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Abstrat

Realisti truss design optimization problems are often governed by pratial onstraints. Beause

of the omplexity of these onstraints, usually only member onstraints are taken into aount during

the optimization, and joint onstraints are aounted for in a manual postproessing step. This paper

proposes a method to aount for joint onstraints in the global disrete size optimization of a steel

truss struture. The design of an N-type truss girder is onsidered �rst without and then with the

joint onstraints spei�ed in Euroode 3. In order to guarantee global optimality in both ases, the

optimization problem is reformulated as a mixed-integer linear program. A statially determinate

analysis model is adopted so as to ensure that all joint onstraints an be reformulated as linear

funtions. If the joint onstraints are not onsidered in the optimization, a design is obtained where

the joints need additional strengthening. This an be done by manually seleting heavier setions,

whih often leads to a suboptimal result, or by strengthening the joints (e.g. by means of sti�ening

plates), whih has a serious impat on the fabriation ost. If the joint onstraints are onsidered

in the optimization, they are automatially satis�ed by the �nal design. The weight of this design

is about 15% higher than in the �rst ase. This shows that the joint onstraints have a signi�ant

impat on the optimal design. If the joint onstraints are aounted for in a suboptimal way (e.g. by

manually seleting heavier setions), the additional weight may be even higher. Taking into aount

joint onstraints in the optimization leads to a ost redution at two levels: in terms of engineering

ost (no manual postproessing step is needed) as well as fabriation ost (using unneessarily heavy

setions as well as joint strengthening are avoided).

Keywords: Truss design, disrete design optimization, joint onstraints, mixed-integer linear pro-

gram reformulation.

INTRODUCTION

Numerial optimization methods have a great potential to support strutural engineers in �nding

the optimal design, and so to keep the onsumption of natural resoures of the building industry to

a minimum. However, pratiing strutural engineers appear to be relutant to adopt optimization

as a daily design tool, even for relatively simple but tedious tasks suh as the sizing of a steel

truss girder. One of the reasons is that real-world design problems are often governed by a large

number of onstraints and pratial issues. For a steel truss girder with welded joints, the usual

displaement, member fore, and bukling onstraints as formulated in Euroode 3 are imposed. In

addition, the following pratial onstraints must be satis�ed: the member setions must be hosen

from a given setion atalog, and the joints must obey ertain geometrial rules in order to ensure

strutural integrity and weldability, as well as mehanial rules in order to avoid hord web failure,

hord shear failure, and brae failure. Most existing design optimization algorithms annot take into

aount all these pratial onstraints. As a onsequene, a manual postproessing step is required,

where the optimized design is modi�ed to satisfy the onstraints whih are not onsidered during

the optimization. This operation is umbersome, it osts preious engineering time, and it may lead

to a suboptimal design or a design that no longer ful�lls the stress and displaement onstraints.
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A traditional approah to optimal truss design is to �nd a Fully Stressed Design (FSD): the ele-

ment setions are iteratively updated until the stress in eah element equals the maximum allowable

value, whih may lead to an optimal strutural weight (Razani, 1965; Mueller et al., 2002). In its

original formulation, the FSD method is only useful for stress onstrained optimization problems.

A modi�ed Fully Utilized Design method (FUD) is proposed by Patnaik et al. (Patnaik et al., 1998)

to take into aount both stress and displaement onstraints. Only in ertain ases the result of

the FSD method is optimal (Patnaik and Hopkins, 1998). However, for a pratial steel truss design

problem the joints remain to be designed manually. Dependent on the setions hosen for the braes

and the hords, some of the joints will need to be strengthened by means of sti�ening plates or by

loally using a heavier setion (Wardenier et al., 1992). Suh interventions have little in�uene on

the weight of the struture, but require additional welding as well as testing of the welds, and this

has a signi�ant impat on the fabriation ost.

An additional drawbak of the FSD method is the fat that it only an handle ontinuous

variables. For a pratial steel truss design problem the pro�le of the members has to be hosen

from a steel atalog, however. The optimization problem is therefore disrete. Several algorithms

for disrete optimization have been proposed in the literature (Thanedar and Vanderplaats, 1995).

The most popular algorithms that an handle disrete variables are evolutionary algorithms, suh

as simulated annealing (Balling, 1991), geneti algorithms (Camp et al., 1998; Rajeev and Krish-

namoorthy, 1992), ant olony optimization (Camp et al., 2005), �re�y algorithm (Gandomi et al.,

2011), arti�ial bee olony algorithm (Sonmez, 2011), and partile swarm optimization (Venter

and Sobieszzanski-Sobieski, 2003). These methods explore the design spae in a random fashion,

thereby using information olleted from previous analyses to gradually move towards a better per-

forming design. Evolutionary algorithms owe their popularity to the fat that they are easy to

understand and to implement. They an ope with disrete parameters and are able to take into

aount omplex onstraints. However, evolutionary algorithms onverge slowly, involve algorithmi

parameters that require areful tuning, and global optimality annot be guaranteed sine no onlu-

sive onvergene heks an be made. In order to properly assess the in�uene of joint onstraints

on the optimal design of truss strutures, it is important that global optimality an be guaranteed.

Evolutionary algorithms are therefore not suitable.

The method used in this paper is to reformulate the optimization problem as a Mixed-Integer

Linear Program (MILP), whih is solved with the branh-and-bound method in order to ahieve

global optimality. This MILP is obtained by means of binary deision variables and the Simultaneous

ANalysis and Design (SAND) approah: the state variables (the strutural nodal displaements and

the member end fores) are onsidered as additional design variables and the state equations (the

equilibrium equations) are enfored by means of additional equality onstraints. This optimization

method has originally been proposed by Grossmann et al. (1992) for disrete size optimization

problems and is extended by Rasmussen and Stolpe (2008) for truss topology design problems.

Mela and Koski (2013) inluded all member onstraints spei�ed by the Euroode in the truss

topology design problem. In this paper, the fous is restrited to size optimization, but all relevant

onstraints preribed by the Euroode (European Committee for Standardization, 2005a,b) are

taken into aount, inluding both the member onstraints and the joint onstraints.

In order to ensure that all joint resistane onstraints an be reformulated as linear onstraints

in terms of the design variables, the sope of this paper is limited to statially determinate analysis

models. Sine the member fores of statially determinate models do not depend on the setions and

remain onstant in the optimization, they do not have to be onsidered as additional design variables.

The joint onstraints - some of whih would be quadrati if the member fores are onsidered as

design variables - an then be reformulated as mixed-integer linear onstraints. Stati determinay

implies that the struture is statially determined both internally and externally. Internal stati
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determinay is not a strong assumption as most trusses an be modeled with a su�iently high

auray assuming pinned onnetions. External stati determinay imposes a stronger limit on

the appliability of the method as it only holds for simply supported trusses. It does not hold for

ontinuous trusses or trusses that are part of a portal frame.

The example problem onsidered in this paper is the disrete size optimization of an N-type

truss girder with welded joints under stati nodal loading as shown in �gure 1. The top hord

members are steel H-setions (HEA), the bottom hord members are steel hannel-setions (UPN),

and the braes are steel Retangular Hollow Setions (RHS). This N-type truss girder is widely used

in pratie.

