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Abstra
t

Realisti
 truss design optimization problems are often governed by pra
ti
al 
onstraints. Be
ause

of the 
omplexity of these 
onstraints, usually only member 
onstraints are taken into a

ount during

the optimization, and joint 
onstraints are a

ounted for in a manual postpro
essing step. This paper

proposes a method to a

ount for joint 
onstraints in the global dis
rete size optimization of a steel

truss stru
ture. The design of an N-type truss girder is 
onsidered �rst without and then with the

joint 
onstraints spe
i�ed in Euro
ode 3. In order to guarantee global optimality in both 
ases, the

optimization problem is reformulated as a mixed-integer linear program. A stati
ally determinate

analysis model is adopted so as to ensure that all joint 
onstraints 
an be reformulated as linear

fun
tions. If the joint 
onstraints are not 
onsidered in the optimization, a design is obtained where

the joints need additional strengthening. This 
an be done by manually sele
ting heavier se
tions,

whi
h often leads to a suboptimal result, or by strengthening the joints (e.g. by means of sti�ening

plates), whi
h has a serious impa
t on the fabri
ation 
ost. If the joint 
onstraints are 
onsidered

in the optimization, they are automati
ally satis�ed by the �nal design. The weight of this design

is about 15% higher than in the �rst 
ase. This shows that the joint 
onstraints have a signi�
ant

impa
t on the optimal design. If the joint 
onstraints are a

ounted for in a suboptimal way (e.g. by

manually sele
ting heavier se
tions), the additional weight may be even higher. Taking into a

ount

joint 
onstraints in the optimization leads to a 
ost redu
tion at two levels: in terms of engineering


ost (no manual postpro
essing step is needed) as well as fabri
ation 
ost (using unne
essarily heavy

se
tions as well as joint strengthening are avoided).

Keywords: Truss design, dis
rete design optimization, joint 
onstraints, mixed-integer linear pro-

gram reformulation.

INTRODUCTION

Numeri
al optimization methods have a great potential to support stru
tural engineers in �nding

the optimal design, and so to keep the 
onsumption of natural resour
es of the building industry to

a minimum. However, pra
ti
ing stru
tural engineers appear to be relu
tant to adopt optimization

as a daily design tool, even for relatively simple but tedious tasks su
h as the sizing of a steel

truss girder. One of the reasons is that real-world design problems are often governed by a large

number of 
onstraints and pra
ti
al issues. For a steel truss girder with welded joints, the usual

displa
ement, member for
e, and bu
kling 
onstraints as formulated in Euro
ode 3 are imposed. In

addition, the following pra
ti
al 
onstraints must be satis�ed: the member se
tions must be 
hosen

from a given se
tion 
atalog, and the joints must obey 
ertain geometri
al rules in order to ensure

stru
tural integrity and weldability, as well as me
hani
al rules in order to avoid 
hord web failure,


hord shear failure, and bra
e failure. Most existing design optimization algorithms 
annot take into

a

ount all these pra
ti
al 
onstraints. As a 
onsequen
e, a manual postpro
essing step is required,

where the optimized design is modi�ed to satisfy the 
onstraints whi
h are not 
onsidered during

the optimization. This operation is 
umbersome, it 
osts pre
ious engineering time, and it may lead

to a suboptimal design or a design that no longer ful�lls the stress and displa
ement 
onstraints.
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A traditional approa
h to optimal truss design is to �nd a Fully Stressed Design (FSD): the ele-

ment se
tions are iteratively updated until the stress in ea
h element equals the maximum allowable

value, whi
h may lead to an optimal stru
tural weight (Razani, 1965; Mueller et al., 2002). In its

original formulation, the FSD method is only useful for stress 
onstrained optimization problems.

A modi�ed Fully Utilized Design method (FUD) is proposed by Patnaik et al. (Patnaik et al., 1998)

to take into a

ount both stress and displa
ement 
onstraints. Only in 
ertain 
ases the result of

the FSD method is optimal (Patnaik and Hopkins, 1998). However, for a pra
ti
al steel truss design

problem the joints remain to be designed manually. Dependent on the se
tions 
hosen for the bra
es

and the 
hords, some of the joints will need to be strengthened by means of sti�ening plates or by

lo
ally using a heavier se
tion (Wardenier et al., 1992). Su
h interventions have little in�uen
e on

the weight of the stru
ture, but require additional welding as well as testing of the welds, and this

has a signi�
ant impa
t on the fabri
ation 
ost.

An additional drawba
k of the FSD method is the fa
t that it only 
an handle 
ontinuous

variables. For a pra
ti
al steel truss design problem the pro�le of the members has to be 
hosen

from a steel 
atalog, however. The optimization problem is therefore dis
rete. Several algorithms

for dis
rete optimization have been proposed in the literature (Thanedar and Vanderplaats, 1995).

The most popular algorithms that 
an handle dis
rete variables are evolutionary algorithms, su
h

as simulated annealing (Balling, 1991), geneti
 algorithms (Camp et al., 1998; Rajeev and Krish-

namoorthy, 1992), ant 
olony optimization (Camp et al., 2005), �re�y algorithm (Gandomi et al.,

2011), arti�
ial bee 
olony algorithm (Sonmez, 2011), and parti
le swarm optimization (Venter

and Sobiesz
zanski-Sobieski, 2003). These methods explore the design spa
e in a random fashion,

thereby using information 
olle
ted from previous analyses to gradually move towards a better per-

forming design. Evolutionary algorithms owe their popularity to the fa
t that they are easy to

understand and to implement. They 
an 
ope with dis
rete parameters and are able to take into

a

ount 
omplex 
onstraints. However, evolutionary algorithms 
onverge slowly, involve algorithmi


parameters that require 
areful tuning, and global optimality 
annot be guaranteed sin
e no 
on
lu-

sive 
onvergen
e 
he
ks 
an be made. In order to properly assess the in�uen
e of joint 
onstraints

on the optimal design of truss stru
tures, it is important that global optimality 
an be guaranteed.

Evolutionary algorithms are therefore not suitable.

The method used in this paper is to reformulate the optimization problem as a Mixed-Integer

Linear Program (MILP), whi
h is solved with the bran
h-and-bound method in order to a
hieve

global optimality. This MILP is obtained by means of binary de
ision variables and the Simultaneous

ANalysis and Design (SAND) approa
h: the state variables (the stru
tural nodal displa
ements and

the member end for
es) are 
onsidered as additional design variables and the state equations (the

equilibrium equations) are enfor
ed by means of additional equality 
onstraints. This optimization

method has originally been proposed by Grossmann et al. (1992) for dis
rete size optimization

problems and is extended by Rasmussen and Stolpe (2008) for truss topology design problems.

Mela and Koski (2013) in
luded all member 
onstraints spe
i�ed by the Euro
ode in the truss

topology design problem. In this paper, the fo
us is restri
ted to size optimization, but all relevant


onstraints pre
ribed by the Euro
ode (European Committee for Standardization, 2005a,b) are

taken into a

ount, in
luding both the member 
onstraints and the joint 
onstraints.

In order to ensure that all joint resistan
e 
onstraints 
an be reformulated as linear 
onstraints

in terms of the design variables, the s
ope of this paper is limited to stati
ally determinate analysis

models. Sin
e the member for
es of stati
ally determinate models do not depend on the se
tions and

remain 
onstant in the optimization, they do not have to be 
onsidered as additional design variables.

The joint 
onstraints - some of whi
h would be quadrati
 if the member for
es are 
onsidered as

design variables - 
an then be reformulated as mixed-integer linear 
onstraints. Stati
 determina
y

implies that the stru
ture is stati
ally determined both internally and externally. Internal stati
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determina
y is not a strong assumption as most trusses 
an be modeled with a su�
iently high

a

ura
y assuming pinned 
onne
tions. External stati
 determina
y imposes a stronger limit on

the appli
ability of the method as it only holds for simply supported trusses. It does not hold for


ontinuous trusses or trusses that are part of a portal frame.

The example problem 
onsidered in this paper is the dis
rete size optimization of an N-type

truss girder with welded joints under stati
 nodal loading as shown in �gure 1. The top 
hord

members are steel H-se
tions (HEA), the bottom 
hord members are steel 
hannel-se
tions (UPN),

and the bra
es are steel Re
tangular Hollow Se
tions (RHS). This N-type truss girder is widely used

in pra
ti
e.

