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Introduction 

 
1. Amyotrophic Lateral Sclerosis  

  

Neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and 

Amyotrophic Lateral Sclerosis (ALS) represent a major challenge for the medical world and 

for society. Even though ALS is a rather rare disease with an incidence of 1-2 in 100.000, the 

life time chance to develop this disease is 1/400 – 1/700 1.  

  

 ALS is a very dramatic disorder due to its progressive character, the short survival of the 

patient and the enormous impact on his/her quality of life and that of his/her caretaker. The 

disease typically affects adults in mid-life and is usually fatal three to five years after the first 

symptoms appear 2-3. It is characterized by the degeneration of both the upper motor 

neurons in the motor cortex, and the lower motor neurons in the brain stem and the spinal 

cord 1. Degeneration of the upper motor neurons leads to spasticity and hyperreflexia, 

whereas degeneration of the lower motor neurons leads to muscle atrophy and eventually 

paralysis. Up to now no curative treatment is available, only riluzole modestly extends 

lifespan with an average of 2-3 months 4-5.  

 

ALS forms a continuum with Frontotemporal Dementia (FTD), with pure ALS and pure FTD on 

the opposites of the spectrum 2. FTD is characterized by neuronal loss in the frontal and 

anterior temporal lobes 6. The most common symptoms are behavior changes, loss of fluent 

speech and loss of the knowledge of words. In the ALS-FTD spectrum many patients have 

features of both. A clinical overlap between both diseases has already been known for 

several decades. The overlap was recently confirmed at the molecular level and underscored 

with neuropathological and genetic studies.   

 

 

1.1 ALS genetics  

 

ALS is hereditary in 10% of patients (familial ALS, FALS), while 90% of patients do not report 

any familial occurrence (sporadic ALS, SALS). Most mutations identified so far are inherited 

in an autosomal dominant way, although autosomal recessive and X-linked inheritance has 

been observed. The most common genes in which mutations have been found are SOD1, 

FUS, TARDBP and C9Orf72 7.  
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1.1.1 Causative genes  

 

Mutations in the superoxide dismutase 1 (SOD1) gene were the first that have been 

identified in ALS 8. SOD1 protects the cell against oxidative stress by converting superoxide 

radicals into molecular oxygen and hydrogen peroxide. The identification of mutations in 

SOD1 led to the development of several mutant SOD1 animal models. The mutant SOD1G93A 

mouse model, overexpressing the human SOD1 gene with a substitution of Glycine by 

Alanine at position 93, is one of the most frequently used models in ALS research 9. The mice 

are asymptomatic until 60 days of age, a time point at which microgliosis can be observed, 

followed by astrogliosis around 80 days. Disease onset occurs around day 90-100 and is 

characterized by massive loss of motor neurons. At this symptomatic stage, initial symptoms 

such as hind limb weakness and tremelous movements can be observed. At late-

symptomatic stage (around 140 days) major symptoms such as progressive atrophy of hind 

limb muscles and paralysis can be observed. Around day 150-160 the mice die preceded by 

disability of gait, eating and drinking 9-10. Overall, mice overexpressing mutant human SOD1 

show similar pathological hallmarks (motor neuron degeneration, inflammation, gliosis and 

paralysis) as seen in ALS patients, while control mice overexpressing wild type human SOD1 

only yield a mild phenotype late in life 9, 11. Furthermore, SOD1 knockout mice do not show 

any sign of motor neuron degeneration, implying a toxic gain of function for mutant SOD1 12. 

Overexpression of mutant human SOD1 in zebrafish embryos induces an axonal phenotype, 

characterized by a reduction of the axonal length and more aberrantly branched axons 13.  

 

The mutant SOD1 mouse is the best ALS model there currently is. It is the most studied 

animal model so far and is widely used in genetic and pharmacological studies worldwide. 

Alike every model, it has its drawbacks, which should be kept in mind when interpreting the 

results obtained with it. This animal will be used in the experiments described later.  

 

In 2008, mutations in TAR DNA binding protein 43 (TDP43, encoded by TARDBP) and Fused in 

Sarcoma/translocated in liposarcoma (FUS/TLS) were identified. TDP43 and FUS are both 

RNA binding proteins with functions in transcription, RNA splicing and RNA transport 14-15. 

