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Abstract

Realistic truss design optimization problems are often governed by practical constraints. Because
of the complexity of these constraints, usually only member constraints are taken into account during
the optimization, and joint constraints are accounted for in a manual postprocessing step. This paper
proposes a method to account for joint constraints in the global discrete size optimization of a steel
truss structure. The design of an N-type truss girder is considered first without and then with the
joint constraints specified in Eurocode 3. In order to guarantee global optimality in both cases, the
optimization problem is reformulated as a mixed-integer linear program. A statically determinate
analysis model is adopted so as to ensure that all joint constraints can be reformulated as linear
functions. If the joint constraints are not considered in the optimization, a design is obtained where
the joints need additional strengthening. This can be done by manually selecting heavier sections,
which often leads to a suboptimal result, or by strengthening the joints (e.g. by means of stiffening
plates), which has a serious impact on the fabrication cost. If the joint constraints are considered
in the optimization, they are automatically satisfied by the final design. The weight of this design
is about 15% higher than in the first case. This shows that the joint constraints have a significant
impact on the optimal design. If the joint constraints are accounted for in a suboptimal way (e.g. by
manually selecting heavier sections), the additional weight may be even higher. Taking into account
joint constraints in the optimization leads to a cost reduction at two levels: in terms of engineering
cost (no manual postprocessing step is needed) as well as fabrication cost (using unnecessarily heavy
sections as well as joint strengthening are avoided).

Keywords: Truss design, discrete design optimization, joint constraints, mixed-integer linear pro-
gram reformulation.

INTRODUCTION

Numerical optimization methods have a great potential to support structural engineers in finding
the optimal design, and so to keep the consumption of natural resources of the building industry to
a minimum. However, practicing structural engineers appear to be reluctant to adopt optimization
as a daily design tool, even for relatively simple but tedious tasks such as the sizing of a steel
truss girder. One of the reasons is that real-world design problems are often governed by a large
number of constraints and practical issues. For a steel truss girder with welded joints, the usual
displacement, member force, and buckling constraints as formulated in Eurocode 3 are imposed. In
addition, the following practical constraints must be satisfied: the member sections must be chosen
from a given section catalog, and the joints must obey certain geometrical rules in order to ensure
structural integrity and weldability, as well as mechanical rules in order to avoid chord web failure,
chord shear failure, and brace failure. Most existing design optimization algorithms cannot take into
account all these practical constraints. As a consequence, a manual postprocessing step is required,
where the optimized design is modified to satisfy the constraints which are not considered during
the optimization. This operation is cumbersome, it costs precious engineering time, and it may lead
to a suboptimal design or a design that no longer fulfills the stress and displacement constraints.

!Postprint submitted to Journal of Structural Engineering. Published version: R. Van Mellaert, G. Lombaert,
M. Schevenels. Global Size Optimization of Statically Determinate Trusses Considering Displacement, Member, and
Joint Constraints. J. Struct. Eng., 10.1061/(ASCE)ST.1943-541X.0001377, 04015120.



A traditional approach to optimal truss design is to find a Fully Stressed Design (FSD): the ele-
ment sections are iteratively updated until the stress in each element equals the maximum allowable
value, which may lead to an optimal structural weight (Razani, 1965; Mueller et al., 2002). In its
original formulation, the FSD method is only useful for stress constrained optimization problems.
A modified Fully Utilized Design method (FUD) is proposed by Patnaik et al. (Patnaik et al., 1998)
to take into account both stress and displacement constraints. Only in certain cases the result of
the FSD method is optimal (Patnaik and Hopkins, 1998). However, for a practical steel truss design
problem the joints remain to be designed manually. Dependent on the sections chosen for the braces
and the chords, some of the joints will need to be strengthened by means of stiffening plates or by
locally using a heavier section (Wardenier et al., 1992). Such interventions have little influence on
the weight of the structure, but require additional welding as well as testing of the welds, and this
has a significant impact on the fabrication cost.

An additional drawback of the FSD method is the fact that it only can handle continuous
variables. For a practical steel truss design problem the profile of the members has to be chosen
from a steel catalog, however. The optimization problem is therefore discrete. Several algorithms
for discrete optimization have been proposed in the literature (Thanedar and Vanderplaats, 1995).
The most popular algorithms that can handle discrete variables are evolutionary algorithms, such
as simulated annealing (Balling, 1991), genetic algorithms (Camp et al., 1998; Rajeev and Krish-
namoorthy, 1992), ant colony optimization (Camp et al., 2005), firefly algorithm (Gandomi et al.,
2011), artificial bee colony algorithm (Sonmez, 2011), and particle swarm optimization (Venter
and Sobieszczanski-Sobieski, 2003). These methods explore the design space in a random fashion,
thereby using information collected from previous analyses to gradually move towards a better per-
forming design. Evolutionary algorithms owe their popularity to the fact that they are easy to
understand and to implement. They can cope with discrete parameters and are able to take into
account complex constraints. However, evolutionary algorithms converge slowly, involve algorithmic
parameters that require careful tuning, and global optimality cannot be guaranteed since no conclu-
sive convergence checks can be made. In order to properly assess the influence of joint constraints
on the optimal design of truss structures, it is important that global optimality can be guaranteed.
Evolutionary algorithms are therefore not suitable.

The method used in this paper is to reformulate the optimization problem as a Mixed-Integer
Linear Program (MILP), which is solved with the branch-and-bound method in order to achieve
global optimality. This MILP is obtained by means of binary decision variables and the Simultaneous
ANalysis and Design (SAND) approach: the state variables (the structural nodal displacements and
the member end forces) are considered as additional design variables and the state equations (the
equilibrium equations) are enforced by means of additional equality constraints. This optimization
method has originally been proposed by Grossmann et al. (1992) for discrete size optimization
problems and is extended by Rasmussen and Stolpe (2008) for truss topology design problems.
Mela and Koski (2013) included all member constraints specified by the Eurocode in the truss
topology design problem. In this paper, the focus is restricted to size optimization, but all relevant
constraints precribed by the Eurocode (European Committee for Standardization, 2005a,b) are
taken into account, including both the member constraints and the joint constraints.

