
SAMURAI: A batch and streaming context
architecture for large-scale intelligent
applications and environments
Davy Preuveneers ∗, Yolande Berbers and Wouter Joosen
iMinds-DistriNet-KU Leuven, Department of Computer Science, Celestijnenlaan 200A, B-3001 Heverlee, Belgium
E-mail: {firstname.lastname}@cs.kuleuven.be

Abstract. Over the past decade intelligent environments have grown in sophistication. Many recent paradigm shifts − such as
the Internet of Things (IoT), Ambient Assisted Living (AAL), e-health and telemedicine − envision large distributed networks
of intelligent devices, applications and services that are sensitive to the presence of people and responsive to their needs. Cutting
edge technologies will autonomously and collectively operate on a growing volume of information arriving at ever increasing ve-
locities to transparently and non-intrusively support users during their activities. Especially the escalating variety of information
that applications have to deal with is a non-trivial concern. Making sense out of heterogeneous and pervasive streams of sensor
events to anticipate and address the needs of users is a ubiquitous challenge that many interactive context-aware applications in
intelligent environments frequently face. Furthermore, software solutions that continuously interpret the tasks and contexts of a
variety of individuals with different needs are often faced with scalability concerns.

We present SAMURAI, a batch and streaming context architecture that integrates and exposes well-known components for
complex event processing, machine learning, and knowledge representation. SAMURAI builds upon key concepts of the Lambda
architecture and big data enabling technologies to achieve horizontal scalability and responsive interaction with its users. Two ap-
plication cases validate the feasibility and performance of our context architecture, demonstrating near-linear scalability, flexible
elasticity and smooth interaction capabilities.

Keywords: context, batch and stream processing, scalability, intelligent applications

1. Introduction

The exponential data growth is an opportunity to
build sophisticated intelligent environments. With the
advent of trends like big data, smart applications in-
creasingly obtain more useful information about their
users and their preferences. With data being volun-
teered at an unprecedented scale, context-aware com-
puting is becoming a game changer as it allows ser-
vice providers of a variety of intelligent environment
applications to customize their solutions to their users
and this with decisions no longer based on specula-
tive presumptions or manually crafted rules and adap-
tation logic, but rather on data-driven models. Indeed,

*Corresponding author. E-mail:davy.preuveneers@cs.kuleuven.be

mobile and wearable computing platforms, like smart-
phones and smartwatches [38], embed sensor tech-
nology to observe acceleration, location, orientation,
ambient lighting, sound, imagery [24]. Especially, in
the field of m-health and e-health, the use of such
wearable devices is becoming more prevalent [31,39]
with mobile health applications to monitor a variety of
health parameters including posture [25], heart condi-
tions [45], diabetes [3,34], and physical activity [11].
Furthermore, emerging computing paradigms like the
Internet of Things (IoT) [4] will further spark sensor
technology to become omnipresent in our surround-
ings, and will promise a continuous data growth.

Indeed, intelligent environments are evolving to
open ended large scale and dynamic network infras-
tructures fueled by low cost, connected and wirelessly

communicating devices that collect data, relay infor-
mation to one another, process the information collab-
oratively, and take actions in an autonomic way. How-
ever, relevant information about the user is also be-
coming more complex, heterogeneous, and scattered.
With the increased prevalence of mobile applications,
the expectations of a frictionless customer experience,
and the diversity in a user’s computing environments,
tapping into this exponential data growth with conven-
tional methods has become an arduous undertaking.
Given the unpredictable peaks of high computational
cost to collect and process data, being able to make
sense of large volumes of data with uncertain verac-
ity and value from a variety of context sources in near
real-time will become a key differentiator [19] for fu-
ture intelligent environment solutions.

Sophisticated intelligent applications services should
factor in all relevant context information about the user
and his situation, but are often faced with the follow-
ing non-trivial questions on how to effectively unlock
the large yet untapped sources of context information:

– Which information will influence application-
level decisions for user adaptive behavior?

– Is this information readily available or does it re-
quire additional processing before it is useful?

– Can we process this information offline in batch
mode or online in a streaming fashion?

– What are acceptable processing latencies to guar-
antee a smooth interaction and user experience?

– Can we easily reuse the context processing com-
ponents for other applications?

– Can our context system be distributed and scale
out on demand when the workload grows?

The above questions occur frequently across context-
aware adaptive applications, and have amplified the
need for context-aware computing solutions offered as
services that can deal with:

1. Individuals with different needs sharing the same
applications, services and infrastructure

2. Heterogeneous context data sources and event
types with varying degrees of veracity

3. Loosely structured and distributed event streams
collectively adding value to the application

Enabling technologies that provide a reusable, scal-
able and reliable software solution for the above con-
cerns have all what it takes to become an indispensable
foundation for a wide variety of intelligent applications
and environments. We are tackling these challenges by
extending and enhancing SAMURAI [35], our previ-

ous award-winning research on streaming multi-tenant
context-management architecture for intelligent and
scalable Internet of Things applications. The first ver-
sion of this system was developed within the frame
of the FP7 BUTLER project1 whose objective was
the creation of a horizontal IoT platform supporting
several domains of our daily lives − including home,
health, smart cities, energy, transport, shopping, etc.−
all at once. In this work, we discuss how we redesigned
SAMURAI around the basic principles of the Lambda
Architecture [27], and how we further enhanced and
extended our framework with big data technologies to
further scale out to growing amounts of context.

After reviewing related work in section 2, we
present two use cases in section 3 as motivating exam-
ples. Section 4 discusses the design of our batch and
streaming context architecture. In section 5 we eval-
uate the feasibility and effectiveness of the approach.
We conclude in section 6 summarizing the main in-
sights and identifying possible topics for future work.

2. Related work

Before we dive into the contributions of our work,
we briefly discuss relevant state-of-the-art on activity
recognition, big data enabling technologies and scal-
able learning and prediction algorithms.

2.1. Behavior-awareness and activity recognition

Especially in the area of home-care applications and
Ambient Assisted Living [12] for the elderly, auto-
matic discovery and classification of daily activities
plays a key role [51,40] to anticipate the kind of assis-
tance they need or to detect the occurrence of abnor-
mal events (such as a fall or heart failure). Accelerom-
eters [37,23] are a popular type of sensor for activ-
ity recognition and to assess physical activity. Other
works in this field rely on numerous sensors to enrich
observation data, and often depend on prior knowledge
about the activities and the environment learned in a
supervised manner.

