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Abstract This paper reviews the conceptual problems limiting our current knowledge of

the hydrological cycle over land. We start from the premise that to understand the

hydrological cycle we need to make observations and develop dynamic models that

encapsulate our understanding. Yet, neither the observations nor the models could give a

complete picture of the hydrological cycle. Data assimilation combines observational and

model information and adds value to both the model and the observations, yielding

increasingly consistent and complete estimates of hydrological components. In this review

paper we provide a historical perspective of conceptual problems and discuss state-of-the-

art hydrological observing, modelling and data assimilation systems.

Keywords Hydrological cycle � Earth observation � Land surface models �
Data assimilation

1 Introduction

The water stored on land is a key variable controlling numerous processes and feedback

loops within the climate system (see, e.g., Dirmeyer 2000; Koster et al. 2004a, b; Sene-

viratne et al. 2010). It constrains plant transpiration and photosynthesis and thus is of major

relevance for the Earth’s water and energy cycles and impacts the exchanges of trace gases

on land, including carbon dioxide. Figure 1, from IPCC (2007), provides an overview of

the main terrestrial components and exchanges within the climate system. This shows the

complexity of land processes and feedbacks, to a large extent owing to the high spatial
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variability in soils, vegetation and topography (ranging from metres to kilometres). Pro-

cesses affecting the amount of water stored on land, for example, precipitation and radi-

ation, have spatial scales of kilometres (e.g., associated with weather fronts) and have high

temporal variability (hours).

The amount of water stored in the unsaturated soil zone is generally referred to as soil
moisture, although the exact definition can vary depending on the context. Soil moisture is

one of the key geophysical variables for understanding the Earth’s hydrological cycle. It is

classed as an essential climate variable of the Global Climate Observing System (GCOS)

(GCOS-107, 2006).

Soil moisture determines the partitioning of incoming water into infiltration and run-off.

It directly affects plant growth and other organic processes and thus connects the water

cycle to the carbon cycle. Run-off and base flow from the soil profile determine river flows

and flooding, which connects hydrology with hydraulics. Soil moisture also has a signif-

icant impact on the partitioning of water and heat fluxes (latent and sensible heat), thereby

connecting the hydrological (i.e. water) cycle with the energy cycle.

Soil moisture is a source of water for the atmosphere through evapotranspiration from

land. Evapotranspiration is a major component of the continental water cycle, as it returns

as much as 60 % of the whole land precipitation back to the atmosphere (e.g., Oki and

Kanae 2006). Furthermore, evapotranspiration is also an important energy flux (Trenberth

et al. 2009) and is connected to the surface skin and soil temperature, which make up other

important state variables of the land surface system. Together, soil moisture, temperature

and their impacts on the water, energy and carbon cycle play a major role in climate-

change projections (IPCC 2007; Seneviratne et al. 2010). Snow on land is another

important variable affecting the global energy and water budgets, because of its high

albedo, low thermal conductivity, considerable spatial and temporal variation and medium-

term capacity for water storage.

Fig. 1 Global climate system. Figure from IPCC (2007)
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Quantifying the land state and fluxes and understanding soil moisture–temperature and

soil moisture–precipitation couplings allow a better representation of hydrological pro-

cesses in climate models and significantly help to reduce uncertainties in future climate

scenarios, in particular regarding changes in climate variability and extreme events, and

ecosystem/agricultural impacts (Seneviratne et al. 2010). This understanding is also cru-

cially important for improving short-range numerical weather prediction (NWP) capabil-

ities, in particularly regarding prediction of convective precipitation (Sherwood 1999;

Adams et al. 2011, and references therein).

Hydrological observations are prone to errors and are discrete in space and time with

the result that the information provided by these observations has gaps. Figure 2 shows an

example of gaps in satellite observations. It is desirable to fill gaps in the observed

information using additional information and computational techniques. Algorithms or

models to fill in information gaps should organize, summarize and propagate the infor-

mation from observations in an objective and consistent way. A simple approach such as

linear interpolation could be a reasonably accurate ‘‘model’’, when observations are dense

enough. However, linear interpolation may not be consistent with our advanced under-

standing of how the land surface behaves. A more realistic approach would be to fill in the

gaps using a land surface model (LSM). While observations give an instantaneous view of

the land surface, LSMs provide continuous estimates, based on physical laws that are

derived from historical observations. These models are not perfect, and gaps in their

structure, parametrization or initialization can be filled in with observations.

Fig. 2 Plot representing retrieved soil moisture data from the Soil Moisture Ocean Salinity (SMOS, Kerr
et al. 2010) mission for August 3, 2012 (top left panel), August 10, 2012 (top right panel), August 17, 2012
(bottom left panel), and August 25, 2012 (bottom right panel), based on the observational geometry from
ascending orbits from SMOS (units of m3 m-3). Blue denotes relatively wet values; red denotes relatively
dry values. The uncoloured (i.e. grey) areas over land represent gaps between the satellite orbits.
Noteworthy are the sparse SMOS observations over Scandinavia, where retrievals from remotely sensed
observations are particularly difficult, when the land is covered with snow, ice, forest, water bodies or rocks
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Data assimilation (Kalnay 2003) provides an intelligent method to fill in the observa-

tional gaps using a model or to steer models using observations. By intelligent, it is meant

an ‘‘objective’’ way which makes use of quantitative concepts (e.g., mathematical) for

combining imperfect information. By combining observational and model information,

data assimilation can be used to test the self-consistency and error characteristics of this

information (Talagrand 2010b).

In this paper we focus on off-line land data assimilation, where the LSM is uncoupled

from an atmospheric model. By using an uncoupled LSM, it can be forced with more

observation-based forcings, rather than often inaccurate atmospheric analyses, and less

computational resources are needed. The uncoupled approach can be regarded as a first

step towards the land data assimilation goal of coupling an LSM to an atmospheric model

to improve predictions at weather, seasonal and climate timescales (Palmer et al. 2008).

In this paper we discuss observations (Sect. 2), models (Sect. 3) and data assimilation

methods (Sect. 4) used in the studies of the hydrological cycle and provide illustrative

examples, with a focus on soil moisture. We pay special attention to the conceptual

problems and key challenges associated with making use of observational and model

information of the land surface in data assimilation systems (Sect. 5). We finish by pro-

viding conclusions (Sect. 6).

2 Observations of the Hydrological Cycle

Observations of the hydrological cycle are commonly divided into conventional obser-
vations (e.g., in situ ground-based measurements such as screen-level relative humidity)

and remotely sensed observations (e.g., satellite or aircraft microwave observations). These

data sets are complementary: conventional observations have relatively high spatio-tem-

poral resolution (order metres and minutes) but only have local coverage, so have poor

representativity for a large area; satellite observations have relatively low spatio-temporal

resolution but have global coverage, so have good representativity for a large area. In situ

observations are typically used as ground truth for calibration and validation of remote

sensing products, and model and assimilation results.

Table 1 gives an overview of satellite sensors and missions that contribute to our current

understanding of the hydrological cycle or may potentially contribute to this understanding

in the near future. Depending on the observed wavelengths, the orbit altitude and design

details, there are large differences in horizontal, vertical and temporal resolution of each

observation type. For example, satellite-based observations of soil moisture are made using

passive and active microwave instruments. The horizontal resolution of these sensors

ranges from 50 to 10 km; the temporal resolution is about one observation every 2–3 days,

depending on the location on Earth. These instruments typically penetrate the first few

millimetres to centimetres of the soil: a few millimetres for the X-band (8–12 GHz, e.g.,

Advanced Microwave Sounding Radiometer for EOS, AMSR-E; Njoku and Chan 2006);

*1 cm for the C-band (4–8 GHz, e.g., AMSR-E; Advanced SCATterometer, ASCAT;

Bartalis et al. 2007); and *5 cm for the L-band (1–2 GHz, e.g., Soil Moisture Ocean

Salinity, SMOS; Kerr et al. 2010). An immediate conceptual problem is to estimate soil

moisture of actual interest in the root zone (1 m) at a finer resolution. For this, observa-

tional information needs to be transferred from the surface layer to the root zone (e.g.,

Calvet et al. 1998; Sabater et al. 2007; De Lannoy et al. 2007a; Draper et al. 2012) and

downscaled from the coarse scale to finer scales (Reichle et al. 2001a; Pan et al. 2009;
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De Lannoy et al. 2010; Sahoo et al. 2013) typically using a land surface model (discussed

in Sect. 3) and/or land data assimilation (discussed in Sect. 4).