In order to ensure that all joint resistance constraints can be reformulated as linear constraints
in terms of the design variables, the scope of this paper is limited to statically determinate analysis
models. Since the member forces of statically determinate models do not depend on the sections and
remain constant in the optimization, they do not have to be considered as additional design variables.
The joint constraints - some of which would be quadratic if the member forces are considered as
design variables - can then be reformulated as mixed-integer linear constraints. Static determinacy
implies that the structure is statically determined both internally and externally. Internal static



determinacy is not a strong assumption as most trusses can be modeled with a sufficiently high
accuracy assuming pinned connections. External static determinacy imposes a stronger limit on
the applicability of the method as it only holds for simply supported trusses. It does not hold for
continuous trusses or trusses that are part of a portal frame.

The example problem considered in this paper is the discrete size optimization of an N-type
truss girder with welded joints under static nodal loading as shown in figure 1. The top chord
members are steel H-sections (HEA), the bottom chord members are steel channel-sections (UPN),
and the braces are steel Rectangular Hollow Sections (RHS). This N-type truss girder is widely used
in practice.

The paper is organized as follows. In section 2, a summary of all governing design requirements
for truss structures is given: the displacement, member force and buckling constraints as formulated
in part 1-1 of Eurocode 3 (European Committee for Standardization, 2005a) as well as the joint
resistance constraints as formulated in part 1-8 of Eurocode 3 (European Committee for Standard-
ization, 2005b). In section 3, the mixed-integer linear formulation for statically determinate truss
structures is introduced, and the example truss is optimized considering only displacement and
member constraints. In section 4, the joint constraints are also taken into account. In section 5,
the results are discussed. The optimal design without joint constraints and the optimal design with
joint constraints are compared.

DESIGN OF TRUSS STRUCTURES WITH WELDED JOINTS

This section gives an overview of the design procedure for the example truss according to the
European building codes.

First, a structural analysis is performed to obtain the member forces and the nodal displace-
ments. Second, the imposed constraints are checked. In the serviceability limit state, the displace-
ment constraints are verified. In the ultimate limit state, there are two types of capacity constraints:
member constraints and joint constraints. The member constraints are specified in part 1-1 of Eu-
rocode 3 and can be subdivided in member resistance constraints (to avoid yielding) and member
stability constraints (to avoid buckling). The joint constraints are specified in part 1-8 of Eurocode
3 and can be subdivided in joint geometry constraints and joint resistance constraints. In addition,
the global stability of the structure has to be checked, but in this paper it is assumed that the global
stability is guaranteed by the secondary structure or by means of extra stiffeners.

Structural models

Two different models can be used for the structural analysis of trusses. In the first model, all
members are pin connected as shown in figure 2a. As a consequence, only normal forces occur. This
model provides a good approximation for trusses with slender members and where the centerlines
of joined members intersect each other in a single point (Wardenier et al., 2008). Unfortunately, the
latter is often not true for reasons of weldability and cutting. As a consequence, the intersection of
the centerlines of the braces is located at a certain distance from the centerline of the chords. These
nodal eccentricities cause bending moments in the chords, which are called eccentricity moments.
The eccentricity moments have to be taken into account in the chord member design. As proposed
in the CIDECT design guide (Wardenier et al., 2008), they are accounted for in an approximate
way by distributing them equally over both chord members on either side of the joint.

In the second model, the chords are continuous and the braces are pin connected with infinitely
stiff members at a distance of the eccentricity to the chords as shown in figure 2b. This model is
internally statically indeterminate.

In order to ensure that all joint resistance constraints can be taken into account in the MILP
formulation, only statically determinate models are considered. Therefore the first model is adopted
in this paper.



Displacement constraints
According to Eurocode 0, the vertical displacement u, of roof structures should be limited as
follows:

where [ is the span of the structure.

Member resistance constraints
The capacities of the members are checked according to part 1-1 of Eurocode 3. The resistance
of the cross-sections of the braces is checked as follows:
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where N is the design value of the normal force, A is the cross-section area, fy is the yield strength
of the material, and vy is the partial factor for resistance of cross-sections, which is equal to 1.
The resistance of the cross-sections of the chords is checked as follows:
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where M is the design value of the bending moment and W), is the plastic section modulus.

Stability constraints

The buckling resistance of members in compression and/or bending should be verified. Depend-
ing on the occurring forces - compression, bending, or both - and the section type, different types
of buckling should be checked. For each buckling mode, a different reduction factor x for the design
resistance is calculated. All reduction factors are determined from the relevant buckling curve which
is selected in agreement with the type of cross-section. The buckling curves depend on the section,
the buckling length, and the yield strength of the material.

The flexural buckling resistance is checked as follows:
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where 1 is the partial factor for resistance of members to instability, which is equal to 1, and
and Y, are the reduction factors due to in-plane flexural buckling and out-of-plane flexural buckling.

For members in compression with open cross-sections such as HEA-sections, the torsional and
the torsional-flexural buckling resistance have to be checked as well:
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where xyT and xTp are the reduction factors due to torsional buckling and torsional-flexural buckling.



For members bent in the plane of highest flexural rigidity the lateral-torsional buckling resistance
should also be checked. For the HEA top chord members in bending and axial compression, the
buckling resistance is checked as follows (assuming class 1 or class 2 cross-sections):
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where xpr is the reduction factor due to lateral-torsional buckling and ky, and k., are interaction
factors which can be determined according to one of the methods described in annex A or annex B
of Eurocode 3. In this paper, the method described in annex B is used.