The paper is organized as follows. In setion 2, a summary of all governing design requirements

for truss strutures is given: the displaement, member fore and bukling onstraints as formulated

in part 1-1 of Euroode 3 (European Committee for Standardization, 2005a) as well as the joint

resistane onstraints as formulated in part 1-8 of Euroode 3 (European Committee for Standard-

ization, 2005b). In setion 3, the mixed-integer linear formulation for statially determinate truss

strutures is introdued, and the example truss is optimized onsidering only displaement and

member onstraints. In setion 4, the joint onstraints are also taken into aount. In setion 5,

the results are disussed. The optimal design without joint onstraints and the optimal design with

joint onstraints are ompared.

DESIGN OF TRUSS STRUCTURES WITH WELDED JOINTS

This setion gives an overview of the design proedure for the example truss aording to the

European building odes.

First, a strutural analysis is performed to obtain the member fores and the nodal displae-

ments. Seond, the imposed onstraints are heked. In the servieability limit state, the displae-

ment onstraints are veri�ed. In the ultimate limit state, there are two types of apaity onstraints:

member onstraints and joint onstraints. The member onstraints are spei�ed in part 1-1 of Eu-

roode 3 and an be subdivided in member resistane onstraints (to avoid yielding) and member

stability onstraints (to avoid bukling). The joint onstraints are spei�ed in part 1-8 of Euroode

3 and an be subdivided in joint geometry onstraints and joint resistane onstraints. In addition,

the global stability of the struture has to be heked, but in this paper it is assumed that the global

stability is guaranteed by the seondary struture or by means of extra sti�eners.

Strutural models

Two di�erent models an be used for the strutural analysis of trusses. In the �rst model, all

members are pin onneted as shown in �gure 2a. As a onsequene, only normal fores our. This

model provides a good approximation for trusses with slender members and where the enterlines

of joined members interset eah other in a single point (Wardenier et al., 2008). Unfortunately, the

latter is often not true for reasons of weldability and utting. As a onsequene, the intersetion of

the enterlines of the braes is loated at a ertain distane from the enterline of the hords. These

nodal eentriities ause bending moments in the hords, whih are alled eentriity moments.

The eentriity moments have to be taken into aount in the hord member design. As proposed

in the CIDECT design guide (Wardenier et al., 2008), they are aounted for in an approximate

way by distributing them equally over both hord members on either side of the joint.

In the seond model, the hords are ontinuous and the braes are pin onneted with in�nitely

sti� members at a distane of the eentriity to the hords as shown in �gure 2b. This model is

internally statially indeterminate.

In order to ensure that all joint resistane onstraints an be taken into aount in the MILP

formulation, only statially determinate models are onsidered. Therefore the �rst model is adopted

in this paper.
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Displaement onstraints

Aording to Euroode 0, the vertial displaement uz of roof strutures should be limited as

follows:

|uz| 6
l

200
(1)

where l is the span of the struture.

Member resistane onstraints

The apaities of the members are heked aording to part 1-1 of Euroode 3. The resistane

of the ross-setions of the braes is heked as follows:

|N | γ
M0

Af
y

6 1 (2)

where N is the design value of the normal fore, A is the ross-setion area, f
y

is the yield strength

of the material, and γ
M0

is the partial fator for resistane of ross-setions, whih is equal to 1.

The resistane of the ross-setions of the hords is heked as follows:

|N | γ
M0

Af
y

+
|M | γ

M0

W
pl

f
y

6 1 (3)

where M is the design value of the bending moment and W
pl

is the plasti setion modulus.

Stability onstraints

The bukling resistane of members in ompression and/or bending should be veri�ed. Depend-

ing on the ourring fores - ompression, bending, or both - and the setion type, di�erent types

of bukling should be heked. For eah bukling mode, a di�erent redution fator χ for the design

resistane is alulated. All redution fators are determined from the relevant bukling urve whih

is seleted in agreement with the type of ross-setion. The bukling urves depend on the setion,

the bukling length, and the yield strength of the material.

The �exural bukling resistane is heked as follows:

−χyAfy
γ
M1

6 N (4)

−χzAfy
γ
M1

6 N (5)

where γ
M1

is the partial fator for resistane of members to instability, whih is equal to 1, and χy

and χz are the redution fators due to in-plane �exural bukling and out-of-plane �exural bukling.

For members in ompression with open ross-setions suh as HEA-setions, the torsional and

the torsional-�exural bukling resistane have to be heked as well:

−χ
T

Af
y

γ
M1

6 N (6)

−χ
TF

Af
y

γ
M1

6 N (7)

where χ
T

and χ
TF

are the redution fators due to torsional bukling and torsional-�exural bukling.
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For members bent in the plane of highest �exural rigidity the lateral-torsional bukling resistane

should also be heked. For the HEA top hord members in bending and axial ompression, the

bukling resistane is heked as follows (assuming lass 1 or lass 2 ross-setions):

|N | γ
M1

χyfyA
+ kyy

|M | γ
M1

χ
LT

f
y

W
pl,y

6 1 (8)

|N | γ
M1

χzfyA
+ kzy

|M | γ
M1

χ
LT

f
y

W
pl,y

6 1 (9)

where χ
LT

is the redution fator due to lateral-torsional bukling and kyy and kzy are interation

fators whih an be determined aording to one of the methods desribed in annex A or annex B

of Euroode 3. In this paper, the method desribed in annex B is used.

Joint geometry onstraints

Eah joint has to satisfy geometri onstraints that either follow from pratial onsiderations

suh as weldability or are imposed to ensure that the design remains within the range of validity

of the joint apaity onstraints disussed in the next subsetion. When there is a gap between the

braes that are onneted to the hord, the joint is alled a gap joint. When the braes overlap

eah other, the joint is alled an overlap joint. To limit the eentriity moments, the onnetions

of the RHS braes and HEA top hords are hosen to be gap joints and the onnetions of the RHS

braes and UPN bottom hords are hosen to be overlap joints. The two types of joints applied in

the N-truss example as well as the notations used for all member dimensions are shown in �gure

3. The notation used in the Euroode is adopted: properties of hord members are denoted by a

subsript 0 and properties of braes are denoted by the subsripts i and j. For overlap joints, it

is important to distinguish between the overlapping and the overlapped brae; here the subsript i

refers to the overlapping brae and the subsript j to the overlapped brae. For the gap joints the

gap g has a positive value. In order to ensure weldability, the gap of the joint should be at least

as large as the sum of the thiknesses t
i

and t
j

of the two braes. For the overlap joints the gap g
has a negative value. The overlap λ

ov

is hosen to be 100% for pratial onsiderations: the end of

the overlapping brae only has to be ut in one angle. As a onsequene the overlap g should be at

least as large as the width b
i

of the overlapping brae.

