilation a higher
error in the modeled lower-layer soil moisture remains
than for the modeled upper-layer soil moisture.

Table 2 shows that, when the precipitation is overes-
timated, the reduction in the upper-layer soil moisture
and the increase in the water table depth lead to an
increase in the infiltration, a reduction in the surface
runoff, and a reduction in the base flow. For the case of
underestimated precipitation, the opposite occurs. The
improvement in the modeled discharge is thus due to an
improvement in both the modeled base flow and sur-
face runoff.

Figure 7 shows the bias and the standard deviation of
the noise of the estimated water table levels. For both
model applications the bias tends to be rather low in
magnitude, rarely exceeding 5 cm. An overestimation
of the precipitation leads to a slightly negative bias, thus
indicating a small underestimation of the water table
depth. An underestimation of the precipitation leads to
the opposite effect. Figure 7 further shows that the er-
ror in the estimation of the water level is relatively low
(rarely exceeding 10 cm), and that an overestimation of
the precipitation leads to a larger uncertainty in the

modeled water table level than an underestimation. A
seasonal cycle in the error can also be observed, which
can be attributed to the seasonal cycle in the evapo-
transpiration. As evapotranspiration is very dependent
on the amount of precipitation, an error in the precipi-
tation will thus have its highest effect during the sum-
mer, because the evapotranspiration rates are highest
in the summer. Similar results were obtained for the
bias and noise of the upper- and lower-layer soil mois-
ture contents.

Table 3 shows the results of the assimilation proce-
dure on the modeled energy balance terms. When the
precipitation is overestimated, the latent heat flux is
slightly increased by the increase in precipitation, and
the data assimilation has a negligible impact on the
modeled latent heat flux (or evapotranspiration), as
well as on the other energy balance terms. Together
with Table 1, Fig. 6 leads to the conclusion that the
increase in precipitation is partitioned mostly into an
increase in the modeled discharge and not the modeled
evapotranspiration, and that this can be explained by
the limited sensitivity of the modeled soil moisture to
the increase in precipitation.

When the precipitation is underestimated, an im-
provement in the modeled latent heat flux (or evapo-
transpiration) and sensible heat flux can be observed,
while the net radiation and ground heat flux are essen-
tially insensitive to the data assimilation procedure.
The improvement in the modeled turbulent fluxes can
be explained by the improvement in the modeled soil
moisture, as shown in Fig. 6. The underestimation of
the precipitation is thus partitioned not only into an
underestimation of the discharge, but also an underes-
timation of the evapotranspiration. Because the data
assimilation procedure does not fully correct the under-
estimation of the lower-layer soil moisture content, the
modeled latent heat fluxes will still be underestimated
when discharge data are assimilated, but a reduction in
the bias of more than 50% is nevertheless obtained.

Figure 8 shows the impact of the assimilation of the

TABLE 2. Partitioning of the precipitation for the different model applications (mm yr�1).

Variable Synthetic data

Baseline run
overestimated
precipitation

Assimilation run
overestimated
precipitation

Baseline run
underestimated

precipitation

Assimilation run
underestimated

precipitation

Precipitation 795.72 1182.47 1182.47 430.62 430.62
Infiltration 2.66 13.13 17.64 0.25 0.22
Excess runoff
Saturation 131.29 265.63 162.38 37.71 84.05
Excess runoff
Surface runoff 133.95 278.76 180.02 37.96 84.27
Baseflow 286.95 407.82 273.08 136.41 353.22
Total discharge 420.90 686.58 453.10 174.37 437.49
Infiltration 501.88 707.41 825.89 286.16 230.43
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synthetic discharge data on the monthly average diur-
nal cycles of the modeled latent heat fluxes. Here it can
be seen that the largest improvement occurs when the
precipitation is underestimated, and that this improve-
ment is the weakest during the winter. During the other
seasons the improvement is relatively constant through-

out the year. Figure 9 shows these diurnal cycles for the
modeled sensible heat flux. The same conclusions can
be drawn as for the latent heat flux.

As a summary, the results of the four twin experi-
ments suggest that there is potential to improve the
results of hydrologic models, but that this improvement

FIG. 7. Bias and std dev of the error in the modeled water table levels in case of erroneous
meteorological forcings.
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is dependent on the meteorological conditions during
the model application.

e. Sensitivity to observation error

To more realistically assess the effect of the assimi-
lation of observed discharge, a Gaussianly distributed
error was added to the synthetical discharge observa-
tions. An error of 0.01, 0.1, and 0.5 m3 s�1 was assumed.
The effect of this model error on the modeled energy
balance was assessed.

Table 3 shows the effect of this observation error. It
can clearly be seen, as can be expected, that the in-
crease in the observation error leads to a decrease in
the accuracy of the modeled discharge. However, this
does not have a strong impact on the modeled energy
balance. When the precipitation is overestimated, even
an error of 0.5 m3 s�1 leads to a similar improvement as
perfect observations. When the precipitation is under-
estimated, the accuracy in the modeled energy balance
slightly increases as the observation error decreases
from 0.5 to 0.1 m3 s�1, but a further decrease in the
observation error does not lead to a further improve-
ment in the model results. From this sensitivity analysis
we conclude that even under considerable errors in the
synthetic observations (for the Zwalm catchment an
error of 0.1 m3 s�1 is a relatively high error), there
remains a potential to improve the modeled water and
energy balance terms through the assimilation of dis-
charge data.

f. Sensitivity to the estimate of 


In many cases it will be impossible to make an accu-
rate estimate of 
, more specifically if no observations

of soil moisture and/or water table levels are available.
The objective of this section is to assess whether the
assimilation algorithm will also provide acceptable re-
sults if the bias correction algorithm is omitted, in other
words if 
 is set to zero. For these model applications
the observation error was also set to zero. Table 3
shows the results of these model applications, for the
cases in which the precipitation was over- and under-
estimated. When the precipitation is overestimated, the
bias between the model results and the synthetic obser-
vations is slightly larger as compared to the model runs
where 
 is set to 0.6, but the rmse is slightly lower.
When the precipitation is underestimated the opposite
behavior can be observed. Since the differences be-
tween the model results with 
 zero and 0.6 are so low,
it can be concluded that, when it is impossible to esti-
mate 
, a value of 0 will lead to results that will be
similar to the results with an accurate estimate 
, even
though these results will not be accurate estimates.