In [46], Lin et al. present an activity recognition ap-
proach using a mobile phone. The data from 6 different
test subjects is collected on a Nokia N97, and used to
build an SVM-classifier. Five types of features are ex-
plored in this work, including mean, variance, correla-
tion, FFT-energy and frequency-domain entropy. One

1http://www.iot-butler.eu/

of the main factors that can influence the recognition
rate is the position where a user is carrying his device.
This position can either be in the pocket near the hip,
in the front pocket or just in his hand. The influence
of this position on the accuracy of predictions is re-
searched in this work.

In [20], Khan et al. focus on the fact that the activ-
ity recognition approach should work in real-time. The
authors claim that frequency domain features work
best, but that these require too much computation to
be feasible in a real-time scenario. Benchmark testing
is carried out with one specific accelerometer. While
not further elaborated on, the authors note that the spe-
cific set of features used makes the approach more per-
son dependent. In their multiple-subject scenario, data
from multiple test subjects is used to train a classifier.
They use this input from multiple subjects irrespective
of the physique of the persons, but do note that adding
more subjects decreases the performance.

Machine learning techniques are frequently used to
model a wide range of human activities and to elicit
particular patterns of interest. Some techniques investi-
gate to what extend such models can be learned across
different users [7] to address the concern of activity
recognition algorithms requiring substantial amounts
of labeled training data. However, a detailed discus-
sion on human activity recognition is beyond the scope
of this work. We refer interested readers to recent sur-
veys [1,6] for a more elaborate and in-depth overview
of human activity recognition research.

2.2. Batch and stream processing on big data

The data explosion of the Internet of Things is
often linked with the Big Data paradigm. MapRe-
duce [9] − and its Hadoop [48] implementation − is a
software framework and programming model that al-
lows developers to write programs that process mas-
sive amounts of unstructured data in parallel across
a distributed cluster of computers. The shortcomings
and drawbacks of batch-oriented data processing have
been widely recognized as many applications are in
need of real-time [44,5] and in-stream processing ca-
pabilities [8]. This concept got a lot of traction with
various distributed event stream processing (ESP) en-
gines emerging. Yahoo’s S4 [29] and Twitter’s Storm
project [47,26] were among the first to attract a lot of
attention. Also Google acknowledged the limitations
of MapReduce, with its MillWheel [2] framework and
programming model dedicated to fault-tolerant stream
processing at Internet scale. Spark [49] is another

state-of-practice software solution for large-scale data
processing. It runs up to 100 times faster in mem-
ory than Hadoop MapReduce and supports scalable
fault-tolerant streaming applications. Spark Stream-
ing [50] builds upon the Spark’s foundations to build
big data application that act on data in real time.
Apache Samza2 − originally developed at LinkedIn −
is another popular open source frameworks for scal-
able stream processing.

2.3. Scalable machine learning and mining

The growing amounts of data has increased the in-
terest in implementing machine learning algorithms
on top of the MapReduce framework [14,15]. Ma-
hout [30], a machine learning and data mining frame-
work built on top of Hadoop, addresses this scalability
challenge. MLbase [22] builds upon the Spark frame-
work and more particularly the MLI [43] API and
Spark’s MLlib3 scalable machine learning library.

Stream mining [13] differs from more traditional
data mining libraries like Weka [17] and statistical
learning tools like R [18] in the sense that they focus
on extracting knowledge in non-stopping streams of
events. Massive Online Analysis (MOA) [21] is such a
software framework that offers a variety of algorithms
and evaluation methods for supervised and unsuper-
vised learning, supporting only single machine deploy-
ments thereby limiting its scalability. SAMOA [28] on
the other hand is pluggable architecture that allows it
to run on several distributed stream processing engines
such as Storm [47], S4 [29], and Samza.

3. Motivating use cases

In this section, we present two different use cases.
A first use case deals with activity recognition in the
healthcare domain. A second use case focuses on the
use of context information to implement an intelligent
authentication system.

3.1. Activity recognition for e-health applications

A first use case builds upon our mobile application
for diabetes patients [32,33] as depicted in Figure 1.
The major challenge in this application is to identify
classes of activities that have an effect on blood glu-

2http://samza.apache.org/
3https://spark.apache.org/mllib/

Fig. 1. A mobile context-aware diabetes application as a first motivating use case

End-user

Device
Fingerprint

Network

User
Behavior

1

2
Risk

Engine

Step-up Authentication

 4

SMS Email e-ID

Compute
Distance
Measure

3

Context
Fingerprint

USER

CONTEXT-AWARE
AUTHENTICATION

Risk
Score

High
Risk

Fig. 2. User-friendly context-aware authentication as a second motivating use case

cose levels. As activities of daily living (ADL) typi-
cally present recurring behavioral patterns, we explore
correlations between time and location on the one hand
and types of activities on the other hand, to find simi-
lar situations of the past as a recommendation for the
patient. We also track the number of steps taken each
day as a measure for well-being and as a means for
recommendation to have a more active lifestyle.

3.2. User-friendly context-aware authentication

Traditional systems for identity and access man-
agement technologies rely heavily on usernames and
passwords for authentication. However, weak pass-

words do not offer the security guarantees for risk-
sensitive services that require stronger continuous
identity assurance. Furthermore, entering long and
hard-to-remember passwords is deemed inconvenient
for mobile customers, especially for online applica-
tions where a frictionless experience is paramount.
This motivating use case originates from our earlier
work [36] that investigates non-intrusive authentica-
tion techniques that can operate silently in the back-
ground based on additional context and behavioral
information [41]. Continuous passive assessment of
the context, as depicted in Figure 2, enables service
providers to streamline access for trusted combinations
of user accounts and contexts. Related work [10] has

Semantic
Database

Complex
Event

Processing

In-memory
Data Grid

semantically
classify

probabilistically
classify

Context
Broker

Interface
events

Event
Queue

push

Learning
and

Mining

notifications
statements

listeners

classify domain
knowledge

models
training data

pull query

train

store

query

Applications

Sensors

NoSQL
Store

query

Actuators

Fig. 3. Early version of the SAMURAI streaming context architecture

shown that particular imperfections of an accelerome-
ter can be used to track a smartphone. We are not pur-
suing this technique to explore privacy concerns, but
rather as a means to recognize trusted devices.