The geometry onstraints spei�ed in the Euroode for the top joints read as:
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d
w

6 400mm (10)

h
i

t
i

6 35 (11)

h
j

t
j

6 35 (12)

b
i

t
i

6 35 (13)

b
j

t
j

6 35 (14)

h
i

b
i

= 1 (square setion) (15)

h
j

b
j

= 1 (square setion) (16)

2.5mm 6 t
i

6 25mm (17)

2.5mm 6 t
j

6 25mm (18)

g > t
i

+ t
j

(19)

The geometry onstraints for the bottom joints read as:

b0 6 400mm (20)

h
i

t
i

6 35 (21)

h
j

t
j

6 35 (22)

b
i

t
i

6 35 (23)

b
j

t
j

6 35 (24)

0.5 6
h
i

b
i

6 2 (25)

0.5 6
h
j

b
j

6 2 (26)

2.5mm 6 t
i

6 25mm (27)

2.5mm 6 t
j

6 25mm (28)

b
i

b0
> 0.25 (29)

b
i

b
j

> 0.75 (30)

g = −b
i

(31)

The onstraint given by equation (31) imposes an overlap of 100% for pratial onsiderations,

whih is striter than the onstraint spei�ed in the Euroode.

In addition, lass 2 ross-setions must be used for the hords and lass 1 ross-setions for the

braes.
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Joint resistane onstraints

For onnetions between hollow setions and open setions the following types of failure an

our: hord fae failure, hord web failure, hord shear failure, punhing shear failure, brae

failure, and loal bukling failure. Aording to part 1-8 of Euroode 3, only ertain failure modes

must be onsidered for eah type of joint. For HEA-RHS gap joints the following riteria should be

heked: hord web failure, brae failure, and hord shear failure. For UPN-RHS overlap joints with

an overlap of minimum 80% only brae failure of the overlapping brae member must be heked.

In order to avoid hord web failure in the HEA-RHS joints (�gure 4), the normal fore N
i

in

brae i is limited as follows:

|N
i

| 6 f
y

t
w

b
w

sin θ
i

1

γ
M5

(32)

where f
y

is the yield strength of the hord, γ
M5 is the partial safety fator for the resistane of

joints in hollow setion lattie girder, whih is equal to 1, and b
w

is the e�etive width for the web

of the hord, whih is obtained as:

b
w

= min

(
h
i

sin θ
i

+ 5 (t
f

+ r0) , 2ti + 10 (t
f

+ r0)

)

(33)

The normal fore N
j

in brae j is limited in the same way.

In order to avoid brae failure in the HEA-RHS joints (�gure 5), the normal fore N
i

in brae i

is limited as follows:

|N
i

| 6 2f
yb

t
i

p
e�

1

γ
M5

(34)

where f
yb

is the yield strength of the brae, and p
e�

is the e�etive length of the ontat area of

the brae member onto the fae of the hord, whih is alulated as:

p
e�

= min

(

t
w

+ 2r0 + 7t
f

f
y

f
yb

, b
i

+ h
i

− 2t
i

)

(35)

The normal fore N
j

in brae j is limited in the same way.

The last joint resistane hek for the HEA-RHS joints is related to hord shear failure (�gure

6). This failure mode is avoided by limiting the normal fore N
i

in brae i as follows:

|N
i

| 6 f
y

A
v0√

3 sin θ
i

1

γ
M5

(36)

where the shear area A
v0 = A0 − (2− α) b0tf + (t

w

+ 2r) t
f

, and α =
(
1 + 4g2/3t2

f

)− 1

2
for RHS

setions. The normal fore N
j

in brae j is limited in the same way. In addition, the normal fore

of the hord N0 is limited as follows:

|N0| 6



(A0 −A
v0) fy +A

v0fy0

√

1−
(

V

V
pl,Rd

)2



1

γ
M5

(37)

where the design shear fore V = max (|N
i

| sin θ
i

, |N
j

| sin θ
j

) and the plasti design shear resistane

V
pl,Rd

= f
y0Av0/γM5

√
3.

For UPN-RHS overlap joints with an overlap of at least 80%, only brae failure has to be heked

(�gure 7). This failure mode is avoided by limiting the normal fore in the overlapping brae as

follows:
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|N
i

| 6 f
yb

t
i

(b
i

+ b
e,ov

+ 2h
i

− 4t
i

)
1

γ
M5

(38)

where the e�etive width b
e,ov

of the onnetion between the overlapping brae and the overlapped

brae is alulated as:

b
e,ov

= min

(

10t2
j

b
j

t
i

b
i

, b
i

)

OPTIMAL DESIGN WITHOUT JOINT CONSTRAINTS

Problem desription

In this setion, the N-type truss girder desribed in the introdution and shown in �gure 8 is

optimized taking into aount all member onstraints. The objetive of the optimization problem

is to minimize the weight of the truss. The span is l = 20 m, the height is h = 2 m, the length

of the hords and vertial braes is L = 2 m, the angle of the vertial braes is θ
i

= 90°, and the

angle of the diagonal braes is θ
j

= 45°. The value of the vertial load in the ultimate limit state is

F = 100 kN and is used to hek the member and joint onstraints, the value of the vertial load in

the servieability limit state is F = 74.07kN and is used to hek the displaements. The maximum

allowable displaement u
max

is l/200 = 0.1m. All setions are steel setions with Young's modulus

E = 210GPa, and density ρ = 7850 kg/m3
.

The top hord setions are hosen from a atalog with twenty-four HEA-setions given in table

1 (ArelorMittal, 2015). The bottom hord setions are hosen from a atalog with eighteen UPN-

setions given in table 2 (ArelorMittal, 2015). The setions of the braes are hosen from a atalog

with eighty-two old formed square RHS-setions given in table 3 (van Eldik, 2006). All top hord

members must have the same setion, and all bottom hords members must have the same setion.

For the hords steel grade S355 is hosen and for the braes steel grade S275 is hosen. For the

analysis of the truss, the model shown in �gure 2a is adopted.

Objetive funtion and ompatibility onstraints

In order to solve the disrete size optimization problem to global optimality, it is reformulated as

a Mixed-Integer Linear Program (MILP). This approah was originally proposed to solve disrete

size optimization problems (Grossmann et al., 1992) and was extended later for truss topology

optimization problems (Stolpe and Svanberg, 2003; Stolpe, 2007; Rasmussen and Stolpe, 2008;

Mela and Koski, 2013; Mela, 2013).

In order to obtain an MILP, the Simultaneous ANalysis and Design approah (SAND) is adopted.

The design variables in the optimization problem are omplemented with a set of ontinuous state

variables, inluding the nodal displaements and normal fores, while the equilibrium equations are

inorporated as equality onstraints (Haftka, 1985; Arora and Wang, 2005), so no expliit strutural

analysis is made.

The analysis model adopted in this paper is statially determinate. The member fores are

independent of the hosen setions and an be alulated a priori. As a onsequene, the normal

fores are not adopted as design variables and the equilibrium onstraints are dropped. The original

MILP proposed for disrete size optimization is thus simpli�ed.

The design variables inlude a vetor with binary deision variables y and a vetor with ontin-

uous nodal displaement variables u. The binary variables selet a pro�le from the steel atalog.

For eah member i, setion j is seleted from the set of available setions when the orresponding

variable yij = 1. Setion j is not seleted for member i when the orresponding variable yij = 0.
Although the number of optimization variables and onstraints beomes large in this approah, the
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relaxed or ontinuous MILP is onvex and an be e�iently solved to global optimality with existing

solvers based on the branh-and-bound method.

