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Abstract 

 

Whereas protease inhibitors have been developed successfully against hypertension and viral 

infections, they have failed thus far as cancer drugs. With advances in cancer profiling we now 

better understand that the tumor degradome forms a complex network in which specific nodes 

determine the global outcome of manipulation of the protease web. However, knowing which 

proteases are active in the tumor micro-environment, we may tackle cancers with the use of 

protease-activated prodrugs (PAPs). Here we exemplify this concept for metallo-, cysteine and 

serine proteases. PAPs not only exist as small molecular adducts, containing a cleavable 

substrate sequence and a latent prodrug, they are presently also manufactured as various types 

of nanoparticles. Although the emphasis of this review is on PAPs for treatment, it is clear that 

protease activatable probes and nanoparticles are also powerful tools for imaging purposes, 

including tumor diagnosis and staging, as well as visualization of tumor imaging during 

microsurgical resections.  
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1. Introduction 

The human genome encodes 588 proteases that assemble into five distinct catalytic classes: 

metallo-, serine, threonine, cysteine and aspartic proteases [1]. Comprising approximately 2% 

of protein coding genes, the components of the "degradome" are important for a host of 

normal physiological and developmental processes, and their dysregulation is associated with 

pathogenic mechanisms underlying cancer and many other human diseases.  This has made 

proteases attractive targets for drug development - however, with a few important exceptions, 

success has been elusive.  Among the spectacular victories are the stories of the 

metalloproteinase inhibitors that block angiotensin converting enzyme (ACE) for lowering blood 

pressure [2] and the inhibitors of the aspartyl protease encoded by the human 

immunodeficiency virus which is required for human immunodeficiency virus (HIV) virion 

assembly [3]. But in contrast, the potent broad-spectrum matrix metalloproteinase (MMP) 
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inhibitors that were developed in the 1990’s as anti-cancer agents met with disappointment in 

the clinic [4, 5].   

There are several reasons for the failure of the MMP inhibitors (MMPIs) as cancer therapies. 

The central issue is that MMPs were initially perceived to act primarily as destroyers of the 

extracellular matrix (ECM), thus endowing cancer cells with the ability to invade and 

metastasize.  We now know that this is a woefully simplistic view of the pathophysiological 

roles of these enzymes: subsequent work in the first decade of this century has highlighted 

their importance as regulators of the entire extracellular signaling milieu, thereby influencing 

pathways that control cell proliferation, survival, adhesion, migration, differentiation and their 

interactions with other cells [6, 7].  Indeed, although some MMPs such as membrane type-1 

MT1-MMP (MMP14) are essential for cancer cell invasion through collagenous matrices [8], 

many MMPs can act either to promote or enhance tumor cell aggressiveness depending on the 

tumor type and its stage of progression [9-11], and some, such as MMP8, appear to be 

fundamentally tumor- and metastasis-suppressive [12, 13]. The first generations of MMPIs 

lacked selectivity, not only inhibiting many of the 24 human MMPs but also some of the other 

large families of related metalloenzymes such as the ADAMs (a disintegrin and 

metalloproteinase) and ADAMTS (ADAMs with thrombospondin-like motifs), whose existence 

was unknown when these drugs were developed.  Together with the MMPs, these enzymes 

have important functional roles in organ homeostasis throughout the body, including the status 

of the immune system, and their inhibition no doubt contributed to the unacceptable side-

effects of the MMPIs.  
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The multiple roles of proteases and the complex repertoire of protease families introduce 

another important consideration in relation to the problems associated with the MMPIs, which 

relates to the interconnectedness of what has been called the “protease web” [14, 15]. 

Increasingly we have become aware that in general proteases do not act in simple linear 

pathways like the clotting cascade, but instead are found to be working in concert via networks 

of enzymes of multiple catalytic classes, which regulate and coordinate each other’s activities 

and expression to determine tissue homeostasis. Functional inhibition of one enzyme or set of 

enzymes – for instance by MMPIs  - can disturb this homeostatic balance, leading to alterations 

in the protease web whereby different protease activities are manifest, taking over roles 

originally performed by the inhibited MMPs, or unleashing activities that have deleterious 

consequences for the tissue or the body as a whole. These “systemic protease web-associated 

modulations” (spam) as a result of MMP inhibition can lead to the paradoxical promotion of 

metastasis in vivo, as we discussed in an earlier review [16].  

Taking these considerations together, it is clear that although several protease systems are 

upregulated or functionally activated in the extracellular tumor environment - particularly the 

serine proteases of the plasminogen activation pathway, the MMPs and cysteine cathepsins -  

their blockade may not have the hoped-for anti-cancer therapeutic effects, even with highly 

specific inhibitors.  (Parenthetically though, we should note that there is renewed enthusiasm 

for the clinical potential of selective MMP inhibitors [5]). But instead of trying to inhibit the 

actions of proteases to prevent cancer growth and spread, we can turn the problem on its 

head: an exciting and logically appealing alternative strategy takes advantage of the elevated 

activities of particular proteases in cancer tissues to serve as "triggers" for the localized release 
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of toxic agents from otherwise inactive prodrugs.  This is an attractive concept because many 

conventional chemotherapeutic agents are non-selective, and therefore toxic to both cancer 

and normal host cells, resulting in dose-limiting systemic toxicities.  Incorporation of a short 

peptide as a pro-moiety can render the agents inactive and therefore reduce their toxicity, until 

they enter the tumor environment and encounter the high-levels of a specific cleaving enzyme 

(Figure 1A).   

As we will discuss further, the Protease-Activated Prodrug (PAP) concept can be refined by 

adding on targeting moieties to direct the agent to specific tissue locations.  Such targeting 

moieties could be antibodies that recognize tissue-restricted markers, or ligands for cellular 

receptors.  Linking the cytotoxic agents to high molecular weight carriers or nanoparticles can 

offer enhanced pharmacokinetic properties by reducing urinary excretion through the kidneys, 

thereby increasing retention in the circulation.  Within tumors, the leakiness of the vasculature 

can passively contribute to increased accumulation of such high-molecular weight prodrugs via 

a mechanism known as “enhanced permeability and retention” [17].  The key factor in these 

scenarios is that the protease-cleavable pro-moiety must be stable while the agent is in transit 

in the circulation, but be rapidly cleaved when it encounters the tumor-restricted protease.  

