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A three dimensional Ensemble Kalman filter (3-D EnKF) and a one dimensional EnKF (1-D EnKF) are used
in this study to assimilate Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-
E) coarse grid (25 km) soil moisture retrievals into the Noah land surface model for fine-scale (1 km) sur-
face soil moisture estimation over the Little River Experimental Watershed (LREW), Georgia, USA. For the
1-D EnKF integration, the satellite observations are a priori partitioned to the model fine scale resolution,
whereas in the 3-D EnKF integration, the original coarse grid satellite observations are directly used and
downscaling is accomplished within the 3-D EnKF update step. In both cases, a first order a priori forecast
bias correction is applied. Validation against in situ observations shows that both EnKF algorithms
improve the soil moisture estimates, but the 3-D EnKF algorithm better preserves the spatial coherence.
It is illustrated how surface soil moisture assimilation affects the deeper layer soil moisture and other
water budget variables. Through sensitivity experiments, it is shown that data assimilation accelerates
the moisture redistribution compared to the model integrations without assimilation, as surface soil
moisture updates are effectively propagated over the entire profile. In the absence of data assimilation,
the atmospheric conditions (especially the ratio of evapotranspiration to precipitation) control the model
state balancing.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction soil moisture from any single source is to merge the available
Soil moisture and sea surface temperature are two important
initialization parameters for seasonal to interannual climate pre-
diction. Soil moisture variations exert control over land-atmo-
sphere energy flux, and therefore may have a large influence on
climate change over land [58,57]. Soil moisture also influences
the hydrologic cycle from local to global scales by redistributing
rainfall into infiltration, surface runoff and evaporation at the earth
surface [17,62,63]; supplying water to the vegetation above the
ground [62]; affecting the surface energy exchange [46] and help-
ing determine the Bowen ratio [18]. Therefore, an accurate estima-
tion of soil moisture has recently been a priority for many
hydrologic applications.

Yet quantifying soil moisture and capturing its mesoscale vari-
ability in space, time and depth is very difficult when using current
satellite observations, state-of-the-art land surface models and
ground based data separately; each having their own limitations
[50,53]. One approach that addresses the limitations of quantifying
ll rights reserved.
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observations with land surface models. The current study explores
data assimilation techniques using satellite observations and a
land surface model for soil moisture estimates to attenuate fore-
cast errors and improve the model’s predictive skills. The useful-
ness of the Earth observing satellites for operational hydrologic
applications have not been widely explored until recently [64].

A number of practical issues arise when assimilating a specific
observation type into a particular model. One such major issue is
the spatial scale mismatch between the satellite observations
and land surface model simulations. Passive microwave satellite
soil moisture products, such as from the Advanced Microwave
Scanning Radiometer – Earth Observing System (AMSR-E), the Soil
Moisture and Ocean Salinity (SMOS) mission and the future Soil
Moisture Active/Passive (SMAP) mission, are typically available at
a spatial resolution of 10–40 km whereas the model forecasts are
becoming feasible at a spatial resolution of 1 km over large do-
mains. Many previous studies have applied algorithms to partition
the coarse scale spatial observations to the fine scale model grid
cells prior to data assimilation. The spatial scale discrepancy can
also be addressed dynamically within the data assimilation frame-
work. There is also a vertical scale mismatch between the model
surface layer (0.1 m) and the satellite sensing depth (�0.02 m)
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which may add to the bias between the model and satellite-
observed soil moisture values. Another major issue is the mis-
match in the climatology or in the dynamic range of the physical
variable between satellite observations and land surface model
forecasts. This bias can be addressed by implementing techniques
like cumulative distribution function (CDF) matching or dynamic
bias correction in the data assimilation framework (e.g.
[11,50,49,12,13,35,33]).

Over the past few years, sequential data assimilation methods
have been applied to soil moisture (e.g. [65,66,9,43,33]), soil
temperature (e.g. [25,52]), snow (e.g. [61,1,8,16]) and other
hydrologic variables. Most applications have been limited to 1-D
(one-dimensional, vertical dimension) filtering, where the
observations are assimilated into the land surface model for
each model grid cell independently. Only a few studies (e.g.
[47,48,44,68,43]) used 3-D (three-dimensional, both horizontal
and vertical dimension) data assimilation techniques.

Our study focuses on analyzing the performance of a 3-D EnKF
algorithm and makes the following new contributions: (a) use of
satellite observations (as opposed to synthetic or in situ observa-
tions) in a 3-D EnKF data assimilation framework for soil moisture
analysis, (b) application of dynamic downscaling in the context of
3-D data assimilation and (c) assessment of the contributions of
land model initialization in the context of data assimilation. Specif-
ically, we answer the following questions: (a) How does the 3-D
EnKF algorithm perform for AMSR-E soil moisture assimilation
with dynamic downscaling? (b) What is the impact of the updated
surface soil moisture on the deeper layer moisture variables and
other water cycle variables? (c) What is the effect of assimilation
on the moisture vertical redistribution and how sensitive is the
3-D EnKF algorithm to model initialization conditions?

To our knowledge, the dynamic downscaling approach has not
yet been used for satellite soil moisture retrievals (as opposed to
synthetic observations). Similarly, the interaction between model
initialization and assimilation with a 3-D EnKF algorithm has not
been tested for soil moisture estimation. De Lannoy et al. [15] have
used the same 3-D EnKF filter and downscaling method for snow
data assimilation. However, our study differs from De Lannoy
et al. [15,16] in that (1) here we investigate soil moisture assimila-
tion rather than snow assimilation and (2) soil moisture is modeled
with four soil layers as opposed to a single snow layer and hence
the information from the assimilation of surface layer observations
propagates downward. Our study also differs from the 3-D EnKF
study performed in De Lannoy et al. [14], where in situ observa-
tions were assimilated with an adaptive spatial filter.

The layout of this paper is as follows: The study area, the assim-
ilated satellite observations, the in situ observations for validation
and bias estimation, the land surface model, and the data assimila-
tion (DA) module are described in Section 2. The experiment setup
and a brief summary of the EnKF algorithm are summarized in Sec-
tion 3. The simulation results are analyzed and discussed in Sec-
tion 4. Finally, conclusions are provided in Section 5.
2. Description of the study area, observations and land surface
model

2.1. Study area

The Little River Experimental Watershed (LREW) located near
Tifton, Georgia (Fig. 1) is one of four designated watersheds se-
lected to calibrate and validate the AMSR-E soil moisture observa-
tions and was a part of a soil moisture field campaign conducted in
June and July, 2003 (SMEX03; http://www.hydrolab.arsusda.gov/
smex03/). This watershed encompasses an area of 334 km2. The
main watershed includes seven gauged sub-watersheds ranging
in size from 3 to 115 km2. This watershed is in the headwaters of
the Suwannee River Basin that begins in Georgia and empties into
the Gulf of Mexico. The Little River is a tributary of the Withlacoo-
chee River; one of the two main tributaries of the Suwannee River.
The LREW has a flat topography with broad flood plains and is
poorly defined by stream channels [60]. A detailed description of
the soil properties, vegetation, land use information, physical char-
acteristics, and precipitation patterns over the LREW can be found
in earlier studies [67,26,59,45,2,3]. We define our experiment do-
main as a rectangular 100 km � 75 km area (�1 km2 fine scale res-
olution) as shown in Fig. 1 (left bottom corner: 31�N, 84�W; upper
right corner: 32�N, 83.25�W).
2.2. Satellite observed soil moisture data used for assimilation