With the design of new sensors, one aims to gain resolution, increase the sensitivity to

the variables of interest and reduce instrument errors (USGEO 2010). Examples of new

missions for soil moisture observations are the SMOS and SMAP (Soil Moisture Active

and Passive) missions, both using L-band sensors and designed with a target uncertainty

Table 1 Characteristics of hydrological observations potentially available within the next decade
(see ‘‘Appendix’’ for details of sensor acronyms)

Hydrological
quantity

Remote
sensing
technique

Timescale Spatial
scale

Accuracy considerations Examples of
sensors

Precipitation Thermal
infrared

Hourly 4 km Tropical convective clouds
only

GOES, MODIS,
AVHRR,
Landsat, ASTER

1 day 1 km

15 days 60 m

Passive
microwave

3 h 10 km Land calibration problems TRMM, SSMI,
AMSR-E, GPM

Active
microwave

Daily 10 m Land calibration problems TRMM, GPM

Surface soil
moisture

Passive
microwave

1–3 days 25–50 km Limited to sparse
vegetation, low
topographic relief

AMSR-E, SMOS,
Aquarius, SMAP

Active
microwave

3 days 3 km Significant noise from
vegetation and roughness

ERS, JERS,
Radarsat,
ASCAT

30 days 10 m

Surface skin
temperature

Thermal
infrared

1 h 4 km Soil/vegetation average,
cloud contamination

GOES, MODIS,
AVHRR,
Landsat, ASTER

1 day 1 km

15 days 60 m

Snow cover Visible/
thermal
infrared

1 h 4 km Cloud contamination,
vegetation masking,
bright soil problems

GOES, MODIS,
AVHRR,
Landsat, ASTER

1 day 500 m–
1 km

15 days 30–60 m

Snow water
equivalent
(SWE)

Passive
microwave

1–3 days 10 km Limited depth penetration AMSR-E

Active
microwave

30 days 100 m Limited spatial coverage SnoSat, SCLP,
Cryosat-2,
CoreH2O

Water level/
velocity

Laser 10 days 100 m Cloud penetration problems ICESAT,
ICESAT2,
SWOT,
DESDynl

Radar 30 days 1 km Limited to large rivers TOPEX/
POSEIDON

Total water
storage
changes

Gravity
changes

30 days 1,000 km Bulk water storage change GRACE, GOCS,
GRACEII

Evaporation 1 h 4 km Significant assumptions GOES, MODIS,
AVHRR,
Landsat, ASTER

1 day 1 km

15 days 60 m

Table updated from Houser et al. (2010)
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lower than that of earlier missions, like AMSR-E and ASCAT. In November 2009, the

ESA Earth Explorer mission SMOS was launched followed by another L-band mission,

NASA/CONAE Aquarius (Le Vine et al. 2006), in June 2011. Aquarius measures various

elements of the hydrological cycle, and its coarse resolution makes it less attractive for soil

moisture estimation. The NASA mission SMAP is focused on soil moisture and freeze–

thaw detection and is scheduled for launch in 2014 (Entekhabi et al. 2010a). To illustrate

the importance of soil moisture information, Table 2 identifies key benefits from satellite

soil moisture measurements.

A special issue on soil moisture from the SMOS mission has recently appeared in the IEEE
Transactions on Geoscience and Remote Sensing (Kerr et al. 2012a). The papers in this

special issue describe the SMOS mission (Mecklenburg et al. 2012); the radiometric per-

formance (Kainulainen et al. 2012); the SMOS soil moisture retrieval algorithm (Kerr et al.

2012b; Mattar et al. 2012); the impact of radio frequency interference (RFI) on the SMOS

soil moisture measurements (Castro et al. 2012; Misra and Ruf 2012; Oliva et al. 2012);

Table 2 Key benefits expected from satellite soil moisture observations

Area Products Comment

Meteorology NWP models Soil moisture plays a fundamental role in the transfer of water and
energy between the surface and the atmosphere. Introduction of
this variable in current NWP models will allow improving
predictions, especially important under adverse meteorological
conditions

Climatology Models Variability of the soil moisture time series with a long integration
period may provide relevant information for the study of climate
change

Risk
Management

Flooding risk map The soil’s risk of flooding is significantly conditioned by the
amount of water stored in the vadose zone. The generation of this
type of products will require the inclusion of soil moisture data in
hydrological and NWP models (precipitation predictions)

Fire risk map The risk of fire is determined by several factors, including
meteorological, geophysical and biophysical factors. The
information on soil moisture may be directly assimilated in
drawing up fire risk maps as they provide direct information on
evapotranspiration, water content assimilated by vegetation and
quality of vegetation

Famine risk map The merging of geopolitical, meteorological/climatological
information and data in the quality and estimates of agricultural
and/or marine products (derived with the help of soil moisture
data) may be of great use in early prediction of famine episodes
in areas of Earth where resources are scarce

Drought risk model Analysing soil moisture trends in large areas may serve to generate
drought models, along with data from other sensors

Agriculture Agricultural
production
estimate

On the basis of soil moisture data and by means of the application
of hydrological models, it is possible to determine the amount of
water assimilated by the vegetation, a value that is very useful for
estimating agricultural production

Hydrology Models The content of water stored in the soil is an important parameter to
be taken into consideration in any hydrological model, as it is an
indispensable variable in understanding the water cycle

Table adapted from http://www.cp34-smos.icm.csic.es/index.htm
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soil processes in boreal regions (Rautiainen et al. 2012); disaggregation of SMOS data

(Merlin et al. 2012); and various aspects of the validation of SMOS soil moisture data (Al

Bitar et al. 2012; Bircher et al. 2012; dall’Amico et al. 2012; Jackson et al. 2012; Lacava et al.

2012; Mialon et al. 2012; Peischl et al. 2012b; Rowlandson et al. 2012; Sanchez et al. 2012;

Schlenz et al. 2012; Schwank et al. 2012).

In view of the applications discussed later in this paper, we briefly mention that snow

measurements are often provided by AMSR-E to measure snow water equivalent (SWE),

and MODIS (MODerate resolution Imaging Spectroradiometer, Morisette et al. 2002) to

give a picture of the snow-covered area. Finally, it is worth to mention GRACE (Gravity

Recovery And Climate Experiment, Tapley et al. 2004) for its ability to measure an

integrated water quantity of soil moisture and snow, as well as water in deeper layers.

Satellite instruments do not measure directly hydrological parameters. What they

measure is photon counts (level 0 data). Algorithms then transform the level 0 data into

radiances (level 1 data). Subsequently, using retrieval techniques (Rodgers 2000), retri-

evals of layer quantities (e.g., of soil moisture) or integrated amounts (e.g., total water

storage) are derived (level 2 data). Fields derived from manipulation of level 2 data, for

example, by interpolation to a common grid are termed level 3 data. Analyses derived from

the assimilation of level 1 and/or 2 data are termed level 4 data.

Satellite observations (from level 0 and up) have associated with them a number of

errors, including random and systematic errors in the measurement, and the error of rep-

resentativeness (or representativity). Random errors (sometimes termed precision) have the

property that averaging the data can reduce them. This is not the case of the systematic

error or bias (sometimes termed accuracy). The error of representativeness is associated

with the extent to which the measurement represents a point or volume in space. In land

surface measurements, the error of representativeness is important to consider in com-

parisons of coarse-scale satellite data with point data.

Satellite-based hydrological data are becoming increasingly available, although little

progress has been made in understanding their observational errors. Evaluation of the

accuracy of land surface satellite data is a challenge, and novel methods to characterize

their errors are being applied. Examples include triple collocation (e.g., Scipal et al. 2008;

Dorigo et al. 2010; Parinussa et al. 2011); the R-metrics approach (Crow 2007; Crow and

Zhan 2007; Crow et al. 2010); and data assimilation (Houser et al. 2010, and references

therein).

A number of in situ network and airborne hydrological studies have been set up in the

last decade for evaluation of satellite data. Examples of in situ networks include

SMOSMANIA in France (Calvet et al. 2007; Albergel et al. 2009); NVE (Norges vassd-

rags-og energidirektorat, Norwegian Water Resources and Energy Directorate) in Norway

(http://www.nve.no/en/); several large-scale (larger than 10,000 km2) networks in the USA

and elsewhere (see Table 1 in Crow et al. 2012); and several local- to regional-scale (larger

than 100 km2, smaller than 10,000 km2) networks in the USA and elsewhere (see Table 2

in Crow et al. 2012). In situ soil moisture data from various networks across the world are

consolidated in the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.

at/insitu). As of January 2013, the ISMN includes data from 37 networks—Table 3 pro-

vides details. An example of an airborne study on evaluation of satellite data is the

Australian Airborne Cal/Val Experiments for SMOS (AACE, Peischl et al. 2012a). An

example of in situ ground-based station data used to evaluate satellite data is SMOSREX

(de Rosnay et al. 2006). The temporal scale of in situ platforms ranges from minutes to

hours; the spatial scale of in situ platforms ranges from tens of metres (individual stations)

to thousands of kilometres (regional-scale networks). Along with the availability of dense
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Table 3 Contributing networks to the International Soil Moisture Network (ISMN)