Secreted and transmembrane proteases that are highly expressed and activated in the tumor 

environment are thus ideal candidates as prodrug activators, and we will discuss examples from 

several catalytic classes.  From the standpoint of cancer therapy, an additional attraction is that 

because the proteases responsible for prodrug cleavage may come not just from cancer cells 

but also from the stromal components of tumors, release of the active drug directly into the 

tumor microenvironment does not depend on a target expressed only by the cancer cells. 
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Instead it is the entire tumor ecosystem that represents the target. Thus compounds such as 

colchicine that act primarily as vascular disrupting agents (VDAs) are associated with significant 

systemic toxicity in their native forms, but can be delivered as prodrugs to cause localized 

disruption of the tumor vasculature, with a substantial improvement in the therapeutic 

window, as exemplified by the ICT2588 PAP shown in Figure 1B [18-20].    

The PAP concept extends into other therapeutic and “theranostic” applications.  For example, 

protease-activatable therapeutics have also been tested for their use in gene therapy. Protease-

activatable retroviral vectors allow the transfer of a gene into cancer cells expressing a unique 

set of proteases [21]. In this system a protease-cleavable sequence and a blocking domain (BD) 

are incorporated into a plasmid. The blocking domain consists of a sequence coding for a 

growth factor (e.g. epidermal growth factor, insulin growth factor and stem cell factor). The 

presence of the growth factor on the virus envelope results in the binding of the virus to growth 

factor receptors and the subsequent sequestration of the virus to the receptor results in a low 

infectivity. However, this infectivity is restored when the protease-activatable sequence is 

cleaved, resulting in the release of the BD [21-23].  Also, the PAP principle is being applied for 

development of cancer imaging agents for diagnosis and monitoring responses to therapy.  For 

instance, activity-based probes (ABPs) that carry quenched fluorophores linked via protease-

cleavable peptides can act as proteolytic beacons, whose cleavage generates optical sensors 

that can be useful for assessing protease activity in vivo, and also potentially as diagnostic tools 

for imaging the tumor microenvironment [24, 25]. Likewise protease-modulated contrast 

agents for magnetic resonance imaging (MRI) are being developed [26].  
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Another PAP strategy involves activatable cell penetrating peptides (ACPPs) which are peptides 

composed out of a protease-cleavable sequence separating a polycationic cell penetrating 

peptide (CPP) from a quenching polyanionic inhibitory domain. With CPPs attached to a 

cytotoxic warhead (such as a drug or an oncolytic virus) or a contrast agent for imaging, these 

entities can all be taken up by cells. With the ACPP attached, the polyanionic inhibitory peptide 

reduces cellular uptake by neutralizing the CPP. Upon cleavage of the protease-cleavable 

sequence, the CPP becomes active and can carry its payload inside the cells [27-29] 

 

2. Extracellular protease systems for PAP development         

From a historical perspective, the term “prodrug” originated in the 1950’s [30], and 

encompasses around 10% of drugs currently approved for use worldwide [31, 32]. It applies 

broadly to drugs that are inactive in their native state but require some form of modification to 

generate the active entity, for instance by enzymatic conversion or chemical transformation. 

The objectives in prodrug design are to enhance the pharmacologic properties of a parent drug, 

for instance by improving its solubility, stability or clearance from the body, and to reduce side-

effects or toxicities [31, 33]. A range of enzyme types are enlisted for prodrug activation, 

including hydolases, transferases, oxidoreductases, lyases and proteases.  Protease-activated 

prodrugs (PAPs) therefore represent a particular type of prodrug, but one that is growing in 

numbers and varieties of design as our knowledge of the cancer degradome has burgeoned.   

The ideal characteristics for a protease target for the development of PAPs are: 
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1) The enzyme or enzyme system is well-characterized biochemically and its cleavage 

preferences are known. 

2) The protease is present and active at elevated levels in the tumor environment and has 

low expression or lack of activity in normal tissues.  

3) It is absent or inactive in the circulation to minimize systemic toxicity. 

4) It shows high affinity and selectivity for the designed prodrug, leading to rapid release of 

the active form of the drug in vivo. 

With our improved knowledge of cancer proteases gained from experience with the clinical use 

of protease inhibitors discussed earlier, these four requirements can be translated in various 

ways. The first requirement means that the protease needs to be situated at an important 

central node in the tumor protease web and that it has high selectivity to a unique substrate. 

The second rule implies that the protease originates either from the tumor cells themselves or 

from tumor-activated resident stromal cells or leukocytes recruited into the micro-

environment, thus providing a type of “bystander effect”. The third characteristic of circulatory 

latency is often guaranteed by α2-macroglobulin that inactivates all classes of proteases in the 

circulation. Finally, the fourth requirement is the most challenging one and is presently often 

solved with the use of highly specific monoclonal antibodies or with protease-specific exosite 

designs [34]. 

Key to the development of all PAPs is the selection and optimization of the protease-cleavable 

pro-moiety, which has been possible through analysis of phage display peptide libraries and 

more recently through “reverse degradomics” [35-37], which is the definition of all (major) 
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proteases acting on a single peptide substrate. The next critical consideration is the nature of 

the therapeutic agent or “warhead” to be delivered. Two of the most widely employed 

categories of warhead are: a) small molecule conventional cancer chemotherapeutic drugs (eg 

doxorubicin and paclitaxel) and other generally cytotoxic agents (eg thapsigargin) and b) natural 

bacterial toxin proteins such as anthrax and diphtheria toxins.  However, many other types of 

agents could be envisaged.  

Many protease systems are ideally positioned to be useful in the context of cancer, and in the 

sections that follow we will explore progress with PAPs developed for activation by extracellular 

proteases of the serine, cysteine and metalloproteinase classes. Much of the detailed 

information will be found in Tables 1-3, with the text here describing some of the main 

conceptual developments.  

2.1 Serine protease-activated therapeutics  

Serine proteases constitute one of the largest catalytic classes in the human degradome and 

they play a major role in cancer both as biomarkers of disease progression and as key effectors 

of pathology.  Principal players are the components of the plasminogen activation pathway, 

whereby urokinase plasminogen activator (uPA), bound to its cell surface receptor (uPAR) is 

responsible for proteolytic activation of the broad-spectrum serine protease plasmin from 

plasminogen [38].  Plasmin in turn is responsible for proteolytic activation of several pro-MMPs, 

including MMP-1, 3 and 9, thereby effecting degradation of the ECM and other key extracellular 

regulators [7, 39, 40].  
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The increased levels of active uPA and plasmin in the tumor microenvironment make them 

excellent candidates for the development of selective PAPs [41].  Also another serine protease, 

prostate specific antigen (PSA) which is a member of the kallikrein family, has been exploited 

for development of PAPs for prostate cancer therapy [42-47].   