3.3. Common characteristics

Both motivating use cases rely at least in part on ac-
celerometer data and behavior recognition. By adding
complexity, such as machine learning and seman-
tic reasoning techniques, we can further improve the
recognition accuracy:

– Feature extraction: Convert raw sensor data into
meaningful features (e.g. walking, running, num-
ber of steps, activity intensity)

– Information fusion: Aggregate data from differ-
ent sources to increase the confidence in the qual-
ity of the inferred information (e.g. current activ-
ity w.r.t. to current time and location)

– Domain knowledge: Leverage background infor-
mation to narrow down likely activities (e.g. se-
mantically linking locations with activity types)

– Probabilistic correlations: Identify frequent co-
occurrences in event streams to derive event pat-
terns of interest (e.g. spatio-temporal patterns)

However, such complexity is usually too much to han-
dle for a smartphone. Even for server-side implementa-
tions scalability remains a concern when multiple cus-
tomers with different needs must be served at the same
time. In the following section, we will discuss the ba-

sic primitives that we use in our framework to address
these challenges.

4. Batch and streaming context management

The earlier version of SAMURAI − as discussed
in [35] and depicted in Figure 3− was mainly focused
on stream-based processing of context information.
The old design offered publish/subscribe capabilities
to have clients (applications or subsystems) notified
when particular (patterns of) events occur with push
notifications implemented as REST callbacks (see fol-
lowing section). The architecture had three basic com-
ponents to hold events:

– In-memory Data Grid: This is a distributed in-
memory container for events based on Hazelcast4.

– Event Queue: Clients that do not support push
notifications through REST callbacks can register
a queue to hold events and poll that instead.

– NoSQL Store: The events can be optionally
stored in a persistent way using CouchDB5 as a
RESTful database.

Their RESTful APIs followed the CRUD mapping on
HTTP methods to create (POST), read (GET), update
(PUT) or delete (DELETE) events.

4http://www.hazelcast.com/
5http://couchdb.apache.org/

Recent
Data

Real-time
View

Real-time
View

 Speed Layer (Storm, Spark Streaming or Samza)

Batch Layer (Hadoop or Spark)

 Serving Layer

Batch
View

Batch
View

Low-latency incremental updates

Blend batch and
real-time results

Periodic

Snapshots

Query

QueryMaster with
all Data

New Data

High-latency batch processing

Event Deliver
Endpoint (Kafka)

Query Endpoint
(Druid)

●
C

om
pl

ex
 e

ve
nt

pr

oc
es

si
ng

●
C

la
ss

ifi
ca

tio
n

●
S

em
an

tic
 r

ea
so

ni
ng

●
C

lu
st

er
in

g
an

d
le

ar
ni

ng
●

S
pa

tio
-t

em
po

ra
l

re
as

on
in

g

Fig. 4. Conceptual and technology-agnostic overview of a typical Lambda architecture

4.1. Motivations for redesigning SAMURAI

SAMURAI pursued simple methods for scaling out
over multiple nodes by replicating functionality and
building blocks on different machines. However, the
event processing building blocks were not adequate
enough to handle large amounts of data effectively.
Here are some high-level reasons for why we decided
to redesign our SAMURAI system:

1. For more effective context recognition, we wanted
to train and test with specialized machine learn-
ing algorithms that would operate on all the avail-
able data. The previous design and deployment
configuration could no longer handle all data ef-
fectively with Weka running on a single node, nor
was it feasible to carry this out in a streaming
fashion. We needed better support for batch-based
distributed context processing.

2. For applications that required large amounts of
data to be processed, the simple sharding tech-
nique we used to scale out resulted into perfor-
mance problems, mainly due to network latency
and bandwidth issues. We needed to take data lo-
cality into consideration and move the computa-
tion where the data is in order to avoid as many
data shuffles over the network as possible.

3. The fairly rigid distributed deployment scheme
of and coordination between multiple SAMU-
RAI instances (as depicted in Figure 3) was fine-
tuned for a particular runtime scenario, but the
deployment and configuration became less effec-
tive when the amount or the speed of information
evolved. Furthermore, our solution was not able

to deal with stragglers, i.e. nodes that would take
an unusually long time to complete a task, poten-
tially degrading the overall performance.

4. Fault tolerance becomes a more critical concern
for large-scale deployments. Big data systems are
designed with failure as the norm, rather than
as the exception, because hardware failures or
network partitions could otherwise lead to unex-
pected data losses. Our old solution did not have
any adequate means to gracefully handle such
concerns. It did incorporate data replication to ac-
count for nodes being disconnected, but events in
transit could get lost and as a result not be pro-
cessed correctly.

By redesigning SAMURAI, we now aim to fill this
gap by offering a distributed and multi-tenant event-
based batch and streaming context architecture with
complex event processing, machine learning and se-
mantic context enrichment as key capabilities.

Many of the large-scale distributed data processing
systems discussed earlier (e.g. Hadoop, Spark, Storm)
have shown their merit in the enterprise for business
analytics applications to deal with the above non-
functional concerns. In this work we explore the fea-
sibility of such systems for large-scale context-aware
applications.

4.2. Basic principles of the Lambda architecture

We redesigned our solution around key concepts of
the Lambda Architecture − a term coined by Nathan
Marz [27] − to achieve processing and serving of
extremely high volumes of data in an efficient, scal-

Listing 1 Example of an event type and instance
1 // Event type
2 {
3 "timestamp": "long",
4 "x": "double",
5 "y": "double",
6 "z": "double"
7 }
8
9

10 // Event instance
11 {
12 "timestamp": 1340099550210,
13 "x": -8.308,
14 "y": -1.9477,
15 "z": 4.099
16 }

able and fault-tolerant manner, while maintaining a re-
sponsive interaction with the user. Conceptually, the
Lambda Architecture − as depicted in Figure 4 con-
sists of three layers: (1) the Batch layer which ingests
and stores large amounts of historical data, and com-
putes views from that data; (2) the Speed layer which
ingests and processes incremental updates on that data
in a low-latency streaming manner, and (3) the Serving
layer that exposes precomputed views to serve ad-hoc
queries with low latency.

Any new data is stored in the batch layer, but also
sent to the speed layer. The data in the batch layer is
ingested using periodic bulk updates with map-reduce
operations that work on the entire master data set
(e.g. an immutable store in HDFS). Computations in
the batch layer are high-latency and may take hours to
complete, and the results of these recomputations are
the batch views. After each recomputation, the existing
batch views are swapped with the new ones. The speed
layer only deals with new data and produces real-time
views that compensate for the high-latency updates of
the serving layer. The incremental updates in the speed
layer are low-latency and usually happen in the order
of seconds. The final results for a query merges the
output of both the batch and real-time views.

4.3. Basic context event types

Events can be simple events that carry slivers of
meaning in themselves, and complex events which
summarize, represent, or denote a set of single events
which combined denotes a ’pattern of events’. An
event is represented as a set of typed key-value pairs
that can be easily serialized into the JSON format. The
example in Listing 1 illustrates the type and an in-
stance of an accelerometer event that we use for activ-
ity recognition.