Name Country Stations Website

AACES Australia 49 http://www.moisturemap.monash.
edu.au/

AMMA Benin, Niger, Mali 7 http://amma-international.org/

ARM USA 25 http://www.arm.gov

AWDN USA 50 http://www.hprcc.unl.edu/awdn/

CALABRIA Italy 5 http://www.cfcalabria.it

CAMPANIA Italy 2 http://www.regione.campania.it/

CHINA China 40

COSMOS USA, Germany,
Switzerland,
France, Brasil, Kenya,
UK, Mexico

67 http://cosmos.hwr.arizona.edu/

FLUXNET-AMERIFLUX USA 2 http://www.fluxnet.ornl.gov/
fluxnet/index.cfm

FMI Finland 1 http://fmiarc.fmi.fi/

GTK Finland 7

HOBE Denmark 30 http://www.hobe.dk/

HSC_SELMACHEON Korea 1 http://www.hsc.re.kr

HYDROL-NET_PERUGIA Italy 1 http://www.dica.unipg.it/DICA

HYU_CHEONGMICHEON Korea 1 http://wrrsl.hanyang.ac.kr/html/
introduction.htm

ICN USA 19 http://www.isws.illinois.edu/warm

IIT_KANPUR India 1 http://www.iitk.ac.in

IOWA USA 6

MAQU China 20

MetEROBS Italy 1 http://mistrals.sedoo.fr/HyMeX/
Plateform-search?datsId=532

MOL-RAO Germany 2 http://www.dwd.de/mol

MONGOLIA Mongolia 44

OZNET Australia 52 http://www.oznet.org.au/

REMEDHUS Spain 23 http://campus.usal.es/*hidrus/

RUSWET-AGRO Former Soviet Union 78

RUSWET-GRASS Former Soviet Union 122

RUSWET-VALDAI Former Soviet Union 3

SCAN USA 182 http://www.wcc.nrcs.usda.gov/scan/

SMOSMANIA France 21 http://www.hymex.org/

SNOTEL USA 374 http://www.wcc.nrcs.usda.gov/snow/

SWEX_POLAND Poland 6

UDC_SMOS Germany 11 http://www.geographie.uni-
muenchen.de/department/fiona/
forschung/projekte/index.php?
projekt_id=103

UMBRIA Italy 7 http://www.cfumbria.it/
http://hydrology.irpi.cnr.it/

UMSUOL Italy 1
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in situ data for validation, it is also important to select appropriate validation measures

(Entekhabi et al. 2010b).

The assimilation of satellite data for land surface applications has only gained signifi-

cance in the last decade; it started later than atmospheric and oceanographic data assim-

ilation (see various chapters in Lahoz et al. 2010a). This can be attributed to: (1) a lack of

dedicated land surface state (water and energy) remote sensing instruments; (2) inadequate

retrieval algorithms for deriving global land surface information from remote sensing

observations; and (3) a lack of mature techniques to objectively improve and constrain land

surface model predictions using remote sensing data.

3 Models of the Hydrological Cycle

As discussed above, observational information has gaps in space and time. It is desirable to

fill in these observational gaps using a model. Such models can range from simple linear

interpolation to full land surface models (LSMs). Land surface processes are part of the

global processes controlling the Earth, which are typically represented in global general

circulation models (GCMs). The land component in these models is represented in (largely

physically based) LSMs, which simulate the water and energy balance over land using

simple algebraic equations or more complex systems of partial differential equations. The

main state variables of these models include the water content and temperature of soil

moisture, snow and vegetation. These variables are referred to as prognostic state vari-

ables. Changes in these state variables account for fluxes, for example, evapotranspiration

and run-off, which are referred to as diagnostic state variables.

Most land surface models used in GCMs view the soil column as the fundamental hydro-

logical unit, ignoring the role of, for example, topography on spatially variable processes

(Stieglitz et al. 1997) to limit the complexity and computations for these coupled models.

During the last decades, LSMs have become increasingly complex to accommodate for better

understood processes, like snow and vegetation. Along with a more complex structure often

comes a more complex parametrization, and several authors (Beven 1989; Duan et al. 1992)

have stated that LSMs are over-parametrized given the data typically available for calibration.

At larger scales, these models often rely on satellite-observed parameters, such as greenness and

LAI (leaf area index). For field-scale studies, the LSMs are usually calibrated to specific

circumstances to limit systematic prediction errors. Model calibration or parameter estimation

relies on observed data and can be defined as a specific type of data assimilation (Nichols 2010).

Many LSMs have been developed and enhanced since the mid-1990s, with varying

features, such as sub-grid variability, community-wide input, advanced physical repre-

sentations and compatibility with atmospheric models (Houser et al. 2010). Some examples

of widely used LSMs are the NCAR Community Land Model (CLM) (Oleson et al. 2010);

the Variable Infiltration Capacity (VIC) Model (Liang et al. 1994); the Noah Model (Ek

Table 3 continued

Name Country Stations Website

USCRN USA 114 http://www.ncdc.noaa.gov/crn/

USDA-ARS USA 4

VAS Spain 3 http://nimbus.uv.es/

Table adapted from http://www.ipf.tuwien.ac.at/insitu/index.php/insitu-networks.html
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et al. 2003); the Catchment LSM (Koster et al. 2000); the TOPMODEL-based Land

Atmosphere Transfer Scheme (TOPLATS) model (Famiglietti and Wood 1994); the

Hydrology-Tiled European Centre for Medium-range Weather Forecasts (ECMWF)

Scheme for Surface Exchange over Land (H-TESSEL) model (Balsamo et al. 2009); the

SURFEX model (Le Moigne 2009); the Interaction between Soil Biosphere and Atmo-

sphere (ISBA) model (Noilhan and Mahfouf 1996); and the Joint UK Land Environment

Simulator (JULES) model (Best et al. 2011; Clark et al. 2011a). An example of an inte-

grated system is the NASA Land Information System (LIS), which offers the capability to

simulate with different models, observations and data assimilation techniques (Kumar et al.

2008).

An LSM has several elements, including a soil moisture scheme, a snow scheme, a

rainfall–run-off scheme and a routing/hydraulic scheme. The soil moisture scheme can take

several forms, such as explicit numerical solutions of Richards’ equations over multiple

discretized layers (e.g., in CLM), or using a force-restore method (e.g., Deardorff 1977,

used in SURFEX), or other more non-traditional approaches, such as a soil moisture

calculation as a deviation from the equilibrium soil moisture profile between the surface

and the water table (Catchment LSM). The different profile structures involve different

state variables, for example, describing soil moisture at the surface (superficial volumetric
water content) or describing soil moisture over the root zone (mean volumetric content of
the root zone). The coupling strength between the surface and deeper soil layers is a

sensitive point for successful propagation of surface observations to deeper layers (Kumar

et al. 2009).

The presence of snow covering the ground and vegetation can greatly influence the

energy and mass transfers between the land surface and the atmosphere. Notably, the snow

layer modifies the radiative balance by increasing the albedo. Furthermore, the amount of

water stored in the snowpack has an important impact on water availability in the spring

time. The prognostic variables in most snow schemes include variables related to snow
water equivalent (SWE), including snow depth and density, and the snow heat content.
These variables most often determine the diagnostics such as snow area extent and albedo.

The snow scheme can have one layer, or several layers. In a one-layer scheme, the

evolution of the snow water equivalent of the snow reservoir depends on the precipitation

of snow (a source) and the snow sublimation from the snow surface (a sink). Multi-layer

schemes are often designed to have intermediate complexity, having simplified physical

parametrizations based on those of highly detailed internal-process snow models, while

having computational requirements resembling those of single-layer schemes (Loth et al.

1993; Lynch-Stieglitz 1994; Sun et al. 1999).

A number of approaches have been implemented for rainfall–run-off schemes. Water

that cannot be stored in the soil profile either runs off over land (Horton run-off, e.g.,

Decharme and Douville 2006) or gravitationally drains out of the profile (Mahfouf and

Noilhan 1996; Boone 1999). The TOPMODEL run-off approach combines key distributed

effects of channel network topology and dynamic contributing areas for run-off generation

(Beven and Kirkby 1979; Silvapalan et al. 1987). This formalism takes explicit account of

topographic heterogeneities (Decharme et al. 2006; Decharme and Douville 2006, 2007).

Run-off and drainage exiting from hydrological models can be used as a boundary to

hydraulic models that predict river flow and potential flooding (Matgen et al. 2010).

A hydraulic flood routing scheme uses numerical methods to solve simultaneously the

equations of continuity and momentum for a fluid (see, e.g., Guo 2006). It is often applied

to a river network, typically in a hierarchy including hillslope routing, sub-network routing

and main channel routing. An example of a routing scheme is the river transport model
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developed for the NCAR Community Land Model (CLM) (Branstetter and Erickson III

2003, and references therein). A river transport model is also useful because it can be used

to evaluate the performance of an LSM against gauge station data.

Most LSMs are soil–vegetation–atmosphere transfer (SVAT) models, where the veg-

etation is not a truly dynamic component. Recently, coupling of hydrological or SVAT

models with vegetation models has received some attention, to serve more specific eco-

logical, biochemical or agricultural purposes. Dynamic vegetation models are used to

simulate the evolution of vegetation cover, photosynthesis, carbon and nutrient inventories

and the fluxes of water, CO2, CH4, N2O, volatile organic carbon and fire-related emissions

between the land surface and atmosphere. Illustrative examples of vegetation models are

the Land biosphere Process and eXchange (LPX) model (Wania 2007; Spahni et al. 2010)

and the CoupModel (Gustafsson et al. 2004; Jansson and Karlberg 2004; Jansson et al.