In this subsetion, the objetive funtion and the ompatibility onstraints are formulated. In

the following subsetions, the Euroode provisions regarding the maximum displaements and the

strength of the members are added to the problem as inequality onstraints in order to omplete the

MILP. In order to formulate the MILP for the optimization of the N-type truss, the members and

atalogs of pro�les are subdivided in di�erent sets: the set of all members M, all hord members

M
C

, top hord members M
TC

, bottom hord members M
BC

and braes M
B

, and the atalog of

pro�les Ci for member i. The optimization problem (without Euroode onstraints) is given by the

following equations:

min

y∈Bn
b ,u∈Rn

dof

ρ
∑

i∈M

∑

j∈Ci

LiAijyij (39)

s.t. 1 =
∑

j∈Ci

yij ∀ i ∈ M (40)

∑

j∈Ci

Ai1
TC

jyi1
TC

j =
∑

j∈Ci

Aijyij ∀ i ∈ M
TC

(41)

∑

j∈Ci

Ai1
BC

jyi1
BC

j =
∑

j∈Ci

Aijyij ∀ i ∈ M
BC

(42)

E

Li

Aijb
T

i u−Ni 6 (1− yij)N ij ∀ i ∈ M, ∀ j ∈ Ci (43)

E

Li

Aijb
T

i u−Ni > (1− yij)N ij ∀ i ∈ M, ∀ j ∈ Ci (44)

The objetive is to minimize the weight of the truss struture as expressed by equation (39). In

this equation ρ is the density of the material whih is assumed to be the same for all members, Li

is the length of member i, and Aij is the setion area of setion j for member i. The onstraint in
equation (40) ensures that a single setion j is hosen from the atalog Ci for member i. Equations
(41) and (42) ensure that all top hord members and all bottom hord members have the same

setion, where i1
TC

refers to the �rst top hord member and i1
BC

refers to the �rst bottom hord

member. Equations (43) and (44) are ompatibility onstraints used to alulate the displaements

u. In these equations, E is the Young's modulus of the material, bi is the statis vetor of member

i (Rasmussen and Stolpe, 2008) that aounts for the loation and orientation of the members, Ni

is the normal fore in member i, and N ij and N ij are arti�ial upper and lower bounds introdued

to ensure feasibility of the optimization problem when setion j is not seleted for element i and
yij = 0. In this example, the values of the upper and lower bounds of the ompatibility onstraints

in equations (43) and (44) are alulated based on the minimum and maximum allowed displaement

(Rasmussen and Stolpe, 2008).

The total number of members in the struture is denoted by n
m

, the total number of available

setions for eah member i is denoted by n
s,i, the total number of degrees of freedom is denoted by

n
dof

, and the total number of joints is denoted by n
g

. As a onsequene, the total number of binary

deision variables is n
b

=
∑n

m

i=1 ns,i.

Displaement onstraints

The displaement onstraints are given by equation (45). Here u = −0.1 m and u = 0.1 m are

the minimum and maximum allowed displaement, respetively.
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u 6 u 6 u (45)

Member onstraints

In this subsetion, the member resistane and stability onstraints desribed in the previous

setion are inorporated in the MILP. The joint onstraints are not onsidered yet; it is therefore

assumed that the members an be onneted in suh a way that eentriities are avoided. No

eentriity moments are therefore taken into aount in the optimization.

The stress onstraints given by equation (2) and the in-plane and out-of-plane �exural buk-

ling, torsional bukling and torsional-�exural bukling onstraints given by equations (4) to (7) are

reformulated as:

Niyij 6 f
y

Aijyij ∀ i ∈ M
C

, ∀ j ∈ Ci (46)

Niyij > −min (1, χy , χz, χT, χTF) fyAijyij ∀ i ∈ M
C

, ∀ j ∈ Ci (47)

Niyij 6 f
yb

Aijyij ∀ i ∈ M
B

, ∀ j ∈ Ci (48)

Niyij > −min (1, χy , χz) fybAijyij ∀ i ∈ M
B

, ∀ j ∈ Ci (49)

where f
y

and f
yb

are the yield strength of the hords and braes, respetively. Following the

reommendations in the CIDECT guide (Wardenier et al., 1992), the bukling lengths are assumed

as follows: for the hords L
r,y

= L
r,z

= 0.9Li, and for the braes L
r,y

= L
r,z

= 0.75Li. The

onstraints in equations (46) to (49) are linear equations in terms of the binary deision variables

yij .

Results

The MILP given by equations (39) to (49) onsists of 1133 design variables, inluding 1112

binary design variables and 21 ontinuous design variables, 4519 onstraints, and 11698 non-zeros.

The MILP is solved by means of Gurobi 5.6 (Gurobi Optimization In., 2013), whih uses the ut-

and-branh method, on a omputer with a 4 threads Intel Core(TM)2 Quad CPU Q9550 proessor

and 4.0 GB RAM. The results are given in table 4. The total weight of the N-truss is 1826.3 kg. The

nodal displaements are given in table 5. It is observed that the displaement onstraints are not

ritial. Gurobi is apable of solving this problem in the preproessing stage. Without performing a

presolve or generating uts, the problem is solved also at the root node. The omputation time is less

than 0.2 seonds in both ases. This is probably due to the fat that the displaement onstraints

do not beome ative. Without displaement onstraints, the problem beomes trivial due to the

stati determinay of the truss. Therefore, it is possible to verify the solution: the minimum setion

areas that are required aording to the member strength and stability onstraints an be alulated

manually. This leads to the same results.

It is now veri�ed to what extent the optimized design satis�es the onstraints that are not

expliitly onsidered in the MILP. In order to ensure weldability of the joints, minimal eentriities

are introdued as spei�ed in table 6. The gaps of the top joints are hosen to be equal to the

sum of the thikness of the two braes of the joint. The gaps of the bottom joints are hosen so

that the overlap is 100% in order to avoid di�ult utting of the overlapping brae. Table 7 gives

the utilization ratios for all the onstraints that must be heked aording to part 1-1 and part

1-8 of Euroode 3 as desribed in previous setion. These utilization ratios are alulated as the

ratio between the atual value and the maximum allowed value. Due to the introdution of nodal

eentriities after the optimization, the stability ratios are not guaranteed to be smaller than 1.

However, as an be observed in table 7, the e�et of the eentriities is limited and all stability

onstraints remain satis�ed. On the other hand, several utilization ratios of the joint onstraints
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exeed the maximum allowed value of 1, whih are indiated in bold in table 7. As a onsequene,

the joints have to be strengthened in order to satisfy all onstraints. This an be done by either

seleting di�erent pro�les, or by loally strengthening the joints e.g. by means of sti�ening plates.

The �rst approah would lead to a suboptimal result, as it is very di�ult to determine whih

members should be made heavier and whih setions should be seleted. The seond approah

would only have a limited impat on the weight of the truss, but the fabriation osts would be

muh higher.

OPTIMAL DESIGN WITH JOINT CONSTRAINTS

Problem desription

In this setion, the displaement onstraints, the member onstraints, and the joint onstraints

are onsidered in the optimization. Due to the introdution of the joint geometry onstraints, trusses

with zero eentriities beome infeasible - non-zero eentriities are therefore allowed. In order to

ensure that the impat of the eentriities on the weight of the truss remains minimal, the gap sizes

(whih ontrol the eentriities) are onsidered as additional design variables in the optimization

problem. As a onsequene, the design variables now onsist of the nodal displaements u ∈ R
n
dof

,

the binary deision variables y ∈ B
n
b

, and the gaps of the joints g ∈ R
n
g

, where n
g

is the number

of joints.