2.1.1: Prodrugs based on the plasminogen activation pathway 

Although plasminogen is an abundant (1-2μM) zymogen in plasma, its activation is temporally 

and spatially restricted, either to fibrin clots where it is activated by tissue plasminogen 

activator (tPA) or to the cell surface where it interacts with the uPA/uPAR complex [48]. Pro-

uPA is usually produced by tumor-associated stromal cells in many cancer types, with uPAR 

being expressed by cancer cells. In the systemic circulation, active plasmin is rapidly neutralized 

by binding to α2-antiplasmin or α2-macroglobulin.  As a result both plasmin and uPA fulfil the 

criteria described in section 2.1 and have been able to be exploited for the development of 

PAPs for cancer therapy, though most progress has been made with uPA-activated agents.  

Several reviews have described the design and properties of these PAPs [31, 41, 49, 50], so we 

have summarized the approaches and key findings in Table 1.   

Small molecule chemotherapy-based PAPs:  The first plasmin-activated prodrug was generated 

by attaching the plasmin-cleavable sequence Val-Leu-Lys to the anthracycline anti-tumor drug 

doxorubicin (Adriamycin)  [51]. However this design was not optimal for cleavage, and was 

improved substantially with the inclusion of a spacer between the cleavable pro-moiety and the 

doxorubicin [52].  An excellent example of how this design strategy can subsequently evolve is 

provided by the development of a PAP based on doxazolidine, a more cytotoxic formaldehyde-
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conjugated version of doxorubicin, but which has a very short half-life in physiological 

conditions. The resulting prodrug, GaFK-Doxaz, showed excellent stability in plasma and had 

low cell permeability, but was readily activated by plasmin and cathepsin B, resulting in low nM 

inhibition of growth of a wide variety of cancer cells [53].    

uPA activated toxin prodrugs (anthrax and diphtheria) 

Bacterial toxins are potent cell killing agents that have been adapted for use as cancer 

therapeutics by adapting them as PAPs (reviewed in [49]). Anthrax toxin has three components, 

namely protective antigen (PrAg), lethal factor (LF) and edema factor. PrAg is an 83kDa protein 

responsible for delivery of the effector proteins inside the susceptible cell by binding to cellular 

receptors, tumor endothelial marker 8 (TEM8) or ciliary morphogenesis gene 2 (CMG2), 

whereupon it is cleaved by the cell surface pro-protein convertase furin to a 63kDa form that 

oligomerises, creating a docking site for LF and edema factor.  This complex is then internalized 

via endocytosis, and in the acidic endosomal environment the PrAg oligomer forms a pore that 

allows release of LF and edema factor into the cytosol, which bring about cell death, since LF is 

a metalloproteinase that cleaves mitogen-activated protein kinase kinases, disrupting essential 

cell signaling pathways [54]. Tumor selective anthrax biotoxins have been generated by 

substituting the furin cleavage site within PrAg (RKKR) with a uPA cleavable motif, SGRSA, 

generating the modified toxin PrAg-U2 [55]. The cytotoxicity of LF was also enhanced by 

creating a composite with Pseudomonas exotoxin A, resulting in a fusion protein called FP59. 

This combination of PrAg-U2 and FP59 generated a potent PAP, which was strictly dependent 

for its action on the presence of an active cell surface uPA/uPAR system [55].   A similar strategy 

generated a version of PrAg activated by MMPs (PrAg-L1), and a combined system involving 
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intermolecular complementation that requires both cell surface MMP and uPA activities, IC-

PrAg [56]. These systems have each shown excellent tumor killing potential in human non-small 

cell lung xenografts [57] and murine B16-BL6 melanoma syngrafts [58], though with dose-

limiting gastrointestinal toxicities. However the dual MMP/uPA-activated IC-PrAg when 

coadministered with LF has proved the most effective, working effectively against established 

tumors at doses well below those where toxicity is first encountered [58]. In a further 

refinement, PrAg has been engineered by creation of a form that is incapable of forming 

oligomers (D512K), but which can be rescued via a complementary mutation in a separate PrAg 

molecule.  These PrAg variants are individually non-toxic, only becoming toxic when used in 

combination, where they were shown to have a potent effect against A549 xenografts [59].   

Parallel strategies have been used for the development of diphtheria-based pro-toxins [49]. 

Diphtheria toxin (DT) has cell-binding, translocation and catalytic domains, separated by a furin-

sensitive loop.  Replacement of the furin site with one cleaved by the uPA/uPAR system, and 

the cell-binding domain with granulocyte-macrophage colony stimulating factor (GM-CSF) 

generated a recombinant DTU2GMCSF toxin that is potently cytotoxic for leukemic cells [60]. 

However further development of this agent has not yet been reported.   

2.1.2: PSA-activated prodrugs 

Prostate-specific antigen (PSA), or kallikrein-3, is a serine protease that is in routine use as a 

serological diagnostic marker for prostate cancer.  Expressed by the prostatic epithelium, its 

normal function is to cleave semenogelin in the ejaculate to allow sperm to swim freely: in the 

circulation, PSA is inactive due to complex formation with the plasma protease inhibitors α-
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chymotrypsin and α2-macroglobulin, so active PSA is only found in the vicinity of prostate cells  

[61]. The identification of a heptapeptide sequence based on semenogelin that is rapidly 

cleaved by PSA led to the development of a doxorubicin-based prodrug (L-377202) that had an 

improved therapeutic index compared to doxorubicin alone in preclinical studies [42, 43]. 

Subsequently this strategy was applied to generate PSA-activated prodrugs based on 

vinblastine [44], 5-fluorodeoxyuridine [62], and paclitaxel [63]. But despite initial promise, there 

have been no reports of clinical trials since 2008 when this topic was reviewed previously [49]. 

However, another type of PAP based on thapsigargin is showing promise [47]. Thapsigargin is 

particularly attractive as a warhead since it is a potent inhibitor of SERCA (sarco/endoplasmic 

reticulum Ca2+ ATPase) which is toxic to non-growing as well as proliferating cells, and thus 

could potentially target slow-growing cancer stem cell populations. The PAP strategy led to 

development of a PSA-cleavable form of thapsigargin (G115) which showed complete inhibition 

of growth of PSA-expressing xenografts in vivo [47]. Subsequently a thapsigargin analogue with 

a PSA-cleavable linker covalently coupled to a N-(2hydroxypropyl) methacrylamide copolymer 

as macromolecular carrier was generated which also showed good efficacy and low toxicity 

[64]. However, further clinical development of thapsigargin-based PAPs has switched attention 

to focus on prostate-specific membrane antigen (PSMA)-activated prodrugs [65, 66], which will 

be considered in section 2,3 as this enzyme is a metalloproteinase.   