2005, 2008; Karlberg et al. 2006, 2007; Klemedtsson et al. 2008; Norman et al. 2008;

Svensson et al. 2008).

There are a number of potential problems with LSMs that can cause errors in the

forecast. These include components that cause ‘‘model error’’ and components that cause

‘‘predictability error’’. Components that cause ‘‘model error’’ are as follows: incomplete

description of physical processes perhaps done for computational efficiency, perhaps a

reflection of incomplete knowledge; inaccurate parameters; and inaccurate forcings.

Components that cause ‘‘predictability error’’ are inaccurate initial states and boundaries.

All these problems are the subject of research in the land surface modelling and assimi-

lation community.

4 Data Assimilation of the Hydrological Cycle

4.1 Introduction

The only practical way to observe the land surface on continental to global scales is by

satellite remote sensing. However, this cannot provide information on the entire system,

and measurements only represent a snapshot in time. Land surface models can predict

spatial/temporal land system variations, but these predictions are often poor, due to model

initialization, parameter and forcing errors and inadequate model physics and/or resolution.

A way forward is to merge the observational and model information through data
assimilation (Kalnay 2003).

Mathematics provides rules for combining information objectively, based on principles

which aim to maximize (or minimize) a quantity (e.g., a ‘‘penalty function’’) or on

established statistical concepts (e.g., Bayesian methods) that relate prior information
(understanding, which comes from prior combination of observations and models), with

new information (e.g., an extra observation). The merged product, termed the posterior

estimate or an analysis, adds value to both observational and model information. The data

assimilation methodology takes account of the different nature (e.g., spatio-temporal res-

olution) of the observational and model information, using an observation operator (see,

e.g., Talagrand 2010a).

Assimilation of land surface observations is at an earlier stage than, for example,

assimilation of atmospheric observations (see various chapters in Lahoz et al. 2010a).

However, during the past decade, land data assimilation has been a very active field of

research. Land data assimilation considers both ground-based in situ data and satellite data.

Often, satellite land surface data are assimilated and the process validated using in situ
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measurements. Assimilated satellite observations include retrievals of land surface tem-
perature, soil moisture, snow water equivalent (SWE) and snow cover area (e.g., Van den

Hurk et al. 2002; Andreadis and Lettenmaier 2006; Slater and Clark 2006; Bosilovich et al.

2007; Dong et al. 2007; Drusch 2007; Ni-Meister 2008; Reichle et al. 2008; Houser et al.

2010). Houser (2003) discusses the assimilation of land surface retrieved quantities and

radiances. Early reviews of land data assimilation have been provided by McLaughlin

(2002), Reichle (2008), Moradkhani (2008) and Houser et al. (2010).

Land data assimilation uses observations to constrain the physical parametrizations and

initialization of land surface states critical for seasonal-to-interannual prediction. These

constraints can be imposed in four ways: (1) by forcing the land surface primarily by

observations (such as precipitation and radiation), often severe atmospheric NWP land

surface forcing biases can be avoided (e.g., Saha et al. 2010; Reichle et al. 2011); (2) by

employing innovative land surface data assimilation techniques, observations of land

surface storages (such as snow, soil temperature and moisture) can be used to constrain

unrealistic simulated storages (e.g., Houser et al. 2010; Reichle et al. 2013); (3) by tuning

adjustable parameters (e.g., Pauwels et al. 2009; Vrugt et al. 2012); and (4) the land surface

physical structure itself can be improved through the data assimilation process when the

constant confrontation of model states against observations returns useful information

about structural deficits. Integration of soil moisture information from satellite instruments,

and ground-based and in situ observations of the land surface, using land data assimilation,

provides a comprehensive picture of the state and variability of the land surface.

4.2 Data Assimilation Methods

Three methods are commonly used for land data assimilation (Houser et al. 2010): vari-
ational (3- and 4-dimensional, 3D-Var and 4D-Var); sequential (Kalman filter (KF) and

Extended Kalman filter (EKF)); and ensemble (Ensemble Kalman filter, EnKF). Bouttier

and Courtier (1999) provide details of these methods. Talagrand (2010a) and Kalnay

(2010) discuss more recent developments in variational methods and ensemble methods,

respectively.

In the 3-D variational (3D-Var) method, a minimization algorithm is used to find a

model state, x, that minimizes the misfit between x and the background state xb, and also

between the observation predictions H(x) and the observations y. The observation operator

H maps the model state x to the measurement space, where y resides. In 3D-Var, we seek

the minimum with respect to x of the penalty function, J, given by Eq. (1). The first term on

the right hand side (Jb) quantifies the misfit to the background term, and the second term

(Jo) is the misfit to the observations. If the observation operator is linear (written H), the

penalty function, J, is quadratic and is guaranteed to have a unique minimum.

J ¼ 1

2
½x� xb�TB�1½x� xb� þ 1

2
½y� HðxÞ�TR�1½y� HðxÞ� ð1Þ

4-D variational (4D-Var) assimilation is an extension of 3D-Var in which the temporal

dimension is included, that is, 4D-Var is a smoother. In 4D-Var, observations are used at

their correct time. 4D-Var has two new features compared to 3D-Var. First, it includes a

model operator, M, that carries out the evolution forward in time. The first derivative, or

differential, of M, M, is the tangent linear model (if M is linear, represented by M, its

derivative is M). The transpose of the tangent linear model operator, MT, integrates the

adjoint variables backward in time. The tangent linear model is only defined under the

condition that the function J defined by Eq. (1) be differentiable—this is the tangent linear
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hypothesis. Second, J can include an extra term in which the model errors associated with

the model’s temporal evolution are accounted for. In the formulation of Zupanski (1997),

an analogous term involving Q-1 is included in J, where Q is the model error covariance.

Examples for the land surface using variational methods include Calvet et al. (1998) and

Reichle et al. (2001a). Note that variational methods are very common for parameter

estimation (e.g., Dumont et al. 2012), but with replacement of the misfit to the background

with a misfit to prior parameter guesses.

In the Kalman filter (KF), a recursive sequential algorithm is applied to evolve a

forecast, xf, and an analysis, xa, as well as their respective error covariance matrices, Pf and

Pa. The KF equations are (subscripts denote the time step) as follows:

xf
n ¼Mn�1xa

n�1; ð2aÞ

Pf
n ¼Mn�1Pa

n�1MT
n�1 þQn�1; ð2bÞ

xa
n ¼ xf

n þKn½yn �Hnxf
n�; ð2cÞ

Kn ¼ Pf
nHT

n ½Rn þHnPf
nHT

n �
�1; ð2dÞ

Pa
n ¼ ½I�KnHn�Pf

n: ð2eÞ

Equation (2a) represents the forecast of the model fields from time step n - 1 to n,

while Eq. (2b) calculates the forecast error covariance from the analysis error covariance

Pa and the model error covariance Q. Equations (2c) and (2e) are the analysis steps, using

the Kalman gain defined in Eq. (2d). Q and Pa are assumed to be uncorrelated. For

optimality, all errors must be uncorrelated in time.

The KF can be generalized to nonlinear H and M operators, although in this case neither

the optimality of the analysis nor the equivalence with 4D-Var holds. The resulting

equations are known as the Extended Kalman filter (EKF) as, for example, used for the

land surface by Boulet et al. (2002), Reichle et al. (2002b), Matgen et al. (2010), Rüdiger

et al. (2010) and de Rosnay et al. (2012b).

The Ensemble Kalman filter, EnKF, uses a Monte Carlo ensemble of short-range

forecasts to estimate Pf. The estimation becomes more accurate as the ensemble size

increases. The EnKF is more general than the EKF to the extent that it does not require

validity of the tangent linear hypothesis. Evensen (2003) provides a comprehensive review

of the theory and numerical implementation of the EnKF. Examples for the land surface

are identified in Table 4 (see below).

The Particle Filter (PF) is also an ensemble method. It does not require a specific form

for the state distribution but, typically, a re-sampling algorithm needs to be applied (van

Leeuwen 2009). Because PF methods typically make no assumptions of linearity in the

model equations or that model and observational errors are Gaussian, they are well suited

to deal with the land surface where model evolution is highly nonlinear, and model and

observational errors can be non-Gaussian. The PF has been applied in hydrology to esti-

mate model parameters and state variables (e.g., Moradkhani et al. 2005a; Weerts and El

Serafy 2006; Plaza et al. 2012; Vrugt et al. 2012).