The assimilated satellite observations are retrieved from the
AMSR-E sensor, aboard the Aqua platform, using the Land Surface
Microwave Emission Model (LSMEM). LSMEM is an iterative
forward model which is based on the radiative transfer theory
described in Kerr and Njoku [29]. The soil moisture is retrieved
from the AMSR-E 10.65 GHz frequency, horizontal polarization
(10.65H) brightness temperature data. A detailed description of
the LSMEM model has been provided in Gao et al. [22,23] and
Sahoo et al. [54]. The LSMEM soil moisture retrievals were
validated at SCAN sites, Oklahoma Mesonet sites and Illinois sites
in Continental USA and at OzNet sites in Australia and were found
to be well matched with the in situ measurements [55]. We also
validated the same product at this LREW study location [54] along
with the official AMSR-E soil moisture product where the LSMEM
product outperformed the official AMSR-E product [42].

Our study domain contains 4 � 3 coarse 25 � 25 km2 satellite
observations. For the 1-D EnKF, we perform a priori observation
partitioning into 1 km grid cells (assigning the same coarse-scale
value to all the 1 km grid cells contained within each 25 km
AMSR-E grid cell) whereas we avoid the a priori observation parti-
tioning for the 3-D EnKF algorithm. The Aqua equatorial overpass is
twice a day at 1:30 am (descending pass) and 1:30 pm (ascending
pass) with a revisit time of 2–3 days. Therefore, the study domain
is often only partially observed. Non-observed areas are updated
through the spatial 3-D EnKF filter, but are excluded from the up-
date in the 1-D EnKF.
2.3. LREW in situ observation data used for validation and bias
estimation

Fig. 1 locates the in situ observations that are used to validate
the data assimilation results. There is a Soil Climate Analysis Net-
work (SCAN) site at the southern end of the watershed. As a part
of the AMSR-E calibration and validation project, a network of
instruments [3] have been installed at seventeen rain-gauge sites
since 2001 to monitor soil water and temperature every half hour
at 0.05 m, 0.2 m and 0.3 m depths located within the LREW (Fig. 1)
[5].

Field observation data were obtained from the United States
Department of Agriculture-Agricultural Research Service (USDA-
ARS) located in Beltsville, Maryland [28,27] and USDA-ARS South-
east watershed research laboratory located in Tifton, Georgia [4].
The data used in this study include all available instantaneous soil
moisture and precipitation measurements for the period 2002–
2007 at 16 out of the 17 sites. These 16 sites are 12, 16, 22, 26,
31, 32, 34, 39, 40, 43, 50, 62, 63, 66, 67 and 75 (Fig. 1). A detailed
description of these in situ data can be found in Jackson et al.
[28] and Sahoo et al. [53]. Again, unlike the satellite observations,
the in situ soil moisture data in this study are primarily used for
validation and bias estimation purposes.

http://www.hydrolab.arsusda.gov/smex03/
http://www.hydrolab.arsusda.gov/smex03/


Fig. 1. Little River Experimental Watershed (LREW), Tifton, Georgia, USA [from [5]]. The left figure shows the location of the LREW in the state of Georgia. The simulation
domain with satellite coarse grid cells, LREW boundary and 16 in situ soil moisture stations used in this study is shown for reference (right). The location of a single SCAN site
is indicated by a cross (‘�’) mark (right). The simulation domain includes 12 (4 � 3) coarse-scale satellite grid cells and 7500 (100 � 75) fine-scale model grid cells. The 16
in situ stations are: 12, 16, 22, 26, 31, 32, 34, 39, 40, 43, 50, 62, 63, 66, 67 and 75.
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2.4. The Noah land surface model (LSM)

The Noah LSM (version 2.7.1) gets its lineage from the Oregon
State University (OSU) LSM [34]. This model vertical soil profile
consists of 4 soil layers with lower boundaries at 10 cm, 40 cm,
100 cm, and 200 cm below the surface. The rooting depth of the
model is fixed at 100 cm. It has one snow layer and one canopy
layer. The physics of vertical water mass movement between the
soil layers is governed by the mass conservation law and the diffu-
sive form of the Richard’s law whereas the infiltration is governed
by a conceptual parameterization for the sub-grid treatment of
precipitation and soil moisture [56]. A detailed description of the
Noah model is provided in Chen et al. [6], Chen and Dudhia [7]
and Ek et al. [19]. The Noah model is chosen, because its soil mois-
ture forecasts over the LREW for 2003 outperformed those of the
HySSiB (Hydrologic improvement of Simplified Simple Biosphere
model; [40]) and the CLM (Community Land Model, version 2.0;
[10]) land surface models [53].
2.5. The EnKF Module in the Land Information System (LIS)

The Noah model and the assimilation simulations are per-
formed within NASA-GSFC’s LIS framework [30]. For a comprehen-
sive discussion of the LIS EnKF module, please refer to Kumar et al.
[31]. The three-dimentional EnKF (3-D EnKF; used in this study)
algorithm was developed by the Global Modeling and Assimilation
Office (GMAO/NASA, [51]) and incorporated within LIS5.0 (after
modifying LIS5.0 to enable the GMAO EnKF capability for horizon-
tal error correlations, covariance localization, and distributed fil-
tering; [15]).
3. Experiment setup

Our study time period is from July 1, 2002 through December
31, 2007. Two sets of experiments are designed in this study per-
taining to the 1-D and 3-D EnKF algorithms. The basic structure
of the two sets of experiments is as follows: The observations from
the 16 in situ sites are used as the ‘‘truth’’ in this study and valida-
tion of the results is performed with respect to the in situ observa-
tions. The ‘‘observed’’ (and assimilated) soil moisture retrievals are
derived from the AMSR-E sensor using the LSMEM system. The
Noah simulations are conducted using the North American Land
Data Assimilation System (NLDAS) atmospheric forcing data [38].
It should be pointed out here that the NLDAS precipitation is not
downscaled to the in situ validation scale, but is interpolated from
the 1/8� to 1 km2 for the simulations performed in this study. For
land cover, we use the University of Maryland’s (UMD) 1-km global
land cover product [24]. The sand, silt and clay fraction and soil
color data are generated at 1 km2 resolution from the original
Pennsylvania State University-USDA State Soil Geographic Data-
base (STATSGO) 1/120� resolution soil maps [37]. The ‘‘ensemble
open loop’’ runs are performed by forwarding the ensemble inte-
gration without assimilation. Lastly, the ‘‘assimilation’’ integra-
tions are conducted by assimilating the AMSR-E ‘‘observations’’
into the ensemble simulations. Both the ‘‘ensemble open loop’’
and ‘‘assimilation’’ integrations are initialized from the restart files
generated by ‘‘ensemble spin-up’’ simulations carried out from
October 1, 1997 to June 30, 2002.
3.1. Ensemble generation

The EnKF algorithm approximates the model and forcing error
covariances through the propagation of an ensemble of model tra-
jectories. Each ensemble member represents a different realization
of model and forcing errors. Based on previous studies [31,43,15],
we choose 20 ensemble members for this study.