In this example, the x, y and z values hold the ac-
celeration values along these axes. The timestamp field
represents the number of milliseconds passed since
January 1, 1970 UTC.

4.4. Batch and stream computation building blocks

The Lambda Architecture is technology agnostic.
For each of the various stages in the data pipeline and
layers, we use Apache Kafka6 as a high-throughput
distributed publish/subscribe data transport mecha-
nism, Apache Spark7 for large-scale data processing
in the batch layer and the speed layer. For the speed
layer, we can alternative choose Apache Storm8. Con-
trary to the Spark Streaming extension that processes
micro-batches in a streaming fashion, does Storm (and
its Spouts and Bolts) allow for individual event pro-
cessing for even lower latency stream processing. The
batch layer reads all historic input from HDFS, and
stores the batch views in HDFS. For the query layer,
we offer RESTful services but can also leverage Kafka
to publish updates, or use Druid9 for interactive ana-
lytics at scale on large sets of seldom-changing data.

4.5. Distributed semantic reasoning

We use Apache Spark in the batch layer of SAMU-
RAI to implement distributed algorithms that have to
process large volumes of data in a scalable way. One of
these algorithms is semantic reasoning. For example,
we have implemented a distributed RDFS engine with
other extensions that reasons on RDF triples based on
the following inference rules:

– xxx rdfs:subPropertyOf yyy ∧ yyy rdfs:subPropertyOf
zzz⇒ xxx rdfs:subPropertyOf zzz

– xxx rdfs:subClassOf yyy ∧ yyy rdfs:subClassOf zzz
⇒ xxx rdfs:subClassOf zzz

– aaa rdfs:subPropertyOf bbb ∧ xxx aaa yyy
⇒ xxx bbb yyy

– aaa rdfs:domain xxx ∧ yyy aaa zzz⇒ yyy rdf:type xxx
– aaa rdfs:range xxx ∧ yyy aaa zzz⇒ zzz rdf:type xxx
– xxx rdfs:subClassOf yyy ∧ zzz rdf:type xxx
⇒ zzz rdf:type yyy

– xxx rdf:type rdfs:ContainerMembershipProperty
⇒ xxx rdfs:subPropertyOf rdfs:member

– xxx rdf:type rdfs:Datatype⇒ xxx rdfs:subClassOf rdfs:Literal

6http://kafka.apache.org/
7http://spark.apache.org/
8http://storm.apache.org/
9http://druid.io/

Listing 2 Distributed semantic reasoning with RDF triples on top of Apache Spark
1 SparkConf sparkConf = new SparkConf().setAppName("SemanticReasoner");
2 JavaSparkContext sc = new JavaSparkContext(sparkConf);
3 JavaRDD<String> lines = sc.textFile(args[0]);
4 JavaRDD<Triple> triples = lines.map(e -> new Triple(e));
5
6 // xxx subPropertyOf yyy . yyy subPropertyOf zzz => xxx subPropertyOf zzz
7 // xxx subClassOf yyy . yyy subClassOf zzz => xxx subClassOf zzz
8 {
9 JavaRDD<Triple> result = triples.flatMap(a -> {

10 List<Triple> list = new LinkedList<Triple>();
11 if (a.predicate.equals(Types.RDFSSUBCLASSOF)) {
12 List<String> superclasses = getRecursive(a.object, bcSubClass.value());
13 for (String superclass : superclasses) {
14 list.add(new Triple(a.subject, Types.RDFSSUBCLASSOF, superclass));
15 }
16 } else if (a.predicate.equals(Types.RDFSSUBPROPERTYOF)) {
17 List<String> superproperties = getRecursive(a.object, bcSubProperty.value());
18 for (String superproperty : superproperties) {
19 list.add(new Triple(a.subject, Types.RDFSSUBPROPERTYOF, superproperty));
20 }
21 }
22 return list;
23 });
24
25 triples = triples.union(result);
26 triples = triples.distinct();
27 }

Listing 3 Registering event types (lines 1-2); submit events (lines 4-5); register event statements (lines 7-11) and event listeners (lines 13-14)
1 curl -X POST -d ’{ "timestamp": "long", "x": "double", "y": "double", "z": "double" }’
2 "http://localhost/samurai/rest/esper/eventtypes/AccelerometerEvent"
3
4 curl -X POST -d ’{ "type": "AccelerometerEvent", "timestamp": 1234, "x": 5.0, "y": 1.3, "z": 2.1 }’
5 "http://localhost/samurai/rest/esper/event"
6
7 curl -X POST -d ’{ "rule":"insert into MagnitudeEvent(timestamp, magnitude) select timestamp, Math.sqrt(x*x + y*y + z*z)
8 as magnitude from AccelerometerEvent" }’ "http://localhost/samurai/rest/esper/statements/magnitude"
9

10 curl -X POST -d ’{ "rule":"insert into MovingAverageEvent(timestamp, movingaverage) select timestamp, avg(magnitude)
11 as movingaverage from MagnitudeEvent.win:length(10)" }’ "http://localhost/samurai/rest/esper/statements/movingaverage"
12
13 curl -X POST -d ’{"url":"http://otherhost/myapp/steps/offer"}’
14 "http://localhost/samurai/rest/esper/statements/steps/listener"

The description logic behind an RDFS reasoner is not
as expressive as the language supported by many state-
of-practice OWL2 ontology reasoners like Pellet [42]
or HermiT [16], but our Spark-based implementation
is much more capable of handling large amounts of
data by transparently distributing the above inference
rules and RDF triples over multiple worker nodes.
Listing 2 shows how some of the above rules have been
implemented in Spark.

4.6. Complex event processing

When Storm is used in the speed layer, then SAMU-
RAI can embed Esper10 for on-the-fly processing of

10http://esper.codehaus.org

complex event streams, as Storm’s tuples correspond
quite well with Esper’s event types.

Esper enables feature extraction from low-level
events (e.g. from accelerometer to steps) that would
otherwise require manual map-reduce implementa-
tions. Esper usually relies on Java POJOs to represent
events at compile time. However, in SAMURAI new
event types can be created anytime. We therefore ex-
pose a RESTful API to dynamically register new event
types at runtime. Listing 3 illustrates how to do this
with curl, a command-line utility commonly found on
Linux systems to transfer data from or to a server. Reg-
istering the other event types and sending events can
be done in a similar way as shown in the same figure.