The paper is organized as follows. In se
tion 2, a summary of all governing design requirements

for truss stru
tures is given: the displa
ement, member for
e and bu
kling 
onstraints as formulated

in part 1-1 of Euro
ode 3 (European Committee for Standardization, 2005a) as well as the joint

resistan
e 
onstraints as formulated in part 1-8 of Euro
ode 3 (European Committee for Standard-

ization, 2005b). In se
tion 3, the mixed-integer linear formulation for stati
ally determinate truss

stru
tures is introdu
ed, and the example truss is optimized 
onsidering only displa
ement and

member 
onstraints. In se
tion 4, the joint 
onstraints are also taken into a

ount. In se
tion 5,

the results are dis
ussed. The optimal design without joint 
onstraints and the optimal design with

joint 
onstraints are 
ompared.

DESIGN OF TRUSS STRUCTURES WITH WELDED JOINTS

This se
tion gives an overview of the design pro
edure for the example truss a

ording to the

European building 
odes.

First, a stru
tural analysis is performed to obtain the member for
es and the nodal displa
e-

ments. Se
ond, the imposed 
onstraints are 
he
ked. In the servi
eability limit state, the displa
e-

ment 
onstraints are veri�ed. In the ultimate limit state, there are two types of 
apa
ity 
onstraints:

member 
onstraints and joint 
onstraints. The member 
onstraints are spe
i�ed in part 1-1 of Eu-

ro
ode 3 and 
an be subdivided in member resistan
e 
onstraints (to avoid yielding) and member

stability 
onstraints (to avoid bu
kling). The joint 
onstraints are spe
i�ed in part 1-8 of Euro
ode

3 and 
an be subdivided in joint geometry 
onstraints and joint resistan
e 
onstraints. In addition,

the global stability of the stru
ture has to be 
he
ked, but in this paper it is assumed that the global

stability is guaranteed by the se
ondary stru
ture or by means of extra sti�eners.

Stru
tural models

Two di�erent models 
an be used for the stru
tural analysis of trusses. In the �rst model, all

members are pin 
onne
ted as shown in �gure 2a. As a 
onsequen
e, only normal for
es o

ur. This

model provides a good approximation for trusses with slender members and where the 
enterlines

of joined members interse
t ea
h other in a single point (Wardenier et al., 2008). Unfortunately, the

latter is often not true for reasons of weldability and 
utting. As a 
onsequen
e, the interse
tion of

the 
enterlines of the bra
es is lo
ated at a 
ertain distan
e from the 
enterline of the 
hords. These

nodal e

entri
ities 
ause bending moments in the 
hords, whi
h are 
alled e

entri
ity moments.

The e

entri
ity moments have to be taken into a

ount in the 
hord member design. As proposed

in the CIDECT design guide (Wardenier et al., 2008), they are a

ounted for in an approximate

way by distributing them equally over both 
hord members on either side of the joint.

In the se
ond model, the 
hords are 
ontinuous and the bra
es are pin 
onne
ted with in�nitely

sti� members at a distan
e of the e

entri
ity to the 
hords as shown in �gure 2b. This model is

internally stati
ally indeterminate.

In order to ensure that all joint resistan
e 
onstraints 
an be taken into a

ount in the MILP

formulation, only stati
ally determinate models are 
onsidered. Therefore the �rst model is adopted

in this paper.
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Displa
ement 
onstraints

A

ording to Euro
ode 0, the verti
al displa
ement uz of roof stru
tures should be limited as

follows:

|uz| 6
l

200
(1)

where l is the span of the stru
ture.

Member resistan
e 
onstraints

The 
apa
ities of the members are 
he
ked a

ording to part 1-1 of Euro
ode 3. The resistan
e

of the 
ross-se
tions of the bra
es is 
he
ked as follows:

|N | γ
M0

Af
y

6 1 (2)

where N is the design value of the normal for
e, A is the 
ross-se
tion area, f
y

is the yield strength

of the material, and γ
M0

is the partial fa
tor for resistan
e of 
ross-se
tions, whi
h is equal to 1.

The resistan
e of the 
ross-se
tions of the 
hords is 
he
ked as follows:

|N | γ
M0

Af
y

+
|M | γ

M0

W
pl

f
y

6 1 (3)

where M is the design value of the bending moment and W
pl

is the plasti
 se
tion modulus.

Stability 
onstraints

The bu
kling resistan
e of members in 
ompression and/or bending should be veri�ed. Depend-

ing on the o

urring for
es - 
ompression, bending, or both - and the se
tion type, di�erent types

of bu
kling should be 
he
ked. For ea
h bu
kling mode, a di�erent redu
tion fa
tor χ for the design

resistan
e is 
al
ulated. All redu
tion fa
tors are determined from the relevant bu
kling 
urve whi
h

is sele
ted in agreement with the type of 
ross-se
tion. The bu
kling 
urves depend on the se
tion,

the bu
kling length, and the yield strength of the material.

The �exural bu
kling resistan
e is 
he
ked as follows:

−χyAfy
γ
M1

6 N (4)

−χzAfy
γ
M1

6 N (5)

where γ
M1

is the partial fa
tor for resistan
e of members to instability, whi
h is equal to 1, and χy

and χz are the redu
tion fa
tors due to in-plane �exural bu
kling and out-of-plane �exural bu
kling.

For members in 
ompression with open 
ross-se
tions su
h as HEA-se
tions, the torsional and

the torsional-�exural bu
kling resistan
e have to be 
he
ked as well:

−χ
T

Af
y

γ
M1

6 N (6)

−χ
TF

Af
y

γ
M1

6 N (7)

where χ
T

and χ
TF

are the redu
tion fa
tors due to torsional bu
kling and torsional-�exural bu
kling.
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For members bent in the plane of highest �exural rigidity the lateral-torsional bu
kling resistan
e

should also be 
he
ked. For the HEA top 
hord members in bending and axial 
ompression, the

bu
kling resistan
e is 
he
ked as follows (assuming 
lass 1 or 
lass 2 
ross-se
tions):

|N | γ
M1

χyfyA
+ kyy

|M | γ
M1

χ
LT

f
y

W
pl,y

6 1 (8)

|N | γ
M1

χzfyA
+ kzy

|M | γ
M1

χ
LT

f
y

W
pl,y

6 1 (9)

where χ
LT

is the redu
tion fa
tor due to lateral-torsional bu
kling and kyy and kzy are intera
tion

fa
tors whi
h 
an be determined a

ording to one of the methods des
ribed in annex A or annex B

of Euro
ode 3. In this paper, the method des
ribed in annex B is used.

Joint geometry 
onstraints

Ea
h joint has to satisfy geometri
 
onstraints that either follow from pra
ti
al 
onsiderations

su
h as weldability or are imposed to ensure that the design remains within the range of validity

of the joint 
apa
ity 
onstraints dis
ussed in the next subse
tion. When there is a gap between the

bra
es that are 
onne
ted to the 
hord, the joint is 
alled a gap joint. When the bra
es overlap

ea
h other, the joint is 
alled an overlap joint. To limit the e

entri
ity moments, the 
onne
tions

of the RHS bra
es and HEA top 
hords are 
hosen to be gap joints and the 
onne
tions of the RHS

bra
es and UPN bottom 
hords are 
hosen to be overlap joints. The two types of joints applied in

the N-truss example as well as the notations used for all member dimensions are shown in �gure

3. The notation used in the Euro
ode is adopted: properties of 
hord members are denoted by a

subs
ript 0 and properties of bra
es are denoted by the subs
ripts i and j. For overlap joints, it

is important to distinguish between the overlapping and the overlapped bra
e; here the subs
ript i

refers to the overlapping bra
e and the subs
ript j to the overlapped bra
e. For the gap joints the

gap g has a positive value. In order to ensure weldability, the gap of the joint should be at least

as large as the sum of the thi
knesses t
i

and t
j

of the two bra
es. For the overlap joints the gap g
has a negative value. The overlap λ

ov

is 
hosen to be 100% for pra
ti
al 
onsiderations: the end of

the overlapping bra
e only has to be 
ut in one angle. As a 
onsequen
e the overlap g should be at

least as large as the width b
i

of the overlapping bra
e.