Objetive funtion and ompatibility onstraints

In this subsetion, the objetive funtion and the ompatibility onstraints are formulated. In the

following subsetions, the Euroode provisions regarding the maximum displaements, the strength

of the members, and the strength of the joints are added to the problem as inequality onstraints

in order to omplete the MILP. In order to formulate the MILP for the optimization of the N-type

truss, the members and atalogs of pro�les are subdivided in di�erent sets: the set of all members

M, all hord members M
C

, top hord members M
TC

, bottom hord members M
BC

and braes

M
B

, and the atalog of pro�les Ci for member i. The joints are subdivided into di�erent sets: the

set of all joints is denoted by J , the set of all joints with a hord on the left-hand side is denoted

by J
CL

, the set of all joints with a hord on the right-hand side is denoted by J
CR

, the set of all

top joints is denoted by J
TJ

, and the set of all bottom joints is denoted by J
BJ

. The optimization

problem (without Euroode onstraints) is given by the following equations:

min

y∈Bn
b ,u∈Rn

dof ,g∈Rn
g

ρ
∑

i∈M

∑

j∈Ci

LiAijyij (50)

s.t. 1 =
∑

j∈Ci

yij ∀ i ∈ M (51)

∑

j∈Ci

Ai1
TC

jyi1
TC

j =
∑

j∈Ci

Aijyij ∀ i ∈ M
TC

(52)

∑

j∈Ci

Ai1
BC

jyi1
BC

j =
∑

j∈Ci

Aijyij ∀ i ∈ M
BC

(53)

E

Li

Aijb
T

i u−Ni 6 (1− yij)N ij ∀ i ∈ M, ∀ j ∈ Ci (54)

E

Li

Aijb
T

i u−Ni > (1− yij)N ij ∀ i ∈ M, ∀ j ∈ Ci (55)

These equations are idential to equations (39) to (44) for the ase without joint onstraints, exept

that the gaps are now also onsidered as design variables.
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Displaement onstraints

The displaement onstraints are idential to the displaement onstraints given by equation

(45) in previous setion:

u 6 u 6 u (56)

Member onstraints

Sine the eentriity moments depend on the gap sizes, the mixed-integer linear reformulation

of the ombined stress and stability onstraints depends not only on the binary deision variables

yij , but also on the gap variables gm. The resistane of the ross-setions of the hords is heked
aording to equation (3). The design values of the normal fores are obtained before optimization.

The design values of the bending moments, however, depend on the eentriities, whih depend on

the gap size gm. The eentriity em in joint m is alulated as (Wardenier et al., 1992):

em =

gm +
b
iBLm

2 sin θ
iBLg

+
b
iBRm

2 sin θ
iBRm

tan θm
−

hiCRm

2
(57)

where iBLm is the index of the left or overlapped brae in joint m, iBRm is the index of the right or

overlapping brae in joint m, iCRm is the index of the right hord in joint m, and θm is the angle

between the two braes of the joint, whih is alulated as θm = π − θiBLm
− θiBRm

. The eentriity

moment M
e,m in joint m is alulated as (Wardenier et al., 1992):

M
e,m =

∆Nmem
2

(58)

where ∆Nm =
∣
∣
∣NiCLm

−NiCRm

∣
∣
∣ denotes the hange in normal fore in the hord at joint m, iCLm is the

index of the left hord in joint m, and iCRm is the index of the right hord in joint m.

For simpliity, the linear forms of the member onstraints are �rst derived for the ase where we

have only a single available pro�le for eah member. In this ase, the resistane of the ross-setions

of the hords at the right-hand side of the joint is heked aording to equation (3) as follows:

∣
∣
∣NiCRm

∣
∣
∣

f
y

AiCRm

+
|M

e,m|
f
y

W
pl,y,iCRm

6 1 (59)

where f
y

is the yield strength of the hords, W
pl,y,iCRm

is the plasti setion modulus along the

y-axis, and the safety fators are dropped as they are equal to 1. Replaing the bending moment

|M
e,m| by the expression given by equation (58) gives:

∣
∣
∣NiCRm

∣
∣
∣

f
y

AiCRm

+
∆Nm |em|

2f
y

W
pl,y,iCRm

6 1 (60)

Replaing the eentriity|em| by the expression given by equation (57) gives:

∣
∣
∣NiCRm

∣
∣
∣

f
y

AiCRm

+
∆Nm

2f
y

W
pl,y,iCRm

∣
∣
∣
∣
∣
∣
∣

gm +
b
iBLm

2 sin θ
iBLm

+
b
iBRm

2 sin θ
iBRm

tan θm
−

hiCRm

2

∣
∣
∣
∣
∣
∣
∣

6 1 (61)
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The stress onstraint is split into two onstraints to aount for the absolute value and the variables

belonging to di�erent design entities are separated:

∆Nm

2 tan θm
gm

︸ ︷︷ ︸

gap size

+
∆NmbiBLm

4 tan θ sin θiBLm
︸ ︷︷ ︸

left brae

+
∆NmbiBRm

4 tan θ sin θiBRm
︸ ︷︷ ︸

right brae

+




−∆NmhiCRm

4
− f

y

W
pl,y,iCRm

+

∣
∣
∣NiCRm

∣
∣
∣W

pl,y,iCRm

AiCRm





︸ ︷︷ ︸

right hord

6 0

(62)

− ∆Nm

2 tan θm
gm

︸ ︷︷ ︸

gap size

−
∆NmbiBLm

4 tan θ sin θiBLm
︸ ︷︷ ︸

left brae

−
∆NmbiBRm

4 tan θ sin θiBRm
︸ ︷︷ ︸

right brae

+




∆NmhiCRm

4
− f

y

W
pl,y,iCRm

+

∣
∣
∣NiCRm

∣
∣
∣W

pl,y,iCRm

AiCRm





︸ ︷︷ ︸

right hord

6 0

(63)

In reality, multiple pro�les are available for eah member. For the hord at the right hand side of

joint m, equations (62) and (63) are then rewritten as:

∆Nm

2 tan θ
gm +

∑

j∈C
iBLm

∆NmbiBLm j

4 tan θ sin θiBLm

yiBLm j +
∑

j∈C
iBRm

∆NmbiBRm j

4 tan θ sin θiBRm

yiBRm j

+
∑

j∈C
iCRm

(

−∆NmhiCRm j

4
− f

y

W
pl,y,iCRm j +

∣
∣NiCRm

∣
∣W

pl,y,iCRm j

AiCRm j

)

yiCRm j 6 0 ∀m ∈ J
CR

(64)

− ∆Nm

2 tan θ
gm −

∑

j∈C
iBLm

∆NmbiBLm j

4 tan θ sin θiBLm

yiBLm j −
∑

j∈C
iBRm

∆NmbiBRm j

4 tan θ sin θiBRm

yiBRm j

+
∑

j∈C
iCRm

(

∆NmhiCRm j

4
− f

y

W
pl,y,iCRm j +

∣
∣NiCRm

∣
∣W

pl,y,iCRm j

AiCRm j

)

yiCRm j 6 0 ∀m ∈ J
CR

(65)

For the hords at the left side of joint m, equations (64) and (65) are reformulated in the same way,

now using the index iCRm instead of iCLm and J
CR

instead of J
CL

.