Joint geometry constraints

Each joint has to satisfy geometric constraints that either follow from practical considerations
such as weldability or are imposed to ensure that the design remains within the range of validity
of the joint capacity counstraints discussed in the next subsection. When there is a gap between the
braces that are connected to the chord, the joint is called a gap joint. When the braces overlap
each other, the joint is called an overlap joint. To limit the eccentricity moments, the connections
of the RHS braces and HEA top chords are chosen to be gap joints and the connections of the RHS
braces and UPN bottom chords are chosen to be overlap joints. The two types of joints applied in
the N-truss example as well as the notations used for all member dimensions are shown in figure
3. The notation used in the Eurocode is adopted: properties of chord members are denoted by a
subscript 0 and properties of braces are denoted by the subscripts i and j. For overlap joints, it
is important to distinguish between the overlapping and the overlapped brace; here the subscript i
refers to the overlapping brace and the subscript j to the overlapped brace. For the gap joints the
gap ¢ has a positive value. In order to ensure weldability, the gap of the joint should be at least
as large as the sum of the thicknesses t; and ; of the two braces. For the overlap joints the gap g
has a negative value. The overlap Aoy is chosen to be 100% for practical considerations: the end of
the overlapping brace only has to be cut in one angle. As a consequence the overlap g should be at
least as large as the width b; of the overlapping brace.

The geometry constraints specified in the Eurocode for the top joints read as:
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The geometry constraints for the bottom joints read as:
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The constraint given by equation (31) imposes an overlap of 100% for practical considerations,
which is stricter than the constraint specified in the Eurocode.

In addition, class 2 cross-sections must be used for the chords and class 1 cross-sections for the
braces.



Joint resistance constraints

For connections between hollow sections and open sections the following types of failure can
occur: chord face failure, chord web failure, chord shear failure, punching shear failure, brace
failure, and local buckling failure. According to part 1-8 of Eurocode 3, only certain failure modes
must be considered for each type of joint. For HEA-RHS gap joints the following criteria should be
checked: chord web failure, brace failure, and chord shear failure. For UPN-RHS overlap joints with
an overlap of minimum 80% only brace failure of the overlapping brace member must be checked.

In order to avoid chord web failure in the HEA-RHS joints (figure 4), the normal force V; in
brace i is limited as follows:
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where fy¢ is the yield strength of the chord, y\s is the partial safety factor for the resistance of
joints in hollow section lattice girder, which is equal to 1, and by, is the effective width for the web
of the chord, which is obtained as:

(32)
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The normal force Nj in brace j is limited in the same way.
In order to avoid brace failure in the HEA-RHS joints (figure 5), the normal force Vj in brace i
is limited as follows:
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where fy1, is the yield strength of the brace, and peg is the effective length of the contact area of
the brace member onto the face of the chord, which is calculated as:

Peff = Mmin (tw + 2ro + m%, b + h; — 2ti> (35)
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The normal force Nj in brace j is limited in the same way.
The last joint resistance check for the HEA-RHS joints is related to chord shear failure (figure
6). This failure mode is avoided by limiting the normal force IV in brace i as follows:
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where the shear area Ayg = Ao — (2 — a) bots + (tw + 2r) ty, and o = (14 4¢%/3t¥)" 2 for RHS
sections. The normal force IVj in brace j is limited in the same way. In addition, the normal force
of the chord N is limited as follows:

(36)
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where the design shear force V' = max (|Vi| sin 6;, | Vj| sin ;) and the plastic design shear resistance
VoLRd = fyoAvo/ s V3.

For UPN-RHS overlap joints with an overlap of at least 80%, only brace failure has to be checked
(figure 7). This failure mode is avoided by limiting the normal force in the overlapping brace as
follows:
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where the effective width be oy of the connection between the overlapping brace and the overlapped
brace is calculated as:
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OPTIMAL DESIGN WITHOUT JOINT CONSTRAINTS

Problem description

In this section, the N-type truss girder described in the introduction and shown in figure 8 is
optimized taking into account all member constraints. The objective of the optimization problem
is to minimize the weight of the truss. The span is [ = 20 m, the height is A = 2 m, the length
of the chords and vertical braces is L = 2 m, the angle of the vertical braces is #; = 90°, and the
angle of the diagonal braces is ; = 45°. The value of the vertical load in the ultimate limit state is
F = 100kN and is used to check the member and joint constraints, the value of the vertical load in
the serviceability limit state is F' = 74.07kN and is used to check the displacements. The maximum
allowable displacement uy,x is 1/200 = 0.1 m. All sections are steel sections with Young’s modulus
E = 210 GPa, and density p = 7850 kg/m3.

The top chord sections are chosen from a catalog with twenty-four HEA-sections given in table
1 (ArcelorMittal, 2015). The bottom chord sections are chosen from a catalog with eighteen UPN-
sections given in table 2 (ArcelorMittal, 2015). The sections of the braces are chosen from a catalog
with eighty-two cold formed square RHS-sections given in table 3 (van Eldik, 2006). All top chord
members must have the same section, and all bottom chords members must have the same section.
For the chords steel grade S355 is chosen and for the braces steel grade S275 is chosen. For the
analysis of the truss, the model shown in figure 2a is adopted.

Objective function and compatibility constraints

In order to solve the discrete size optimization problem to global optimality, it is reformulated as
a Mixed-Integer Linear Program (MILP). This approach was originally proposed to solve discrete
size optimization problems (Grossmann et al., 1992) and was extended later for truss topology
optimization problems (Stolpe and Svanberg, 2003; Stolpe, 2007; Rasmussen and Stolpe, 2008;
Mela and Koski, 2013; Mela, 2013).

In order to obtain an MILP, the Simultaneous ANalysis and Design approach (SAND) is adopted.
The design variables in the optimization problem are complemented with a set of continuous state
variables, including the nodal displacements and normal forces, while the equilibrium equations are
incorporated as equality constraints (Haftka, 1985; Arora and Wang, 2005), so no explicit structural
analysis is made.

The analysis model adopted in this paper is statically determinate. The member forces are
independent of the chosen sections and can be calculated a priori. As a consequence, the normal
forces are not adopted as design variables and the equilibrium constraints are dropped. The original
MILP proposed for discrete size optimization is thus simplified.

The design variables include a vector with binary decision variables y and a vector with contin-
uous nodal displacement variables u. The binary variables select a profile from the steel catalog.
For each member i, section j is selected from the set of available sections when the corresponding
variable y;; = 1. Section j is not selected for member ¢ when the corresponding variable y;; = 0.
Although the number of optimization variables and constraints becomes large in this approach, the



relaxed or continuous MILP is convex and can be efficiently solved to global optimality with existing
solvers based on the branch-and-bound method.