2.2 Cysteine and Aspartyl Cathepsin-Activated Anticancer Therapeutics  

Cysteine and aspartyl cathepsins are a popular target for prodrug design due to their roles in 

tumor progression [67]. The natural milieu of these enzymes is the lysosomal compartment, 

where a low pH ensures optimal catalytic activity of these acid proteases. A novel approach has 
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been designed by Ueki et al. taking advantage of the overexpression of histone deacetylase 

(HDAC) and the cathepsins within the tumor environment [68].  Puromycin is an 

aminonucleoside antibiotic capable of inhibiting protein synthesis causing ribosomal disruption 

during translation and can show significant cytotoxicity in vitro. Ueki et al. have attached an 

acetylated lysine group to the puromycin to deactivate it and create a non-toxic prodrug. The 

acetyl group is removed by HDACs leaving lysine which in turn is removed by Cathepsin L to 

leave the activated puromycin. In vivo studies have confirmed activity against human tumor 

xenografts [68].  

In an attempt to combat some of the drawbacks of gemcitabine administration, such as a short 

half-life and a range of side-effects, gemcitabine was de-activated by covalently coupling to 

cholesteryl hemisuccinate. The non-toxic prodrug is reported to spontaneously form 

nanoparticles. These nanoparticles released gemcitabine in a lysosomal mimicking environment 

(pH 5.0) but not at a physiological pH (pH 7.4) with the gemcitabine release being greatly 

enhanced by cathepsin B. These nanoparticles enhanced the cellular uptake of gemcitabine by 

15-fold when incubated with cells [69]. 

Floxuridine is an analogue of 5-fluorouracil with similar problematic side-effects. Two successful 

prodrugs of Floxuridine were developed by attaching phenylalanine and either tyrosine or 

glycine creating 5’-O-L-phenylalanyl-L-tyrosylfloxuridine and 5’-O-L-phenylalanyl-L-

glycylfloxuridine. Both molecules were activated by cathepsins B and D suggesting these may be 

good candidate prodrugs for further development [70]. 

Pancreatic ductal adenocarcinoma (PDAC) is a difficult disease to treat. 5-aminolevulinic acid (5-

ALA) can be used clinically as a photosensitiser in tumor treatment and imaging but does have 
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off target effects due to its inability to concentrate solely in the tumor tissue [71]. 5-ALA has 

been developed as a Cathepsin E-activatable prodrug, (H-Arg-Gln-Ala-Gly-Phe-Ser-Leu-5-ALA-

OH) to take advantage of the overexpression of cathepsin E in PDAC [71].  The 5-ALA prodrug 

was shown to activate within the Cathepsin E-positive tumor but not in the normal pancreatic 

tissue. It is concluded that cathepsin E is a specific and effective enzyme activation system for 

the development of prodrugs in PDAC treatment. 

Many other groups have developed doxorubicin prodrugs over the years which are capable of 

being activated by the cathepsins. Some time ago a doxorubicin prodrug Ac-Phe-Lys-PABC-DOX 

(PDOX) was developed by Dubowchik et al.  [72] but has recently been shown to have activity 

against hepatocellular carcinoma in model systems [73]. A review by Zhong et al.  [74] covers 

many of the cathepsin-activated doxorubicin based prodrugs developed. Other recent reviews 

which cover cathepsin activated probes are very useful for future prodrug design [75] as are the 

reviews on cathepsin L as target in cancer treatment [76] and the role of cysteine cathepsins in 

the degradation of the extracellular matrix [77]. 

2.2.1 Legumain-activated anticancer therapeutics 

Legumain is a cysteine protease and an attractive target for prodrug design as it is 

overexpressed in the majority of human solid tumors including breast [78], ovarian [79], colon 

[80] and prostate [81]. It has restricted substrate specificity cleaving peptides on the C-terminal 

side of asparagines [82]. Furthermore, legumain is also expressed by intratumoral blood vessels 

and Tumor-Associated Macrophages (TAMs) and is involved in promoting cell migration in 
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invasion [83], which support its attractiveness as a target for tumor-selective drug delivery [83, 

84]. 

Several groups have reported prodrugs of dolastatins or related molecules. The dolastatins are 

exceptionally potent pentapetide antineoplastic agents (in the pM range) which bind to tubulin 

close to the vinca binding site and disrupt microtubule function, however, their side-effects are 

considerable. Their potency makes them ideal candidates for prodrug design to enable selective 

delivery to tumors. Bajjuri et al. [85], have developed both didesmethylauristatin E (DDAE) and 

monomethylauristatin E (MMAE) legumain-activatable prodrugs by tethering an asparagine 

containing tripeptide linker (Alanine-Alanine-Asparagine) to either DDAE or MMAE. Several 

analogues were developed which showed considerable activity against an MDA-MB-435 

(transfected with legumain) cell line but not in the wild type. This improved activity was 

demonstrated to be legumain-catalysed. Liu et al., [83] have developed similar MMAE based 

prodrug molecules with a tripeptide (Alanine-Alanine-Asparagine) linker but capped with an 

inhibitor of integrin αvβ3. The inclusion of an integrin inhibitor enables the prodrug to bind to 

the cell surface integrin αvβ3 prior to activation by legumain. In vivo studies suggested that the 

MMAE integrin-binding prodrug was more effective than the cytotoxic MMAE alone. 

As we have seen, doxorubicin is a common candidate for prodrug design. Several legumain-

cleavable peptide-conjugates of doxorubicin were synthesised by Wu et al., [84]. However, 

these intact prodrugs incorporated a succinyl group which prevented cell-permeability. 

Doxorubicin therefore was prevented from entering the cell until it had been activated in the 

tumor microenvironment by legumain.  Within the tumor microenvironment, however, 

legumain is most highly expressed by tumor-associated macrophages (TAMs) and not by the 
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tumor cells themselves [84-87]. In this way the activated drug was suggested to have much 

greater antitumor efficacy by functioning through a “bystander effect” upon both tumor and 

stromal cells, rather than just selectively deleting the target-producing cells from the tumor. 

