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Introduction Kernels for structured data have gained a lot of attention in a world where increasingly
complex data are continuously generated. For example, biological databases contain thousands of 3D
structures of proteins, sometimes with small molecules, called ligands, bound to them. However, learn-
ing methods exploiting these kinds of data are scarce and have several limitations. They usually convert
the 3D structures into graphs and use existing graph mining methods such as kernels or distance mea-
sures to compute structural similarities [2]. By transforming the 3D structures into graphs, information
about angles and exact distances is lost. Moreover, these methods are dealing with severe complexity is-
sues while handling proteins, which are an order of magnitude larger than small molecules. We propose
a new kernel for 3D data, called the 3D Neighborhood Kernel (3DNK), which takes spatial distances
directly into account, focusing on geometry rather than relationships in a graph. We evaluate 3DNK on
two biological tasks: predicting the function of proteins and predicting interactions between proteins
and ligands. While we apply this kernel to proteins and ligands, it is applicable to any kind of 3D data
where objects follow a common schema, such as RNA, cars, or faces.

The 3DNK kernel For an introduction to kernel methods, we refer to [3]. We represent the 3D structures
as a point set, each point p having 3D coordinates and a label λ(p). The idea of the 3DNK kernel is
to compare point sets based on their 3D structure: (i) for each of both point sets, a subset of points is
selected (called the selected points) according to a user-specified criterion ∆; (ii) for each selected point,
its neighborhood is retrieved according to a user-specified neighborhood function Φ; and (iii) for each
point in the set of selected points, dΦ returns a feature vector describing the local spatial conformation
of that point in its neighborhood, i.e. the distances to the other points in that neighborhood. The kernel
or similarity between two point sets X and Y is then calculated by comparing the feature vectors of all
pairs of identically labeled, selected points:

K∆,Φ(X,Y ) =
∑

a∈∆(X)

∑
b∈∆(Y )

KG (dΦ(X, a), dΦ(Y, b)) · I (λ(a) = λ(b)) ,

where KG is a Gaussian-based distance kernel, and I(x) = 1 if x is true, 0 otherwise.
In order to solve the two biological tasks, we create several instantiations of 3DNK by using an

appropriate selection function ∆ and neighborhood function Φ. To predict protein function, the selected
points are the side chain atoms of the protein, while the neighborhood consists of either the nearest n
backbone atoms (3DNKnn) or the n backbone atoms in the window defined by the protein sequence
around the nearest backbone atom (3DNKsw). To predict protein-ligand interaction, the selected points
are the ligand atoms and the neighborhood consists of the nearest atoms from the protein binding pocket,
either a set containing all atom type labels (3DNKnn) or clustered by atom type label (3DNKat).

1The full paper has been published in Proceedings of the International Conference on Discovery Science, 2015.



Table 1: AUROC of 3DNK and the state-of-the-art methods for the benchmark classification datasets.
The best scoring method per dataset is indicated in bold. For EC and GO, averaged results are reported.

DATASET 3DNKsw 3DNKnn FSTK NSPDK MAMMOTH

HIV 0.848 ± 0.008 0.853 ± 0.008 0.717 ± 0.010 0.896 ± 0.007 0.863 ± 0.008
EC 0.575 ± 0.021 0.600 ± 0.021 0.573 ± 0.021 0.535 ± 0.021 0.536 ± 0.021
GO 0.744 ± 0.033 0.710 ± 0.035 0.687 ± 0.035 0.660 ± 0.036 0.859 ± 0.026

Experimental evaluation We evaluate the predictive performance of the 3DNK variants on four datasets
and compare it with four state-of-the-art methods.
Datasets We use three classification datasets (with the number of examples ranging from 998 to 2048)
in the context of protein function prediction: predicting HIV resistance (HIV), predicting enzyme class
(EC) and predicting Gene Ontology term (GO) [5]. For the prediction of protein-ligand interactions,
we use the regression dataset PDBbind (1300 examples) [1]. The goal is to predict the logarithm of the
binding affinity between a ligand and a protein, which is a real number.
State-of-the-art methods We compare with two well-known graph kernels and two methods designed
specifically to solve the aformentioned biological tasks. The Fast Subtree Kernel (FSTK) is a graph ker-
nel based on the Weisfeiler-Lehman test for graph isomorphism [4]. The Fast Neighborhood Subgraph
Pairwise Distance Kernel (NSPDK) is a graph kernel based on pairwise distances of neighborhood sub-
graphs [2]. The Mammoth kernel is based on the 3D structural alignment between two proteins [5].
RF-Score uses random forests using features representing occurrence counts of certain atom-type pairs
between proteins and ligands [1].
Experimental methodology We evaluate the performance of the kernel methods by running support
vector machines on their kernel matrices. We used 10-fold cross-validation on HIV, EC and GO and
reported AUROC. We optimized the parameters of the different methods using an internal 5-fold cross-
validation. For PDBbind, we used the same training and test split as in [1], tuned parameters with
a 10-fold cross-validation on the training set and reported the Pearson’s correlation coefficient (R) in
order to compare with the published results of RF-Score [1].
Results The results in Table 1 and on the PDBbind dataset show that the different instantiations of
3DNK perform competitively when compared to the state-of-the-art methods. For PDBbind, 3DNKat

(R = 0.730) and 3DNKnn (R = 0.652) were ranked 2nd and 4th, respectively, out of 22 methods, while
3DNKat was not significantly different than the top-scoring method RF-Score (R = 0.776). FSTK and
Mammoth were not able to produce results on this type of dataset.

Conclusions We introduced the 3DNK kernel, which acts on 3D structures, applied it to two biological
tasks and compared it to four state-of-the-art methods. The 3DNK is more broadly applicable than these
methods and can solve both tasks equally well. In future work, we will explore various aspects (such as
the parameter space and runtimes) of the 3DNK family further and consider other application domains.
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