Interestingly, aggregates containing TDP43 and FUS are found in patients with SALS 16-17. 

Several animal models have been generated to study the function of TDP43 and FUS. 

However, the use of these models to study ALS needs to be awaited. Homozygous deletion 

of TARDBP or FUS in mice is embryonically lethal, whereas overexpression of the wild type or 

the mutant protein results in a very aggressive phenotype 18. This indicates that both 

depletion as well as overexpression of these proteins is detrimental and highlights the 

necessity of tight regulated TDP43 and FUS expression 19.   

 

Recently, hexanucleotide repeat expansions have been discovered in the first intron of the 

C9Orf72 gene 20-21. The identification of this expansion mutation explains approximately 50% 
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of the familial ALS patients in the Belgian population 22. Furthermore it also accounts for 

more than 5% of apparently sporadic ALS cases. The biological function of the C9Orf72 

protein is still unknown, but several mechanisms of toxicity of the expansion mutation have 

been suggested. One is haploinsufficiency as decreased expression of different C9Orf72 

transcripts has been reported in C9FTD/ALS cases 23. A second is direct RNA toxicity, as the 

hexanucleotide repeat RNA can form highly stable RNA G-quadruplexes, which may 

sequester RNA-binding proteins leading to disruption of RNA metabolism 24-25. A third 

possible mechanism is the production of dipeptide repeat (DPR) proteins from the 

hexanucleotide repeat through repeat-associated non-ATG (RAN) protein translation 26. The 

relative contribution of each of these possible mechanisms in the disease pathogenesis of 

C9-related ALS is under investigation.  

  

Many other genes have been identified in ALS, although most of these mutations have only 

been detected in a limited number of cases or within one family 27.  

 

 

1.1.2   Modifying genes  

 

Age at disease onset, disease duration and the clinical manifestation of ALS (bulbar onset 

versus spinal onset, proximal versus distal weakness) can vary greatly between patients 2. 

Even within one family carrying the same mutation, obvious variability is present 28. This 

indicates that ALS is a multifactorial disease influenced by modifying genes and/or 

environmental factors. Of the latter, none has been identified convincingly 29.  

    

Generally spoken, genetic modifiers can be identified in two ways. Genome-wide association 

studies (GWAS) have identified several disease modifying genes, but not all of results have 

been replicated. The modifying genes that have been confirmed in independent GWAS 

studies are ELP3 (elongator acetyltransferase complex subunit 3), UNC13A (unc-13 homolog 

A) and DPP6 (dipeptidyl-peptidase 6) 30-31. A second way to identify modifiers is through the 

screening of small animal models for ALS, such as Drosophila, yeast and zebrafish. We here 

mention only two results that have been connected to human disease.  

 

An unbiased genetic screen in the TDP43 yeast model revealed that overexpression of 

ataxin2 aggravates the phenotype 32. In Drosophila, upregulation of ataxin2 decreased 

survival of TDP43 flies. In humans, intermediate-length polyglutamine expansions in the 

ataxin2 gene are associated with an increased risk to develop ALS, suggesting the 

importance of this gene in the pathogenesis of ALS 33-34.   

 In our laboratory a morpholino-based genetic screen was performed in the mutant-SOD1 

zebrafish model 35. Knockdown of the ephrin receptor A4 (EphA4) rescued the axonal 

phenotype, a finding confirmed in the ALS mouse model 35. In humans, EphA4 expression is 

inversely correlated with disease onset and disease survival in sporadic ALS patients 35.    



16 
 

These results show that the screening of small animal models allows to identify factors that 

also matter for human disease. It is important to identify such factors, as they may be 

targets for intervention, in particular in those forms of the disease in which we do not know 

the cause of disease (yet).    

 

 

1.2 Pathogenesis  

 

Although many hypotheses have been generated, it is still not know what the exact 

mechanism of the selective motor neuron degeneration in ALS is. It is generally accepted 

that it is probably a combination of different ones 19. We here summarize the main 

hypotheses. 