In this subsection, the objective function and the compatibility constraints are formulated. In
the following subsections, the Eurocode provisions regarding the maximum displacements and the
strength of the members are added to the problem as inequality constraints in order to complete the
MILP. In order to formulate the MILP for the optimization of the N-type truss, the members and
catalogs of profiles are subdivided in different sets: the set of all members M, all chord members
Mg, top chord members Mpe, bottom chord members Mpc and braces My, and the catalog of
profiles C; for member i. The optimization problem (without Eurocode constraints) is given by the
following equations:
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The objective is to minimize the weight of the truss structure as expressed by equation (39). In
this equation p is the density of the material which is assumed to be the same for all members, L;
is the length of member 7, and A;; is the section area of section j for member 7. The constraint in
equation (40) ensures that a single section j is chosen from the catalog C; for member i. Equations
(41) and (42) ensure that all top chord members and all bottom chord members have the same
section, where z'lTC refers to the first top chord member and z']l_%c refers to the first bottom chord
member. Equations (43) and (44) are compatibility constraints used to calculate the displacements
u. In these equations, F is the Young’s modulus of the material, b; is the statics vector of member
i (Rasmussen and Stolpe, 2008) that accounts for the location and orientation of the members, N;
is the normal force in member 7, and Nij and IV, are artificial upper and lower bounds introduced
to ensure feasibility of the optimization problem when section j is not selected for element ¢ and
y;j = 0. In this example, the values of the upper and lower bounds of the compatibility constraints
in equations (43) and (44) are calculated based on the minimum and maximum allowed displacement
(Rasmussen and Stolpe, 2008).

The total number of members in the structure is denoted by n,,, the total number of available
sections for each member 7 is denoted by ng ;, the total number of degrees of freedom is denoted by
Ndof, and the total number of joints is denoted by n,. As a consequence, the total number of binary
decision variables is np, = Z?:‘I‘l Ng .-

Displacement constraints
The displacement constraints are given by equation (45). Here u = —0.1 m and @ = 0.1 m are
the minimum and maximum allowed displacement, respectively.



u<u<u (45)

Member constraints

In this subsection, the member resistance and stability constraints described in the previous
section are incorporated in the MILP. The joint constraints are not considered yet; it is therefore
assumed that the members can be connected in such a way that eccentricities are avoided. No
eccentricity moments are therefore taken into account in the optimization.

The stress constraints given by equation (2) and the in-plane and out-of-plane flexural buck-
ling, torsional buckling and torsional-flexural buckling constraints given by equations (4) to (7) are
reformulated as:

Niyij < fyeAijyi; Vie Mcg, Vje(; (46)
Niyi; = —min (1, xy, Xz, X15 XTF) fycAijyi; Vie Mg, Viel (47)
Niyi; < fypAijyi;  Vie Mg, VjeC(; (48)
Niyij = —min (1, xy, X2) fybAijyi; Yie Mg, Vje(; (49)

where fyc and fy, are the yield strength of the chords and braces, respectively. Following the
recommendations in the CIDECT guide (Wardenier et al., 1992), the buckling lengths are assumed
as follows: for the chords L¢y = Ler, = 0.9L;, and for the braces Loy = Ler, = 0.75L;. The
constraints in equations (46) to (49) are linear equations in terms of the binary decision variables
Yij-

Results

The MILP given by equations (39) to (49) consists of 1133 design variables, including 1112
binary design variables and 21 continuous design variables, 4519 constraints, and 11698 non-zeros.
The MILP is solved by means of Gurobi 5.6 (Gurobi Optimization Inc., 2013), which uses the cut-
and-branch method, on a computer with a 4 threads Intel Core(TM)2 Quad CPU Q9550 processor
and 4.0 GB RAM. The results are given in table 4. The total weight of the N-truss is 1826.3 kg. The
nodal displacements are given in table 5. It is observed that the displacement constraints are not
critical. Gurobi is capable of solving this problem in the preprocessing stage. Without performing a
presolve or generating cuts, the problem is solved also at the root node. The computation time is less
than 0.2 seconds in both cases. This is probably due to the fact that the displacement constraints
do not become active. Without displacement constraints, the problem becomes trivial due to the
static determinacy of the truss. Therefore, it is possible to verify the solution: the minimum section
areas that are required according to the member strength and stability constraints can be calculated
manually. This leads to the same results.

It is now verified to what extent the optimized design satisfies the constraints that are not
explicitly considered in the MILP. In order to ensure weldability of the joints, minimal eccentricities
are introduced as specified in table 6. The gaps of the top joints are chosen to be equal to the
sum of the thickness of the two braces of the joint. The gaps of the bottom joints are chosen so
that the overlap is 100% in order to avoid difficult cutting of the overlapping brace. Table 7 gives
the utilization ratios for all the constraints that must be checked according to part 1-1 and part
1-8 of Eurocode 3 as described in previous section. These utilization ratios are calculated as the
ratio between the actual value and the maximum allowed value. Due to the introduction of nodal
eccentricities after the optimization, the stability ratios are not guaranteed to be smaller than 1.
However, as can be observed in table 7, the effect of the eccentricities is limited and all stability
constraints remain satisfied. On the other hand, several utilization ratios of the joint constraints
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exceed the maximum allowed value of 1, which are indicated in bold in table 7. As a consequence,
the joints have to be strengthened in order to satisfy all constraints. This can be done by either
selecting different profiles, or by locally strengthening the joints e.g. by means of stiffening plates.
The first approach would lead to a suboptimal result, as it is very difficult to determine which
members should be made heavier and which sections should be selected. The second approach
would only have a limited impact on the weight of the truss, but the fabrication costs would be
much higher.

OPTIMAL DESIGN WITH JOINT CONSTRAINTS

Problem description

In this section, the displacement constraints, the member constraints, and the joint constraints
are considered in the optimization. Due to the introduction of the joint geometry constraints, trusses
with zero eccentricities become infeasible - non-zero eccentricities are therefore allowed. In order to
ensure that the impact of the eccentricities on the weight of the truss remains minimal, the gap sizes
(which control the eccentricities) are considered as additional design variables in the optimization
problem. As a consequence, the design variables now consist of the nodal displacements u € R dof,
the binary decision variables y € B"", and the gaps of the joints g € R"¢, where n, is the number
of joints.