The geometry 
onstraints spe
i�ed in the Euro
ode for the top joints read as:
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d
w

6 400mm (10)

h
i

t
i

6 35 (11)

h
j

t
j

6 35 (12)

b
i

t
i

6 35 (13)

b
j

t
j

6 35 (14)

h
i

b
i

= 1 (square se
tion) (15)

h
j

b
j

= 1 (square se
tion) (16)

2.5mm 6 t
i

6 25mm (17)

2.5mm 6 t
j

6 25mm (18)

g > t
i

+ t
j

(19)

The geometry 
onstraints for the bottom joints read as:

b0 6 400mm (20)

h
i

t
i

6 35 (21)

h
j

t
j

6 35 (22)

b
i

t
i

6 35 (23)

b
j

t
j

6 35 (24)

0.5 6
h
i

b
i

6 2 (25)

0.5 6
h
j

b
j

6 2 (26)

2.5mm 6 t
i

6 25mm (27)

2.5mm 6 t
j

6 25mm (28)

b
i

b0
> 0.25 (29)

b
i

b
j

> 0.75 (30)

g = −b
i

(31)

The 
onstraint given by equation (31) imposes an overlap of 100% for pra
ti
al 
onsiderations,

whi
h is stri
ter than the 
onstraint spe
i�ed in the Euro
ode.

In addition, 
lass 2 
ross-se
tions must be used for the 
hords and 
lass 1 
ross-se
tions for the

bra
es.
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Joint resistan
e 
onstraints

For 
onne
tions between hollow se
tions and open se
tions the following types of failure 
an

o

ur: 
hord fa
e failure, 
hord web failure, 
hord shear failure, pun
hing shear failure, bra
e

failure, and lo
al bu
kling failure. A

ording to part 1-8 of Euro
ode 3, only 
ertain failure modes

must be 
onsidered for ea
h type of joint. For HEA-RHS gap joints the following 
riteria should be


he
ked: 
hord web failure, bra
e failure, and 
hord shear failure. For UPN-RHS overlap joints with

an overlap of minimum 80% only bra
e failure of the overlapping bra
e member must be 
he
ked.

In order to avoid 
hord web failure in the HEA-RHS joints (�gure 4), the normal for
e N
i

in

bra
e i is limited as follows:

|N
i

| 6 f
y


t
w

b
w

sin θ
i

1

γ
M5

(32)

where f
y


is the yield strength of the 
hord, γ
M5 is the partial safety fa
tor for the resistan
e of

joints in hollow se
tion latti
e girder, whi
h is equal to 1, and b
w

is the e�e
tive width for the web

of the 
hord, whi
h is obtained as:

b
w

= min

(
h
i

sin θ
i

+ 5 (t
f

+ r0) , 2ti + 10 (t
f

+ r0)

)

(33)

The normal for
e N
j

in bra
e j is limited in the same way.

In order to avoid bra
e failure in the HEA-RHS joints (�gure 5), the normal for
e N
i

in bra
e i

is limited as follows:

|N
i

| 6 2f
yb

t
i

p
e�

1

γ
M5

(34)

where f
yb

is the yield strength of the bra
e, and p
e�

is the e�e
tive length of the 
onta
t area of

the bra
e member onto the fa
e of the 
hord, whi
h is 
al
ulated as:

p
e�

= min

(

t
w

+ 2r0 + 7t
f

f
y


f
yb

, b
i

+ h
i

− 2t
i

)

(35)

The normal for
e N
j

in bra
e j is limited in the same way.

The last joint resistan
e 
he
k for the HEA-RHS joints is related to 
hord shear failure (�gure

6). This failure mode is avoided by limiting the normal for
e N
i

in bra
e i as follows:

|N
i

| 6 f
y


A
v0√

3 sin θ
i

1

γ
M5

(36)

where the shear area A
v0 = A0 − (2− α) b0tf + (t

w

+ 2r) t
f

, and α =
(
1 + 4g2/3t2

f

)− 1

2
for RHS

se
tions. The normal for
e N
j

in bra
e j is limited in the same way. In addition, the normal for
e

of the 
hord N0 is limited as follows:

|N0| 6



(A0 −A
v0) fy
 +A

v0fy0

√

1−
(

V

V
pl,Rd

)2



1

γ
M5

(37)

where the design shear for
e V = max (|N
i

| sin θ
i

, |N
j

| sin θ
j

) and the plasti
 design shear resistan
e

V
pl,Rd

= f
y0Av0/γM5

√
3.

For UPN-RHS overlap joints with an overlap of at least 80%, only bra
e failure has to be 
he
ked

(�gure 7). This failure mode is avoided by limiting the normal for
e in the overlapping bra
e as

follows:
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|N
i

| 6 f
yb

t
i

(b
i

+ b
e,ov

+ 2h
i

− 4t
i

)
1

γ
M5

(38)

where the e�e
tive width b
e,ov

of the 
onne
tion between the overlapping bra
e and the overlapped

bra
e is 
al
ulated as:

b
e,ov

= min

(

10t2
j

b
j

t
i

b
i

, b
i

)

OPTIMAL DESIGN WITHOUT JOINT CONSTRAINTS

Problem des
ription

In this se
tion, the N-type truss girder des
ribed in the introdu
tion and shown in �gure 8 is

optimized taking into a

ount all member 
onstraints. The obje
tive of the optimization problem

is to minimize the weight of the truss. The span is l = 20 m, the height is h = 2 m, the length

of the 
hords and verti
al bra
es is L = 2 m, the angle of the verti
al bra
es is θ
i

= 90°, and the

angle of the diagonal bra
es is θ
j

= 45°. The value of the verti
al load in the ultimate limit state is

F = 100 kN and is used to 
he
k the member and joint 
onstraints, the value of the verti
al load in

the servi
eability limit state is F = 74.07kN and is used to 
he
k the displa
ements. The maximum

allowable displa
ement u
max

is l/200 = 0.1m. All se
tions are steel se
tions with Young's modulus

E = 210GPa, and density ρ = 7850 kg/m3
.

The top 
hord se
tions are 
hosen from a 
atalog with twenty-four HEA-se
tions given in table

1 (Ar
elorMittal, 2015). The bottom 
hord se
tions are 
hosen from a 
atalog with eighteen UPN-

se
tions given in table 2 (Ar
elorMittal, 2015). The se
tions of the bra
es are 
hosen from a 
atalog

with eighty-two 
old formed square RHS-se
tions given in table 3 (van Eldik, 2006). All top 
hord

members must have the same se
tion, and all bottom 
hords members must have the same se
tion.

For the 
hords steel grade S355 is 
hosen and for the bra
es steel grade S275 is 
hosen. For the

analysis of the truss, the model shown in �gure 2a is adopted.

Obje
tive fun
tion and 
ompatibility 
onstraints

In order to solve the dis
rete size optimization problem to global optimality, it is reformulated as

a Mixed-Integer Linear Program (MILP). This approa
h was originally proposed to solve dis
rete

size optimization problems (Grossmann et al., 1992) and was extended later for truss topology

optimization problems (Stolpe and Svanberg, 2003; Stolpe, 2007; Rasmussen and Stolpe, 2008;

Mela and Koski, 2013; Mela, 2013).

In order to obtain an MILP, the Simultaneous ANalysis and Design approa
h (SAND) is adopted.

The design variables in the optimization problem are 
omplemented with a set of 
ontinuous state

variables, in
luding the nodal displa
ements and normal for
es, while the equilibrium equations are

in
orporated as equality 
onstraints (Haftka, 1985; Arora and Wang, 2005), so no expli
it stru
tural

analysis is made.

The analysis model adopted in this paper is stati
ally determinate. The member for
es are

independent of the 
hosen se
tions and 
an be 
al
ulated a priori. As a 
onsequen
e, the normal

for
es are not adopted as design variables and the equilibrium 
onstraints are dropped. The original

MILP proposed for dis
rete size optimization is thus simpli�ed.