Below is a short overview of some of the event
stream processing steps for our motivating use cases:

Listing 4 Semantic representation of rooms and activities in an apartment
1 ex:Room a owl:Class;
2 rdfs:subClassOf geo:Feature .
3
4 ex:LivingRoom a ex:Room;
5 rdfs:label "Living Room";
6 geo:hasGeometry ex:GeoLivingRoom .
7
8 ex:GeoLivingRoom a sf:Polygon;
9 geo:asWKT "POLYGON ((0.00 9.44,3.80 9.44, 3.80 8.13,8.00 8.13,8.00 13.90,

10 0.00 13.90,0.00 9.44))"^^sf:wktLiteral .
11
12 ex:activity a owl:DatatypeProperty;
13 rdfs:domain ex:Room;
14 rdfs:range xsd:string .
15
16
17 ex:LivingRoom ex:activity "Watch TV" .
18 ex:LivingRoom ex:activity "Listen to music" .
19 ex:LivingRoom ex:activity "Play game" .
20 ex:LivingRoom ex:activity "Read newspaper" .

– Accelerometer: It produces a continuous stream
of X, Y, Z acceleration data at a certain rate
(e.g. 100Hz).

– Low-pass filter: A ’moving average’ removes
high-frequency noise to track, for example, steps
as a particular peak pattern.

– Magnitude filter: Signal analysis on the magni-
tude of the acceleration signal is independent of
the sensor orientation.

– Peak filter: This component extracts maxima and
minima in the time domain. A single step is char-
acterized by a particular pattern of these features.

– High-pass filter: This component implements a
FIR filter to detect sudden and high-frequency
changes of the acceleration signal.

Our system offers RESTful APIs to register state-
ments and listeners. A statement is a continuous query
registered with an Esper engine instance that provides
results to listeners as new events arrive. In order for ap-
plications or subsystems to be notified about the step
events, we add a listener to this statement as shown
in line 13. The example adds a REST callback to
http://otherhost/myapp/steps/offer, which gets called
upon using a HTTP GET request for every step event.
The event attributes are appended to the REST call-
back as url parameters. This way, the myapp subscriber
is notified about all the event details.

4.7. Semantic and spatio-temporal reasoning

Beyond matching patterns of events and feature
extraction, SAMURAI can also leverage background

knowledge stored in a semantic database to increase
the meaningfulness of an event. Unfortunately, there
are currently no mature RDF reasoning engines avail-
able that both run on top of a distributed MapReduce-
like framework with support for the SPARQL query
language and spatio-temporal reasoning. Instead, it
uses Parliament 2.7.911, a GeoSPARQL enabled stor-
age backend for semantic and spatio-temporal reason-
ing. For scaling out this component or enforcing iso-
lation per tenant or user, we deploy multiple instances
of the engine on different nodes with a load balancer
in front to share the workload. The GeoSPARQL in-
stances are not part of the batch/speed layer cluster, but
run on dedicated nodes in the same network.

The benefits for adding and integrating semantic
and spatio-temporal reasoning capabilities into our
SAMURAI system are manifold:

– Describe the spatial characteristics of different lo-
cations in your environment (see Listing 4 and
Figure 5).

– Use the W3C SSN ontology to describe the sen-
sors and their position

– Translate coordinates into semantic locations
(e.g. [6.0, 10.0] being in the Living Room)

– Semantically link locations with relevant activi-
ties (e.g. Watch TV in a Living Room)

The following (simplified) statement demonstrates the
integration with Esper (see Listing 6):

This statement translates the x and y coordinates
(e.g. obtained after signal strength triangulation) of in-

11http://parliament.semwebcentral.org/

Fig. 5. Visualization of the apartment

coming events of type LocationEvent with the custom
location() Esper operator offered by SAMURAI. The
operator is mapped onto a GeoSPARQL query which
retrieves the semantic location (e.g. location(6,10) →
’Living Room’). Such higher level concepts are more
suitable for classification.

4.8. Learning and mining with classification and
clustering

When the relationship between co-occurrent events
cannot be established in advance, we need classi-
fication and clustering mechanisms to probabilisti-
cally infer these dependencies. SAMURAI embeds the
Weka [17] machine learning library for this purpose
and exposes its key features through RESTful APIs.
SAMURAI allows every application to register one or
more models, with each model having a particular at-
tribute set and classifier. See lines 1 and 2 in List-
ing 5. This example registers a model called m01 using
Naive Bayes as an incremental classifier. The attributes

used for classification are described in the Attribute-
Relation File Format (ARFF) and registered with the
following REST API (see line 4). By specifying an
appropriate statement and corresponding listener, Es-
per feeds events as training or test instances into the
Weka model. The example in lines 6-7 illustrates how
to probabilistically classify activities from the current
time (in hours) and location (e.g. 8, ’Kitchen’→ ’Hav-
ingBreakfast’). This example demonstrates the use of
Weka to learn spatio-temporal correlations. The inte-
gration with Esper is again with custom Esper oper-
ations mapping the core classification and clustering
features of Weka.

Our framework also leverages Spark’s MLlib12 scal-
able machine learning library, especially for those ap-
plications that require processing of vasts amounts of
information such that it would become too big to be
stored as one Weka model instance.

4.9. Trade-offs and shortcomings

While SAMURAI offers extensive capabilities to
process information on a large scale by leveraging
state-of-practice building blocks that are exposed as
RESTful services, there are some non-trivial trade-offs
as SAMURAI offers multiple similar building blocks
with different performance capabilities.

– The Weka machine learning library offers more
algorithms compared to the MLlib machine learn-
ing extension of Apache Spark, but Weka does
not have the same distributed processing capabil-
ities for clustering and classification that Spark
has.

– A general purpose OWL reasoner like Pellet [42]
or HermiT [16] allows for sophisticated seman-
tic reasoning albeit on a single node, whereas
our less expressive semantic reasoner can run on
Spark in a distributed fashion.

– Complex event processing can be accomplished
either leveraging the Esper component or the
Spark Streaming framework. Esper offers higher
levels of abstraction, whereas the latter is far more
easier to scale out over multiple nodes but re-
quires a bit more programming to achieve the
same objectives.

One of the shortcomings of SAMURAI is that it
does not yet offer a unified abstraction layer for these
technologies with common functionalities or similar

12https://spark.apache.org/mllib/

Listing 5 Registering a classifier (line 1-2); upload training data (line 4); custom Esper operator for classification (line 6)
1 curl -X POST -data ’{ "classifier": "weka.classifiers.bayes.NaiveBayesUpdateable" }’
2 "http://localhost/samurai/rest/weka/models/m01"
3
4 curl -X POST --data-binary @m01.arff "http://localhost/samurai/rest/weka/models/m01/arff"
5
6 // Integrating Weka classifier in Esper statement
7 { "rule" : "select time, x, y, classify(’m01’, hour(time), location(x,y), ’?’) from ..." }

Listing 6 Custom geo-semantic event operator location()
1 { "rule": "select x,y,location(x,y) from LocationEvent" }

algorithms. Such an abstraction layer would trade al-
low to transparently trade one implementation over the
other to address performance concerns.