Objective function and compatibility constraints

In this subsection, the objective function and the compatibility constraints are formulated. In the
following subsections, the Eurocode provisions regarding the maximum displacements, the strength
of the members, and the strength of the joints are added to the problem as inequality constraints
in order to complete the MILP. In order to formulate the MILP for the optimization of the N-type
truss, the members and catalogs of profiles are subdivided in different sets: the set of all members
M, all chord members Mc, top chord members Mr¢, bottom chord members Mpc and braces
Mg, and the catalog of profiles C; for member i. The joints are subdivided into different sets: the
set of all joints is denoted by J, the set of all joints with a chord on the left-hand side is denoted
by JcL, the set of all joints with a chord on the right-hand side is denoted by Jcr, the set of all
top joints is denoted by Jtj, and the set of all bottom joints is denoted by Jgy. The optimization
problem (without Eurocode constraints) is given by the following equations:
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These equations are identical to equations (39) to (44) for the case without joint constraints, except
that the gaps are now also considered as design variables.
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Displacement constraints
The displacement constraints are identical to the displacement constraints given by equation
(45) in previous section:

u<u<u (56)

Member constraints

Since the eccentricity moments depend on the gap sizes, the mixed-integer linear reformulation
of the combined stress and stability constraints depends not only on the binary decision variables
Yij, but also on the gap variables g,,. The resistance of the cross-sections of the chords is checked
according to equation (3). The design values of the normal forces are obtained before optimization.
The design values of the bending moments, however, depend on the eccentricities, which depend on
the gap size ¢,,. The eccentricity e,, in joint m is calculated as (Wardenier et al., 1992):

b;BL b;Br
gm + 251n0 iBL + 2sin 0, pRr hiCR
o — m__ _tm Y
" tan 6,, 2 (57)
where ’LBL is the index of the left or overlapped brace in joint m, z R is the index of the right or

overlapping brace in joint m, iR is the index of the right chord in joint m, and 6,, is the angle
between the two braces of the joint, which is calculated as 0, = ™ — 0;3. — 6;8r. The eccentricity
moment Me p, in joint m is calculated as (Wardenier et al., 1992):

AN,,em

Mem = — (58)

where AN,, = ‘NiCL Njcr| denotes the change in normal force in the chord at joint m, iCl is the

index of the left chord in joint m, and i$® is the index of the right chord in joint m.

For simplicity, the linear forms of the member constraints are first derived for the case where we
have only a single available profile for each member. In this case, the resistance of the cross-sections
of the chords at the right-hand side of the joint is checked according to equation (3) as follows:

[ Me.m|

fyCA cr fycW, ply,iCR

<1 (59)

where fyc is the yield strength of the chords, W, ;cr is the plastic section modulus along the

y-axis, and the safety factors are dropped as they are equal to 1. Replacing the bending moment
|Me m| by the expression given by equation (58) gives:

‘Ni%R AN, el
~X
fycAi%R 2fyc pl Y, 7IOR

Replacing the eccentricity|e,,| by the expression given by equation (57) gives:

bBL b;BR
‘NZ%R . ANm Im + 2511’19 BL + 2sin GZ%R B hZ%R <1 (61)
fycAiglR 2fyc Wiy, iCR tan 6, 2 |
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The stress constraint is split into two constraints to account for the absolute value and the variables
belonging to different design entities are separated:

AN,, ANmbge  ANbge [ —ANahge | Nig| Wo a6m ;
2tan 6,, Im 4 tanfsinfp 4 tandsinfpr 4 yerpLy, it Ajcr h
N / m m
gap size left brace right brace right‘(’:hor q
(62)
AN, ANmbiElL ANmbiElR . Athi%R W N NigLR Wpl,y,ignR 0
2tan 6, Im " Ltan Osin O,8.  4tan@sinf;sr 4 yerplys it Ajcr h
N / m m m
gap size left brace right brace right‘;hor q
(63)

In reality, multiple profiles are available for each member. For the chord at the right hand side of
joint m, equations (62) and (63) are then rewritten as:

ANm ANmbiBL ; AN b BR
Nt S Ty b 3 ey,
2tanf ) 4 tan 6 sin 0;sr 4tan9s1n9 BR
JEC;BL JEC;BR
AN hior | Nicr| Wy icn
+ Z <7 fyCWpl,y,i%Rj + Ao yiSle § 0 Vm e jCR (64)
JECicr
AN, AN, bBL AN, bBR
AN X e,y e
2 tan 6 4 tan 6 sin ;8. 4tan6‘sm elBR
_] C BL EC BR
ANy, hicr, |Nicr| Wy icr
+]ECZ < - fyCWpl,y,ingj + Aon. yigLRj < 0 VYm e jCR (65)
CR

For the chords at the left side of joint m equations (64) and (65) are reformulated in the same way,
now using the index z R instead of i€ i, L and Jcr instead of Jor.

As mentioned in the previous section and expressed by equations (8) and (9), the lateral torsional
buckling resistance for members bent in the plane of highest flexural rigidity should be checked along
the x-axis and along the z-axis. In this case only the top chords must be checked. The constraints
for the buckling resistance of the top chord members are reformulated as follows:
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AN, AN, bBL AN, bBR
2tan99m CZ 4tan951n913Ly1 it Z 4tan951n6‘lBR

JjE iBL jec iBR
L L
— AN, hicr X, iCRrjfyeAicr; fyeW, pLy, izl
+ Z o e Yion; <0 Vm € Jry N Jor (66)
]Eci%R Xrr,iCR
ANm AN, blBL : Z AN b BR j
2tang ™ 4tanfsin 0, BL 4tan6‘sm O;nr Yk
JGCiBL jeC; JBR
1 Nicn
AN, hicr; T XcR; Fee A, oR; fyeWoly.igx;
+ > e Ty yicr; <O Vm € JrgNJer (67)
JECign Xeraon,
m LT sy,

where x,, ;or; and Xy ;cr; are the reduction factors for the resistance of the chord at the right-hand
side of the joint due to in-plane flexural buckling and lateral torsional buckling, respectively, and
kyyicr; is an interaction factor. The buckling constraints for the chords at the left side of the
joint are reformulated in the same way, now using the index iR instead of i¢" and Jcgr instead
of Jor. The buckling constraints along the z-axis are reformulated in the same way, by replacing
the reduction factor due to in-plane flexural buckling x, ;cr; with the reduction factor due to out-
of-plane buckling X ;cr; and the interaction factor &y, jor; with the interaction factor k,, ;cr;. All
interaction factors are calculated according to the method described in annex B of Eurocode 3.