4.3 Representation of Errors

Representation of errors is fundamental to data assimilation. One needs to consider errors

in observations, background information and model (see Eqs. (1, 2a–e) above for identi-

fication of the error covariance matrices mentioned in the following). R, the observational
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Table 4 Selected studies on land surface data assimilation, sorted by assimilated observation type

Observation State Parameter/model

EnKF/EnKS Other

Soil moisture,
retrievals

Reichle and Koster
(2005), Ni-Meister et al.
(2006), Reichle et al.
(2007, 2008), Kumar
et al. (2009), Pan and
Wood (2010), Liu et al.
(2011), Han et al.
(2012a), Draper et al.
(2012), Sahoo et al.
(2013)

Houser et al. (1998),
Pauwels et al. (2002),
Paniconi et al. (2003),
Francois et al. (2003),
Hurkmans et al. (2006),
Parajka et al. (2006),
Crow (2007), Crow and
Bolten (2007), Parada
and Liang (2008), Crow
and van den Berg
(2010), Draper et al.
(2009), Mahfouf
(2010), Dharssi et al.
(2011), de Rosnay et al.
(2012a, b)

Santanello et al. (2007),
Ines and Mohanty
(2009), Pauwels et al.
(2009)

Soil moisture, in situ Sabater et al. (2007), De
Lannoy et al. (2007a,
2009), Camporese et al.
(2009), Monsivais-
Huerteroet et al. (2010),
Han et al. (2012a)

Calvet et al. (1998),
Wingeron et al. (1999),
Walker et al. (2001b,
2002)

Boulet et al. (2002), De
Lannoy et al. (2006),
Vereecken et al. (2008),
Loew and Mauser
(2008), Nagarajanar
et al. (2011)

Snow cover or
albedo, retrievals

Clark et al. (2006), Su
et al. (2008, 2010), De
Lannoy et al. (2012),
Arsenault et al. (2013)

Rodell and Houser
(2004), Zaitchik and
Rodell (2009), Saha
et al. (2010), de Rosnay
et al. (2012a, b)

Essery and Pomeroy
(2004), Déry et al.
(2005), Kolberg and
Gottschalk (2010),
Dumont et al. (2012)

Snow water
equivalent,
retrievals or in situ

Andreadis and
Lettenmaier (2006),
Slater and Clark (2006),
Dong et al. (2007),
De Lannoy et al. (2010,
2012), He et al. (2012)

Brasnett (1999), Sun et al.
(2004), Drusch et al.
(2004)

Clark and Vrugt (2006),
Clark et al. (2011b),
Su et al. (2011)

Backscatter, from soil
or vegetation

Flores et al. (2012) Hoeben and Troch
(2000), Zhan et al.
(2006)

Marzahn and Ludwig
(2009), Nearing et al.
(2010)

Brightness
temperature, for
soil or vegetation

Margulis et al. (2002),
Reichle et al. (2002a),
Crow (2003), Crow and
Wood (2003), Dunne
and Entekhabi (2006)

Entekhabi et al. (1994),
Galantowicz et al.
(1999), Crosson et al.
(2002), Reichle et al.
(2001a, b), Jones et al.
(2003), Wilker et al.
(2006), Balsamo et al.
(2006), Loew et al.
(2009), Dumedah et al.
(2011)

Zhang et al. (2011),
Montzka et al. (2012),
De Lannoy et al. (2013)

Brightness
temperature, for
snow

Durand and Margulis
(2007), Durand et al.
(2009)

DeChant and Moradkhani
(2010)

Tedesco et al. (2010),
Vachon et al. (2010),
Forman et al. (2012a)
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error covariance matrix, is typically assumed to be diagonal, although this is not always

justified. R includes errors of the measurements themselves, E, and errors of representa-

tiveness, F; R = E ? F. B is the background error covariance matrix in variational

methods (the analogue in the KF and ensemble methods is Pf); its diagonal elements

determine the relative weight of the forecasts, and its off-diagonal elements determine how

information is spread spatially. Estimating B or Pf is a key part of the data assimilation

method (Bannister 2008a, b). Estimating model error Q is a research topic.

In the EnKF, the background (or forecast) errors are represented by the spread of the

ensemble. This simplifies the computation of Pf, implicitly accounts for the model error

Q and avoids the calculation of Eq. (2b). For land data assimilation, the relative fraction of

Table 4 continued

Observation State Parameter/model

EnKF/EnKS Other

Surface soil or skin
temperature,
evapotranspiration,
retrievals or in situ

Pipunic et al. (2008),
Ghent et al. (2010),
Reichle et al. (2010),
Xu et al. (2011)

Castelli et al. (1999),
Lakshmi (2000),
Boni et al. (2001),
Schuurmans et al.
(2003), Bosilovich et al.
(2007), Renzullo et al.
(2008), Sini et al.
(2008), Meng et al.
(2009), Barrett and
Renzullo (2009),
Mackaro et al. (2011)

Caparrini et al. (2004),
Kalma et al. (2008),
Gutmann and Small
(2010)

Water stage,
retrievals

Andreadis et al. (2007),
Durand et al. (2008),
Biancamaria et al.
(2010)

Matgen et al. (2010),
Giustarini et al. (2011)

Montanari et al. (2009)

Terrestrial water
storage, retrievals

Zaitchik et al. (2008), Su
et al. (2010), Li et al.
(2012), Forman et al.
(2012b)

– Günter (2008), Lo et al.
(2010)

Discharge, gauge Weerts and El Serafy
(2006), Vrugt et al.
(2006), Pauwels and De
Lannoy (2006, 2009)

Aubert et al. (2003),
Moradkhani et al.
(2005a), Seo et al.
(2009), Lee et al.
(2011), Vrugt et al.
(2012)

Madsen (2003),
Moradkhani et al.
(2005b), Montanari and
Toth (2007), Vrugt
et al. (2008), Quets
et al. (2010)

Leaf area index,
remotely sensed

Pauwels et al. (2006),
Nearing et al. (2012)

Jarlan et al. (2008),
Albergel et al. (2010),
Rüdiger et al. (2010)

Lewis et al. (2012)

Screen-level
observations

– Balsamo et al. (2004),
Seuffert et al. (2004),
Drusch and Viterbo
(2007), Mahfouf et al.
(2009), Draper et al.
(2011), Mahfouf and
Bliznak (2011)

–

Synthetic observation studies are classified by the observation type that is mirrored. For land surface
(-coupled) state updating, the studies are divided into sets using either the EnKF or EnKS (Ensemble
Kalman Smoother) and those using any other assimilation technique. For parameter and model structure
updating, examples relate to either forward models or land surface(-coupled) models
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the observation error R and the model error Q (associated with the temporal evolution of

the model) is often tuned or adaptively updated (e.g., Desroziers et al. 2005; Reichle et al.

2008).

In general, in data assimilation, errors are assumed to be Gaussian. The most funda-

mental justification for assuming Gaussian errors, which is entirely pragmatic, is the rel-

ative simplicity and ease of implementation of statistical linear estimation under these

conditions. Because Gaussian probability distribution functions are fully determined by

their mean and variance, the solution of the data assimilation problem becomes compu-

tationally practical. Note that the assumption of a Gaussian distribution is often not jus-

tified in land data assimilation applications.

Typically, there are biases between different observations, and between observations

and model (see, e.g., Ménard 2010). These biases are spatially and temporally varying, and

it is a major challenge to estimate and correct them. Despite this, and mainly for pragmatic

reasons, in data assimilation it is often assumed that errors are unbiased. For NWP many

assimilation schemes now incorporate a bias correction, and various techniques have been

developed to correct observations to remove biases (e.g., Dee 2005); these methods are

now being applied to land data assimilation (De Lannoy et al. 2007a, b).

4.4 Advantages and Disadvantages of Assimilation Methods

The feasibility of 4D-Var has been demonstrated in NWP systems (see, e.g., Simmons and

Hollingsworth 2002). Its main advantage is that it considers observations over a time

window that is generally much longer than the model time step, that is, it is a smoothing
algorithm. This allows more observations to constrain the system and, considering satellite

coverage, increases the geographical area influenced by the data. For nonlinear systems (as

is generally the case for the land surface), this feature of 4D-Var, together with the non-

diagonal nature of the adjoint operator which transfers information from observed regions

to unobserved regions, reduces the weight of the background error covariance matrix in the

final 4D-Var analysis compared to the KF analysis (for linear systems, the general

equivalence between 4D-Var and the KF implies that the same weight is given to all data in

both systems).

In contrast to the above advantages of 4D-Var, three weaknesses must be mentioned.

First, its numerical cost is very high compared to approximate versions of the KF or

ensemble methods. Second, its formalism cannot determine the analysis error directly;

rather, it has to be computed from the inverse of the Hessian matrix (again, this procedure

is prohibitive in both computation time and memory). Finally, its formalism requires the

calculation of the adjoint model, which is time-consuming and may be difficult for a

system such as the land surface which exhibits nonlinearities and on–off processes (e.g.,

presence or lack of snow).

The EKF is capable of handling some departure from Gaussian distributions of model

errors and nonlinearity of the model operator. However, if the model becomes too non-

linear or the errors become highly skewed or non-Gaussian, the trajectories computed by

the EKF will become inaccurate.

The EnKF is attractive as, for example, it requires no derivation of a tangent linear

operator or adjoint equations and no integrations backward in time, as for 4D-Var (see

Evensen 2003). The EnKF also provides a cost-effective representation of the background

error covariance matrix, Pf. Several issues need to be considered in developing the EnKF:

(1) ensemble size; (2) ensemble collapse; (3) correlation model for Pf, including locali-

zation (see, e.g., Kalnay 2010); and (4) specification of model errors.
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The major drawback of the above techniques is the underlying assumption that the

model states have a Gaussian distribution. The PF does not require a specific form for the

state distribution, but its major drawback is that distribution of particle weights quickly

becomes skewed, and a re-sampling algorithm needs to be applied.