 

1.2.1 Disrupted RNA and protein homeostasis   

 

In ALS, both RNA homeostasis and protein homeostasis are disrupted 36. TDP43 and FUS, 

both RNA-binding proteins involved in multiple RNA processing steps, are major components 

present in pathological inclusions in ALS patients. The formation of TDP43 and FUS 

aggregates has been related to the biology of stress granules. In normal conditions the 

formation of such granules is a reversible process 37. In ALS, these granules apparently do 

not resolve, but form the seeds of aggregation, acting as a sink for proteins, among which 

RNA binding proteins 38. TDP43 and FUS contain low complexity domains that make them 

prone to aggregation and can act to recruit other proteins 39-42. These proteins are thus 

prevented from exerting their normal function and might sequester other essential cellular 

components, which may contribute to cellular dysfunction. This suggests that alterations of 

RNA metabolism are involved in the pathogenesis of ALS 36.  

 

SOD1 on the other hand, is also present in aggregates, but is not involved in stress granule 

formation. To explain its toxicity, it has been suggested that the mutant SOD1 is misfolded 

just as is the demetallated wild type SOD1 43, is aggregation-prone, and forms multimers and 

eventually aggregates.   

 It is thought that these protein multimers overload the normal protein degradation systems 

(the proteasome and the autophagy-lysosomal pathway), which normally protect the cell 

from dysfunctional and degraded proteins and thus from protein aggregation. This 

dysproteostasis leads to further multimerisation and finally protein aggregation. The 

unfolded protein response is an attempt to restore homeostasis, but when unsuccessful, it 

may contribute to the triggering of cell death. The presence of ubiquitin and p62 in 

aggregates and the upregulation of UPR (Unfolded Protein Response) genes in vulnerable 

motor neurons are indicative for such sequence of events 44-45.  
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1.2.2 Glutamate-mediated excitotoxicity  

 

Motor neurons in the spinal cord receive glutamatergic afferents. Glutamate receptors are 

subdivided in ionotropic receptors (ligand-gated cation channels) and metabotropic 

receptors (linked to G-protein coupled receptors). The ionotropic receptors can be further 

divided into three classes, based upon their pharmacological properties: AMPA (α-amino-

hydroxy-5-methyl-4-isoxazole propionic acid), NMDA (N-methyl-D-aspartate) and kainate 

receptors 46-47. AMPA receptors mediate fast excitatory transmission and NMDA receptors 

mediate the late component of excitatory transmission. The excitatory transmission is 

terminated by glutamate removal from the synaptic cleft by glutamate transporter proteins 

in neurons and astrocytes. The most important astrocytic glutamate transporter is Excitatory 

Amino-Acid Transporter 2 (EAAT2/GLT1) 48-49.    

 

Stimulation of ionotropic glutamate receptors induces calcium entry. The intracellular 

calcium levels are tightly controlled by calcium-binding proteins, mitochondria and the 

endoplasmic reticulum (ER) 50-51. When the calcium storage capacity is saturated, 

intracellular calcium levels rise, which can induce neuronal death 52. Motor neurons are very 

sensitive to this phenomenon, called glutamate-mediated excitotoxicity because of their low 

calcium buffering capacity and because of the high calcium permeability of their AMPA 

receptors. The latter is explained by the fact that motor neurons express little glutamate 

receptor 2 subunit (GluR2), which renders the AMPA receptors less permeable to calcium 53. 

In addition to this, EAAT2 expression is decreased in ALS, which results in increased synaptic 

glutamate concentrations 54-58. The only drug that has been shown to affect disease course 

in ALS patients, is riluzole. It is thought, but unproven, that this drug works through its 

glutamate receptor blocking activity 5.   

 

1.2.3 Selective vulnerability of motor neurons  
 

It is unclear why motor neurons are selectively affected in ALS, but some mechanisms that 

may at least partially explain their vulnerability have been suggested. Motor neurons are 

very sensitive to excitotoxicity due to their low expression of calcium buffering proteins and 

of the GluR2 subunit of AMPA receptors, as explained above 59-60. Furthermore, motor 

neurons are very large cells with a somatic diameter of up to 100 µm and axons up to one 

meter long. The high energy demand and metabolic rate of such large cells, and the high 

level of mitochondrial activity with the possible generation of oxidative stress that is 

associated with it, has been suggested to be a vulnerability factor 61. A third vulnerability 

factor is the high threshold for the induction of the stress response, including the activation 

of heat shock protein 70 (Hsp70), compared to other types of neurons 62. Heat shock 

proteins protect neuronal cells against stress such as oxidative stress and excitotoxicity 62-65. 