5. Performance and scalability evaluation

We evaluated our previous version of SAMURAI
in [35]. This earlier version also leveraged the key
building blocks for complex event processing, ma-
chine learning, and spatio-temporal and semantic rea-
soning. However, the whole architecture was not de-
signed around the Lambda architecture, nor did it in-
corporate big data processing capabilities. The focus
of the evaluation in this work will be on validating the
feasibility and performance of our enhanced SAMU-
RAI context architecture, demonstrating near-linear
scalability, flexible elasticity and smooth interaction
capabilities with the key components of our two moti-
vating use cases.

5.1. Experimental setup

We use an experimental setup of 15 machines, each
equipped with an Intel Core 2 Duo 3.00 GHz CPU and
4GB of memory and running a 64-bit Ubuntu 14.04
operating system. All machines are linked to a 1 Giga-
bit network. We use an additional 5 machines to simu-
late different users. We refer to the former 15 machines
as the internal side of the setup, whereas the 5 ma-
chines acting as load generators being the external side
of the experimental setup. Figure 6 illustrates our mon-
itoring dashboard with SAMURAI being deployed on
4 systems (called laarne, ronse, temse and tremelo).

From the 15 machines, the front-end is deployed
on an Apache Tomcat 8.0.51 application server on a
dedicated master node. The semantic reasoning en-
gine of SAMURAI (i.e. Parliament 2.7.8) is deployed

on a similar Tomcat instance on two other nodes in
a load balanced setup. Parliament is a fully featured
RDF triple store that runs on a single machine. To
share the workload, the 2 nodes serve the same knowl-
edge graphs so that the GeoSPARQL queries can be
distributed and load balanced among both. For our ex-
periments, we do not need more than 2 of such nodes
for geospatial and semantic reasoning to not cause
any performance bottlenecks, but more Parliament in-
stances can be added if needed.

The 12 other nodes are set up to run the Spark and
Storm worker nodes of the batch and speed layers of
SAMURAI. They collectively also host the HDFS dis-
tributed file system that is used to store all master data
processed by the batch layer of SAMURAI.

5.2. Feasibility assessment and validation with
motivating use cases

The objective of the motivating examples of sec-
tion 3 is activity and behavior recognition − common
for both use cases − based on accelerometer event
streams, spatio-temporal and semantic reasoning. For
the first use case, we aim to recognize different types
of human motion, whereas in the second use case we
continuously analyze and classify the risk for context-
aware authentication.

Again, as in the previous work, the objective of
the evaluation is not to assess the effectiveness of the
recognition, but the scalability of the approach for a
large user base. The 5 machines running the load gen-
erator that simulates user behavior produces about 50
events per second per user on average as input for
SAMURAI. The input constitutes mainly accelerom-
eter and gyroscope events, location updates, wifi net-
work details, and mobile device fingerprints.

Without going into details, these events are pro-
cessed by batch and speed layers, the complex event
processing component, the semantic reasoning engine
and machine learning classification algorithms. The
batch layer is used periodically offline to train the dif-

Fig. 6. Monitoring dashboard

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

Minimum 25th percentile Median 75th percentile Maximum

Accelerometer event updates / sec

P
ro

ce
ss

in
g

 ti
m

e
 (

m
se

c)

Fig. 7. Event stream processing performance in the speed layer of SAMURAI on a single node

ferent classifiers and decision trees which are used at
runtime in the speed layer.

A first experiment particularly focuses on process-
ing the accelerometer events using the Spark Stream-
ing speed layer on a single worker node. The ac-
celerometer runs at about 40Hz for a single user. This
means 10000 event updates per second when simulat-
ing about 250 users. The results are shown in Figure 7.
Simulating more users would cause the accelerometer
events to no longer be processed in less than a second,
i.e. in a real-time streaming fashion.

For a second experiment, we processing all the
events in terms of a growing number of concurrent
users in set up scaling out up to 12 worker nodes. Fig-
ure 8 illustrates the horizontal scalability.

For both experiments, we assume that the batch
layer has already learned the classifiers and decision
trees based on all historic data. This step was com-
pleted offline in less than 1 hour using all the worker
nodes. While our experiments were not carried out on
a very large number of nodes (e.g. more than 100), our
feasibility assessment does show that SAMURAI ex-
hibits near-linear horizontal scalability. We have iden-
tified some performance concerns with Parliament, the
GeoSPARQL semantic storage and reasoning back-
ends hosted on the dedicated nodes. As mentioned ear-
lier, Parliament does not support distributed reasoning.
We are addressing this concern by implementing dis-
tributed RDFS reasoning with map() and reduce() op-
erations, but it currently does not yet offer the same se-

0 20000 40000 60000 80000 100000 120000 140000
0

200

400

600

800

1000

1200

1 worker 2 workers 4 workers 8 workers 12 workers

Event updates / sec

P
ro

ce
ss

in
g

 ti
m

e
 (

m
se

c)

Fig. 8. Scaling out to multiple worker nodes

mantic and spatio-temporal reasoning capabilities that
Parliament offers. If such functionality would be avail-
able, than all of SAMURAI’s features would be run-
ning inside the worker node cluster of the batch and
speed layers, fully supporting elastic scalability.

5.3. Comparison with state-of-practice solutions

SAMURAI offers a variety of features that are − to
the best of our knowledge − not available in any other
contemporary framework. To systematically evaluate
SAMURAI and compare with systems that share some
functionality, there is a need for realistic and com-
monly accepted benchmarks as well as tool support
to generate reproduceable workloads that grow in size
and complexity. A side-by-side quantitative compari-
son of existing systems is therefore not trivial.

However, a quantitative analysis regarding the choice
of distributed computing technology for the different
layers in SAMURAI is feasible. We tested the batch
layer with simple data clustering and outlier detection
tasks that were implemented on top of the Hadoop
and Spark frameworks. For this particular experiment,
Spark far outperformed Hadoop for batch process-
ing tasks with at least an order of magnitude. The
main reason for this is that Hadoop saves intermedi-
ary processing results on disk whereas Spark is mem-
ory oriented. Regarding the speed layer, Apache Spark
Streaming cannot achieve the same low latency prop-
erties that Storm can. This limits the capabilities of
SAMURAI to those use cases that do not require end-

to-end data processing latencies below 1 second. How-
ever, we believe that these drawbacks do not outweigh
the main benefits of having a single Spark API for both
the batch and speed layers versus having different im-
plementations for Hadoop and Storm.