The ensemble perturbations are applied to both the forcing and
state variables. Normally distributed, zero mean, spatially corre-
lated and temporally uncorrelated additive random perturbations
are applied hourly to the longwave radiation (LW, standard devia-
tion, stdv = 30 W/m2) and the near-surface air temperature (Ta,
stdv = 2 K) forcings, as well as to the forecasted soil moisture
(sm) and soil layer temperature (st) (see Table 1). Log-normally
distributed multiplicative perturbations with mean 1 are applied
hourly to the precipitation (P, stdv = 2) and the shortwave radia-
tion (SW, stdv = 1.5). Cross-correlation between the forcing pertur-
bations is also included (LW–SW: �0.3, SW–P: �0.1, SW–Ta: 0.3,
LW–P: 0.5, LW–Ta: 0.6, P–Ta: �0.1, assuring both positive definite-



Table 1
Description of the additive state perturbation parameters used in this study.

Variable Std dev (m3/m3 or K) Cross correlations

sm1 sm2 sm3 sm4 st1 st2 st3 st4

sm1 6.00E�3 1 0.6 0.4 0.2 0 0 0 0
sm2 1.10E�4 0.6 1 0.6 0.4 0 0 0 0
sm3 6.00E�5 0.4 0.6 1 0.6 0 0 0 0
sm4 4.00E�5 0.2 0.4 0.6 1 0 0 0 0
st1 1.00E�1 0 0 0 0 1 0 0 0
st2 5.00E�2 0 0 0 0 0 1 0 0
st3 5.00E�2 0 0 0 0 0 0 1 0
st4 5.00E�2 0 0 0 0 0 0 0 1
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ness and some balancing of the forcing fields). The cross-correla-
tions between the eight state variable perturbations are shown in
Table 1 and adapted from Kumar et al. [32] (see Table 1 in their pa-
per). A spatial correlation length (l_corr) of 30 km is included in the
perturbation fields for all variables and a localization radius of
75 km is applied at the 3-D assimilation update steps. Given the
size of the study domain, the choice of a 75 km localization radius
effectively implies that information from any observation can
propagate to any pixel within the study domain. We discuss in Sec-
tion 4.1.4 how acceptable perturbations were assured through a
trial and error analysis of the innovation distributions.
3.2. 3-D EnKF algorithm

The EnKF is a Monte-Carlo application of the Kalman filter [21]
and has been used frequently for land surface data assimilation
(e.g. [36,47,41,13,16,33]). We only highlight some aspects that
are relevant for our study.The 1-D EnKF application in this study
assimilates a priori partitioned observations at the fine scale model
grid cells (1D-F1 case of [15]). The 3-D EnKF algorithm downscales
the coarse observations within the assimilation scheme and uses
multiple coarse observation grid cells (3D-Cm case of [15]), as
shown in Fig. 2. The schematic diagram explains the update step
of the 3-D EnKF algorithm at any particular time step ‘i’ (index
dropped for simplicity) and for a particular ensemble member ‘j’.
Each ensemble member model forecast (a.k.a. prediction: x̂�j ) at
the fine scale (model space) is mapped to the coarse satellite obser-
vations (observation space) to calculate the ensemble member
observation prediction ðŷ�j ¼ Hx̂�j Þ using an observation/upscaling
Observation Grid Scale 

Model Grid Scale 

Upscaling (H) of the 
state forecast to the 
coarse observation scale  

Downscaling (K) of the 
innovation to the fine 
model scale  

Fig. 2. A schematic diagram of the 3-D EnKF approach illustrated for four coarse-
scale pixels, each containing 4 � 6 fine-scale pixels.
operator (H). The innovation ðyj � Hx̂�j Þ is calculated from the per-
turbed coarse satellite observations ðyjÞ and the observation pre-
dictions ðHx̂�j Þ at the coarse grid scale (observation space). The
innovation is then mapped back to the fine model scale (model
space) and applied to the individual fine model grid cells to update
each ensemble forecast member (a.k.a. analysis: x̂þj ) at the fine
scale via the diagnosed error cross correlations between the fine
scale state variables and the coarse scale observation variables,
as expressed in the Kalman gain. Here, yj vector contains multiple
coarse scale satellite observations.

We define a localization radius of 75 km, which is equal to 2.5
times the spatial error correlation length l_corr = 30 km, which in
turn covers at least the dimension of one coarse observation grid
cell [15]. Based on the localization radius, we find the multiple
coarse satellite observations that affect any single fine scale model
forecast and we use the innovations from all those respective
coarse grid cells to update the model forecast of that model fine
grid cell (downward dotted arrows on the right hand side of the
Fig. 2). Conversely, the innovation calculated for a given coarse grid
cell contributes to the increments for a number of fine scale model
grid cells whose centers are within 75 km from the observed coarse
grid cell (shown by the multiple downward solid arrows in the
right hand side of the figure).

The update equation for a single ensemble member ‘j’ at a single
fine scale location ‘k’ at one time step can be written as:

x̂kþ
j ¼ x̂k�

j þ Kk½yj � ŷ�j � ð1Þ

where the Kalman gain is defined as

Kk ¼ Cov ½x̂k�; ŷ��½Cov ½ŷ�; ŷ�� þ R��1 ð2Þ

In Eq. (1), ‘x̂k�
j ’is the a priori state estimate (or forecast) whereas ‘x̂kþ

j ’
is the a posteriori state estimate (or analysis). The term ‘x̂k�

j ’ is a part
of the total state vector ‘x̂�j ’ and contains the state variables at a sin-
gle grid cell ‘k’. The term ‘x̂k�’ in Eq. (2) refers to the ensemble of
forecasts ‘x̂k�

j ’ (crf. first term on the right hand side of Eq. (1)). The
term ‘R’ denotes the observation error covariance. In our case, the
state vector ‘x’ contains eight state variables (4 soil moisture vari-
ables (sm1, sm2, sm3 and sm4) and 4 soil temperature variables
(st1, st2, st3 and st4) for the 4 soil layers). Given the small standard
deviation values for the temperature perturbations (Table 1) and gi-
ven the small error correlations between the soil moisture and soil
temperature variables (not shown), the updates to the temperature
variables are negligible. In practice, the state vector therefore con-
sists essentially of the 4 soil moisture variables.

The model state variables are updated using Eq. (1) at the time
step when the observations ðyjÞ are available, after contrasting
them to the observation prediction ðŷ�j Þ. The latter are calculated
as the spatial mean of all the 1 km fine scale soil moisture values
within any single 25 km coarse grid cell. The first term on the right
hand side of Eq. (2) includes the error correlation between the
ensemble of forecasted sm1 over different coarse scale areas (ŷ�;
size depends on the localization radius) and the ensemble of the
eight fine scale state variables at a single fine scale model grid cell
ðx̂k�Þ. This correlation information is the basis for updating the
eight state variables in response to coarse surface layer soil mois-
ture observations ðyjÞ.