For the braces, the stress constraints as given by equation (2), and the in-plane and out-of-plane
flexural buckling, torsional buckling and torsional-flexural buckling constraints as given by equations
(4) to (7) remain the same as in the previous section:

Niy,'] < fybAZ]y,] Vie Mg, VjeC(C (68)
Niyij 2 —min (1, xy, Xz) fypAijyi; Vi€ Mg, Vj€C, (69)
Joint constraints

The joint geometry constraints given by equations (10) to (18) and (20) to (28) and those related

to the cross-section classes are imposed by only including allowable sections in the profile catalog.
The geometry constraints for the top chords given by equation (19) are reformulated as:

JEC;BL JEC;BR
where il is the index of the left brace in joint m, and i} is the index of the right brace in joint

m.
The geometry constraints for the bottom chords given by equations (29) and (31) are reformu-
lated as:

> 025binei¥ine — Y binjlins <O Vipc € Mpe, ip € Mg (71)
i€Ciyq J€Ciy,
JEC;BR
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‘B

where iB% is the index of the overlapping brace in joint m.

The geometry constraints for the braces given by equation (30) are reformulated as:

Z 0.75bi173nLjyi§le - Z bi%Rjin;nRj <0 Vm e jBJ (73)

jGCi%L jECi”]%lR

The design resistance for chord web failure of the top joints given by equation (32) contains
the effective width for the web of the chord by, which has to be calculated as the minimum of two
expressions. The chord web failure constraints for the top joints are therefore reformulated into two
linear constraints. For the braces at the right hand side of the top joints, the first constraint given
by equation (32) is reformulated as:

Noon| — Sty g HigL ) yety gL
174 sm@z.gBR hiBRj
m
E Fyel oL yZ%L] - E sin O-on yzE,LR] <0 Vm € jTJ N jCL (74:)
. W igy . i
J eci%L sin 6i]73nR JECi%R

The second constraint given by equation (32) is reformulated as:

10(t; ;oL ;47,00 ) fyet,, oL
NiBR - — sinzl —
m i]73nR
E [ YioLj — E Qti?nRjyi?nRj <0 VmeJrynJen (75)
) WGl g )
]eci%L sin 91.]73”}1 J eci],BnR
-B

where iBR is the index of the right brace in joint m, and i$" is the index of the left chord in joint
m. We could as well have used the right chord, as the same section is used for all chord members.
For the top left joint, i$" is replaced by i$R since there is no left chord. For the braces at the left
hand side of the top joints, the chord web failure constraints are reformulated in the same way by
replacing i5 by iBL in equations (74) and (75).

The brace failure constraints for the braces at the right-hand side of the top joints given by
equation (34) are reformulated into two linear constraints:

| Nigw| Jye
Z o . YiBRj — Z ty gLy T 2r; crj + iy, iCLj Yicr; <0 Vm € Jr; (76)
2fybt BRj ™ ) f m
jeC; BR ]Eci%L
|Ni§LR| - Z 2fybti§LRj (blBR + h jBRj — 2tlBR )leR <0 Vm e Jr; (77)
jeci%ri

where fy1, is the yield strength of the braces. For the braces at the left hand side of the top joints,
the brace failure constraints are reformulated in the same way by replacing 28 by Bl i
(76) and (77).

The resistance to chord shear failure for the top joints given by equations (36) and (37) does
not have to be checked for the center top joint. The chord shear failure constraints for the other
top joints are reformulated as:

in equations
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fyeAs iCL; 1

N, < — cL:  VYme T 78

‘ iBR je;;L <\/§Sin ‘9@-3R s YicL TJ ( )
fyeAy iCLj 1

N, < —_—m cL;, VmeT 79

’ iBL je;m <\/§sin ‘9¢3L s YicL; TJ ( )

o
7M5\/§max (Ni%L sin 9i3L7 NiTBnR sin Gi%R) 1
‘N,L'CL < Z (AiCL]» — AV’,L'CLJ-) Jye + A, senjfye, |1 — — | Yicrj
" jEC.cL " " " fyCAv'ing M5 "

Vm € Jrs N JoL (80)

For the bottom joints, only brace failure of the overlapping brace has to be checked as given
by equation (38). The design resistance for brace failure of the bottom joints contains the effective
width be oy of the connection between the overlapping brace and the overlapped brace, which has
to be calculated as the minimum of two expressions. The brace failure constraints for the bottom
joints are therefore reformulated into two linear constraints. The first constraint is reformulated as:

‘Nilr?;nR — fybtilr?;nRj (bilr?;nRj + 2hi§1Rj — 4ti§nRj) 10fybtiBL]

YiBR; — Z 5 iBL; S 0 Vme Iy

. b’iBRj m ) i%Lj

JECZ"’]%IR m ]ECi”];;,lL t.BL .

'lm J
(81)

The second constraint is reformulated as:

‘Ni}?}‘ - Z fybtigRj <2bi§ﬁj + Zhigle - 4ti§}‘j) yier; < 0 vVm € Ty (82)

J€C,BR
m

Results

The MILP of the N-truss given by equations (50) to (56), and (64) to (82) considering displace-
ment, member and joint constraints consist of 1143 design variables, including 1112 binary variables,
21 continuous nodal displacement variables and 10 continuous gap variables. The MILP consists of
4751 constraints, including 232 additional member and joint constraints, and 36344 non-zeros. The
MILP is again solved by means of Gurobi 5.6 using the same computer as for the previous case.
The optimal solution is again found in the preprocessing stage in less than 0.2 seconds. When the
MILP is solved without performing a presolve and without generating cuts, the problem can no
longer be solved at the root node. In this case, 1110 nodes are explored, and the computation time
is 1.3 seconds. The results are given in table 8. The total weight of the N-truss is 2091.0 kg.