The most effective of the legumain-activated doxorubicin prodrugs, LEG-3, comprised 

doxorubicin bound to a tetrapeptide (Leu-Asn-Ala-Ala), endcapped with the succinyl group [86]. 

From in vivo studies, LEG-3 possessed enhanced efficacy compared with doxorubicin alone, in 

murine syngeneic tumor models and human tumor xenografts, including a doxorubicin-

resistant prostate cancer model [84].  

The same legumain specific tripeptide has been used by Smith et al., [88] to develop a legumain 

activated colchicine prodrug. Colchicine was linked to a peptide sequence (Suc-Ala-Ala-Asn-Val-

colchicine) to develop a prodrug which was more toxic to cells expressing active legumain than 

cells only expressing the 56 kDa prolegumain and this activity could be inhibited by a legumain 

inhibitor cystatin E/M.  

A further legumain activated prodrug with etoposide as the active component was synthesized 

by Stern et al. [89].  The prodrug (carbobenzyloxy-alanine-alanine-asparagine-ethylenediamine-

etoposide), released the etoposide upon cleavage by recombinant human legumain, and 

showed an inhibitory effect on the proliferation of legumain expressing 293 HEK-Leg cells. The 

authors suggest a novel platform for prodrug therapy activated by legumain as a promising 

approach for cancer therapy. 
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2.3 Metalloproteinase-activated therapeutics  

The metalloproteinases encompass several families of proteases of which their catalytic activity 

depends on the presence of a metal ion [90]. Three often studied subfamilies are the matrix 

metalloproteinases (MMPs), ADAMTS (a disintegrin-like and metalloproteinase domain with 

thrombospondin type 1 repeat) proteinases and astacins due to their functions in extracellular 

matrix metabolism [91].  The MMPs are a family of 24 Zn2+-dependent endopeptidases, 

including gelatinases, collagenases, stromelysins, matrilysins and membrane-type MMPs [90]. 

This class of proteases has a broad range of extracellular [39, 92], intracellular [93] and 

membrane-bound substrates [94]. In addition, MMPs also have non-catalytic functions such as 

the stimulation of cell signaling pathways [95-97] and they can act as transcription factors [98, 

99]. Consequently, MMPs are implicated in a vast range of physiological and pathological 

processes ranging from bone growth, neurological development and the migration of immune 

cells to pathological bone resorption, cancer development and autoimmune disease [7, 25, 92].  

In cancer, increased levels of several members of the MMP family are correlated with tumor 

progression, including MMP1 (collagenase-1), MMP2 (gelatinase A), MMP9 (gelatinase B), 

matrilysin (MMP7) and MMP14 (membrane-type-1-MMP) [100, 101]. As discussed above for 

other protease classes, MMPs act in a network, rather than in a cascade [14, 16, 39]. Therefore, 

for specific cancer types, grades and stages, it is critical to know which MMP determines the 

most important node of the network. Whereas until now this search has been difficult, with the 

use of novel broad profiling systems and better tumor markers, it is envisaged that it will be 

possible to target individual cancers with more precision and less side-effects. The development 

of tumor protease-based probes for MMPs has diagnostic and therapeutic implications. For 
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instance, fluorescent MMP-activity-based probes may be used by surgeons to delineate the 

tumor margin during resection. These applications will not be discussed here in-depth. We will 

rather focus on therapeutic applications of conjugates between MMP substrates and cancer 

drugs. Several aspects have been covered recently in an excellent review by Tauro et al. [24]. 

Many types of metalloproteinase-activated drugs have been developed, and an overview of 

these drugs is given in Table 3. One such drug relates to MMP-activated anthrax toxin, which 

parallels the approach described in section 2.1 for the engineered uPA-activated toxins. This 

concept was exploited by replacing the furin-cleavage site by substrate sequences for MMP2 

and MMP9. In vitro, selective killing of MMP-overexpressing cell lines was witnessed [102]. As 

we have seen combined use of the MMP- and uPA activatable anthrax toxins has shown 

optimal effects in preclinical mouse models [56, 58].   

As mentioned in section 2.1.1, an interesting recent PAP development involves the generation 

of a prostate-specific membrane antigen (PSMA)-activated thapsigargin prodrug [65, 66]. 

Despite its name, PSMA is not restricted to prostate cells, but is highly expressed by the 

neovasculature in most solid tumors.  It is a type II transmembrane metalloproteinase with 

glutamate carboxypeptidase activity which cleaves poly-γ-glutamyl peptides [65], which has 

enabled the design of a thapsigargin derivative, G202, now termed “mipsagargin” [103]. 

Mipsagargin has shown substantial tumor regression against a variety of human xenografts in 

vivo and shows low toxicity, with no evidence of myelosuppression in phase I clinical trials 

[104]. Two patients suffering from hepatocellular carcinoma showed prolonged benefit so the 

drug has now progressed to phase II trial for HCC [65].  From the same group, a PSMA-activated 

cell-penetrating peptide conjugate has also been shown to have a strong cytostatic effects on 
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xenograft growth in vivo and also to be useful for optical tumour imaging when labeled with a 

near-infrared fluorophore [105].  

3. Protease-activated nanoparticles 

Nanoparticles are hailed as the new generation of diagnostic and therapeutic tools, according 

to a recent review [106]. The physico-chemical properties of nanoparticles are influenced by 

their material composition and size, making them highly tunable for diverse purposes, including 

carrying cytotoxic cargoes or contrast agents for imaging.  Here we will place emphasis on 

peptide-decorated nanoparticles in which the peptides contribute as functionalizing systems to 

influence nanoparticle size, targeting or ability to be endocytosed. An attractive potential 

scheme for bringing these various aspects into play for the development of nanoparticles with 

optimized pharmacokinetics and delivery to tumors is shown in Figure 2.  Here we envisage a 

local tumor protease (eg MMP9) acting on the decorated nanoparticles to alter their properties 

and direct them to display surface targeting factors that enhance tumor cell-specific 

interactions. However, the effects of nanoparticle cleavage could be many-fold: it might release 

active drugs (including the surface peptides), modify the nanoparticle diameter (affecting local 

uptake in tumor tissues), bind to specific targets (e.g. for directing internalization into cancer 

cells), change their physical properties (eg aggregation, which may be useful for imaging 

purposes), act as an (ant)agonist (in receptor interactions)  and various combinations thereof. 