The design variables in
lude a ve
tor with binary de
ision variables y and a ve
tor with 
ontin-

uous nodal displa
ement variables u. The binary variables sele
t a pro�le from the steel 
atalog.

For ea
h member i, se
tion j is sele
ted from the set of available se
tions when the 
orresponding

variable yij = 1. Se
tion j is not sele
ted for member i when the 
orresponding variable yij = 0.
Although the number of optimization variables and 
onstraints be
omes large in this approa
h, the
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relaxed or 
ontinuous MILP is 
onvex and 
an be e�
iently solved to global optimality with existing

solvers based on the bran
h-and-bound method.

In this subse
tion, the obje
tive fun
tion and the 
ompatibility 
onstraints are formulated. In

the following subse
tions, the Euro
ode provisions regarding the maximum displa
ements and the

strength of the members are added to the problem as inequality 
onstraints in order to 
omplete the

MILP. In order to formulate the MILP for the optimization of the N-type truss, the members and


atalogs of pro�les are subdivided in di�erent sets: the set of all members M, all 
hord members

M
C

, top 
hord members M
TC

, bottom 
hord members M
BC

and bra
es M
B

, and the 
atalog of

pro�les Ci for member i. The optimization problem (without Euro
ode 
onstraints) is given by the

following equations:

min

y∈Bn
b ,u∈Rn

dof

ρ
∑

i∈M

∑

j∈Ci

LiAijyij (39)

s.t. 1 =
∑

j∈Ci

yij ∀ i ∈ M (40)

∑

j∈Ci

Ai1
TC

jyi1
TC

j =
∑

j∈Ci

Aijyij ∀ i ∈ M
TC

(41)

∑

j∈Ci

Ai1
BC

jyi1
BC

j =
∑

j∈Ci

Aijyij ∀ i ∈ M
BC

(42)

E

Li

Aijb
T

i u−Ni 6 (1− yij)N ij ∀ i ∈ M, ∀ j ∈ Ci (43)

E

Li

Aijb
T

i u−Ni > (1− yij)N ij ∀ i ∈ M, ∀ j ∈ Ci (44)

The obje
tive is to minimize the weight of the truss stru
ture as expressed by equation (39). In

this equation ρ is the density of the material whi
h is assumed to be the same for all members, Li

is the length of member i, and Aij is the se
tion area of se
tion j for member i. The 
onstraint in
equation (40) ensures that a single se
tion j is 
hosen from the 
atalog Ci for member i. Equations
(41) and (42) ensure that all top 
hord members and all bottom 
hord members have the same

se
tion, where i1
TC

refers to the �rst top 
hord member and i1
BC

refers to the �rst bottom 
hord

member. Equations (43) and (44) are 
ompatibility 
onstraints used to 
al
ulate the displa
ements

u. In these equations, E is the Young's modulus of the material, bi is the stati
s ve
tor of member

i (Rasmussen and Stolpe, 2008) that a

ounts for the lo
ation and orientation of the members, Ni

is the normal for
e in member i, and N ij and N ij are arti�
ial upper and lower bounds introdu
ed

to ensure feasibility of the optimization problem when se
tion j is not sele
ted for element i and
yij = 0. In this example, the values of the upper and lower bounds of the 
ompatibility 
onstraints

in equations (43) and (44) are 
al
ulated based on the minimum and maximum allowed displa
ement

(Rasmussen and Stolpe, 2008).

The total number of members in the stru
ture is denoted by n
m

, the total number of available

se
tions for ea
h member i is denoted by n
s,i, the total number of degrees of freedom is denoted by

n
dof

, and the total number of joints is denoted by n
g

. As a 
onsequen
e, the total number of binary

de
ision variables is n
b

=
∑n

m

i=1 ns,i.

Displa
ement 
onstraints

The displa
ement 
onstraints are given by equation (45). Here u = −0.1 m and u = 0.1 m are

the minimum and maximum allowed displa
ement, respe
tively.

9



u 6 u 6 u (45)

Member 
onstraints

In this subse
tion, the member resistan
e and stability 
onstraints des
ribed in the previous

se
tion are in
orporated in the MILP. The joint 
onstraints are not 
onsidered yet; it is therefore

assumed that the members 
an be 
onne
ted in su
h a way that e

entri
ities are avoided. No

e

entri
ity moments are therefore taken into a

ount in the optimization.

The stress 
onstraints given by equation (2) and the in-plane and out-of-plane �exural bu
k-

ling, torsional bu
kling and torsional-�exural bu
kling 
onstraints given by equations (4) to (7) are

reformulated as:

Niyij 6 f
y


Aijyij ∀ i ∈ M
C

, ∀ j ∈ Ci (46)

Niyij > −min (1, χy , χz, χT, χTF) fy
Aijyij ∀ i ∈ M
C

, ∀ j ∈ Ci (47)

Niyij 6 f
yb

Aijyij ∀ i ∈ M
B

, ∀ j ∈ Ci (48)

Niyij > −min (1, χy , χz) fybAijyij ∀ i ∈ M
B

, ∀ j ∈ Ci (49)

where f
y


and f
yb

are the yield strength of the 
hords and bra
es, respe
tively. Following the

re
ommendations in the CIDECT guide (Wardenier et al., 1992), the bu
kling lengths are assumed

as follows: for the 
hords L

r,y

= L

r,z

= 0.9Li, and for the bra
es L

r,y

= L

r,z

= 0.75Li. The


onstraints in equations (46) to (49) are linear equations in terms of the binary de
ision variables

yij .

Results

The MILP given by equations (39) to (49) 
onsists of 1133 design variables, in
luding 1112

binary design variables and 21 
ontinuous design variables, 4519 
onstraints, and 11698 non-zeros.

The MILP is solved by means of Gurobi 5.6 (Gurobi Optimization In
., 2013), whi
h uses the 
ut-

and-bran
h method, on a 
omputer with a 4 threads Intel Core(TM)2 Quad CPU Q9550 pro
essor

and 4.0 GB RAM. The results are given in table 4. The total weight of the N-truss is 1826.3 kg. The

nodal displa
ements are given in table 5. It is observed that the displa
ement 
onstraints are not


riti
al. Gurobi is 
apable of solving this problem in the prepro
essing stage. Without performing a

presolve or generating 
uts, the problem is solved also at the root node. The 
omputation time is less

than 0.2 se
onds in both 
ases. This is probably due to the fa
t that the displa
ement 
onstraints

do not be
ome a
tive. Without displa
ement 
onstraints, the problem be
omes trivial due to the

stati
 determina
y of the truss. Therefore, it is possible to verify the solution: the minimum se
tion

areas that are required a

ording to the member strength and stability 
onstraints 
an be 
al
ulated

manually. This leads to the same results.

It is now veri�ed to what extent the optimized design satis�es the 
onstraints that are not

expli
itly 
onsidered in the MILP. In order to ensure weldability of the joints, minimal e

entri
ities

are introdu
ed as spe
i�ed in table 6. The gaps of the top joints are 
hosen to be equal to the

sum of the thi
kness of the two bra
es of the joint. The gaps of the bottom joints are 
hosen so

that the overlap is 100% in order to avoid di�
ult 
utting of the overlapping bra
e. Table 7 gives

the utilization ratios for all the 
onstraints that must be 
he
ked a

ording to part 1-1 and part

1-8 of Euro
ode 3 as des
ribed in previous se
tion. These utilization ratios are 
al
ulated as the

ratio between the a
tual value and the maximum allowed value. Due to the introdu
tion of nodal

e

entri
ities after the optimization, the stability ratios are not guaranteed to be smaller than 1.

However, as 
an be observed in table 7, the e�e
t of the e

entri
ities is limited and all stability


onstraints remain satis�ed. On the other hand, several utilization ratios of the joint 
onstraints
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ex
eed the maximum allowed value of 1, whi
h are indi
ated in bold in table 7. As a 
onsequen
e,

the joints have to be strengthened in order to satisfy all 
onstraints. This 
an be done by either

sele
ting di�erent pro�les, or by lo
ally strengthening the joints e.g. by means of sti�ening plates.

The �rst approa
h would lead to a suboptimal result, as it is very di�
ult to determine whi
h

members should be made heavier and whi
h se
tions should be sele
ted. The se
ond approa
h

would only have a limited impa
t on the weight of the truss, but the fabri
ation 
osts would be

mu
h higher.