As mentioned in the previous setion and expressed by equations (8) and (9), the lateral torsional

bukling resistane for members bent in the plane of highest �exural rigidity should be heked along

the x-axis and along the z-axis. In this ase only the top hords must be heked. The onstraints

for the bukling resistane of the top hord members are reformulated as follows:
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∆Nm

2 tan θ
gm +

∑

j∈C
iBLm

∆NmbiBLm j

4 tan θ sin θiBLm

yiBLm j +
∑

j∈C
iBRm

∆NmbiBRm j

4 tan θ sin θiBRm

yiBRm j

+
∑

j∈C
iCRm







−∆NmhiCRm

4
−

(

1−
N

iCRm

χ
y,iCRm j

f
y

A
iCRm j

)

f
y

W
pl,y,iCRm j

k
yy,iCRm j

χ
LT,iCRm j







yiCRm j 6 0 ∀m ∈ J
TJ

∩ J
CR

(66)

− ∆Nm

2 tan θ
gm −

∑

j∈C
iBLm

∆NmbiBLm j

4 tan θ sin θiBLm

yiBLm j −
∑

j∈C
iBRm

∆NmbiBRm j

4 tan θ sin θiBRm

yiBRm j

+
∑

j∈C
iCRm







∆NmhiCRm j

4
−

(

1−
N

iCRm

χ
y,iCRm j

f
y

A
iCRm j

)

f
y

W
pl,y,iCRm j

k
yy,iCRm j

χ
LT,iCRm j







yiCRm j 6 0 ∀m ∈ J
TJ

∩ J
CR

(67)

where χy,iCRm j and χ
LT,iCRm j are the redution fators for the resistane of the hord at the right-hand

side of the joint due to in-plane �exural bukling and lateral torsional bukling, respetively, and

kyy,iCRm j is an interation fator. The bukling onstraints for the hords at the left side of the

joint are reformulated in the same way, now using the index iCRm instead of iCLm and J
CR

instead

of J
CL

. The bukling onstraints along the z-axis are reformulated in the same way, by replaing

the redution fator due to in-plane �exural bukling χy,iCRm j with the redution fator due to out-

of-plane bukling χz,iCRm j and the interation fator kyy,iCRm j with the interation fator kzy,iCRm j . All

interation fators are alulated aording to the method desribed in annex B of Euroode 3.

For the braes, the stress onstraints as given by equation (2), and the in-plane and out-of-plane

�exural bukling, torsional bukling and torsional-�exural bukling onstraints as given by equations

(4) to (7) remain the same as in the previous setion:

Niyij 6 f
yb

Aijyij ∀ i ∈ M
B

, ∀ j ∈ Ci (68)

Niyij > −min (1, χy , χz) fybAijyij ∀ i ∈ M
B

, ∀ j ∈ Ci (69)

Joint onstraints

The joint geometry onstraints given by equations (10) to (18) and (20) to (28) and those related

to the ross-setion lasses are imposed by only inluding allowable setions in the pro�le atalog.

The geometry onstraints for the top hords given by equation (19) are reformulated as:

∑

j∈C
iBLm

tiBLm jyiBLm j +
∑

j∈C
iBRm

tiBRm jyiBRm j − gm 6 0 ∀m ∈ J
TJ

(70)

where iBLm is the index of the left brae in joint m, and iBRm is the index of the right brae in joint

m.

The geometry onstraints for the bottom hords given by equations (29) and (31) are reformu-

lated as:

∑

j∈Ci
BC

0.25bi
BC

jyi
BC

j −
∑

j∈Ci
B

bi
B

jyi
B

j 6 0 ∀ i
BC

∈ M
BC , iB ∈ M

B

(71)

gm +
∑

j∈C
iBRm

biBRm jyiBRm j = 0 ∀m ∈ J
BJ

(72)
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where iBRm is the index of the overlapping brae in joint m.

The geometry onstraints for the braes given by equation (30) are reformulated as:

∑

j∈C
iBLm

0.75biBLm jyiBLm j −
∑

j∈C
iBRm

biBRm jyiBRm j 6 0 ∀m ∈ J
BJ

(73)

The design resistane for hord web failure of the top joints given by equation (32) ontains

the e�etive width for the web of the hord b
w

, whih has to be alulated as the minimum of two

expressions. The hord web failure onstraints for the top joints are therefore reformulated into two

linear onstraints. For the braes at the right hand side of the top joints, the �rst onstraint given

by equation (32) is reformulated as:

∑

j∈C
iCLm

∣
∣
∣NiBRm

∣
∣
∣−

5(t
f,iCLm j

+r
iCLm j

)f
y

t
w,iCLm j

sin θ
iBRg

f
y

t
w,iCLm j

sin θ
iBRm

yiCLm j −
∑

j∈C
iBRm

hiBRm j

sin θiBRm

yiBRm j 6 0 ∀m ∈ J
TJ

∩ J
CL

(74)

The seond onstraint given by equation (32) is reformulated as:

∑

j∈C
iCLm

∣
∣
∣NiBRm

∣
∣
∣−

10(t
f,iCLm j

+r
iCLm j

)f
y

t
w,iCLm j

sin θ
iBRm

f
y

t
w,iCLm j

sin θ
iBRm

yiCLm j −
∑

j∈C
iBRm

2tiBRm jyiBRm j 6 0 ∀m ∈ J
TJ

∩ J
CL

(75)

where iBRm is the index of the right brae in joint m, and iCLm is the index of the left hord in joint

m. We ould as well have used the right hord, as the same setion is used for all hord members.

For the top left joint, iCLm is replaed by iCRm sine there is no left hord. For the braes at the left

hand side of the top joints, the hord web failure onstraints are reformulated in the same way by

replaing iBRm by iBLm in equations (74) and (75).

The brae failure onstraints for the braes at the right-hand side of the top joints given by

equation (34) are reformulated into two linear onstraints:

∑

j∈C
iBRm

∣
∣NiBRm

∣
∣

2f
yb

tiBRm j

yiBRm j −
∑

j∈C
iCLm

(

t
w,iCLm j + 2riCLm j + 7t

f,iCLm j

f
y

f
yb

)

yiCLm j 6 0 ∀m ∈ J
TJ

(76)

∣
∣NiBRm

∣
∣−

∑

j∈C
iBRm

2f
yb

tiBRm j

(
biBRm j + hiBRm j − 2tiBRm j

)
yiBRm j 6 0 ∀m ∈ J

TJ

(77)

where f
yb

is the yield strength of the braes. For the braes at the left hand side of the top joints,

the brae failure onstraints are reformulated in the same way by replaing iBRm by iBLm in equations

(76) and (77).