7. Summary and conclusions

A method has been developed to update the past
state of a land surface model using discharge observa-
tions in a retrospective ensemble Kalman filter frame-
work. The method allows the correction of bias in the
model forecasts. For each model state update, one dis-
charge observation is used, although it is possible to use
any number of discharge observations for the updating
of the model. In a twin experiment it is shown that
erroneous initial conditions can be corrected for
through the assimilation of synthetically observed dis-
charge. A second set of twin experiments is then devel-

TABLE 3. Results of the data assimilation on the modeled energy balance parameters for the model run with overestimated precipi-
tation. Here, Rn is the modeled net radiation; LE, H, and G are the modeled latent, sensible, and ground heat fluxes, respectively; ET
is the modeled evapotranspiration; and Q is the modeled discharge. The synthetic observations are the independent variable (x axis);
the model applications are the dependent variable ( y axis). Units are in W m�2, except for the evapotranspiration, which is in mm per
hour, and for the discharge, which is in m3 s�1. The averages for the evapotranspiration are recalculated to mm per year. The top part
of the table is for overestimated precipitation, and the bottom part for underestimated precipitation.

X Baseline run Error 0.00 m3 s�1 Error 0.01 m3 s�1 Error 0.10 m3 s�1 Error 0.50 m3 s�1 
 0

Y rmse Y rmse Y rmse Y rmse Y rmse Y rmse
Rn 96.88 97.26 1.00 97.11 0.69 97.11 0.69 97.11 0.68 97.09 0.71 97.09 0.65
LE 45.08 48.05 6.20 47.17 4.77 47.16 4.75 47.12 4.62 47.06 4.61 47.04 4.50
ET 336.73 374.98 0.0093 363.84 0.0071 363.71 0.0070 363.11 0.0069 362.32 0.0068 362.13 0.0067
H 47.12 44.33 6.80 45.15 4.71 45.16 4.69 45.20 4.58 45.27 4.63 45.28 4.40
G 4.68 4.88 2.58 4.79 1.65 4.79 1.64 4.79 1.65 4.76 1.85 4.77 1.58
Q 1.53 2.55 2.30 1.68 1.14 1.71 1.19 1.84 1.63 1.92 1.39 1.66 1.35
Rn 96.88 96.04 1.98 96.44 1.32 96.44 1.32 96.47 1.34 96.68 1.47 96.44 1.34
LE 45.08 38.36 13.30 41.67 9.28 41.68 9.28 41.88 9.32 43.21 9.40 41.58 9.48
ET 336.73 250.27 0.0197 293.10 0.0136 293.14 0.0136 295.83 0.0137 313.06 0.0138 291.92 0.0139
H 47.12 53.39 13.74 50.33 8.42 50.33 8.42 50.13 8.49 48.86 8.81 50.43 8.64
G 4.68 4.29 4.91 4.43 3.32 4.43 3.31 4.45 3.39 4.61 4.01 4.43 3.31
Q 1.53 0.61 1.47 1.53 0.61 1.53 0.62 1.64 0.73 2.09 1.14 1.48 0.60
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FIG. 8. Impact of the data assimilation on the monthly average diurnal cycle of the modeled latent heat
fluxes (LE). The monthly averages are calculated for the 5-yr simulation period. The double-thick solid
lines are the synthetic observations, the thick solid lines are the results of the baseline run with under-
estimated precipitation, and the thick dotted lines are the results of the baseline run with overestimated
precipitation. The thin solid lines are the results of the baseline run with underestimated precipitation,
and the thin dotted lines are the results of the baseline run with overestimated precipitation.
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FIG. 9. Impact of the data assimilation on the monthly average diurnal cycle of the modeled sensible
heat fluxes (H ). The monthly averages are calculated for the 5-yr simulation period. The double-thick
solid lines are the synthetic observations, the thick solid lines are the results of the baseline run with
underestimated precipitation, and the thick dotted lines are the results of the baseline run with over-
estimated precipitation. The thin solid lines are the results of the baseline run with underestimated
precipitation, and the thin dotted lines are the results of the baseline run with overestimated precipita-
tion.

JUNE 2006 P A U W E L S A N D D E L A N N O Y 475



oped, in which the precipitation is first strongly over-
estimated, and then strongly underestimated. A reduc-
tion in the bias between the synthetically observed and
modeled soil wetness conditions and fluxes is obtained
through the assimilation procedure. When the precipi-
tation is underestimated, these improved soil wetness
conditions lead to an improvement in the modeled en-
ergy balance. The results have been found to be insen-
sitive to the error in the observed discharge data, and to
the estimate of the bias parameter 
. The results indi-
cate that it is possible to improve the performance of
land surface models through the assimilation of ob-
served discharge records. Further research will focus on
the determination of the optimal size of the assimilation
window and on the application of the assimilation
method for forecasting purposes.
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