6. Conclusion

We presented and evaluated our redesigned version
of SAMURAI− our award winning batch and stream-
ing context architecture − that integrates and exposes
well-known components for complex event process-
ing (feature extraction, information fusion, notifica-
tion), machine learning (learn co-occurrences of events
and spatio-temporal correlations), and knowledge rep-
resentation (linking positions with semantic locations
and activities).

We redesigned SAMURAI around key concepts of
the Lambda architecture−with a batch, speed and ser-
vice layer− and leveraged big data enabling technolo-
gies to achieve horizontal scalability and responsive in-
teraction with its users. Key reasons for the redesign
were (1) better support for distributed batch process-
ing on large amounts of data, especially for machine
learning tasks, (2) avoid network capacity concerns by
taking data locality into consideration, (3) enable dy-
namic scheduling of distributed tasks to handle strag-
glers, and (4) consider failure as the norm rather than
as the exception by leveraging fault tolerance capabil-
ities of big data processing subsystems.

Two application cases in the healthcare domain and
context-aware authentication were used to validate the
feasibility and performance of our redesigned SAMU-
RAI context architecture. The experimental evaluation
demonstrated near-linear scalability, though a current
limitation is still the fact that the semantic and spatio-
temporal reasoner is not fully distributed on top of the
big data frameworks. In our current setup, we repli-
cate multiple instances of this component in a load bal-
anced configuration to distribute the workload, but this
is less effective compared to being able to execute such
tasks on multiple nodes in parallel.

In our evaluation, we used the Apache Spark frame-
work and its Streaming and MLlib extensions to imple-
ment the batch and speed layers. There are preliminary
integrations of other big data frameworks in SAMU-
RAI, especially Apache Storm for the speed layer.
However, a side-by-side performance comparison has
not yet been carried out because the current implemen-
tation of the motivating use cases is tied too much to
the underlying big data processing technology. For ex-
ample, a new implementation of the use cases would be
required to make use of the Storm streaming backend
in the speed layer. As part of future work, we will ex-
plore to what extend we can unify the implementation
in a similar way as our Spark prototype where reuse
of application code across the batch and speed layer is
much more straightforward because these layers rely
on the same technology and similar APIs.

Also as future work, we will evaluate SAMURAI’s
support for fault tolerance and quantify the impact of
stragglers. One of the reasons we did not explore this
in depth at this stage is because the big data software
systems we integrated have different strategies for fault
tolerance. Some rely on data replication, whereas oth-
ers rely on snapshots and the lineage of the data life
cycle to recompute lost data or partitions. A systematic
comparison would require an adequate testing frame-
work that can introduce realistic faults and perfor-
mance bottlenecks into the distributed system, both at
the network level as well as in the worker nodes.

Acknowledgments

This research is partially funded by the Research
Fund KU Leuven.

References

[1] J. Aggarwal and M. Ryoo, Human activity analysis: A review,
ACM Comput. Surv., 43(3):16:1–16:43, April 2011.

[2] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haber-
man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whit-
tle, MillWheel: Fault-Tolerant Stream Processing at Internet
Scale, In Very Large Data Bases, pages 734–746, 2013.

[3] M. Arnhold, M. Quade, and W. Kirch, Mobile applications
for diabetics: A systematic review and expert-based usability
evaluation considering the special requirements of diabetes pa-
tients age 50 years or older, J Med Internet Res, 16(4):e104,
Apr 2014.

[4] L. Atzori, A. Iera, and G. Morabito, The Internet of Things: A
survey, Comput. Netw., 54(15):2787–2805, October 2010.

[5] M. Barlow, Real-Time Big Data Analytics: Emerging Archi-
tecture, Technical report, O’Reilly, June 2013.

[6] A. Bulling, U. Blanke, and B. Schiele, A tutorial on human
activity recognition using body-worn inertial sensors, ACM
Comput. Surv., 46(3):33:1–33:33, January 2014.

[7] D. Cook, K. Feuz, and N. Krishnan, Transfer learning for activ-
ity recognition: a survey, Knowledge and Information Systems,
36(3):537–556, 2013.

[8] G. Cugola and A. Margara, Processing Flows of Information:
From Data Stream to Complex Event Processing, ACM Com-
put. Surv., 44(3):15:1–15:62, June 2012.

[9] J. Dean and S. Ghemawat, MapReduce: simplified data pro-
cessing on large clusters, Commun. ACM, 51(1):107–113, Jan-
uary 2008.

[10] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelaku-
diti, Accelprint: Imperfections of accelerometers make smart-
phones trackable, In 21st Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014, The Internet Society, 2014.

[11] B. DM, S.-S. C, S. V, and et al, Using pedometers to in-
crease physical activity and improve health: A systematic re-
view, JAMA, 298(19):2296–2304, 2007.

[12] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and
G. Schreier, The Internet of Things for Ambient Assisted Liv-
ing, In Information Technology: New Generations (ITNG),
2010 Seventh International Conference on, pages 804–809,
2010.

[13] M. Gaber, A. Zaslavsky, and S. Krishnaswamy, Mining data
streams: a review, SIGMOD Rec., 34(2):18–26, June 2005.

[14] A. Ghoting, P. Kambadur, E. Pednault, and R. Kannan, Nim-
ble: A toolkit for the implementation of parallel data mining
and machine learning algorithms on mapreduce, In Proceed-
ings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’11, pages 334–
342, New York, NY, USA, 2011, ACM.

[15] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald,
V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan,
Systemml: Declarative machine learning on mapreduce, In
Proceedings of the 2011 IEEE 27th International Conference
on Data Engineering, ICDE ’11, pages 231–242, Washington,
DC, USA, 2011, IEEE Computer Society.

[16] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang,
Hermit: An owl 2 reasoner, Journal of Automated Reasoning,
53(3):245–269, 2014.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. Witten, The WEKA data mining software: an update,
SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[18] K. Hornik, C. Buchta, and A. Zeileis, Open-source machine
learning: R meets weka, Computational Statistics, 24(2):225–
232, 2009.

[19] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou,
J. M. Patel, R. Ramakrishnan, and C. Shahabi, Big data and its
technical challenges, Commun. ACM, 57(7):86–94, July 2014.

[20] M. Khan, S. I. Ahamed, M. Rahman, and R. O. Smith, A Fea-
ture Extraction Method for Real time Human Activity Recog-
nition on Cell Phones, In isQoLT 2011.