When the optimization problem is solved taking into account the displacement constraints,
member constraints, and joint constraints, the design variables also include the gaps in order to be
able to implement the joint geometry constraints and to take into account the eccentricity moments.
The optimal gap values are given in table 9. The displacements are given in table 10. Also in this
case the displacement constraints are not critical. The utilization ratio for each constraint is given
in table 11. In this case all the utilization ratios - including those related to the joint constraints -
are smaller than 1.

The weight of the optimized structure is about 15% higher than in the case where joint con-
straints are not considered. This shows that taking into account joint constraints during the opti-
mization has a significant impact on the optimized design.
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CONCLUSION

For a practical truss design optimization problem, three types of constraints have to be taken into
account: displacement constraints, member constraints, and joint constraints. Most optimization
methods do not take into account the joint constraints. As a consequence, the joint constraints must
be checked after optimization and the joints may need to be strengthened. This paper verifies the
importance of joint constraints in the optimal design of trusses and presents a method to account
for joint constraints during the optimization. The optimization problem is solved by reformulating
it as a mixed-integer linear program (MILP). The vector of design variables consists of (1) binary
decision variables which select a section from a catalog for each member, (2) nodal displacement
variables, and (3) joint gaps when joint constraints are taken into account. The MILP is solved
with the cut-and-branch method which is implemented in the Gurobi optimizer. The advantage of
this approach is that the problem can be solved to global optimality.

This paper makes a comparison between the results obtained after optimization of a statically
determinate steel N-truss girder with and without joint constraints. The results show that taking
into account joint constraints during the optimization leads to a result with a weight that is 15%
higher than in the case where these constraints are not considered. When only displacement and
member constraints are taken into account during the optimization, one should be very careful when
checking the joint constraints and adapting the optimized design a posteriori in order to satisfy all
constraints, since the joint constraints have a large impact on the total weight of the structure.
Taking into account joint constraints during the optimization therefore leads to a cost reduction
at two levels: in terms of engineering cost (no manual postprocessing step is needed) as well as
fabrication cost (joint strengthening is avoided).
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Tables

Table 1: HEA profile catalog

Index Name Index Name Index Name

1 HEA 100 9 HEA 260 17 HEA 500
HEA 120 10 HEA 280 18 HEA 550
HEA 140 11 HEA 300 19 HEA 600
HEA 160 12 HEA 320 20 HEA 650
HEA 180 13 HEA 340 21 HEA 700
HEA 200 14 HEA 360 22 HEA 800
HEA 220 15 HEA 400 23 HEA 900
HEA 240 16 HEA 450 24 HEA 1000

O ~J O O = W N

Table 2: UPN profile catalog

Index Name Index Name Index Name
1 UPN 50 7 UPN 160 13 UPN 280
UPN 65 8 UPN 180 14 UPN 300
UPN 80 9 UPN 200 15 UPN 320
UPN 100 10 UPN 220 16 UPN 350
UPN 120 11 UPN 240 17 UPN 380
UPN 140 12 UPN 260 18 UPN 400

SO W N
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Table 3: square RHS profile catalog

Index

Name

Index

Name

Index

Name

DN DD = = = = = e e e e
RSO0 kR W R o P® X TR W

DN DN DN DN DN N
O~ O Ot = W N

RHS 20x20x2
RHS 25x25x2
RHS 25x25x3
RHS 30x30x2
RHS 30x30x3
RHS 30x30x4
RHS 35x35x2
RHS 35x35x3
RHS 40x40x2
RHS 40x40x3
RHS 40x40x4
RHS 45x45x2
RHS 45x45x3
RHS 45x45x4
RHS 50x50x2
RHS 50x50x3
RHS 50x50x4
RHS 50x50x5
RHS 60x60x2
RHS 60x60x3
RHS 60x60x4
RHS 60x60x5
RHS 60x60x6
RHS 70x70x2
RHS 70x70x3
RHS 70x70x4
RHS 70x70x5
RHS 70x70x6

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ol
52
93
o4
95
56

RHS 80x80x3
RHS 80x80x4
RHS 80x80x5
RHS 80x80x6
RHS 80x80x8
RHS 90x90x3
RHS 90x90x4
RHS 90x90x5
RHS 90x90x6
RHS 100x100x3
RHS 100x100x4
RHS 100x100x5
RHS 100x100x6
RHS 100x100x8
RHS 100x100x10
RHS 110x110x4
RHS 110x110x5
RHS 120x120x3
RHS 120x120x4
RHS 120x120x5
RHS 120x120x6
RHS 120x120x8
RHS 120x120x10
RHS 125x125x5
RHS 125x125x6
RHS 140x140x4
RHS 140x140x5
RHS 140x140x6

o7
28
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
6]
76
7
78
79
80
81
82

RHS 140x140x8
RHS 140x140x10
RHS 150x150x4
RHS 150x150x5
RHS 150x150x6
RHS 150x150x8
RHS 150x150x10
RHS 160x160x5
RHS 160x160x6
RHS 160x160x8
RHS 160x160x10
RHS 180x180x6
RHS 180x180x8
RHS 180x180x10
RHS 180x180x12.5
RHS 200x200x5
RHS 200x200x6
RHS 200x200x8
RHS 200x200x10
RHS 200x200x12.5
RHS 220x220x6
RHS 220x220x8
RHS 220x220x10
RHS 250x250x6
RHS 250x250x8
RHS 250x250x10
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Table 4: Sections of the N-truss optimized considering only displacement and member constraints.