Overexpression of Hsp70 in motor neurons delayed mutant SOD1 mediated formation of 

aggregates and cell toxicity 66.   
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Interestingly, not all motor neurons are equally vulnerable. There appear to be 

subpopulations of neurons that are less vulnerable. Oculomotor neurons (generating the 

oculomotor, trochlear and abducens nerve controlling eye movement) and neurons in 

Onuf’s nucleus (controlling sphincter muscles) are more resistant to neurodegeneration as 

they are preserved until the very late stages of disease both in ALS patients as in the SOD1 

mouse model 67-70.  

Transcription profile analysis of resistant and vulnerable motor neurons revealed differential 

expression of genes involved in synaptic transmission, ubiquitin-mediated protein 

degradation, mitochondrial function, transcriptional regulation, immune system functions 

and the extracellular matrix, both in rodents as in humans 71. The resistant motor neurons 

show higher expression of the protective AMPA receptor subunit GluR2 and gamma-

aminobutyric acid (GABA) receptor subunit GABAARα1, both involved in synaptic 

transmission 72. Those motor neurons also have increased expression of genes involved in 

mitochondrial oxidative phosphorylation, leading to higher calcium buffering capacity 73. The 

vulnerable motor neurons show higher expression of Matrix metalloproteinase 9 (MMP9) 71. 

In wild type mice MMP9 is only expressed by the vulnerable motor neurons and inhibition of 

its activity in the mutant SOD1 mice delayed muscle denervation 74. Expression of MMP9 in 

the presence of mutant SOD1 enhanced the activation of the UPR thereby triggering axonal 

dieback.   

 

Motor neurons with different physiological characteristics are also differentially vulnerable 

in ALS. The alpha motor neurons can be subdivided into three different groups based on the 

contractile properties of their target muscle fibers: fast-twitch fatigable (FF), fast-twitch 

fatigue-resistant (FR), and slow-twitch fatigue-resistant (S).  

   

The S motor neurons are small, highly active, and have a low activation threshold. They 

innervate slow contracting muscle fibers which are dependent on oxidative metabolism. 

These fibers are very resistant to fatigue because of their rich content of mitochondria and 

their rich capillary blood supply. FF motor neurons are large, and have a higher activation 

threshold. They innervate fast contracting muscle fibers, which generate more force. These 

fibers rely on glycolysis for energy generation. The FR motor neurons are intermediate in size 

and innervate FR fibers, which are intermediate between the S and FF fibers.    

 

In mutant SOD1 mice, the FF motor neurons are the first to degenerate and are almost all 

lost by P50 75. Also in ALS patients the FF motor neurons are the ones affected earliest 76. 

The motor end plates, from which the degenerating FF axons have retracted, will 

subsequently be innervated by FR motor neuron axons. This leads to a switch in muscle fiber 

phenotype from FF to FR 77. Later in the disease process, the FR-motor neurons become 

involved, cannot maintain their neuromuscular junctions anymore and will retract their 

axons and degenerate. The S motor neurons will compensate for the degeneration of these 

axons by re-innervating motor end plates left by degenerating FF and FR motor neurons 75. 
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The axons of S motor neurons are involved in the terminal stages of the disease only. 

Moreover, electromyogram (EMG) patterns show similar cycles of denervation and re-

innervation in ALS patients as shown in the mutant SOD1 mouse 78.   

Interestingly, these physiologically different motor neurons also have different regeneration 

capacity. Mice treated with Botulinum toxin A, which blocks transmitter release, showed 

ultraterminal nerve sprouting 79. More sprouting synapses were detected in slow muscle 

fibers, while the FF motor neurons failed to sprout in fast muscle fibers 75.   

 

In summary, the large FF motor neurons are more vulnerable and degenerate first in ALS, 

followed by degeneration of the FR, intermediate in size, and only later by the small S motor 

neurons (Figure 1). The exact mechanism underlying this sequence is unknown. This 

vulnerability correlates with the intrinsic regeneration/sprouting capacity of these types of 

neurons. 

 

 
Figure 1 Vulnerability of motor neurons in ALS. The large FF motor neurons are more vulnerable to 

stress and have low sprouting capacity. These motor neurons degenerate first in ALS, followed by 

degeneration of the FR and S motor neurons.   