As previously documented, a number of caveats exist in that protein-coated nanoparticles are 

seen by the immune system as simple viruses and thus provoke both innate and adaptive 

immune reactions [107]. In the context of tumor therapy this may result in a positive bystander 

effect. However, it needs to be recognized that with immune recognition of nanoparticles, the 
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innate immune reaction may also cause collateral tissue damage and an adaptive immune 

reaction against them may hamper repeated use and may lead to avoidable complement-

mediated systemic reactions.  

In several cases it has been shown that small changes in the chemistry of nanoparticles can 

have drastic, and sometimes unpredictable, implications for their successful application [108]. 

The success of the nanoparticles depends on many factors including safety, stability in the 

circulation, escape of the macrophage phagocytic system and immune evasion, selective uptake 

by target cells and effective cytotoxicity or detection properties which each depend on the 

chemical characteristics of the nanoparticles.     

In most therapeutic studies so far, nanoparticles have been designed to deliver cytotoxic 

substances into the tumor environment. In the simplest design, the drug of choice is 

encapsulated into the nanoparticle (which may be polymeric structures, lipids, proteins, 

organometallic compounds, or viruses) that is then endocytosed by the cancer cells. Several 

studies have evaluated the size threshold for passive diffusion of nanoparticles into tumor 

tissue and found that the most effective uptake is seen for particles with sizes smaller than 200 

nm [109-111].  A logical strategy to retain nanoparticles in and around tumor tissue is to 

decorate the particles with cell-interactive ligands which can be peptides, proteins (antibodies), 

small molecules or other receptor ligands [111, 112]. An excellent example here is the 

somatostatin receptor in pancreatic cancer [113], which is being applied for nanoparticle-

mediated therapy. However, such modifications alter the chemical characteristics of the 

nanoparticles (adding cationic or hydrophobic regions) and they may thus be more easily 

removed out of the circulation by the reticuloendothelial system (RES). This can be overcome 
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by adding hydrophilic groups such as polyethylene glycol (PEG) chains - though this would be at 

the expense of the targeted binding activities of the nanoparticles [114]. One way to address 

this problem is to develop nanoparticles with a removable hydrophilic layer [115]. Several 

groups [108, 114, 116-118] have now developed nanoparticles that are shielded for longevity in 

the circulation by virtue of an outer PEG coating, which can be removed in the cancer 

environment by proteolysis.  A key aspect of the tumor milieu is the presence of inflammatory 

cells - neutrophils and macrophages – which deliver copious quantities of proteases, in 

particular neutrophil elastase (a serine protease), MMP8 (neutrophil collagenase) and MMP9 

(gelatinase B).  In the schematic in Figure 2 we highlight the utility of MMP9 in this nanoparticle 

de-shielding role. This strategy has been used with PEG-poly-caprolactone nanoparticles with 

an MMP9 cleavable linker attached to a cell penetrating peptide for proof-of-principle studies 

with glioblastoma cells in vitro [119].  In a different type of approach in which the pores of silica 

nanoparticles were tightly capped with avidin-biotin complexes, MMP9 was shown to be able 

to open the “valves” to allow local release of the chemotherapeutic drug payload [120].   

There are also significant opportunities for use of protease-activated nanoparticles for tumor 

imaging purposes.  For example, PEG-conjugated, uPA-activatable gold nanorods have been 

developed, whereby degradation of the uPA substrate sequence resulted in the aggregation of 

the gold nanorods which could be monitored as a decrease in light absorption [116]. These gold 

nanorods are likely to prove useful for imaging and photothermal therapy. In another strategy, 

nanoparticles were developed which aggregate only in the presence of MMP2 and MMP7. For 

this, one set of nanoparticles (biotin ligand particles) were shielded with an MMP2 substrate 

polymer and another set of nanoparticles (streptavidin receptor particles) were shielded with 



24 
 

an MMP7 substrate polymer. These nanoparticles self-assemble when in the combined 

presence of both MMP2 and MMP7, and since these enzymes are often markers of cellular 

transformation, this could allow development of a system to detect malignant transformation 

in vivo [121]. 

But perhaps it is the combination of possibilities for cargo delivery and surface decoration of 

nanoparticles that offers the most exciting potential for dual therapeutic and diagnostic 

(‘theranostic’) applications.  This potential is evident in a recent study with functionalized gold 

nanoparticles carrying doxorubicin via a MMP2-cleavable linker [122].  This group has also 

generated graphene oxide nanocarriers with the same MMP2-activatable chemotherapeutic 

payload, where the intrinsic fluorescence of the doxorubicin is blocked by the graphene oxide, 

and recovered on release from the carrier [123]. Likewise the use of an iron oxide nanocarrier 

coupled with an MT1-MMP (MMP14)-cleavable azademethylcolchicine payload gives the 

potential for real-time monitoring of drug delivery and accumulation in tumors by MR imaging 

[19].      

4. Conclusions and Future Directions   

This review has covered the conceptual development of PAPs for cancer therapy and recent 

progress with new agents and technologies.  There are compelling cases for the employment of 

strategies that take advantage of the elevated levels of specific extracellular and cell surface 

proteases in the tumor microenvironment, and in particular the serine proteases of the 

plasminogen activation cascade, PSA, the MMPs, and cysteine and aspartyl cathepsins.  There is 

strong evidence that each of these protease systems can be leveraged using a diverse array of 
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chemotherapeutic weaponry, including potent natural toxins.  This is clearly a fertile area for 

preclinical discovery, and it is gratifying to see some of these agents progressing into clinical 

trials, such as ICT2588 (Figure 1) and mipsagargin, to name two examples.  With the explosive 

growth of technologies based around multifunctionalized nanocarriers, there is no shortage of 

potential avenues for further exploration.  Hopefully, in the next five years we will see PAPs 

entering the frontline as therapies for a variety of cancers, based on the recognition of their 

enhanced therapeutic indices, low toxicities and favourable pharmacokinetics. Combined with 

the increasing use of genomic technologies (and also potentially degradomics) for evaluation of 

patients and their tumors these types of agents will help deliver precision medicine and better 

options for therapy, particularly against the stubbornly intractable cancers such as lung, brain 

and pancreas.          
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Figure Legends 

Figure 1: A)   Schematic of the basic Protease-Activated Prodrug (PAP) concept. Addition of a 

peptide pro-moiety renders the drug “warhead” inactive, until the peptide is cleaved by tumor-

associated proteases that are either not found or are inactive in the circulatory system.  

B) Structure of the MT-MMP activated prodrug ICT2588 and the activated 

azademethylcolchicine (ICT2522). The dotted line indicates the MT-MMP-selective scissile bond. 