OPTIMAL DESIGN WITH JOINT CONSTRAINTS

Problem des
ription

In this se
tion, the displa
ement 
onstraints, the member 
onstraints, and the joint 
onstraints

are 
onsidered in the optimization. Due to the introdu
tion of the joint geometry 
onstraints, trusses

with zero e

entri
ities be
ome infeasible - non-zero e

entri
ities are therefore allowed. In order to

ensure that the impa
t of the e

entri
ities on the weight of the truss remains minimal, the gap sizes

(whi
h 
ontrol the e

entri
ities) are 
onsidered as additional design variables in the optimization

problem. As a 
onsequen
e, the design variables now 
onsist of the nodal displa
ements u ∈ R
n
dof

,

the binary de
ision variables y ∈ B
n
b

, and the gaps of the joints g ∈ R
n
g

, where n
g

is the number

of joints.

Obje
tive fun
tion and 
ompatibility 
onstraints

In this subse
tion, the obje
tive fun
tion and the 
ompatibility 
onstraints are formulated. In the

following subse
tions, the Euro
ode provisions regarding the maximum displa
ements, the strength

of the members, and the strength of the joints are added to the problem as inequality 
onstraints

in order to 
omplete the MILP. In order to formulate the MILP for the optimization of the N-type

truss, the members and 
atalogs of pro�les are subdivided in di�erent sets: the set of all members

M, all 
hord members M
C

, top 
hord members M
TC

, bottom 
hord members M
BC

and bra
es

M
B

, and the 
atalog of pro�les Ci for member i. The joints are subdivided into di�erent sets: the

set of all joints is denoted by J , the set of all joints with a 
hord on the left-hand side is denoted

by J
CL

, the set of all joints with a 
hord on the right-hand side is denoted by J
CR

, the set of all

top joints is denoted by J
TJ

, and the set of all bottom joints is denoted by J
BJ

. The optimization

problem (without Euro
ode 
onstraints) is given by the following equations:

min

y∈Bn
b ,u∈Rn

dof ,g∈Rn
g

ρ
∑

i∈M

∑

j∈Ci

LiAijyij (50)

s.t. 1 =
∑

j∈Ci

yij ∀ i ∈ M (51)

∑

j∈Ci

Ai1
TC

jyi1
TC

j =
∑

j∈Ci

Aijyij ∀ i ∈ M
TC

(52)

∑

j∈Ci

Ai1
BC

jyi1
BC

j =
∑

j∈Ci

Aijyij ∀ i ∈ M
BC

(53)

E

Li

Aijb
T

i u−Ni 6 (1− yij)N ij ∀ i ∈ M, ∀ j ∈ Ci (54)

E

Li

Aijb
T

i u−Ni > (1− yij)N ij ∀ i ∈ M, ∀ j ∈ Ci (55)

These equations are identi
al to equations (39) to (44) for the 
ase without joint 
onstraints, ex
ept

that the gaps are now also 
onsidered as design variables.
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Displa
ement 
onstraints

The displa
ement 
onstraints are identi
al to the displa
ement 
onstraints given by equation

(45) in previous se
tion:

u 6 u 6 u (56)

Member 
onstraints

Sin
e the e

entri
ity moments depend on the gap sizes, the mixed-integer linear reformulation

of the 
ombined stress and stability 
onstraints depends not only on the binary de
ision variables

yij , but also on the gap variables gm. The resistan
e of the 
ross-se
tions of the 
hords is 
he
ked
a

ording to equation (3). The design values of the normal for
es are obtained before optimization.

The design values of the bending moments, however, depend on the e

entri
ities, whi
h depend on

the gap size gm. The e

entri
ity em in joint m is 
al
ulated as (Wardenier et al., 1992):

em =

gm +
b
iBLm

2 sin θ
iBLg

+
b
iBRm

2 sin θ
iBRm

tan θm
−

hiCRm

2
(57)

where iBLm is the index of the left or overlapped bra
e in joint m, iBRm is the index of the right or

overlapping bra
e in joint m, iCRm is the index of the right 
hord in joint m, and θm is the angle

between the two bra
es of the joint, whi
h is 
al
ulated as θm = π − θiBLm
− θiBRm

. The e

entri
ity

moment M
e,m in joint m is 
al
ulated as (Wardenier et al., 1992):

M
e,m =

∆Nmem
2

(58)

where ∆Nm =
∣
∣
∣NiCLm

−NiCRm

∣
∣
∣ denotes the 
hange in normal for
e in the 
hord at joint m, iCLm is the

index of the left 
hord in joint m, and iCRm is the index of the right 
hord in joint m.

For simpli
ity, the linear forms of the member 
onstraints are �rst derived for the 
ase where we

have only a single available pro�le for ea
h member. In this 
ase, the resistan
e of the 
ross-se
tions

of the 
hords at the right-hand side of the joint is 
he
ked a

ording to equation (3) as follows:

∣
∣
∣NiCRm

∣
∣
∣

f
y


AiCRm

+
|M

e,m|
f
y


W
pl,y,iCRm

6 1 (59)

where f
y


is the yield strength of the 
hords, W
pl,y,iCRm

is the plasti
 se
tion modulus along the

y-axis, and the safety fa
tors are dropped as they are equal to 1. Repla
ing the bending moment

|M
e,m| by the expression given by equation (58) gives:

∣
∣
∣NiCRm

∣
∣
∣

f
y


AiCRm

+
∆Nm |em|

2f
y


W
pl,y,iCRm

6 1 (60)

Repla
ing the e

entri
ity|em| by the expression given by equation (57) gives:

∣
∣
∣NiCRm

∣
∣
∣

f
y


AiCRm

+
∆Nm

2f
y


W
pl,y,iCRm

∣
∣
∣
∣
∣
∣
∣

gm +
b
iBLm

2 sin θ
iBLm

+
b
iBRm

2 sin θ
iBRm

tan θm
−

hiCRm

2

∣
∣
∣
∣
∣
∣
∣

6 1 (61)
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The stress 
onstraint is split into two 
onstraints to a

ount for the absolute value and the variables

belonging to di�erent design entities are separated:

∆Nm

2 tan θm
gm

︸ ︷︷ ︸

gap size

+
∆NmbiBLm

4 tan θ sin θiBLm
︸ ︷︷ ︸

left bra
e

+
∆NmbiBRm

4 tan θ sin θiBRm
︸ ︷︷ ︸

right bra
e

+




−∆NmhiCRm

4
− f

y


W
pl,y,iCRm

+

∣
∣
∣NiCRm

∣
∣
∣W

pl,y,iCRm

AiCRm





︸ ︷︷ ︸

right 
hord

6 0

(62)

− ∆Nm

2 tan θm
gm

︸ ︷︷ ︸

gap size

−
∆NmbiBLm

4 tan θ sin θiBLm
︸ ︷︷ ︸

left bra
e

−
∆NmbiBRm

4 tan θ sin θiBRm
︸ ︷︷ ︸

right bra
e

+




∆NmhiCRm

4
− f

y


W
pl,y,iCRm

+

∣
∣
∣NiCRm

∣
∣
∣W

pl,y,iCRm

AiCRm





︸ ︷︷ ︸

right 
hord

6 0

(63)

In reality, multiple pro�les are available for ea
h member. For the 
hord at the right hand side of

joint m, equations (62) and (63) are then rewritten as:

∆Nm

2 tan θ
gm +

∑

j∈C
iBLm

∆NmbiBLm j

4 tan θ sin θiBLm

yiBLm j +
∑

j∈C
iBRm

∆NmbiBRm j

4 tan θ sin θiBRm

yiBRm j

+
∑

j∈C
iCRm

(

−∆NmhiCRm j

4
− f

y


W
pl,y,iCRm j +

∣
∣NiCRm

∣
∣W

pl,y,iCRm j

AiCRm j

)

yiCRm j 6 0 ∀m ∈ J
CR

(64)

− ∆Nm

2 tan θ
gm −

∑

j∈C
iBLm

∆NmbiBLm j

4 tan θ sin θiBLm

yiBLm j −
∑

j∈C
iBRm

∆NmbiBRm j

4 tan θ sin θiBRm

yiBRm j

+
∑

j∈C
iCRm

(

∆NmhiCRm j

4
− f

y


W
pl,y,iCRm j +

∣
∣NiCRm

∣
∣W

pl,y,iCRm j

AiCRm j

)

yiCRm j 6 0 ∀m ∈ J
CR

(65)

For the 
hords at the left side of joint m, equations (64) and (65) are reformulated in the same way,

now using the index iCRm instead of iCLm and J
CR

instead of J
CL

.