3.3. Forecast bias correction

The Kalman filter is only optimal in the presence of zero mean,
temporally uncorrelated forecast and observation errors. As will be
shown below, the model forecasted soil moisture regime is differ-
ent from both the in situ and satellite observations, while the latter
two show a very similar regime despite the scale discrepancy. Be-
cause of the good agreement between the satellite observations
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and in situ measurements, we assume no observation bias and
attribute the time mean innovation (difference between satellite
observation and forecast) value to forecast bias. As a crude esti-
mate of the forecast bias ‘b1’ in the surface layer soil moisture,
the spatial and temporal mean difference between the model fore-
casts and all available in situ observations during the period July 1,
2002 through December 31, 2007 (prior to assimilation) is com-
puted ðb̂ ¼ ½b1;0;0; . . . ;0�TÞ and removed from each ensemble
member innovation. The ensemble member analysis at a single fine
scale grid cell ‘k’ is ~̂x0kþj and fed back into the model as an internal
state:

~̂x0kþj ¼ ~̂x0k�j þ eK ½yj � Hð~̂xk�
j þ b̂Þ� ð3Þ

After assimilation, this analysis is optionally bias-corrected (x̂kþ
j ,

not fed back into the model) to bring the output to the true (in situ)
climatology by adding the constant bias term to the top layer soil
moisture as follows:

x̂kþ
j ¼ ~̂x0kþj þ b̂ ð4Þ

The analysis output (not fed back into the model) is the ensem-
ble mean of the ensemble members ‘x̂kþ

j ’ in Eq. (4). Tildes refer to
quantities which contain biased information. Note that we will also
remove this constant bias (single value) from the ensemble open
loop to obtain a ‘‘bias-corrected ensemble open loop’’ in the discus-
sion of the results.

The approach is similar to approaches where the observations
are rescaled to the model climatology (e.g. CDF matching; [49]),
but differs in the fact that here the bias is assigned to the forecast
and only the first order (mean) bias is corrected based on the
spatial average across the in situ observations. Our method is also
very similar to EnBKF_2 in De Lannoy et al. [13], but here (i) a static
bias correction is applied and (ii) the bias vector b only contains a
non-zero element for the observed state variable of surface soil
moisture. The latter implies that here non-observed variables are
updated with anomaly increments, and the analysis for the
non-observed variables (e.g. deep layer soil moisture) is kept at
the model climatology without bias correction.

4. Results and discussion

The results in this study are analyzed in three parts: (1) the per-
formance of the EnKF algorithms for surface soil moisture; (2) the
impact of surface soil moisture assimilation on the deeper layer
soil moisture and other water cycle variables and (3) the effect of
data assimilation on soil moisture state balancing.

4.1. Performance of the EnKF algorithms

The surface soil moisture assimilation results are compared to
the in situ soil moisture observations over the 16 in situ locations
from 2002 to 2007 (Fig. 1). Both the daily ascending and descend-
ing soil moisture data at 1:30 pm and 1:30 am are assimilated
whenever the satellite data are available, but we restrict our vali-
dation to the assimilation estimates at 1:30 pm, as in our previous
studies [53,54]. We emphasize that the in situ data from the entire
time period at three-hourly temporal resolution (8 time points per
day) are used to calculate the overall coarse-scale forecast bias
(=0.13 m3/m3) prior to the data assimilation.

4.1.1. Temporal evolution of the spatially averaged top layer soil
moisture

Fig. 3 shows the spatially averaged (over 16 in situ locations)
time series of the top layer soil moisture from the ensemble open
loop, 1-D and 3-D EnKF simulations along with the observed LREW
in situ soil moisture data for the period 2002–2007. Fig. 3 also
includes the assimilated satellite observations. The satellite obser-
vations include values only from a single coarse 25 km2 satellite
grid cell which contains all the 16 in situ locations (Fig. 1). The cor-
responding in situ total precipitation/irrigation data are shown in
Fig. 3 as well. A 10-day moving average is applied to all the
time-series data prior to plotting; however all the validation statis-
tics below are calculated using the original daily data at 1:30 pm.
All the data products exhibit the dominant seasonal cycle very well
and show a similar dynamic response to precipitation events. This
time series plot clearly shows the large persistent bias over time
for the surface soil moisture in the ensemble open loop case with
respect to the in situ data. The 1-D and 3-D EnKF results with bias
correction are within close range of the in situ observations. The
satellite observations are able to capture the high-frequency soil
moisture variations that are observed in the in situ data during
the very dry spells; however the satellite estimates differ from
the in situ observed values.

Fig. 4 shows the corresponding scatter plots of the daily
1:30 pm soil moisture estimates (satellite, station-averaged
ensemble open loop and assimilation results) against the in situ
observations. In Fig. 4a, the number of data points is limited
(1346 days versus 2010 days in other datasets) by the satellite re-
visit time (once every 2–3 days). The satellite observations show a
small negative bias (�0.02 m3/m3) over this watershed. The grey
highlighted box in Fig. 4a shows that the satellite retrievals overes-
timate soil moisture for dry conditions and hence supports the
findings in the time series plot in Fig. 3. The ensemble open loop
integration has a bias of 0.12 m3/m3 and a RMSE of 0.13 m3/m3

with respect to the in situ data. This bias is very systematic except
when the soil moisture values are low and the ensemble open loop
forecast results become uncorrelated with the in situ observations
as shown in the grey box in Fig. 4b. Both the 1-D (Fig. 4c) and 3-D
(Fig. 4d) EnKF assimilation analyses show a fine-scale positive bias,
which is negligibly higher for the 1-D EnKF case than those of the
3-D EnKF case. Both the EnKF simulations improve the correlation
values over those from either the satellite observations or the
ensemble open loop, indicating that the assimilation has the capa-
bility to improve the soil moisture estimates over the model results
or observations alone. Since the precipitation in the NLDAS forcing
data has not been downscaled to the in situ observations and since
precipitation directly controls the model forecast soil moisture
estimates, it is not possible to achieve near perfect time series cor-
relation through any data assimilation filter alone. Nevertheless,
the correlation values are high (0.68–0.83) for all the soil moisture
datasets with respect to the in situ observations.

Fig. 5 shows the temporal evolution of the spatial RMSE for the
ensemble open loop and assimilation results, calculated over the
16 in situ stations. The spatial RMSE values range between 0.08–
0.17 m3/m3 (open loop without bias correction) and 0.01–0.09
m3/m3 (open loop with bias correction and assimilation results),
respectively. The RMSEs for the assimilation analyses generally
indicate enhanced spatial soil moisture fields over the bias-cor-
rected open loop and most so for the 3-D EnKF results. The RMSE
time series for both the EnKF cases show a consistent negative lin-
ear trend over the entire study period which is not noticed in the
case of the ensemble open loop. Furthermore, the EnKF RMSE time
series follows the original soil moisture time series discussed ear-
lier in Fig. 3. The peaks in all the RMSE time series roughly follow
the precipitation peaks. This suggests that the finer-scale precipita-
tion details are not included in the simulations and wetter condi-
tions thus produce higher spatial RMSE values.