Member Profile A [mm?|
Top chords HEA 180 4530
Bottom chords UPN 220 3740
Brace 11 RHS 110x110x5 2036
Brace 12 RHS 125x125x5 2336
Brace 13 RHS 120x120x4 1815
Brace 14 RHS 120x120x4 1815
Brace 15 RHS 100x100x4 1495
Brace 16 RHS 90x90x4 1335
Brace 17 RHS 100x100x3 1141
Brace 18 RHS 70x70x3 781
Brace 19 RHS 70x70x3 781
Brace 20 RHS 40x40x2 294
Brace 21 RHS 70x70x2 534

Weight: 1826.3 kg

Table 5: Nodal displacements of the N-truss optimized considering only displacement and member
constraints.

Node number 1 2 3 4 5 6 7 8 9 10 11 12
Horizontal displacement [mm| 7.40  6.70 5.45 3.82 1.95 0 -6.60 -6.60 -5.75 -4.24 -2.26 0
Vertical displacement [mm)| -1.73 -21.32 -39.27  -54.25 -65.52 -T2.18 0 -19.58 -37.62 -52.71 -64.16 -70.86

Table 6: Gaps and eccentricities introduced to ensure weldability of the joints of the N-truss opti-
mized considering only displacement and member constraints.

Joint number Gaps [mm| Eccentricity [mm)|

1 10.0 67.9
2 8.0 67.4
3 8.0 36.1
4 6.0 20.0
bt 2.0 -17.2
8 -120.0 7.0
9 -100.0 13.5
10 -100.0 -7.8
11 -70.0 -6.9
12 -70.0 -28.1
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Table 7: Utilization ratios for the optimized design of the N-truss considering displacement and
member constraints.

Member constraints Joint constraints
Member resistance ratio | Stability ratio | Joint resistance ratio HEA-RHS | Joint resistance ratio UPN-RHS
[}

& 2 E

E £ ¢ p 2

= 2 E g =

5 = E g &
= i = o

= O :a @) 4l

1 0.54 0.60 0.39

2 0.60 0.67 0.53

3 0.69 0.81 0.67

4 0.76 0.91 0.75

5 0.78 0.94

6 0.07

7 0.41

8 0.71

9 0.83

10 0.93

11 0.89 1.00 1.01 1.49 0.96

12 0.99 0.83 1.90 0.86

13 0.90 0.99 0.87 1.68 0.82 1.01

14 0.99 0.65 1.85 0.64

15 0.85 0.97 0.74 1.31 0.64 1.00

16 0.96 047 1.32 0.46

17 0.80 0.91 0.53 1.24 0.43 0.87

18 0.99 0.32 1.06 0.26

19 0.70 0.91 0.37 0.75 0.25 0.80

20 0.87 0.13 0.85 0.08

21 0.68 0.88 0.24 0.75 0.77

Table 8: Sections of the N-truss optimized considering displacement, member, and joint constraints.

Member Profile A [mm?]
Top chords HEA 200 5380
Bottom chords UPN 220 3740
Brace 11 RHS 100x100x8 2724
Brace 12 RHS 100x100x10 3257
Brace 13 RHS 100x100x8 2724
Brace 14 RHS 80x80x8 2084
Brace 15 RHS 90x90x5 1636
Brace 16 RHS 80x80x5 1436
Brace 17 RHS 80x80x4 1175
Brace 18 RHS 70x70x3 781
Brace 19 RHS 70x70x3 781
Brace 20 RHS 60x60x3 661
Brace 21 RHS 60x60x3 661

Weight: 2091.0 kg
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Table 9: Gaps and eccentricities introduced to ensure weldability of the joints of the N-truss opti-
mized considering displacement, member, and joint constraints.

Joint number Gap [mm| Eccentricity [mm]|

1 18.0 43.7
2 16.0 27.6
3 10.0 16.6
4 7.0 1.5
) 6.0 -11.6
8 -100.0 -0.7
9 -90.0 -9.8
10 -80.0 -4.8
11 -70.0 -6.9
12 -60.0 -9.0

Table 10: Nodal displacements of the N-truss optimized considering displacement, member, and

joint constraints.

Node number 1 2 3 4 5 6 7 8 9 10 11 12
Horizontal displacement [mm| 6.23  5.64  4.59 3.21 1.64 0 -6.60 -6.60 -5.75 -4.24 -226 0
Vertical displacement [mm)| -1.29 -18.05 -34.30 -48.11 -58.77 -62.99 0 -16.88 -32.79 -46.61 -57.42 -61.92
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Table 11: Utilization ratio of the optimized result taking into account displacement, member, and
joint constraints.

Member constraints Joint constraints
Member resistance ratio | Stability ratio | Joint resistance ratio HEA-RHS | Joint resistance ratio UPN-RHS
[

5 B E

E £ ¢ p 2

£ e Z g =

5 = E g &

E E g E g
= i = o

= o a @) 4l

1 0.36 0.39 0.30

2 0.45 0.51 0.44

3 0.56 0.65 0.56

4 0.63 0.73 0.63

5 0.66 0.76

6 0.01

7 0.35

8 0.68

9 0.82

10 0.93

11 0.67 0.78 0.90 0.86 0.91

12 0.71 0.69 0.87 0.82

13 0.60 0.70 0.81 0.77 0.80 0.56

14 0.86 0.60 0.85 0.62

15 0.78 0.92 0.66 0.96 0.55 0.75

16 0.90 043 0.97 0.39

17 0.77 0.96 0.49 0.86 0.36 0.79

18 0.99 0.27 0.97 0.22

19 0.70 0.91 0.31 0.68 0.21 0.80

20 0.39 0.10 0.38 0.07

21 0.55 0.79 0.22 0.53 0.61
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Figure 1: N-truss girder with HEA top chord sections, UPN bottom chord sections, and RHS braces
subjected to vertical point loads F' and F/2.

(a) Model 1 (b) Model 2

Figure 2: These figures show the two different analysis models. Model 1 is a statically determinate
truss model where all members are pin connected. Model 2 is a statically indeterminate truss model
where the chords are continuous and the braces are pin connected with infinitely stiff members.

T

Figure 4: Chord web failure.
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Figure 6: Chord shear failure.
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Figure 8: Symmetric half of the N-type truss girder with a span [, height h and vertical point loads
F and F/2.
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