As mentioned in the previous se
tion and expressed by equations (8) and (9), the lateral torsional

bu
kling resistan
e for members bent in the plane of highest �exural rigidity should be 
he
ked along

the x-axis and along the z-axis. In this 
ase only the top 
hords must be 
he
ked. The 
onstraints

for the bu
kling resistan
e of the top 
hord members are reformulated as follows:
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∆Nm

2 tan θ
gm +

∑

j∈C
iBLm

∆NmbiBLm j

4 tan θ sin θiBLm

yiBLm j +
∑

j∈C
iBRm

∆NmbiBRm j

4 tan θ sin θiBRm

yiBRm j

+
∑

j∈C
iCRm







−∆NmhiCRm

4
−

(

1−
N

iCRm

χ
y,iCRm j

f
y


A
iCRm j

)

f
y


W
pl,y,iCRm j

k
yy,iCRm j

χ
LT,iCRm j







yiCRm j 6 0 ∀m ∈ J
TJ

∩ J
CR

(66)

− ∆Nm

2 tan θ
gm −

∑

j∈C
iBLm

∆NmbiBLm j

4 tan θ sin θiBLm

yiBLm j −
∑

j∈C
iBRm

∆NmbiBRm j

4 tan θ sin θiBRm

yiBRm j

+
∑

j∈C
iCRm







∆NmhiCRm j

4
−

(

1−
N

iCRm

χ
y,iCRm j

f
y


A
iCRm j

)

f
y


W
pl,y,iCRm j

k
yy,iCRm j

χ
LT,iCRm j







yiCRm j 6 0 ∀m ∈ J
TJ

∩ J
CR

(67)

where χy,iCRm j and χ
LT,iCRm j are the redu
tion fa
tors for the resistan
e of the 
hord at the right-hand

side of the joint due to in-plane �exural bu
kling and lateral torsional bu
kling, respe
tively, and

kyy,iCRm j is an intera
tion fa
tor. The bu
kling 
onstraints for the 
hords at the left side of the

joint are reformulated in the same way, now using the index iCRm instead of iCLm and J
CR

instead

of J
CL

. The bu
kling 
onstraints along the z-axis are reformulated in the same way, by repla
ing

the redu
tion fa
tor due to in-plane �exural bu
kling χy,iCRm j with the redu
tion fa
tor due to out-

of-plane bu
kling χz,iCRm j and the intera
tion fa
tor kyy,iCRm j with the intera
tion fa
tor kzy,iCRm j . All

intera
tion fa
tors are 
al
ulated a

ording to the method des
ribed in annex B of Euro
ode 3.

For the bra
es, the stress 
onstraints as given by equation (2), and the in-plane and out-of-plane

�exural bu
kling, torsional bu
kling and torsional-�exural bu
kling 
onstraints as given by equations

(4) to (7) remain the same as in the previous se
tion:

Niyij 6 f
yb

Aijyij ∀ i ∈ M
B

, ∀ j ∈ Ci (68)

Niyij > −min (1, χy , χz) fybAijyij ∀ i ∈ M
B

, ∀ j ∈ Ci (69)

Joint 
onstraints

The joint geometry 
onstraints given by equations (10) to (18) and (20) to (28) and those related

to the 
ross-se
tion 
lasses are imposed by only in
luding allowable se
tions in the pro�le 
atalog.

The geometry 
onstraints for the top 
hords given by equation (19) are reformulated as:

∑

j∈C
iBLm

tiBLm jyiBLm j +
∑

j∈C
iBRm

tiBRm jyiBRm j − gm 6 0 ∀m ∈ J
TJ

(70)

where iBLm is the index of the left bra
e in joint m, and iBRm is the index of the right bra
e in joint

m.

The geometry 
onstraints for the bottom 
hords given by equations (29) and (31) are reformu-

lated as:

∑

j∈Ci
BC

0.25bi
BC

jyi
BC

j −
∑

j∈Ci
B

bi
B

jyi
B

j 6 0 ∀ i
BC

∈ M
BC , iB ∈ M

B

(71)

gm +
∑

j∈C
iBRm

biBRm jyiBRm j = 0 ∀m ∈ J
BJ

(72)
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where iBRm is the index of the overlapping bra
e in joint m.

The geometry 
onstraints for the bra
es given by equation (30) are reformulated as:

∑

j∈C
iBLm

0.75biBLm jyiBLm j −
∑

j∈C
iBRm

biBRm jyiBRm j 6 0 ∀m ∈ J
BJ

(73)

The design resistan
e for 
hord web failure of the top joints given by equation (32) 
ontains

the e�e
tive width for the web of the 
hord b
w

, whi
h has to be 
al
ulated as the minimum of two

expressions. The 
hord web failure 
onstraints for the top joints are therefore reformulated into two

linear 
onstraints. For the bra
es at the right hand side of the top joints, the �rst 
onstraint given

by equation (32) is reformulated as:

∑

j∈C
iCLm

∣
∣
∣NiBRm

∣
∣
∣−

5(t
f,iCLm j

+r
iCLm j

)f
y


t
w,iCLm j

sin θ
iBRg

f
y


t
w,iCLm j

sin θ
iBRm

yiCLm j −
∑

j∈C
iBRm

hiBRm j

sin θiBRm

yiBRm j 6 0 ∀m ∈ J
TJ

∩ J
CL

(74)

The se
ond 
onstraint given by equation (32) is reformulated as:

∑

j∈C
iCLm

∣
∣
∣NiBRm

∣
∣
∣−

10(t
f,iCLm j

+r
iCLm j

)f
y


t
w,iCLm j

sin θ
iBRm

f
y


t
w,iCLm j

sin θ
iBRm

yiCLm j −
∑

j∈C
iBRm

2tiBRm jyiBRm j 6 0 ∀m ∈ J
TJ

∩ J
CL

(75)

where iBRm is the index of the right bra
e in joint m, and iCLm is the index of the left 
hord in joint

m. We 
ould as well have used the right 
hord, as the same se
tion is used for all 
hord members.

For the top left joint, iCLm is repla
ed by iCRm sin
e there is no left 
hord. For the bra
es at the left

hand side of the top joints, the 
hord web failure 
onstraints are reformulated in the same way by

repla
ing iBRm by iBLm in equations (74) and (75).

The bra
e failure 
onstraints for the bra
es at the right-hand side of the top joints given by

equation (34) are reformulated into two linear 
onstraints:

∑

j∈C
iBRm

∣
∣NiBRm

∣
∣

2f
yb

tiBRm j

yiBRm j −
∑

j∈C
iCLm

(

t
w,iCLm j + 2riCLm j + 7t

f,iCLm j

f
y


f
yb

)

yiCLm j 6 0 ∀m ∈ J
TJ

(76)

∣
∣NiBRm

∣
∣−

∑

j∈C
iBRm

2f
yb

tiBRm j

(
biBRm j + hiBRm j − 2tiBRm j

)
yiBRm j 6 0 ∀m ∈ J

TJ

(77)

where f
yb

is the yield strength of the bra
es. For the bra
es at the left hand side of the top joints,

the bra
e failure 
onstraints are reformulated in the same way by repla
ing iBRm by iBLm in equations

(76) and (77).