Fig. 6 shows the temporally averaged spatial maps of the anal-
ysis error standard deviation (estimated from the ensemble
spread) for the 1-D and 3-D EnKF cases, calculated from daily
instantaneous data at 1:30 pm over the entire period of July 1,
2002 to December 31, 2007. The range of the analysis error
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Fig. 4. Daily soil moisture estimates versus average in situ measurements from 16 stations in the Little River Watershed. (a) Satellite retrievals, (b) ensemble open loop, (c) 1-
D EnKF and (d) 3-D EnKF.
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standard deviation is very similar for both the EnKF cases. For the
1-D EnKF the spread does not show any specific spatial pattern
whereas for the 3-D EnKF the spread is generally higher in the cen-
ter of each coarse satellite pixel area and lower in the periphery
which can be attributed to the spatial correlation structure and
the observations at coarse scale (25 km2) spatial resolution
(periphery is being affected by multiple satellite observations from
neighboring grids). Additionally, we also notice that the lower
spread follows the dendritic structure seen in the map which
comes from the soil texture.
4.1.2. Analysis at individual stations
Next, we quantify the time series behavior at all the 16 individ-

ual in situ stations and the nearby SCAN (SC) site. Fig. 7 shows a
comparison of the skill scores (bias, ubRMSE � sqrt(RMSE2 -
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� bias2), and correlation coefficient) of the ensemble open loop
(both non-bias-corrected and bias-corrected), 1-D and 3-D EnKF
soil moisture analyses. The skill scores are calculated from the dai-
ly instantaneous (1:30 pm) soil moisture estimates for the period
2002–2007. The station averaged (AVG) values are included in
the figures as well. The x-axis in each plot represents the station
identification number (see Fig. 1 for station location). Fig. 7a shows
large positive bias values in the non-bias-corrected ensemble open
loop soil moisture results for all stations. The bias reaches as large
as 0.16 m3/m3 for the Station 32. The bias-corrected ensemble
open loop results still contain positive bias (around 0.03–
0.13 m3/m3). As discussed above we are here applying a first order
bias correction (a constant value) is applied by determining the
spatially averaged bias at 16 in situ points and temporally averag-
ing over the entire study period. Moreover, the constant bias is cal-
culated based on a comparison of three-hourly model forecast and
the in situ observations for the entire period whereas the results
are shown from averaging the soil moisture data only at 1:30 pm
time instants for the entire period. Therefore this first order con-
stant bias correction does not completely remove the bias. This
presence of bias is also supported by the innovation histograms
which will be discussed in Section 4.1.4. Both the EnKF results also
show positive, but reduced biases over the 16 stations and the
SCAN site. The average bias for the ensemble open loop, bias-cor-
rected ensemble open loop, 1-D and 3-D EnKF are 0.13, 0.07, 0.04
and 0.03 m3/m3, respectively.

Fig. 7b shows the time averaged ubRMSE values for all the sim-
ulation results for the same 16 stations and the SCAN site. This
‘unbiased’ metric is particularly interesting to measure the assim-
ilation skill, because the success of a Kalman filter is measured by
its ability to improve the time series dynamics, rather than the
time mean climatology level. The ubRMSE values increase when
the validating in situ data and the assimilation analyses (i) differ
more in time series variance magnitudes and/or (ii) have a lower
time series correlation [20]. The EnKF results produce the lowest
ubRMSE values for nearly all stations. The magnitudes of the
ubRMSE values for the 3-D EnKF case are comparable to those of
the 1-D EnKF case, but always slightly better. The time series cor-
relation is plotted in Fig. 7c and high correlation values are seen for
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the ensemble open loop and EnKF soil moisture estimates (be-
tween 0.6 and 0.8) when compared to the in situ measured data
at all the stations except at Station 26. The station averaged corre-
lation increases from 0.7 (open loop) to 0.74 (1-D) and 0.77 (3-D).
The 95% confidence intervals around the estimated bias, ubRMSE
and correlation coefficient values indicate that these improve-
ments are statistically significant for the station-average metrics
and for many individual stations.

4.1.3. Precipitation-soil moisture spatial coherence maps
The 3-D EnKF filter updates soil moisture based on both vertical

and horizontal error correlations, as opposed to the 1-D EnKF filter
which considers only vertical error correlations (independently at
each fine scale grid cell); thereby the 3-D EnKF filter maintains
the spatial coherence pattern of the soil moisture distribution.

To analyze the spatial distribution of soil moisture and precipi-
tation-soil moisture coherence patterns, we choose a time period
of wetting and drying dynamics (February 26 to March 1, 2003)
over our simulation domain. Fig. 8 shows daily NLDAS precipita-
tion forcing (column 1) and the corresponding daily soil moisture
difference images for the 1-D EnKF (column 2) and 3-D EnKF (col-
umn 3) results at 1-km spatial resolution. The light blue to dark
blue color scale for precipitation shows lower to higher precipita-
tion. The red color in the soil moisture difference maps represents
negative values (dry-out) whereas the blue color represents the
positive values (wetting). There is no precipitation on February
27; heavy precipitation of more than 16 mm/day in the central
and southern parts and some precipitation of less than 4 mm/day
in other parts of the study region on February 28. The dendritic
patterns (also in Fig. 6) in all the soil moisture difference maps
come from the soil texture maps. Generally, the soil moisture
change maps correspond very well to the precipitation events in
space and time. The 3-D EnKF maintains a realistic pattern,
whereas the 1-D EnKF results fail to preserve the spatial coherence
of the atmospheric signature (precipitation) in the soil moisture
maps. Also, the coarse grid cell (25 km) boundaries are quite often
imprinted in the 1-D EnKF soil moisture maps; especially when the
soil moisture values are very low (dry period) and when the soil
moisture values are significantly different across the satellite grid
cells (not shown). The spatial correlation (calculated over all the
16 sites, not shown) yields similar high values for both the ensem-
ble open loop and the 3-D EnKF results and lower values for the 1-
D EnKF results.

4.1.4. Filter diagnostics
The performance of the EnKF strongly depends on the choice of

the assimilation parameters [51]. For a consistently operating fil-
ter, the normalized innovations sequence should be white, i.e. it



1-D EnKF 
SM Difference 

(m3/m3)

3-D EnKF 
SM Difference 

(m3/m3)

NLDAS 
Precipitation 

(mm/day)
F

eb
ru

ar
y 

27
 

F
eb

ru
ar

y 
28

 
M

ar
ch

 1
 

F
eb

 2
7 

– 
F

eb
 2

6 
F

eb
 2

8 
– 

F
eb

 2
7 

M
ar

 1
 –

 F
eb

 2
8 

0.001   2       4        6        8      10      12     14     16 

Precipitation (mm/day) Soil Moisture Difference (m3/m3) 

-0.06  -0.05  -0.04  -0.03 -0.015     0     0.03    0.05   0.06   0.065   0.07  0.075  0.08  0.09

Fig. 8. Spatial precipitation and soil moisture difference maps during a wet event for the period February 26–March 1, 2003.