  

 

Figure 2: The rationale of protease-activated nanoparticle drugs. (a) Functionalized NPs which 

contain a protease-cleavable linker are prepared and administered. NPs with hydrophilic shells 

such as PEG in the outer layer have extended bioavailability. (b) Within the local tumour 

environment, the protease-cleavable linker is cleaved by active proteases (derived from the 

tumour cells, activated stromal cells or recruited immune cells) and the outer shell PEG layer is 

removed. (c) Truncation of the linker region results in altered NP characteristics and leads to 

improved local diffusion of the particles. ‘De-shielding’ of the particle allows other modules 

(drugs, ligands, antibodies, …) to interact with the ECM and with cells in the tumour micro-

environment. (d) NPs can be internalized by tumour cells by receptor-mediated endocytosis. (e) 

The load of the particles is released and allows for tumor imaging, induction of tumor cell death 

or gene transfer. 
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Table 1: Serine protease-activated therapeutics 

Prodrug 
activator 
(protease) 

Parent drug or 
agent 

Agent name Cleavable linker 
sequence* 

Cancer types or 
models 

Main findings Ref 

 
uPA anthrax toxin PrAg-U2 SGRSA broad used with engineered lethal factor FP59; effective 

tumor growth inhibition in mouse models but 
gastrointestinal dose-limiting toxicity, overcome with 
co-administration of dexamethasone  

[102] 

uPA diptheria toxin DTU2GMCSF GSGRSA acute 
myelogenous 
leukemia 

diphteria toxin fused to GM-CSF via a uPA-cleavable 
linker led to selective killing of AML cells expressing 
GM-CSF receptors 

[60] 

uPA gold nanorods  LGGSGRSANAILEC 4T1 cell tumors 
in mice 

upon cleavage of the uPA substrate, the gold nanorods 
aggregate, resulting in higher accumulation in tumor. 

[116] 

plasmin doxorubicin,  
 
palitaxel 

ST-9802;  
ST-9905 

VLK mammary 
cancer 

ST-9905 (with spacer between cleavable peptide and 
Dox) was substantially more effective than ST- 
9802 (without spacer) and induced similar tumor 
growth inhibition as Dox but without apparent toxicity 

[51, 52, 
124] 
 

PSA doxorubicin 
 

L-377202 Hyp-AS-Chg-QSL 
SSKLQ 

prostate improved therapeutic index compared to doxorubicin 
alone in preclinical studies  

[42, 43, 
45, 46] 

PSA thapsigargin G115 HSSKLQ prostate complete inhibition of growth of PSA-expressing 
xenografts in vivo 

[47] 

PSA vinblastine  Hyp-SS-Chg-QSSP prostate PSA-dependent cell killing in vitro and tumor growth 
inhibition in xenografts, with myelopathy and 
neuropathy side-effects 

[44] 

factor Xa retroviral vector 
with  SCF as BD 

 IEGR hematopoietic 
stem cells 

protease-mediated tunable transduction of EGFR 
expressing cancer cells or hematopoietic stem cells.  

[125] 

*Amino acids are indicated in italic with one-letter code.Rare amino acids and other compounds are abbreviated in non-italic font. Chg, cyclohexylglycine; Hyp, hydroxyproline 
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Table 2: Cysteine protease-activated therapeutics 

Prodrug activator 
(protease) 

Parent drug or 
agent 

Agent 
name 

Cleavable linker sequence* Cancer types or 
models 

Main findings Ref 

HDAC/cathepsin L puromycin Lys(Ac)-
Puro 

K(Ac)-Puro HCT116 
xenograft 

activity against human tumor xenografts [68] 

cathepsin B gemcitabine CHSdFdC cholesteryl hemisuccinate Bxpc-3 cells enhanced the cellular uptake of gemcitabine [69] 
cathepsins B and 
D 

floxuridine  FY Capan-2 cells prodrug activated by cells [70] 

cathepsin E 5-ALA  RQAGFSL pancreatic ductal 
adenocarcinoma 

activated within the Cath E-positive tumor but not 
normal tissue 

[71] 

cathepsins B doxorubicin PDOX Ac-FK-PABC-Dox hepatocellular 
carcinoma model 

anti-tumor power at least equal to that of free Dox, 
better anti-metastatic efficacy and reduced toxicity 

[72],[73] 

legumain auristatin DDAE/ 
MMAE 

AAN MDA-MB-435 
transfected with 
legumain 

effective in vitro and in vivo, and reduced toxicity 
compared to MMAE without prodrug 

[85] 

legumain auristatin/ 
inhibitor of 
integrin αvβ3 

MMAE AAN MDA-MB-435 in vivo studies suggested that the MMAE integrin 
binding prodrug was more effective than the cytotoxic 
MMAE alone 

[83] 

legumain doxorubicin LEG-3 LNAA-Suc various complete arrest of a variety of neoplasms in vivo, 
including multidrug resistant lines 

[84] 

legumain colchicine  Suc-AANV HEK293 more toxic to cells expressing active legumain [88] 
legumain etoposide  Cbz-AAN-AMC HEK293 showed an inhibitory effect on the proliferation of 

legumain expressing 293 HEK-Leg cells 
[89] 

*Amino acids are indicated in italic with one-letter code. Rare amino acids and other compounds are abbreviated in non-italic font. Ac, acetyl; AMC, amino-4-methyl coumarin; 
Cbz, carbobenzyloxy; CHSdFdC, cholesteryl hemisuccinate–gemcitabine; DDAE, desmethylauristatin E; Dox, doxorubicin; HDAC, histone deacetylase; LEG-3, N-succinyl-h-alanyl-
L-alanyl-L-asparaginyl-L-leucyl-doxorubicin, MMAE, monomethylauristatin E; PABC, p-aminobenzylcarbonyl; Puro, puromycine; Suc, succinyl. 
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Table 3: Matrix metalloproteinase-activated therapeutics 

Prodrug 
activator 
(protease) 

Parent drug or 
agent 

Agent 
name 

Cleavable linker 
sequence* 

Cancer types or models Main findings Ref 

MMP-2 NP with PTX   GPLGVRGC SKOV-3 ovarian cancer cells TAT peptide was added to the NPs to potentiate 
cell surface localization of the nanoparticles 

[118] 

MMP-2 & MT1-
MMP 

retroviral vector 
with EGF as BD 
and oncolytic 
MV with MMP-
activatable F 
proteins 