The resistan
e to 
hord shear failure for the top joints given by equations (36) and (37) does

not have to be 
he
ked for the 
enter top joint. The 
hord shear failure 
onstraints for the other

top joints are reformulated as:
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∣

∣

∣NiBRm

∣

∣

∣ 6
∑

j∈C
iCLm

(

f
y


A
v,iCLm j√

3 sin θiBRm

1

γ
M5

)

yiCLm j ∀m ∈ J
TJ

(78)

∣

∣

∣NiBLm

∣

∣

∣ 6
∑

j∈C
iCLm

(

f
y


A
v,iCLm j√

3 sin θiBLm

1

γ
M5

)

yiCLm j ∀m ∈ J
TJ

(79)

∣

∣

∣
NiCLm

∣

∣

∣
6

∑

j∈C
iCLm












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

(

AiCLm j − A
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)

f
y


+ A
v,iCLm jfy


√

√

√

√

√1−





γ
M5

√
3max

(

NiBLm
sin θiBLm

, NiBRm
sin θiBRm

)

f
y


A
v,iCL

g

j





2









1

γ
M5









yiCLm j

∀m ∈ J
TJ

∩ J
CL

(80)

For the bottom joints, only bra
e failure of the overlapping bra
e has to be 
he
ked as given

by equation (38). The design resistan
e for bra
e failure of the bottom joints 
ontains the e�e
tive

width b
e,ov

of the 
onne
tion between the overlapping bra
e and the overlapped bra
e, whi
h has

to be 
al
ulated as the minimum of two expressions. The bra
e failure 
onstraints for the bottom

joints are therefore reformulated into two linear 
onstraints. The �rst 
onstraint is reformulated as:

∑

j∈C
iBRm

∣
∣
∣NiBRm

∣
∣
∣− f

yb

tiBRm j

(

biBRm j + 2hiBRm j − 4tiBRm j

)

biBRm j

yiBRm j −
∑

j∈C
iBLm

10f
yb

tiBLm j

b
iBLm j

t
iBLm j

yiBLm j 6 0 ∀m ∈ J
BJ

(81)

The se
ond 
onstraint is reformulated as:

∣
∣
∣NiBRm

∣
∣
∣−

∑

j∈C
iBRm

f
yb

tiBRm j

(

2biBRm j + 2hiBRm j − 4tiBRm j

)

yiBRm j 6 0 ∀m ∈ J
BJ

(82)

Results

The MILP of the N-truss given by equations (50) to (56), and (64) to (82) 
onsidering displa
e-

ment, member and joint 
onstraints 
onsist of 1143 design variables, in
luding 1112 binary variables,

21 
ontinuous nodal displa
ement variables and 10 
ontinuous gap variables. The MILP 
onsists of

4751 
onstraints, in
luding 232 additional member and joint 
onstraints, and 36344 non-zeros. The

MILP is again solved by means of Gurobi 5.6 using the same 
omputer as for the previous 
ase.

The optimal solution is again found in the prepro
essing stage in less than 0.2 se
onds. When the

MILP is solved without performing a presolve and without generating 
uts, the problem 
an no

longer be solved at the root node. In this 
ase, 1110 nodes are explored, and the 
omputation time

is 1.3 se
onds. The results are given in table 8. The total weight of the N-truss is 2091.0 kg.

When the optimization problem is solved taking into a

ount the displa
ement 
onstraints,

member 
onstraints, and joint 
onstraints, the design variables also in
lude the gaps in order to be

able to implement the joint geometry 
onstraints and to take into a

ount the e

entri
ity moments.

The optimal gap values are given in table 9. The displa
ements are given in table 10. Also in this


ase the displa
ement 
onstraints are not 
riti
al. The utilization ratio for ea
h 
onstraint is given

in table 11. In this 
ase all the utilization ratios - in
luding those related to the joint 
onstraints -

are smaller than 1.

The weight of the optimized stru
ture is about 15% higher than in the 
ase where joint 
on-

straints are not 
onsidered. This shows that taking into a

ount joint 
onstraints during the opti-

mization has a signi�
ant impa
t on the optimized design.
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CONCLUSION

For a pra
ti
al truss design optimization problem, three types of 
onstraints have to be taken into

a

ount: displa
ement 
onstraints, member 
onstraints, and joint 
onstraints. Most optimization

methods do not take into a

ount the joint 
onstraints. As a 
onsequen
e, the joint 
onstraints must

be 
he
ked after optimization and the joints may need to be strengthened. This paper veri�es the

importan
e of joint 
onstraints in the optimal design of trusses and presents a method to a

ount

for joint 
onstraints during the optimization. The optimization problem is solved by reformulating

it as a mixed-integer linear program (MILP). The ve
tor of design variables 
onsists of (1) binary

de
ision variables whi
h sele
t a se
tion from a 
atalog for ea
h member, (2) nodal displa
ement

variables, and (3) joint gaps when joint 
onstraints are taken into a

ount. The MILP is solved

with the 
ut-and-bran
h method whi
h is implemented in the Gurobi optimizer. The advantage of

this approa
h is that the problem 
an be solved to global optimality.

This paper makes a 
omparison between the results obtained after optimization of a stati
ally

determinate steel N-truss girder with and without joint 
onstraints. The results show that taking

into a

ount joint 
onstraints during the optimization leads to a result with a weight that is 15%

higher than in the 
ase where these 
onstraints are not 
onsidered. When only displa
ement and

member 
onstraints are taken into a

ount during the optimization, one should be very 
areful when


he
king the joint 
onstraints and adapting the optimized design a posteriori in order to satisfy all


onstraints, sin
e the joint 
onstraints have a large impa
t on the total weight of the stru
ture.

Taking into a

ount joint 
onstraints during the optimization therefore leads to a 
ost redu
tion

at two levels: in terms of engineering 
ost (no manual postpro
essing step is needed) as well as

fabri
ation 
ost (joint strengthening is avoided).
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Tables

Table 1: HEA pro�le 
atalog

Index Name Index Name Index Name

1 HEA 100 9 HEA 260 17 HEA 500

2 HEA 120 10 HEA 280 18 HEA 550

3 HEA 140 11 HEA 300 19 HEA 600

4 HEA 160 12 HEA 320 20 HEA 650

5 HEA 180 13 HEA 340 21 HEA 700

6 HEA 200 14 HEA 360 22 HEA 800

7 HEA 220 15 HEA 400 23 HEA 900

8 HEA 240 16 HEA 450 24 HEA 1000

Table 2: UPN pro�le 
atalog

Index Name Index Name Index Name

1 UPN 50 7 UPN 160 13 UPN 280

2 UPN 65 8 UPN 180 14 UPN 300

3 UPN 80 9 UPN 200 15 UPN 320

4 UPN 100 10 UPN 220 16 UPN 350

5 UPN 120 11 UPN 240 17 UPN 380

6 UPN 140 12 UPN 260 18 UPN 400
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Table 3: square RHS pro�le 
atalog

Index Name Index Name Index Name

1 RHS 20x20x2 29 RHS 80x80x3 57 RHS 140x140x8

2 RHS 25x25x2 30 RHS 80x80x4 58 RHS 140x140x10

3 RHS 25x25x3 31 RHS 80x80x5 59 RHS 150x150x4

4 RHS 30x30x2 32 RHS 80x80x6 60 RHS 150x150x5

5 RHS 30x30x3 33 RHS 80x80x8 61 RHS 150x150x6

6 RHS 30x30x4 34 RHS 90x90x3 62 RHS 150x150x8

7 RHS 35x35x2 35 RHS 90x90x4 63 RHS 150x150x10

8 RHS 35x35x3 36 RHS 90x90x5 64 RHS 160x160x5

9 RHS 40x40x2 37 RHS 90x90x6 65 RHS 160x160x6

10 RHS 40x40x3 38 RHS 100x100x3 66 RHS 160x160x8

11 RHS 40x40x4 39 RHS 100x100x4 67 RHS 160x160x10

12 RHS 45x45x2 40 RHS 100x100x5 68 RHS 180x180x6

13 RHS 45x45x3 41 RHS 100x100x6 69 RHS 180x180x8

14 RHS 45x45x4 42 RHS 100x100x8 70 RHS 180x180x10

15 RHS 50x50x2 43 RHS 100x100x10 71 RHS 180x180x12.5

16 RHS 50x50x3 44 RHS 110x110x4 72 RHS 200x200x5

17 RHS 50x50x4 45 RHS 110x110x5 73 RHS 200x200x6

18 RHS 50x50x5 46 RHS 120x120x3 74 RHS 200x200x8

19 RHS 60x60x2 47 RHS 120x120x4 75 RHS 200x200x10

20 RHS 60x60x3 48 RHS 120x120x5 76 RHS 200x200x12.5

21 RHS 60x60x4 49 RHS 120x120x6 77 RHS 220x220x6

22 RHS 60x60x5 50 RHS 120x120x8 78 RHS 220x220x8

23 RHS 60x60x6 51 RHS 120x120x10 79 RHS 220x220x10

24 RHS 70x70x2 52 RHS 125x125x5 80 RHS 250x250x6

25 RHS 70x70x3 53 RHS 125x125x6 81 RHS 250x250x8

26 RHS 70x70x4 54 RHS 140x140x4 82 RHS 250x250x10

27 RHS 70x70x5 55 RHS 140x140x5

28 RHS 70x70x6 56 RHS 140x140x6
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Table 4: Se
tions of the N-truss optimized 
onsidering only displa
ement and member 
onstraints.