Bins for normalized innovations

F
re

q
u

e
n

c
y 

(%
)

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

8

Mean: -0.23 
Stdv: 0.72 

(a) 

Bins for normalized innovations

Fr
eq

u
en

cy
 (

%
)

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

8

Mean: -0.16 
Stdv: 0.75 

(b) 

Fig. 9. Histograms of the normalized innovations (dimensionless) for (a) 1-D EnKF and (b) 3-D EnKF.

A.K. Sahoo et al. / Advances in Water Resources 52 (2013) 19–33 27



0

0.10

0.20

0.30

2n
d

 L
ay

er
 S

M
(m

3 /m
3 ) 

  

0

0.10

0.20

0.30

3r
d

 L
ay

er
 S

M
(m

3 /m
3 ) 

  

Jul-02 Jul-03 Jul-04 Jul-05 Jul-06 Jul-07
0

0.10

0.20

0.30

Date

4t
h

 L
ay

er
 S

M
(m

3 /m
3 ) 

  

Open Loop 1-D EnKF 3-D EnKF

(a)

(b)

(c)

Fig. 10. Daily time series of the station averaged moisture from (a) Layer 2 (0.1–0.4 m), (b) Layer 3 (0.4–1 m) and (c) Layer 4 (1–2 m) for all the ensemble open loop and EnKF
simulations.

28 A.K. Sahoo et al. / Advances in Water Resources 52 (2013) 19–33
should exhibit no correlation in time, and it should follow the stan-
dard Gaussian (Normal) distribution with zero mean and unit var-
iance ðNð0;1ÞÞ. The normalized ensemble mean innovations are
calculated by normalizing each innovation value corresponding
to each individual coarse scale observation (m) by the square root

of its filter estimated uncertainty
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fCov ½ŷm�; ŷm�� þ ½R�m;mg

q� �
. We

manually calibrated the state forecast error and observation error
covariance matrices (P and R, respectively) through trial and error
with several combinations of standard deviations for the state/
forcing perturbations and observation error. We use 0.05 m3/m3

as the observation error standard deviation in this study. Fig. 9
shows the distribution of the normalized ensemble mean innova-
tion values for both the 1-D and 3-D EnKF algorithms with the final
set of ‘‘P’’ and ‘‘R’’ that have been used in this study. Note that the
1-D EnKF innovations in Fig. 9a are at the fine scale (1 km grid; to-
tal 7500 grid cells over the simulation domain) whereas the 3-D
EnKF innovations in Fig. 9b are at the coarse scale (25 km grid; to-
tal 12 grid cells over the simulation domain). The dotted vertical
line in Fig. 9a and b show the mean of the innovations. The stan-
dard normal distribution is also shown for reference.

There is a negative bias in the innovations (satellite observa-
tions minus ensemble forecast) averaged over the entire domain,
even if they are first-order bias-corrected. This is because the first
order bias correction (a constant value) is determined based on 16
in situ points (site averaged) and not sufficient to remove the bias
entirely for the whole area. It is possible to remove the negative
innovations bias by increasing ‘‘P’’ and forcing the model towards
the observation climatology, but the histogram spread then sug-
gests the sub-optimality of the filter for a reasonable range of
‘‘R’’. Overall, the innovation histogram distributions for both the
1-D and 3-D EnKF cases produce similar statistics; though the
mean of the distribution is closer to zero for the 3-D EnKF case.
The standard deviation values of both the innovation histogram
distributions are reasonably close to 1, indicating that the filter
parameters are acceptable.

4.2. Impact of surface layer soil moisture assimilation on other
variables

In this section, we verify the impact of surface layer soil mois-
ture assimilation on the deeper layer soil moisture and other water
cycle variables by comparing EnKF simulation results with those of
the ensemble open loop. We will focus on a qualitative analysis of
the model simulated results here, except for the deeper layer soil
moisture, for which in situ observations allow a quantitative
evaluation.

4.2.1. Deep layer soil moisture
Fig. 10 shows the time series for the moisture in the model 2nd

layer (Fig. 10a), 3rd layer (Fig. 10b) and 4th layer (Fig. 10c) for the
ensemble open loop, 1-D and 3-D EnKF simulations averaged over
the 16 stations. A 10-day moving average is applied to the time ser-
ies for visual clarity prior to plotting the time series. Bias is likely
present in the model predicted deeper layer soil moisture values,
but we do not know the bias error correlations between different
layers and hence we do not bias-correct the deeper layers. How-
ever, the deeper layer soil moisture variables respond to the sur-
face layer soil moisture anomaly assimilation through the state
error cross-correlation matrix and eventually through the model
propagation. Fig. 10 shows that the deeper layer soil moisture vari-
ables immediately respond to the surface soil moisture assimila-
tion and the deeper layer soil moisture values decrease within a
few assimilation steps for the 1-D and 3-D EnKF cases, introducing



Table 2
Correlation between the model simulated 2nd layer (0.1–0.4 m) soil moisture and the
in situ observed soil moisture averaged from 0.2 and 0.3 m measurement depths at 16
in situ locations. Also shown are the station average (AVG) correlation values.

Sites Ensemble open loop 1-D EnKF 3-D EnKF

RG12 0.76 0.79 0.77
RG16 0.63 0.69 0.70
RG22 0.69 0.70 0.79
RG26 0.54 0.61 0.63
RG31 0.79 0.71 0.72
RG32 0.65 0.68 0.69
RG34 0.65 0.63 0.69
RG39 0.67 0.63 0.66
RG40 0.71 0.65 0.65
RG43 0.66 0.61 0.70
RG50 0.70 0.66 0.64
RG62 0.60 0.61 0.70
RG63 0.59 0.62 0.60
RG66 0.53 0.53 0.53
RG67 0.68 0.64 0.68
RG75 0.66 0.70 0.66
AVG 0.66 0.65 0.68

Table 3
Percentage change in water cycle variables introduced by surface soil moisture
assimilation averaged over the entire study period (July 2002–December 2007).

Variable 1-D EnKF (%) 3-D EnKF (%)

Surface runoff 12 11
Subsurface runoff 135 78
Evaporation 30 29
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a difference between the ensemble open loop and 3-D EnKF deep
layer soil moisture values as high as 0.10 m3/m3 (2nd layer) to
0.15 m3/m3 (4th layer). It can be noticed that there is a shift in cli-
matology in deep layer soil moisture between ensemble open loop
and EnKF cases. The seasonality is dampened in the deeper layers,
because the deeper layers are less likely to respond quickly to the
atmospheric signals. Additionally, the thicker subsurface layers
hold more water.