MV-
MMPA1 

PQGLYA/Q liver cancer, human 
fibrosarcoma cells (HT1080) 

virus was restricted to hepatocytes [21, 27] 

all MMPs retroviral vector 
with  EGF and 
CD40L as BD 

 PLGLWA human fibrosarcoma cells 
(HT1080) and xenografted mice 

selective transduction of MMP-rich target cells [23] 

All MMPs liposomes 
carrying nucleic 
acids shielded 
by a removable 
PEG-shell 

 GGGVPLSLYSGGGG human fibrosarcoma cells 
(HT1080) and subcutaneous 
tumors in mice 

efficient accumulation in tumor and silencing 
activity 

[108] 

All MMPs gold NPs with 
quenched NIR 
fluorophore 

 PLGVRGC mice bearing SCC7 tumors good performance in vitro and in vivo [126] 

MMP-2, -8, -9 
and -14 

CPP with Cy5, 
CPP with 
paclitaxel 

 PLGLAG fibrosarcoma (HT1080), 
melanoma (B16F10), cervical 
(Hep2), prostate (PC3), colon 
(HCT) and mouse breast 
transgenic (PyMT) xenografts, 
glioma spheroids and glioma-
bearing mice 

reduced toxicity [29, 119, 
127] 

MMP-2 and 
MMP-9 

Dextran scaffold 
and 
methotrexate 

MTX-
PVGLIG-
dextran 

PVGLIG in vitro digestion and 
cytotoxicity experiments with 
human fibrosarcoma cells 
(HT1080) and breast tumor 

methotrexate was released in presence of MMP-
2 and MMP-9 (in vitro). In vivo, enhanced 
efficacy over free MTX and lower toxicity. 
biodistribution in MMP-overexpressing tumor 

[128-130] 
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cells (BT-20). Subcutaneous 
tumor models in mice with 
human fibrosarcoma cells 
(HT1080), human glioblastoma 
(U-87) and human bladder 
carcinoma cells (RT-112) 

xenograft model shows that tumor targeting 
effect was mainly due to passive targeting and 
EPR. 

MMP-2 and 
MMP-9 

anthrax toxin PA 
and LFn 
domains fused 
to ADP-
ribosylation 
domain of 
Pseudomonas 
exotoxin A 

PA-L1 

PA-L2 

GPLGMLSQ 

GPLGLWAQ 

human fibrosarcoma cells 
(HT1080), MDA-MB-231 cells 
and melanoma A2058 cells 

selective killing of MMP-overexpressing cells (in 
vitro) 

[102] 

MMP-9 iron oxide 
nanoparticles 

 GGPRQITAG-K(FITC)-
GGGGRRRRGRRRRR 

in vitro protease incubation 
assays and molecular modeling 

substrate selected for MMP-9 but also detects 
MMP-2, MMP-7 and MMP-13. Upon degradation 
the nanoparticle size decreases from ±25 to ±5 
nm. No in vivo proof of concept. 

[131] 

MMP-9 activatable low 
molecular 
weight 
protamine 

 E10-
PLGLAGVSRRRRRRG
GRRRR 

in vitro protease incubation 
assays, uptake by C6 glioma 
cells, tumor spheroid 
penetration 

substrate selected for MMP-9 but also detects 
MMP-2, MMP-14, MMP-8, and other proteases. 
Improved glioma-targeting and tumor 
penetration. 

[119] 

MMP-2 galactosylated 
liposomes with 
NOAC 

 GPLGIAGQ hepatocellular carcinoma cells 
(HepG2) 

liposomes are not taken up by liver cells due to 
steric hindrance effect of the PEG groups. Upon 
encounter of active MMP-2 the PEG shield is 
removed and internalized through 
asialoglycoprotein receptor-mediated uptake 
and increased toxicity in HepG2 cells. 

[117] 

MMP-2 nanoparticles 
with NIR 
fluorophore, cell 
internalizing 
peptide and 
TAMRA labeled 
protease-

 GK(TAMRA)GPLGVR
GC 

human fibrosarcoma cells 
(HT1080) and subcutaneous 
tumors in mice 

accumulation in tumor vasculature and tissue [114] 
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cleavable PEG 

MMP-2 QD with cell 
penetrating 
peptide and 
substrate-PEG 

 GGGGPLGVRGGGGK in vitro cellular uptake 
experiments with melanoma 
cells (MDA-MB-435) 

treatment with MMP-2 resulted in enhanced 
cellular uptake of the quantum dots 

[132] 

MMP-2 aggregating 
nanoparticles in 
the presence of 
MMP-2 and 
MMP-7 

 GPLGVRG in vitro protease incubation 
assays  

NP switches were successfully developed and 
aggregated as expected 

[121] 

MMP-7 Aggregating 
nanoparticles in 
the presence of 
MMP-2 and 
MMP-7 

 VPLSLTM in vitro protease incubation 
assays  

NP switches were successfully developed and 
aggregated as expected 

[121] 

*Amino acids are indicated in italic with one-letter code. Rare amino acids and other compounds are abbreviated in non-italic font. BD, blocking domain; CCP, cell penetrating 

peptide; EGF, epidermal growth factor; EPR, enhanced permeation and retention; FITC, Fluorescein isothiocyanate ; MV, measles virus; NP, nanoparticle; NOAC, N4-octadecyl-1-

β-D-arabinofuranosylcytosine; PTX, Paclitaxel; PyMT, polyoma middle T oncogene driven by mouse mammary tumor virus promoter spontaneous model of cancer; QD, quantum 

dots; SCC, squamous cell carcinoma; TAMRA, tetramethylrhodamine, TAT, transactivator of transcription. 
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Figure 2: The rationale of protease-activated nanoparticle drugs. (a) Functionalized NPs 

which contain a protease-cleavable linker are prepared and administered. NPs with 

hydrophilic shells such as PEG in the outer layer have extended bioavailability. (b) Within the 

local tumour environment, the protease-cleavable linker is cleaved by active proteases 

(derived from the tumour cells, activated stromal cells or recruited immune cells) and the 

outer shell PEG layer is removed. (c) Truncation of the linker region results in altered NP 

characteristics and leads to improved local diffusion of the particles. ‘De-shielding’ of the 

particle allows other modules (drugs, ligands, antibodies, …) to interact with the ECM and 

with cells in the tumour micro-environment. (d) NPs can be internalized by tumour cells by 

receptor-mediated endocytosis. (e) The load of the particles is released and allows for tumor 

imaging, induction of tumor cell death or gene transfer. 
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