The EnKF and PF are complementary. This complementarity makes a hybrid EnKF/PF

version highly attractive for systems that can exhibit nonlinear and non-Gaussian features,

an example being the land surface. For example, the EnKF could be used as an efficient

sampling tool to create an ensemble of particles with optimal characteristics with respect to

observations. The PF methodology could then be applied on that ensemble afterwards to

resolve nonlinearity and non-Gaussianity in the system. This method is getting increased

attention (see, e.g., Kotecha and Djurić 2003).

4.5 Example of a Land Data Assimilation System

For illustrative purposes, we describe the elements of the NILU SURFEX-EnKF land data

assimilation system (Lahoz et al. 2010b). These elements are the following: (1) a data

assimilation scheme (mainly variants of the EnKF, but also variants of the PF, and the

EKF); (2) a land surface model (SURFEX model developed at Météo-France, Le Moigne

2009); (3) observations; (4) the observation operator; and (5) error characteristics for the

model and the observations.

The SURFEX model used at NILU (and at Météo-France) can be run in uncoupled or

coupled mode. It includes the following elements:

• A soil and vegetation scheme: ISBA and ISBA-A-gs;

• A water surface scheme: COARE/ECUME (Coupled Ocean–Atmosphere Response

Experiment/Exchange Coefficients from Unified Multi-campaign Estimates) for the

sea; FLAKE for inland water;

• Urban and artificial areas: Town Energy Balance—TEB model;

• A surface boundary layer (SBL) scheme;

• Chemistry and aerosols;

• A land use database: ECOCLIMAP.

Figure 3 illustrates how SURFEX works. During a model time step, each surface grid

box receives from the atmosphere the following information: upper air temperature, spe-

cific humidity, horizontal wind components, pressure, total precipitation, long-wave

radiation, short-wave direct and diffuse radiation and, possibly, concentrations of chemical

species and dust. In return, SURFEX computes averaged fluxes of momentum, sensible and

latent heat, and, possibly, chemical species and dust fluxes. These fluxes are then sent back

to the atmosphere with the addition of radiative terms like surface temperature, surface

direct and diffuse albedo, and surface emissivity.

The above information transferred to the atmosphere from the land surface provides the

lower boundary conditions for the radiation and turbulent schemes in an atmospheric

model coupled to SURFEX or forced by SURFEX output. In SURFEX, each grid box is

made up of four adjacent surfaces: one for nature, one for urban areas, one for sea or ocean

and one for lake, identified by the global ECOCLIMAP land database. The SURFEX fluxes

are the average of the fluxes computed over nature, town, sea/ocean or lake, weighted by

their respective fraction.

The assimilation system at NILU is illustrated in Fig. 4 with reference to the EnKF. It

can assimilate the following data: (1) 2-m screen-level temperature (T2m) and 2-m screen-

level relative humidity (RH2m) provided, for example, by the SYNOP/CANARI
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(Code d’Analyse Nécessaire à Arpege pour ses Rejets et son Initialisation; Taillefer 2002)

analysis; and (2) superficial soil moisture content data from satellites (e.g., from ASCAT,

AMSR-E and SMOS). The control variables (Nichols 2010) of the NILU land DA system

are the following:

• Surface temperature;

• Mean surface temperature;

• Superficial volumetric water content;

• Mean volumetric water content of the root zone.

Fig. 3 Exchanges between the atmosphere and land surface implemented in the SURFEX LSM. See text.
Based on Le Moigne (2009)

Fig. 4 Schematic of the NILU SURFEX-EnKF land DA system methodology. From Lahoz et al. (2010b)
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4.6 Data Assimilation Research Applications

Table 4 shows a selection of studies using a variety of observation types to improve the

land surface state or the state in a hydraulic, vegetation or snow model coupled to it.

Because of its success in highly nonlinear land surface modelling (Reichle 2008), the

EnKF has gained a lot of attention. Therefore, state estimation studies using an EnKF or

EnKS (Ensemble Kalman Smoother, where the time integration is done forwards and

backwards) are organized separately from those that use any other assimilation technique

(e.g., variational, optimal interpolation). Also shown are a few examples on parameter

estimation in land surface or forward models. While this review focuses on state estima-

tion, parameter estimation and forcing correction are of utmost importance in land surface

models. Land surface models are not chaotic and thus benefit less from state estimation

than atmospheric or oceanic applications. By contrast, parameters and forcings determine

the major part of the land surface model uncertainty, and great advances can be expected

from combining state, bias, parameter and forcing estimation (Moradkhani et al. 2005b; De

Lannoy et al. 2006; Vrugt et al. 2012). Here, we discuss a number of soil moisture and

snow-related studies done mainly for state updating, with particular attention to the con-

ceptual problems they address. Examples on evapotranspiration, surface or skin temper-

ature, LAI (leaf area index), discharge and water stage assimilation are also provided in

Table 4, but not discussed in detail.

4.6.1 Single-column Applications

To explore the possibilities and limitations of assimilation schemes, numerous studies have

first explored single point-scale or grid cell-scale applications. For soil moisture assimi-

lation, conceptual problems include the propagation of information from the surface to the

entire soil profile; the optimization of assimilation techniques and update frequencies; and

the identification of an allowable level of uncertainty in surface observations to be useful in

a data assimilation scheme, mostly in view of satellite sensor design.

Georgakakos and Baumer (1996) performed a sensitivity study to document the impact

of observation noise on Kalman filter (KF) results. Calvet et al. (1998) and Wingeron et al.

(1999) assimilated surface soil moisture data from a soil profile in the highly instrumented

field site of the Monitoring the Usable soil Reservoir EXperiment (MUREX) in France to

update root zone soil moisture using variational approaches and investigated the impor-

tance of assimilation windows and observation frequencies. Similarly, Li and Islam (1999)

studied the effect of assimilation frequency while directly inserting gravimetric mea-

surements as surrogates for remote sensing data, and Aubert et al. (2003) suggested that a

1-week soil moisture update is sufficient. Walker et al. (2001a) showed in a synthetic

profile study that the KF was superior to direct insertion. In a subsequent study with real

data from the Nerrigundah catchment in Australia, Walker et al. (2001b) articulated the

idea that soil moisture assimilation can solve issues with errors in forcings or initial

conditions, but not errors caused by problems in the physics of the soil model.

De Lannoy et al. (2007a) used an EnKF to study vertical information propagation, and

the effect of assimilation depth and frequency for an extensive set of soil profiles in an

USDA field in Beltsville, USA. This study highlighted the effect of bias propagation

through the profile and the need for bias estimation, a conceptual problem that was

addressed with a two-stage forecast and bias filter (De Lannoy et al. 2007a, b). At the same

time, Sabater et al. (2007) studied the concept of propagating surface observations to

deeper model layers using different types of filtering, using ground data from the Surface
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Monitoring of the Soil Reservoir EXperiment, SMOSREX. Camporese et al. (2009) set up

synthetic soil profile assimilation experiments studying the effect of uncertainties,

ensemble size, bias and other factors with an EnKF. Because of the large impact of

parameters and forcings on soil moisture errors and biases, assimilation schemes have paid

increasing attention to including parameter estimation along with state updating, as, for

example, illustrated in Monsivais-Huerteroet et al. (2010). At present, EnKF filtering

experiments are being conducted at point-scales to further identify and address conceptual

problems with soil profile estimation, using surface observations (see, e.g., Han et al.

2012a).

Another important conceptual problem with soil moisture assimilation, initially

addressed in a point-scale setting, is the direct assimilation of radiances or assimilation

using an observation operator. This is done to avoid inconsistencies between auxiliary

information that would be used in retrievals and that used in the land surface models.

Entekhabi et al. (1994) estimated 1-m-deep bare soil moisture profiles using synthetic

microwave brightness temperatures. This work was extended by Galantowicz et al. (1999)

using eight days of L-band brightness temperature (Tb) data collected from a test plot in

Beltsville, USA. Pathmathevan et al. (2003) assimilated microwave observations with a

variational technique, but using a heuristic optimization, rather than an adjoint. Crosson

et al. (2002) tested Tb assimilation at the point-scale with an EKF and showed that biases

could not be overcome through assimilation. Crow (2003) successfully assimilated Tb for

soil moisture and showed improvements at the plot-scale, using either synthetic or real field

data. Crow analysed the EnKF performance in terms of the assumptions that underlie the

KF. Crow and Wood (2003) also used the EnKF at two sites within the Southern Great

Plains 1997 (SGP97) experimental domain and reported that Tb data assimilation was able

to correct for rainfall errors. Wilker et al. (2006) highlighted the difficulty in mapping

heterogeneous soil moisture into Tb using a forward operator and identified the repre-

sentativeness errors associated with these data. Similar to the above studies, Hoeben and

Troch (2000) used a KF including a forward backscatter model to explore the direct

assimilation of radar microwave signals to estimate soil moisture profiles.