The in situ soil moisture observation depths (0.05 m, 0.2 m and
0.3 m) differ from the Noah model layer depths (1st layer: 0–0.1 m,
2nd: 0.1–0.4 m, 3rd: 0.4–1 m and 4th: 1–2 m). Information from
the nearby SCAN site reveals that the soil texture changes consid-
erably with depth (sand percent from 88% to 70% and clay percent
from 2% to 20% from the surface to 2 m soil depth). Yet, in our sim-
ulations, we use only a single soil texture map for all the soil
depths. It is difficult to match the in situ soil moisture data to
the depths equivalent to the Noah model soil layer since the water
retention curve is different for different soil texture types. There-
fore, we exclude possible observation–forecast bias from our vali-
dation by focusing on the time series correlation between the
model simulated 2nd layer (0.1–0.4 m) soil moisture and the
in situ observed soil moisture averaged from 0.2 and 0.3 m mea-
surement depths. Table 2 shows the time series correlation results
for the 2nd layer SM at individual sites. The station-average (AVG)
time series correlation values are 0.66, 0.65 and 0.68 for the
ensemble open loop, 1-D and 3-D EnKF, respectively. The correla-
tion is quite good at all the in situ stations even though the abso-
lute soil moisture values are not directly comparable.
Table 4
Description of the model experiments used to study the effect of the 3-D EnKF
algorithm on state balancing. Experiments are started either in the summer (X = S,
July 1, 2002) or in the winter (X = W, January 1, 2003).

Experiment
name

Description

OL-LX Open loop simulation with SM I.C. = 0.02 m3/m3

OL-MX Open loop simulation with SM I.C. = 0.25 m3/m3

OL-HX Open loop simulation with SM I.C. = 0.48 m3/m3

OL-RX Open loop simulation with SM I.C. from spin-up
simulations

3D-LX 3-D EnKF simulation with SM I.C. = 0.02 m3/m3

3D-MX 3-D EnKF simulation with SM I.C. = 0.25 m3/m3

3D-HX 3-D EnKF simulation with SM I.C. = 0.48 m3/m3

3D-RX 3-D EnKF simulation with SM I.C. from spin-up simulations
4.2.2. Water cycle variables
In this section, we discuss the response of the surface and sub-

surface runoff and evaporation to the surface soil moisture assim-
ilation. These variables are diagnostic variables in the assimilation
and we let these variables respond to the updated soil moisture
and temperature through model physics and dynamics.

The percentage change in water cycle variables introduced as a
result of EnKF assimilation averaged over the entire study period is
presented in Table 3. Out of all the water cycle variables, the sub-
surface runoff shows the largest relative changes due to lower soil
moisture climatology in the deeper layers and the surface runoff
shows the smallest relative changes. The surface runoff in Noah
model is least affected, because the precipitation water is removed
through surface runoff before the rest of the precipitation water
enters the soil. It can be also noticed that there is a considerable
difference in the changes in subsurface runoff results between
the 1-D and 3-D EnKF simulations which is not found in other
water cycle variables. The time series plots for all the water cycle
variables from ensemble open loop and EnKF cases behave simi-
larly though the values are different (figures not shown here).

4.3. Effect of the 3-D EnKF filter on state balancing

Model initialization plays a major role in controlling the evolu-
tion of the model state variables and fluxes through time (e.g.
[39,69]) and data assimilation has been offered as a tool to provide
balanced initial conditions without a need for long spin-ups. We
verify the effect of the 3-D EnKF algorithm on the state balancing
by performing several ‘‘cold start’’ simulations with different yet
spatially homogenous initial soil moisture conditions and compar-
ing those results with the ‘‘warm start’’ simulation (that is, a sim-
ulation with a restart file obtained through spin-up). A description
of all the simulations is provided in Table 4. We choose three dif-
ferent homogeneous initial soil moisture conditions at all grid cells
across the domain for this study: (a) dry start (0.02 m3/m3), (b)
intermediate start (0.25 m3/m3) and (c) wet start (0.48 m3/m3).
An additional experiment is also performed with warm start ini-
tialization condition after simulating 5 year of model spin-up.
The experiments are performed for the ensemble open loop with-
out assimilation and for the 3-D EnKF assimilation integrations.

4.3.1. Sensitivity to the model spin-up
Fig. 11 shows 1 year of soil moisture time series results for the

ensemble open loop and 3-D EnKF cases with different initializa-
tion conditions for all 4 soil layers. All the results are spatially aver-
aged over 16 in situ locations. The dotted curves represent
ensemble open loop and the solid curves represent the 3-D EnKF
cases, respectively. The same color for both the dotted (ensemble
open loop) and solid curves (3-D EnKF) corresponds to the same
model initialization condition. The cold start simulations (open
loop and 3-D EnKF cases) are compared to the respective target
warm (spun up) start simulations and the time after which the cold
started simulation converges to the warm started simulation is re-
corded in Table 5 as the recovery time for all the four soil moisture
layers. All these experiments start on July 1, 2002 (summer start).
Table 5 also shows the results for the simulations that start on
January 1, 2003 (winter start) which are discussed later in
Section 4.3.2.



0

0.10

0.20

0.30 (a)

0

0.10

0.20

0.30

0

0.10

0.20

0.30

S
o

il
 M

o
is

tu
re

 (
m

3 /m
3 )

(b)

(c)

1-Jul 1-Sep 1-Nov 1-Jan 1-Mar 1-May
0

0.10

0.20

0.30

Date

(d)

OL-LS OL-MS OL-HS OL-RS
3D-LS 3D-MS 3D-HS 3D-RS

Fig. 11. Sensitivity results of the 3-D EnKF algorithm to the model initialization conditions and model spin-up for the (a) Layer 1, (b) Layer 2, (c) Layer 3 and (d) Layer 4. The
simulations start in the summer (July 1, 2002). The results are spatially averaged over all the 16 in situ locations. Refer to Table 4 for the description of the experiments in the
legend.

Table 5
The recovery time for the cold start runs with respect to the warm start run for all the four soil moisture layers for the 3-D EnKF algorithm. The table shows results for all the
experiments starting in the summer (July 1, 2002) and in the winter (January 1, 2003).

Summer start Winter start
Approximate recovery time (in days) with respect to the OL-RS results Approximate recovery time (in days) with respect to the OL-RW results

OL-LS OL-MS OL-HS OL-LW OL-MW OL-HW

Open loop simulations
Layer 1 103 61 78 61 31 38
Layer 2 163 90 115 93 45 52
Layer 3 229 132 167 303 192 250
Layer 4 322 185 253 365+ 245 305

Summer start Winter start
Approximate recovery time (in days) with respect to the 3D-RS results Approximate recovery time (in days) with respect to the 3D-RW results

3D-LS 3D-MS 3D-HS 3D-LW 3D-MW 3D-HW

3-D EnKF simulations
Layer 1 74 24 42 13 33 33
Layer 2 105 48 64 80 45 55
Layer 3 166 102 134 250 166 200
Layer 4 257 164 217 320 203 230
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Fig. 11a shows the results for the model top layer (0–0.1 m). The
soil moisture climatologies of ensemble open loop and the 3-D
EnKF cases are different because of the first order bias correction
to the 3-D EnKF results (only in the surface layer). However, the re-
sponses to the initialization conditions are very similar for both the
ensemble open loop and the 3-D EnKF cases. The soil moisture val-
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ues for the OL-HS and 3D-HS reach saturation after a few rain
events and thereafter moisture is removed from the top layer
through drainage. The soil moisture then decreases quickly and
converges with the soil moisture time series from the OL-RS and
3D-RS experiments after 78 and 42 days, respectively. Similarly,
the OL-MS and 3D-MS simulations take 61 and 24 days respec-
tively to converge with OL-RS and 3D-RS simulations. In contrast
to the wet simulations, the soil moisture values for the OL-LS
and 3D-LS simulations increase gradually with subsequent precip-
itation events and therefore take more time (103 and 74 days) to
recover.