The resistane to hord shear failure for the top joints given by equations (36) and (37) does

not have to be heked for the enter top joint. The hord shear failure onstraints for the other

top joints are reformulated as:
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∣

∣

∣NiBRm

∣

∣

∣ 6
∑

j∈C
iCLm

(

f
y

A
v,iCLm j√

3 sin θiBRm

1

γ
M5

)

yiCLm j ∀m ∈ J
TJ

(78)

∣

∣

∣NiBLm

∣

∣

∣ 6
∑

j∈C
iCLm

(

f
y

A
v,iCLm j√

3 sin θiBLm

1

γ
M5

)

yiCLm j ∀m ∈ J
TJ

(79)

∣

∣

∣
NiCLm

∣

∣

∣
6

∑

j∈C
iCLm

















(

AiCLm j − A
v,iCLm j

)

f
y

+ A
v,iCLm jfy

√

√

√

√

√1−





γ
M5

√
3max

(

NiBLm
sin θiBLm

, NiBRm
sin θiBRm

)

f
y

A
v,iCL

g

j





2









1

γ
M5









yiCLm j

∀m ∈ J
TJ

∩ J
CL

(80)

For the bottom joints, only brae failure of the overlapping brae has to be heked as given

by equation (38). The design resistane for brae failure of the bottom joints ontains the e�etive

width b
e,ov

of the onnetion between the overlapping brae and the overlapped brae, whih has

to be alulated as the minimum of two expressions. The brae failure onstraints for the bottom

joints are therefore reformulated into two linear onstraints. The �rst onstraint is reformulated as:

∑

j∈C
iBRm

∣
∣
∣NiBRm

∣
∣
∣− f

yb

tiBRm j

(

biBRm j + 2hiBRm j − 4tiBRm j

)

biBRm j

yiBRm j −
∑

j∈C
iBLm

10f
yb

tiBLm j

b
iBLm j

t
iBLm j

yiBLm j 6 0 ∀m ∈ J
BJ

(81)

The seond onstraint is reformulated as:

∣
∣
∣NiBRm

∣
∣
∣−

∑

j∈C
iBRm

f
yb

tiBRm j

(

2biBRm j + 2hiBRm j − 4tiBRm j

)

yiBRm j 6 0 ∀m ∈ J
BJ

(82)

Results

The MILP of the N-truss given by equations (50) to (56), and (64) to (82) onsidering displae-

ment, member and joint onstraints onsist of 1143 design variables, inluding 1112 binary variables,

21 ontinuous nodal displaement variables and 10 ontinuous gap variables. The MILP onsists of

4751 onstraints, inluding 232 additional member and joint onstraints, and 36344 non-zeros. The

MILP is again solved by means of Gurobi 5.6 using the same omputer as for the previous ase.

The optimal solution is again found in the preproessing stage in less than 0.2 seonds. When the

MILP is solved without performing a presolve and without generating uts, the problem an no

longer be solved at the root node. In this ase, 1110 nodes are explored, and the omputation time

is 1.3 seonds. The results are given in table 8. The total weight of the N-truss is 2091.0 kg.

When the optimization problem is solved taking into aount the displaement onstraints,

member onstraints, and joint onstraints, the design variables also inlude the gaps in order to be

able to implement the joint geometry onstraints and to take into aount the eentriity moments.

The optimal gap values are given in table 9. The displaements are given in table 10. Also in this

ase the displaement onstraints are not ritial. The utilization ratio for eah onstraint is given

in table 11. In this ase all the utilization ratios - inluding those related to the joint onstraints -

are smaller than 1.

The weight of the optimized struture is about 15% higher than in the ase where joint on-

straints are not onsidered. This shows that taking into aount joint onstraints during the opti-

mization has a signi�ant impat on the optimized design.
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CONCLUSION

For a pratial truss design optimization problem, three types of onstraints have to be taken into

aount: displaement onstraints, member onstraints, and joint onstraints. Most optimization

methods do not take into aount the joint onstraints. As a onsequene, the joint onstraints must

be heked after optimization and the joints may need to be strengthened. This paper veri�es the

importane of joint onstraints in the optimal design of trusses and presents a method to aount

for joint onstraints during the optimization. The optimization problem is solved by reformulating

it as a mixed-integer linear program (MILP). The vetor of design variables onsists of (1) binary

deision variables whih selet a setion from a atalog for eah member, (2) nodal displaement

variables, and (3) joint gaps when joint onstraints are taken into aount. The MILP is solved

with the ut-and-branh method whih is implemented in the Gurobi optimizer. The advantage of

this approah is that the problem an be solved to global optimality.

This paper makes a omparison between the results obtained after optimization of a statially

determinate steel N-truss girder with and without joint onstraints. The results show that taking

into aount joint onstraints during the optimization leads to a result with a weight that is 15%

higher than in the ase where these onstraints are not onsidered. When only displaement and

member onstraints are taken into aount during the optimization, one should be very areful when

heking the joint onstraints and adapting the optimized design a posteriori in order to satisfy all

onstraints, sine the joint onstraints have a large impat on the total weight of the struture.

Taking into aount joint onstraints during the optimization therefore leads to a ost redution

at two levels: in terms of engineering ost (no manual postproessing step is needed) as well as

fabriation ost (joint strengthening is avoided).
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Tables

Table 1: HEA pro�le atalog

Index Name Index Name Index Name

1 HEA 100 9 HEA 260 17 HEA 500

2 HEA 120 10 HEA 280 18 HEA 550

3 HEA 140 11 HEA 300 19 HEA 600

4 HEA 160 12 HEA 320 20 HEA 650

5 HEA 180 13 HEA 340 21 HEA 700

6 HEA 200 14 HEA 360 22 HEA 800

7 HEA 220 15 HEA 400 23 HEA 900

8 HEA 240 16 HEA 450 24 HEA 1000

Table 2: UPN pro�le atalog

Index Name Index Name Index Name

1 UPN 50 7 UPN 160 13 UPN 280

2 UPN 65 8 UPN 180 14 UPN 300

3 UPN 80 9 UPN 200 15 UPN 320

4 UPN 100 10 UPN 220 16 UPN 350

5 UPN 120 11 UPN 240 17 UPN 380

6 UPN 140 12 UPN 260 18 UPN 400
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Table 3: square RHS pro�le atalog

Index Name Index Name Index Name

1 RHS 20x20x2 29 RHS 80x80x3 57 RHS 140x140x8

2 RHS 25x25x2 30 RHS 80x80x4 58 RHS 140x140x10

3 RHS 25x25x3 31 RHS 80x80x5 59 RHS 150x150x4

4 RHS 30x30x2 32 RHS 80x80x6 60 RHS 150x150x5

5 RHS 30x30x3 33 RHS 80x80x8 61 RHS 150x150x6

6 RHS 30x30x4 34 RHS 90x90x3 62 RHS 150x150x8

7 RHS 35x35x2 35 RHS 90x90x4 63 RHS 150x150x10

8 RHS 35x35x3 36 RHS 90x90x5 64 RHS 160x160x5

9 RHS 40x40x2 37 RHS 90x90x6 65 RHS 160x160x6

10 RHS 40x40x3 38 RHS 100x100x3 66 RHS 160x160x8

11 RHS 40x40x4 39 RHS 100x100x4 67 RHS 160x160x10

12 RHS 45x45x2 40 RHS 100x100x5 68 RHS 180x180x6

13 RHS 45x45x3 41 RHS 100x100x6 69 RHS 180x180x8

14 RHS 45x45x4 42 RHS 100x100x8 70 RHS 180x180x10

15 RHS 50x50x2 43 RHS 100x100x10 71 RHS 180x180x12.5

16 RHS 50x50x3 44 RHS 110x110x4 72 RHS 200x200x5

17 RHS 50x50x4 45 RHS 110x110x5 73 RHS 200x200x6

18 RHS 50x50x5 46 RHS 120x120x3 74 RHS 200x200x8

19 RHS 60x60x2 47 RHS 120x120x4 75 RHS 200x200x10

20 RHS 60x60x3 48 RHS 120x120x5 76 RHS 200x200x12.5

21 RHS 60x60x4 49 RHS 120x120x6 77 RHS 220x220x6

22 RHS 60x60x5 50 RHS 120x120x8 78 RHS 220x220x8

23 RHS 60x60x6 51 RHS 120x120x10 79 RHS 220x220x10

24 RHS 70x70x2 52 RHS 125x125x5 80 RHS 250x250x6

25 RHS 70x70x3 53 RHS 125x125x6 81 RHS 250x250x8

26 RHS 70x70x4 54 RHS 140x140x4 82 RHS 250x250x10

27 RHS 70x70x5 55 RHS 140x140x5

28 RHS 70x70x6 56 RHS 140x140x6
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Table 4: Setions of the N-truss optimized onsidering only displaement and member onstraints.