Snow data assimilation has conceptual problems inherent to the cumulative and temporary

nature of this variable. Slater and Clark (2006) illustrated how a square root EnKF could

improve the snow state at in situ sites in Colorado during the accumulation and melt phase.

They also identified the temporal correlation in snowpacks and showed how it could limit the

efficiency of filtering if not accounted for properly. In a synthetic study, Liston and Hiemstra

(2008) proposed a technique to update snow retroactively, which would be useful for re-

analysis applications, if observations would only be available at the end of the snow season.

In situ snow data assimilation is performed operationally (see Sect. 4.7 below), usually with

simple assimilation techniques. An example where both the snow state and parameters were

estimated using an EnKF in a 1-D setting is given by Su et al. (2011).

A number of point- or single-grid-scale studies have tried to relate brightness temper-

ature data to snowpack characteristics (Durand et al. 2008; Andreadis et al. 2008), in

preparation for Tb assimilation. Many of these studies highlight the large sensitivity of

snowpack estimates to model parameters (Davenport et al. 2012), which makes both

forward simulation and inversion of Tb observations for SWE estimation a difficult task.

4.6.2 Distributed Applications

The most obvious advantage of remotely sensed observations is the possibility of per-

forming large-scale and spatially distributed assimilation. It should be recognized,
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however, that despite the spatial coverage of data, for computational reasons assimilation is

often performed per column, that is, using a 1-D filter. When the vertical columns (of snow

or soil) are horizontally connected through the model physics or assimilation statistics, this

is referred to as 3-D assimilation.

The assimilation of catchment-distributed soil moisture has often focused on the

improvement of the state or initial conditions (Pauwels et al. 2001, 2002) and parameters in

order to improve spatially integrated fluxes, such as discharge. However, it is also possible

to use soil moisture assimilation to correct rainfall estimates (Crow and Ryu 2009). At the

global scale, soil moisture assimilation will become increasingly important when coupled

to the atmosphere for climate and seasonal predictions.

Spatially distributed studies initially focused on assimilation of retrievals with simple

techniques and gradually developed towards more complex schemes, with the inclusion of

forward models (observation operators) to directly assimilate, for example, microwave

observations. Initial soil moisture retrieval studies explored the performance of different

filter techniques, such as Newtonian nudging, statistical correction and statistical inter-

polation (Houser et al. 1998; Pauwels et al. 2001; Paniconi et al. 2003; Hurkmans et al.

2006), while during the last decade, variational and KF-based assimilation largely domi-

nated this research field because of the proven robustness and flexibility of these latter

techniques (Reichle et al. 2002a, b).

A typical conceptual problem with spatially distributed assimilation is the use of coarse-

scale remotely sensed data to infer fine-scale information. There are many static disag-

gregation techniques that use auxiliary information to perform such a downscaling outside

the assimilation scheme. Performing dynamic disaggregation within the assimilation

scheme remains a research challenge. The latter concept consists of a 3-D filter with

inclusion of spatially correlated (fine-scale) state and (coarse-scale) observation prediction

errors and has been addressed in EnKF frameworks by Reichle et al. (2001b, 2013),

Reichle and Koster (2003), Pan et al. (2009), De Lannoy et al. (2010) and Sahoo et al.

(2013).

An important issue connected to 3-D filtering for disaggregation is the use of local

observations to update neighbouring locations, for example, to propagate from observed

swaths to unobserved locations. Often, this problem is solved with spatial interpolation or

by relying on horizontal connections in the model equations (Walker et al. 2002). Alter-

natively, such horizontal information propagation can be done within an assimilation

scheme that provides accurate error correlations between observed and non-observed

observations and forecasts (Reichle and Koster 2003; De Lannoy et al. 2012). De Lannoy

et al. (2009) used an adaptive KF to identify such spatial correlations, along with the

magnitude of the forecast error, to optimize filter performance. Han et al. (2012b) studied

the effect of spatial correlations in an OSSE (observing system simulation experiment)

with a local ensemble transform Kalman filter. Filter technical issues such as update

frequency (Walker and Houser 2004) and error estimation have also been addressed in a

spatial context. Reichle and Koster (2005) demonstrated the validity of the concept that

assimilation results should be better than either the model or observations alone. After

re-scaling satellite observations from AMSR-E and SMMR to take bias out of the system,

Reichle et al. (2007) showed that satellite observations can contribute valuable informa-

tion, even if they are not accurate. Reichle et al. (2009) further assessed the quality of

assimilation products as a function of retrieval and land surface model uncertainty in an

OSSE and showed that soil moisture retrievals can have slightly less skill than the land

surface model and still contribute to an overall higher skill in the assimilation product. This

was confirmed in a real data assimilation study by Draper et al. (2012).
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The importance of correctly specifying random errors and biases is a major conceptual

challenge in the optimization of distributed assimilation systems. Bias mitigation has

become a regular part of most soil moisture data assimilation systems (Reichle and Koster

2004; Drusch et al. 2005; Kumar et al. 2012; Sahoo et al. 2013), and random error

specifications for soil moisture data assimilation have been studied through adaptive fil-

tering (Crow and van Loon 2006; Reichle et al. 2008).

Another idea with potential benefit is multi-sensor assimilation for soil moisture esti-

mation. As an example, Draper et al. (2012) showed how both active (ASCAT) and passive

(AMSR-E) microwave retrievals can contribute to a similar improvement in assimilation

results. Combining improved precipitation data with soil moisture retrieval assimilation

(Liu et al. 2011) and combining discharge (Pauwels and De Lannoy 2006), temperature or

LAI with soil moisture assimilation are other avenues that have been exploited for

hydrological assimilation.

As already indicated for single-column applications, a major conceptual problem is the

direct assimilation of brightness temperatures (Tb) or backscatter observations from

satellite missions for soil moisture estimation. Reichle et al. (2001a, b) presented pio-

neering studies with a 3-D variational scheme to assimilate and disaggregate synthetic or

real brightness temperatures over the SGP97 study area, while Margulis et al. (2002) used

an EnKF and Dunne and Entekhabi (2006) compared an EnKF with an EnKS for the same

Tb assimilation problem. Walker et al. (2002) also assimilated Tb directly, but from SMMR

and using an EKF over Australia. Using a variational scheme, and with inclusion of both a

land surface temperature and microwave brightness temperature observation operator,

Barrett and Renzullo (2009) showed that both thermal (AVHRR) and microwave (AMSR-

E) satellite observations can provide effective observational constraints on the modelled

profile and on surface soil moisture. There are only a few studies on spatially distributed

backscatter assimilation, but in a recent OSSE using an EnKF, Flores et al. (2012) showed

the potential of the L-band radar information expected from the future SMAP mission.

For snow, spatially distributed assimilation studies include snow cover area (or snow

cover fraction) and snow water equivalent (SWE) assimilation. A correct specification of

the snow-covered area is important to represent feedbacks from the land to the atmosphere,

while a good estimate of the actual amount of snow in the snowpack is of crucial

importance for flood, drought and discharge predictions (He et al. 2012). Snow cover

observations are typically fine-scale visible/near infrared observations that are only

available in cloud-free areas, while SWE measurements are typically more inaccurate

retrievals from Tb observations at a coarse scale (see Table 1). It can be expected that

multi-sensor assimilation could help to further snow estimation (De Lannoy et al. 2012).

Because of its binary nature, snow cover in terms of the presence or absence of snow

cannot be assimilated with filters that rely on continuous variables. Instead, rule-based

algorithms have been proposed (Rodell and Houser 2004; Zaitchik and Rodell 2009; Roy

et al. 2010). However, the snow cover fraction (SCF) is a more continuous variable that has

been assimilated with KF-based algorithms (Clark et al. 2006; Su et al. 2008; De Lannoy

et al. 2012). When assimilating SCF with a Kalman filter, there is a need to relate SCF to

the actual SWE state variable through an observation operator, often defined as a snow

depletion curve. It is also possible to use visible/near infrared snow albedo observations to

update snow parameters such as grain size (Dumont et al. 2012).

The two dominant conceptual problems with satellite-based SWE assimilation are the

coarse-scale nature and high uncertainty of the measurements. Initial attempts to assimilate

SMMR or AMSR-E SWE retrievals only yielded marginal success (Andreadis and

Lettenmaier 2006; Dong et al. 2007), because of retrieval errors due to signal saturation,
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presence of liquid water in the snowpack and multiple other factors. To address the coarse-

scale issue, De Lannoy et al. (2010) proposed several 3-D filter options to disaggregate

SWE data and propagate data from observed swaths to unobserved regions. These tech-

niques showed great benefit in a synthetic data study. When using real AMSR-E retrievals

(De Lannoy et al. 2012), and with bias mitigation through re-scaling added to the system,

the assimilation analyses were affected by a lack of a realistic interannual signal in the

retrievals.