Fig. 11b–d shows soil moisture for deeper layers. Note that no
bias-correction is applied to the EnKF analyses in the deeper layers.
The impact of observations on the sub-surface model layers de-
pends on the strength of the vertical coupling of soil moisture be-
tween the different layers (decreasing strength with depth, [31]).
Table 5 shows that it could take as long as a year or more for the
cold-start runs to catch up with the restart run in deeper layers.
Data assimilation is able to reduce the recovery time by 1–
3 months by accelerating the state balancing.

This study also reveals that the performance of the EnKF algo-
rithm can be affected by the model state initialization guess and
that data assimilation does not eliminate the need for spin-up in
land surface modeling. As indicated earlier, the wetter simulations
(3D-HS and 3D-MS) converge with the 3D-RS simulation much be-
fore the 3D-LS simulation does. It implies that the Noah model is
able to drain the wet soil layers faster than recharging the dryer
soil layers and hence a wetter initialization condition is more likely
a better cold start in case of the Noah model if the model spin-up is
not possible.
4.3.2. Sensitivity to the model simulation start season
We perform an entire set of simulations (total 8) as above, but

we start the simulations on January 1, 2003 as opposed to July 1,
2002 in the previous cases. The objective here is to verify whether
the model simulation start season (summer (July 1, 2002) versus
winter (January 1, 2003)) has any impact on the results discussed
above in Section 4.3.1. The results are shown in Table 5.

In the winter start cases, the simulation results for the top two
layers converge faster than those which start in the summer. This
may be related to extreme atmospheric conditions that affect the
ratio of evapotranspiration (ET) to precipitation. There is a long
dry period (around 45 days; January 1 to February 15, 2003) at
the beginning of these winter simulations which is followed by a
long, continuous and heavy precipitation period (around 2 months;
February 15 to April 15, 2003). These continuous extreme dry and
wet conditions help the simulations for the top two layers (1st and
2nd layers) converge faster. This is the case for both the ensemble
open loop and 3-D EnKF simulations. However, the impact of these
continuous extreme dry and wet conditions is not sufficient to help
the simulations for the two deepest layers (3rd and 4th layers) con-
verge. The deeper layers do not freeze and they do not feel the di-
rect impact of ET unlike surface layers. These deep layer
simulations do not converge past these extreme dry and wet con-
ditions, and take longer to converge as compared to those which
start in the summer. Regardless of the influence of the atmospheric
conditions, the beneficial impact of data assimilation on spin-up is
again clear in the reduced convergence time.
5. Conclusions

This study describes the assimilation of coarse scale (25 km) sa-
tellite (AMSR-E) observations of surface soil moisture into a finer
scale (1 km) land surface model (Noah) using the 1-D and 3-D EnKF
schemes in LIS. The coarse satellite soil moisture observations are
retrieved from the AMSR-E passive microwave 10.65H GHz chan-
nel using the LSMEM microwave emission model. A priori first or-
der forecast bias correction is performed for surface soil moisture
within the assimilation procedure. We perform a priori observation
partitioning of the satellite observations into 1 km grid cells for the
1-D EnKF algorithm and update the model forecast at each fine
model grid without affecting any neighboring grid cells. On the
other hand, we avoid the a priori observation partitioning when
using the 3-D EnKF algorithm and perform the downscaling within
the filter algorithm. Multiple coarse observation grid cells are
assimilated simultaneously to update fine-scale model grid cells,
based on a forecast error correlation length of 30 km and a covari-
ance localization length of 75 km. All the simulation results are
validated against the in situ soil moisture observations over the
Little River Experimental Watershed, Georgia, USA.

Both the EnKF algorithms produce fine-scale results that are
closer to the in situ data than either the model open loop or the sa-
tellite observations alone. The 3-D EnKF slightly outperforms the
1-D EnKF and better preserves realistic spatial patterns because
of the colored spatial error correlations and the corresponding im-
pact of multiple coarse observation grid cells. The ubRMSE is used
as a ‘bias-free’ measure to validate the soil moisture skill in terms
of relative temporal variations. The lowest ubRMSE values at most
of the sites are found for the 3-D EnKF case. The mean correlation
over all the sites increases from 0.7 for the open loop to 0.74 for the
1-D EnKF and 0.77 for the 3-D EnKF case. The improvements are
significant at 95% confidence intervals.

The impact of the surface soil moisture assimilation is reflected
in the deep layer soil moisture and other water cycle variables
which are directly or indirectly controlled by the surface layer soil
moisture. The correlation between the in situ observations and the
model simulations at individual sites for the 2nd layer indicates an
improvement of the 3-D EnKF results over the ensemble open loop
case (Table 2). We assess the impact of the surface soil moisture
assimilation on the water cycle variables (sub-surface runoff and
evaporation). The change in the subsurface runoff caused by the
surface moisture assimilation is found to be much larger than the
changes in other water cycle variables. The impact of the surface
layer soil moisture assimilation on the heat fluxes is negligible
and not discussed here.

Finally, sensitivity studies are performed to verify the robust-
ness of the data assimilation algorithm to the choice of the initial
state conditions. It is clearly shown how the EnKF speeds up the
state balancing (relative to the open loop integration), regardless
of the chosen initial state values. Soil moisture in the top layer
quickly reaches a stable moisture range, even when the model is
initialized with far too wet or dry values, because the top layer soil
moisture is directly constrained by the observations. However, the
moisture content in the subsurface layers has a much longer recov-
ery time, because the effect of the surface data assimilation re-
duces in deeper layers. The magnitude of the recovery time
depends on the difference between the initial wetness and the
mean soil moisture condition of the region, on the season (atmo-
spheric conditions) and on the vertical coupling strength among
the soil layers in a land surface model. Furthermore, the sensitivity
results might depend on the frequency of assimilation. Perhaps
most importantly, it is shown that the land surface model should
be spun up before data assimilation, that is, data assimilation does
not generally obviate the need for model spin-up.

The results in this study show that both the 1-D and 3-D EnKF
algorithms improve the soil moisture results, but only the 3-D
EnKF manages to preserve a realistic spatial pattern. At the same
time, however, there is a tradeoff for the computational cost since
3-D EnKF simulations are computationally more expensive in the
generation of colored perturbation fields for all state variables
and forcings. Hence, the application of the 3-D EnKF algorithm
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operationally over large spatial domain still remains a challenge
regardless of its better performance.
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