Member Pro�le A [mm

2
℄

Top 
hords HEA 180 4530

Bottom 
hords UPN 220 3740

Bra
e 11 RHS 110x110x5 2036

Bra
e 12 RHS 125x125x5 2336

Bra
e 13 RHS 120x120x4 1815

Bra
e 14 RHS 120x120x4 1815

Bra
e 15 RHS 100x100x4 1495

Bra
e 16 RHS 90x90x4 1335

Bra
e 17 RHS 100x100x3 1141

Bra
e 18 RHS 70x70x3 781

Bra
e 19 RHS 70x70x3 781

Bra
e 20 RHS 40x40x2 294

Bra
e 21 RHS 70x70x2 534

Weight: 1826.3 kg

Table 5: Nodal displa
ements of the N-truss optimized 
onsidering only displa
ement and member


onstraints.

Node number 1 2 3 4 5 6 7 8 9 10 11 12

Horizontal displa
ement [mm℄ 7.40 6.70 5.45 3.82 1.95 0 -6.60 -6.60 -5.75 -4.24 -2.26 0

Verti
al displa
ement [mm℄ -1.73 -21.32 -39.27 -54.25 -65.52 -72.18 0 -19.58 -37.62 -52.71 -64.16 -70.86

Table 6: Gaps and e

entri
ities introdu
ed to ensure weldability of the joints of the N-truss opti-

mized 
onsidering only displa
ement and member 
onstraints.

Joint number Gaps [mm℄ E

entri
ity [mm℄

1 10.0 67.9

2 8.0 67.4

3 8.0 36.1

4 6.0 20.0

5 5.0 -17.2

8 -120.0 7.0

9 -100.0 13.5

10 -100.0 -7.8

11 -70.0 -6.9

12 -70.0 -28.1
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Table 7: Utilization ratios for the optimized design of the N-truss 
onsidering displa
ement and

member 
onstraints.

Member 
onstraints Joint 
onstraints

Member resistan
e ratio Stability ratio Joint resistan
e ratio HEA-RHS Joint resistan
e ratio UPN-RHS

M

e

m

b

e

r

n

u

m

b

e

r

C

h

o

r

d

w

e

b

f

a

i

l

u

r

e

B

r

a




e

f

a

i

l

u

r

e

C

h

o

r

d

s

h

e

a

r

f

a

i

l

u

r

e

B

r

a




e

f

a

i

l

u

r

e

1 0.54 0.60 0.39

2 0.60 0.67 0.53

3 0.69 0.81 0.67

4 0.76 0.91 0.75

5 0.78 0.94

6 0.07

7 0.41

8 0.71

9 0.83

10 0.93

11 0.89 1.00 1.01 1.49 0.96

12 0.99 0.83 1.90 0.86

13 0.90 0.99 0.87 1.68 0.82 1.01

14 0.99 0.65 1.85 0.64

15 0.85 0.97 0.74 1.31 0.64 1.00

16 0.96 0.47 1.32 0.46

17 0.80 0.91 0.53 1.24 0.43 0.87

18 0.99 0.32 1.06 0.26

19 0.70 0.91 0.37 0.75 0.25 0.80

20 0.87 0.13 0.85 0.08

21 0.68 0.88 0.24 0.75 0.77

Table 8: Se
tions of the N-truss optimized 
onsidering displa
ement, member, and joint 
onstraints.

Member Pro�le A [mm

2
℄

Top 
hords HEA 200 5380

Bottom 
hords UPN 220 3740

Bra
e 11 RHS 100x100x8 2724

Bra
e 12 RHS 100x100x10 3257

Bra
e 13 RHS 100x100x8 2724

Bra
e 14 RHS 80x80x8 2084

Bra
e 15 RHS 90x90x5 1636

Bra
e 16 RHS 80x80x5 1436

Bra
e 17 RHS 80x80x4 1175

Bra
e 18 RHS 70x70x3 781

Bra
e 19 RHS 70x70x3 781

Bra
e 20 RHS 60x60x3 661

Bra
e 21 RHS 60x60x3 661

Weight: 2091.0 kg
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Table 9: Gaps and e

entri
ities introdu
ed to ensure weldability of the joints of the N-truss opti-

mized 
onsidering displa
ement, member, and joint 
onstraints.

Joint number Gap [mm℄ E

entri
ity [mm℄

1 18.0 43.7

2 16.0 27.6

3 10.0 16.6

4 7.0 1.5

5 6.0 -11.6

8 -100.0 -0.7

9 -90.0 -9.8

10 -80.0 -4.8

11 -70.0 -6.9

12 -60.0 -9.0

Table 10: Nodal displa
ements of the N-truss optimized 
onsidering displa
ement, member, and

joint 
onstraints.

Node number 1 2 3 4 5 6 7 8 9 10 11 12

Horizontal displa
ement [mm℄ 6.23 5.64 4.59 3.21 1.64 0 -6.60 -6.60 -5.75 -4.24 -2.26 0

Verti
al displa
ement [mm℄ -1.29 -18.05 -34.30 -48.11 -58.77 -62.99 0 -16.88 -32.79 -46.61 -57.42 -61.92
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Table 11: Utilization ratio of the optimized result taking into a

ount displa
ement, member, and

joint 
onstraints.

Member 
onstraints Joint 
onstraints

Member resistan
e ratio Stability ratio Joint resistan
e ratio HEA-RHS Joint resistan
e ratio UPN-RHS

M

e

m

b

e

r

n

u

m

b

e

r

C

h

o

r

d

w

e

b

f
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i
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r

e
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r

a




e

f
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i
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e
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h

o

r

d

s

h

e

a

r

f
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i

l

u

r

e

B

r
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e

f

a

i

l

u

r

e

1 0.36 0.39 0.30

2 0.45 0.51 0.44

3 0.56 0.65 0.56

4 0.63 0.73 0.63

5 0.66 0.76

6 0.01

7 0.35

8 0.68

9 0.82

10 0.93

11 0.67 0.78 0.90 0.86 0.91

12 0.71 0.69 0.87 0.82

13 0.60 0.70 0.81 0.77 0.80 0.56

14 0.86 0.60 0.85 0.62

15 0.78 0.92 0.66 0.96 0.55 0.75

16 0.90 0.43 0.97 0.39

17 0.77 0.96 0.49 0.86 0.36 0.79

18 0.99 0.27 0.97 0.22

19 0.70 0.91 0.31 0.68 0.21 0.80

20 0.39 0.10 0.38 0.07

21 0.55 0.79 0.22 0.53 0.61
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Figure 1: N-truss girder with HEA top 
hord se
tions, UPN bottom 
hord se
tions, and RHS bra
es

subje
ted to verti
al point loads F and F/2.

(a) Model 1

(b) Model 2

Figure 2: These �gures show the two di�erent analysis models. Model 1 is a stati
ally determinate

truss model where all members are pin 
onne
ted. Model 2 is a stati
ally indeterminate truss model

where the 
hords are 
ontinuous and the bra
es are pin 
onne
ted with in�nitely sti� members.

(a) (b)

Figure 3: Joints: (a) HEA-RHS joint, (b) UPN-RHS joint.

Figure 4: Chord web failure.
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Figure 5: Bra
e failure.

Figure 6: Chord shear failure.

Figure 7: Bra
e failure.

Figure 8: Symmetri
 half of the N-type truss girder with a span l, height h and verti
al point loads

F and F/2.
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