[21] P. Kranen, H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes,
B. Pfahringer, and J. Read, Stream data mining using the moa
framework, In Database Systems for Advanced Applications,
volume 7239 of Lecture Notes in Computer Science, pages
309–313, Springer Berlin Heidelberg, 2012.

[22] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin,
and M. I. Jordan, Mlbase: A distributed machine-learning sys-
tem, In CIDR 2013, Sixth Biennial Conference on Innova-
tive Data Systems Research, Asilomar, CA, USA, January 6-9,
2013, Online Proceedings, www.cidrdb.org, 2013.

[23] J. Kwapisz, G. Weiss, and S. Moore, Activity recognition using
cell phone accelerometers, SIGKDD Explor. Newsl., 12(2):74–
82, March 2011.

[24] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell, A survey of mobile phone sensing, Comm.
Mag., 48(9):140–150, September 2010.

[25] H. Lee, Y. S. Choi, and S. Lee, Mobile posture monitoring
system to prevent physical health risk of smartphone users, In
Proceedings of the 2012 ACM Conference on Ubiquitous Com-
puting, UbiComp ’12, pages 592–593, New York, NY, USA,
2012, ACM.

[26] J. Leibiusky, G. Eisbruch, and D. Simonassi, Getting Started
with Storm - Continuous Streaming Computation with Twitter’s
Cluster Technology, O’Reilly, 2012.

[27] N. Marz and J. Warren, Big Data. Principles and best practices
of scalable realtime data systems, Manning Publications Co.,
April 2015.

[28] G. D. F. Morales and A. Bifet, Samoa: Scalable advanced mas-
sive online analysis, Journal of Machine Learning Research,
16:149–153, 2015.

[29] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, S4: Dis-
tributed Stream Computing Platform, In Proceedings of the
2010 IEEE International Conference on Data Mining Work-
shops, ICDMW ’10, pages 170–177, Washington, DC, USA,
2010.

[30] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in Ac-
tion, Manning Publications Co., Greenwich, CT, USA, 2011.

[31] E. Ozdalga, A. Ozdalga, and N. Ahuja, The smartphone in
medicine: A review of current and potential use among physi-
cians and students, J Med Internet Res, 14(5):e128, Sep 2012.

[32] D. Preuveneers and Y. Berbers, Mobile phones assisting with
health self-care: a diabetes case study, In Mobile HCI, ACM
International Conference Proceeding Series, pages 177–186,
ACM, 2008.

[33] D. Preuveneers, Y. Berbers, and W. Joosen, The future of mo-
bile e-health application development: exploring HTML5 for
a context-aware diabetes monitoring assistant, In 3rd Interna-
tional Conference on Current and Future Trends of Informa-
tion and Communication Technologies in Healthcare, October
2013.

[34] D. Preuveneers and Y. Berbers, Mobile phones assisting with
health self-care: A diabetes case study, In Proceedings of the
10th International Conference on Human Computer Interac-
tion with Mobile Devices and Services, MobileHCI ’08, pages
177–186, New York, NY, USA, 2008, ACM.

[35] D. Preuveneers and Y. Berbers, SAMURAI: A streaming
multi-tenant context-management architecture for intelligent
and scalable internet of things applications, In 2014 Inter-
national Conference on Intelligent Environments, Shanghai,
China, June 30 - July 4, 2014, pages 226–233, IEEE, 2014.

[36] D. Preuveneers and W. Joosen, Smartauth: Dynamic context
fingerprinting for continuous user authentication, In Proceed-
ings of the 30th ACM/SIGAPP Symposium on Applied Comput-
ing (SAC 2015), Salamanca, Spain, April 13-17, 2015, 2015.

[37] N. Ravi, N. Dandekar, P. Mysore, and M. Littman, Activity
recognition from accelerometer data, In Proceedings of the
17th conference on Innovative applications of artificial intelli-
gence - Volume 3, IAAI’05, pages 1541–1546, 2005.

[38] R. Rawassizadeh, B. A. Price, and M. Petre, Wearables: Has
the age of smartwatches finally arrived?, Commun. ACM,
58(1):45–47, December 2014.

[39] M. J. Rotheram-Borus, M. Tomlinson, D. Swendeman, A. Lee,
and E. Jones, Standardized functions for smartphone appli-
cations: Examples from maternal and child health, Int. J.
Telemedicine Appl., 2012:21:21–21:21, January 2012.

[40] C. Scanaill, S. Carew, P. Barralon, N. Noury, D. Lyons, and
G. Lyons, A review of approaches to mobility telemonitoring
of the elderly in their living environment, Annals of Biomedical
Engineering, 34(4):547–563, 2006.

[41] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, Implicit authen-
tication through learning user behavior, Information Security,
pages 99–113, 2011.

[42] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz,
Pellet: A practical owl-dl reasoner, Web Semant., 5(2):51–53,
June 2007.

[43] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan,
J. Gonzalez, M. J. Franklin, M. I. Jordan, and T. Kraska, Mli:
An api for distributed machine learning, 2013 IEEE 13th In-
ternational Conference on Data Mining, 0:1187–1192, 2013.

[44] M. Stonebraker, U. Cetintemel, and S. Zdonik, The 8 require-
ments of real-time stream processing, ACM SIGMOD Record,
34(4):42–47, December 2005.

[45] M. Sumida, T. Mizumoto, and K. Yasumoto, Estimating heart
rate variation during walking with smartphone, In Proceed-
ings of the 2013 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, UbiComp ’13, pages 245–
254, New York, NY, USA, 2013, ACM.

[46] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li, Activity recognition
on an accelerometer embedded mobile phone with varying po-
sitions and orientations, In Proceedings of the 7th international
conference on Ubiquitous intelligence and computing, UIC’10,
pages 548–562, Berlin, Heidelberg, 2010, Springer-Verlag.

[47] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bha-
gat, S. Mittal, and D. Ryaboy, Storm@twitter, In Proceedings
of the 2014 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’14, pages 147–156, New York,
NY, USA, 2014, ACM.

[48] T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc.,
1st edition, 2009.

[49] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, Resilient
distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing, In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation,
NSDI’12, pages 2–2, Berkeley, CA, USA, 2012, USENIX As-

sociation.
[50] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,

Discretized streams: Fault-tolerant streaming computation at
scale, In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 423–438,
New York, NY, USA, 2013, ACM.

[51] N. Zouba, F. Bremond, and M. Thonnat, Multisensor fusion
for monitoring elderly activities at home, In Advanced Video
and Signal Based Surveillance, 2009. AVSS ’09. Sixth IEEE
International Conference on, pages 98–103, 2009.