To address the problems with SWE retrieval accuracy, the potential of direct radiance

assimilation has been investigated (Durand and Margulis 2006; Andreadis et al. 2008;

Durand et al. 2009; DeChant and Moradkhani 2010). However, these efforts rely on a good

description of the snowpack in the land surface model, which is not always available for

large-scale applications. To address this, Forman et al. (2013) developed an artificial neural

network as a computationally attractive forward model in readiness for large-scale radiance

assimilation. In preparation for the future SMAP mission, freeze–thaw assimilation (Bateni

et al. 2013) has been investigated, because of its importance in understanding the carbon

cycle.

The above studies update either snow or soil moisture separately. A major challenge for

land data assimilation is making use of total water storage (TWS) observations from

GRACE, which include soil moisture, snow and other water components at a very coarse

scale (Table 1). Total water storage can be decomposed into soil and snow components and

disaggregated to finer scales (Zaitchik et al. 2008; Su et al. 2010; Forman et al. 2012;

Li et al. 2012; Reichle et al. 2013).

4.7 Towards Operational Land Data Assimilation

Land surface processes and their initialization are of crucial importance to address the

challenge of seamless prediction from weather to seasonal and climate timescales (Palmer

et al. 2008). It is well established that high skill in short- and medium-range forecasts of

temperature and humidity over land requires proper initialization of soil moisture (Beljaars

et al. 1996; Douville et al. 2000; Mahfouf et al. 2000; Drusch and Viterbo 2007; van den

Hurk et al. 2008). A similar impact from soil moisture has been established for seasonal

forecasts (Koster et al. 2004a, b, 2011; Weisheimer et al. 2011). Initialization of snow

conditions also has a significant impact on forecast accuracy at weather timescales

(Brasnett 1999; Drusch et al. 2004). Operational land data assimilation has initially focused

on ingesting precipitation observations (e.g., Saha et al. 2010; Reichle et al. 2011), but

improved snow and soil moisture state updates are now emerging, as documented, for

example, for the ECMWF Integrated Forecasting System by de Rosnay et al. (2012a).

An unprecedented operational land data assimilation product will be provided by the

Global Modeling and Assimilation Office (NASA GMAO) in the form of a level 4 satellite-

based soil moisture product (Reichle et al. 2012; De Lannoy et al. 2013). The assimilation

of SMAP brightness temperatures into the Goddard Earth Observing System land surface

model will yield a global root zone soil moisture product.

5 Conceptual Problems and Key Challenges

To summarize, the conceptual problems in our understanding of the hydrological cycle

over land can be grouped by observing, modelling and data assimilation systems. These are

outlined below.
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5.1 Assimilated Observations

• To be useful for model development and assimilation, the dominant modes (in space

and time) of the land system must be sampled;

• To be efficient for state updating, observations need to be available at a reasonable time

interval to capture short-term dynamical variations (cf. the importance of satellite

overpass frequency; Walker and Houser 2004; Pan and Wood 2010);

• Observations must be collected in long enough historical records to identify long-term,

climatological, statistics for bias mitigation (Reichle and Koster 2004) or trend

identification;

• Observations need to be sampled at different spatial scales to capture both local and

global processes;

• There is a need to have a reasonable signal-to-noise ratio (e.g., SMAP’s target of

brightness temperature uncertainty is 1.3 K; Entekhabi et al. 2010a), and an uncertainty

in the error description appropriate for scientific studies;

• There is a need to relate observations to key system state variables, that is, there needs

to be system observability.

5.2 Forward and Retrieval Models, with Particular Reference to Radiances

and Backscatter Processes

• To achieve appropriate retrieval accuracy, there is a need to use advanced methods to

describe physical processes in radiative transfer models (RTMs);

• When assimilating radiances at large scales (e.g., from microwave sensors), there is a

need for calibration of RTMs (De Lannoy et al. 2013; Forman et al. 2013).

5.3 Land Surface Models

• There is a need to use advanced methods to describe physical processes (this limits

structural uncertainty) and couple land surface models with models describing more

specialized processes such as run-off routing, dynamic vegetation or snow (Pauwels

et al. 2006);

• There is a need for consistent global parameter datasets to limit predictive uncertainty

due to parameter uncertainty;

• There is a need for high-quality forcing data (this limits input uncertainty), mainly for

precipitation (Maggioni et al. 2011; Reichle et al. 2011).

5.4 Data Assimilation Challenges

• There is a need to fill in the spatial and temporal gaps in observations (Reichle and

Koster 2003; De Lannoy et al. 2012);

• There is a need to disaggregate data in space and time and into their individual

components (Forman et al. 2012; Reichle et al. 2013);

• There is a need to ingest directly radiances or backscatter information (as opposed to

retrievals) to avoid inconsistencies between auxiliary information in retrievals and land

surface models (Crow and Wood 2003; Durand et al. 2009; Flores et al. 2012);
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• There is a need to exploit the simultaneous use of multiple sensors (Pan et al. 2008;

Draper et al. 2012) and explore the capabilities of new sensors (Andreadis et al. 2007;

Durand et al. 2008);

• There is a need to combine state and input (forcing) information with parameter

updates (Moradkhani et al. 2005b; Liu et al. 2011; Vrugt et al. 2012);

• There is a need to explore advanced filtering techniques, for example, the use of the

particle filter to account for non-Gaussian errors (Plaza et al. 2012);

• There is a need to improve the representation of observation and forecast errors, and to

specify biases in observational and model information (De Lannoy et al. 2007b; Crow

and Reichle 2008; Reichle et al. 2008; De Lannoy et al. 2009; Crow and van den Berg

2010);

• There is a need to preserve water balance in the land system (Pan and Wood 2006;

Yilmaz et al. 2011) and draw lessons from the information in the assimilation

increments;

• There is a need to have access to adequate computational resources.

5.5 Validation

• Needs ground observations with substantial spatial and temporal coverage;

• Needs tools to address scaling and representativeness errors (Crow et al. 2012);

• Needs appropriate and effective validation metrics (Entekhabi et al. 2010b).

6 Conclusions

To understand the hydrological cycle over land, we need to make observations and develop

models that encapsulate our understanding. These models have a basis on the information

gathered from observations, as well as on previous experience, and are used to project our

understanding into the future by making predictions. A crucial element in this procedure is

confronting models with observations. Data assimilation, which combines observational

and model information, provides an objective method to confront models against obser-

vations and add value to both the model and the observations. Data assimilation adds value

to observations by filling the gaps between them and adds value to models by constraining

them with observations. In this paper, we touch on the main conceptual problems that limit

a full integration of land surface models and observations by reviewing progress in land

surface data assimilation research over the last decade.

Collectively, the advent of new satellite missions, the increasing attention to forecast

uncertainty due to errors in the land surface model structure, parameters and input, and the

development of advanced assimilation techniques will eventually close the largest gaps in

our understanding of the hydrological cycle over land.
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Appendix: Sensor acronyms

AACE Australian Airborne Cal/Val Experiments (for SMOS)

AMSR Advanced Microwave Sounding Radiometer on EOS Aqua

ASCAT Advanced SCATterometer

ASTER Advanced Spaceborne Thermal Emission and reflection Radiometer

AVHRR Advanced Very High Resolution Radiometer

CONAE COmisión Nacional de Actividades Espaciales (National Space

Activities Commission)—Argentina Space Agency

CoReH2O COld REgions Hydrology high-resolution Observatory

ERS European Research Satellite

ESA European Space Agency

GOES Geostationary Operational Environmental Satellite

GPM Global Precipitation Measurement

GRACE Gravity Recovery And Climate Experiment

JERS Japanese Earth Resources Satellite

MODIS MODerate resolution Imaging Spectroradiometer

MUREX Monitoring of the Usable Reservoir EXperiment

NASA National Aeronautics and Space Administration

SCLP Snow and Cold Land Process

SMAP Soil Moisture Active and Passive

SMMR Scanning Multichannel Microwave Radiometer

SMOS Soil Moisture and Ocean Salinity

SMOSMANIA Soil Moisture Observing System-Meteorological Automatic Network

Integrated Application

SMOSREX Surface MOnitoring of the Soil Reservoir EXperiment

SSM/I Special Sensor Microwave Imager

SWOT Surface Water Ocean Topography

TRMM Tropical Rainfall Measuring Mission
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7:61–80

Dee DP (2005) Bias and data assimilation. Q J R Meteorol Soc 131:3323–3343
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Issue 1). Available from http://hirlam.org/index.php?option=com_docman&task=doc_downloads&
gid=605&Itemid=70

Le Vine DM, Lagerloef GSE, Yueh S, Pellerano F, Dinnat E, Wentz F (2006) Aquarius mission technical
overview. IGARSS 2006, pp 1678–1680

Surv Geophys

123

http://dx.doi.org/10.1109/MC.2008.511
http://www.nilu.no
http://hirlam.org/index.php?option=com_docman&task=doc_downloads&gid=605&Itemid=70
http://hirlam.org/index.php?option=com_docman&task=doc_downloads&gid=605&Itemid=70


Lee H, Seo D, Koren V (2011) Assimilation of streamflow and in situ soil moisture data into operational
distributed hydrologic models: effects of uncertainties in the data and initial model soil moisture states.
Adv Water Resour 34:1597–1615
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