Member Pro�le A [mm

2
℄

Top hords HEA 180 4530

Bottom hords UPN 220 3740

Brae 11 RHS 110x110x5 2036

Brae 12 RHS 125x125x5 2336

Brae 13 RHS 120x120x4 1815

Brae 14 RHS 120x120x4 1815

Brae 15 RHS 100x100x4 1495

Brae 16 RHS 90x90x4 1335

Brae 17 RHS 100x100x3 1141

Brae 18 RHS 70x70x3 781

Brae 19 RHS 70x70x3 781

Brae 20 RHS 40x40x2 294

Brae 21 RHS 70x70x2 534

Weight: 1826.3 kg

Table 5: Nodal displaements of the N-truss optimized onsidering only displaement and member

onstraints.

Node number 1 2 3 4 5 6 7 8 9 10 11 12

Horizontal displaement [mm℄ 7.40 6.70 5.45 3.82 1.95 0 -6.60 -6.60 -5.75 -4.24 -2.26 0

Vertial displaement [mm℄ -1.73 -21.32 -39.27 -54.25 -65.52 -72.18 0 -19.58 -37.62 -52.71 -64.16 -70.86

Table 6: Gaps and eentriities introdued to ensure weldability of the joints of the N-truss opti-

mized onsidering only displaement and member onstraints.

Joint number Gaps [mm℄ Eentriity [mm℄

1 10.0 67.9

2 8.0 67.4

3 8.0 36.1

4 6.0 20.0

5 5.0 -17.2

8 -120.0 7.0

9 -100.0 13.5

10 -100.0 -7.8

11 -70.0 -6.9

12 -70.0 -28.1
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Table 7: Utilization ratios for the optimized design of the N-truss onsidering displaement and

member onstraints.

Member onstraints Joint onstraints

Member resistane ratio Stability ratio Joint resistane ratio HEA-RHS Joint resistane ratio UPN-RHS
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1 0.54 0.60 0.39

2 0.60 0.67 0.53

3 0.69 0.81 0.67

4 0.76 0.91 0.75

5 0.78 0.94

6 0.07

7 0.41

8 0.71

9 0.83

10 0.93

11 0.89 1.00 1.01 1.49 0.96

12 0.99 0.83 1.90 0.86

13 0.90 0.99 0.87 1.68 0.82 1.01

14 0.99 0.65 1.85 0.64

15 0.85 0.97 0.74 1.31 0.64 1.00

16 0.96 0.47 1.32 0.46

17 0.80 0.91 0.53 1.24 0.43 0.87

18 0.99 0.32 1.06 0.26

19 0.70 0.91 0.37 0.75 0.25 0.80

20 0.87 0.13 0.85 0.08

21 0.68 0.88 0.24 0.75 0.77

Table 8: Setions of the N-truss optimized onsidering displaement, member, and joint onstraints.

Member Pro�le A [mm

2
℄

Top hords HEA 200 5380

Bottom hords UPN 220 3740

Brae 11 RHS 100x100x8 2724

Brae 12 RHS 100x100x10 3257

Brae 13 RHS 100x100x8 2724

Brae 14 RHS 80x80x8 2084

Brae 15 RHS 90x90x5 1636

Brae 16 RHS 80x80x5 1436

Brae 17 RHS 80x80x4 1175

Brae 18 RHS 70x70x3 781

Brae 19 RHS 70x70x3 781

Brae 20 RHS 60x60x3 661

Brae 21 RHS 60x60x3 661

Weight: 2091.0 kg
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Table 9: Gaps and eentriities introdued to ensure weldability of the joints of the N-truss opti-

mized onsidering displaement, member, and joint onstraints.

Joint number Gap [mm℄ Eentriity [mm℄

1 18.0 43.7

2 16.0 27.6

3 10.0 16.6

4 7.0 1.5

5 6.0 -11.6

8 -100.0 -0.7

9 -90.0 -9.8

10 -80.0 -4.8

11 -70.0 -6.9

12 -60.0 -9.0

Table 10: Nodal displaements of the N-truss optimized onsidering displaement, member, and

joint onstraints.

Node number 1 2 3 4 5 6 7 8 9 10 11 12

Horizontal displaement [mm℄ 6.23 5.64 4.59 3.21 1.64 0 -6.60 -6.60 -5.75 -4.24 -2.26 0

Vertial displaement [mm℄ -1.29 -18.05 -34.30 -48.11 -58.77 -62.99 0 -16.88 -32.79 -46.61 -57.42 -61.92
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Table 11: Utilization ratio of the optimized result taking into aount displaement, member, and

joint onstraints.

Member onstraints Joint onstraints

Member resistane ratio Stability ratio Joint resistane ratio HEA-RHS Joint resistane ratio UPN-RHS
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1 0.36 0.39 0.30

2 0.45 0.51 0.44

3 0.56 0.65 0.56

4 0.63 0.73 0.63

5 0.66 0.76

6 0.01

7 0.35

8 0.68

9 0.82

10 0.93

11 0.67 0.78 0.90 0.86 0.91

12 0.71 0.69 0.87 0.82

13 0.60 0.70 0.81 0.77 0.80 0.56

14 0.86 0.60 0.85 0.62

15 0.78 0.92 0.66 0.96 0.55 0.75

16 0.90 0.43 0.97 0.39

17 0.77 0.96 0.49 0.86 0.36 0.79

18 0.99 0.27 0.97 0.22

19 0.70 0.91 0.31 0.68 0.21 0.80

20 0.39 0.10 0.38 0.07

21 0.55 0.79 0.22 0.53 0.61
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Figure 1: N-truss girder with HEA top hord setions, UPN bottom hord setions, and RHS braes

subjeted to vertial point loads F and F/2.

(a) Model 1

(b) Model 2

Figure 2: These �gures show the two di�erent analysis models. Model 1 is a statially determinate

truss model where all members are pin onneted. Model 2 is a statially indeterminate truss model

where the hords are ontinuous and the braes are pin onneted with in�nitely sti� members.

(a) (b)

Figure 3: Joints: (a) HEA-RHS joint, (b) UPN-RHS joint.

Figure 4: Chord web failure.
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Figure 5: Brae failure.

Figure 6: Chord shear failure.

Figure 7: Brae failure.

Figure 8: Symmetri half of the N-type truss girder with a span l, height h and vertial point loads

F and F/2.
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