 

However, we have to keep in mind that this look at vulnerability of motor neurons is from 

the perspective of ALS. As previously mentioned, ALS forms a disease spectrum with FTD 

with mutations in certain genes giving rise to phenotypes throughout the spectrum 80. 

Furthermore, hexanucleotide expansions in C9Orf72 can give rise to several 

neurodegenerative diseases such as ALS, FTD and Huntington’s Disease (HD) 81. It is still 

unknown how mutations in one gene can give rise to different phenotypes as in FTD the 
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frontal and temporal lobe are affected and in ALS it are the motor neurons that degenerate. 

The concept of vulnerability awaits to be expanded in view of these considerations. 

 

 

1.2.4 ALS is a non-cell autonomous disease  

 

Expression of mutant SOD1 in the motor neurons solely is not sufficient to cause motor 

neuron degeneration 82-85. Indeed, a number of transgenic and transplantation experiments 

have demonstrated that other cells such as microglia, astrocytes and oligodendrocytes may 

be involved in the biology of ALS, at least in the mutant SOD1 mouse. Transgenic deletion or 

siRNA based downregulation of mutant SOD1 in motor neurons delayed disease onset, but 

did not alter disease progression 86-88. Deletion of mutant SOD1 from microglia slowed 

disease progression as did replacement of microglia expressing mutant SOD1 by 

nontransgenic microglia 86, 89-90. Deletion of mutant SOD1 from astrocytes slowed disease 

progression as well as transplantation of nontransgenic astrocyte precursor cells 91-92. 

Deletion of mutant SOD1 from oligodendrocytes dramatically delayed disease onset and 

prolonged survival 93. These experiments show that the presence of mutant SOD1 in motor 

neurons and oligodendrocytes may determine disease onset, while its presence microglia, 

astrocytes and oligodendrocytes accelerates disease progression.  

 

Astrocytes have pivotal functions in the healthy central nervous system, but also in 

pathological conditions 94. They can regulate synaptic transmission, maintain synaptic 

homeostasis and secrete components into the synapse such as lactate, glutamate and 

growth factors 94. Astrocytes are tightly linked through gap junctions and form a network 

enabling them to rapidly shuttle small molecules. Astrocytes also establish the blood brain 

barrier (BBB) by encircling endothelial cells with so called astrocytic end-feet 95. In response 

to Central Nervous System (CNS) injury and neurodegeneration, astrocytes become highly 

reactive in a process called astrogliosis 96. In this process, they upregulate glial fibrillary 

acidic protein (GFAP), nestin and connexin 43 (Cx43), which are used as markers for 

activation 97-98. Reactive astrocytes become hypertrophic which refers to the increased 

thickness of their processes 94, 99. Reactive astrocytes produce pro- and anti-inflammatory 

molecules, indicating that they have a dual effect, similar to what is seen for microglia (see 

below) 94. In ALS, familial and sporadic, reactive astrogliosis starts before disease onset and 

increases as the disease progresses. It is most pronounced in the ventral horn around the 

descending fibers of the corticospinal tract 100-101. Astrogliosis is also present in the motor 

cortex 101-102. Upon disease progression, there is a decrease in expression of glutamate 

transporter EAAT2, resulting in reduced glutamate clearance from the synaptic cleft 

rendering the motor neuron more vulnerable for glutamate-mediated excitotoxicity (see 

above) 54-58. ALS reactive astrocytes produce more nitric oxide compared to controls, which 

can contribute to the oxidative damage in ALS 103. Furthermore astrocytes containing mutant 

SOD1 secrete a toxic factor that selectively kills motor neurons but leaves dorsal root 
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ganglion neurons and interneurons unaffected, while they fail to secrete trophic factors that 

are secreted by control astrocytes 104-108.  

 

Microglia are the resident macrophages of the CNS and consequently act as the first and 

main form of immune defense in the CNS 109-110. They are constantly scanning their 

environment for damaging factors and change from a surveying state into an activated state 

when detecting one. Microglia can exert a deleterious function (M1 microglia) or a benign 

function (M2 microglia) depending on the microenvironment and the pathological insult 111-

112. M1 microglia secrete proinflammatory molecules and upregulate oxidant molecules to 

clear hazards and repair damage. M2 microglia release anti-inflammatory molecules and 

trophic factors contributing to repair and limiting inflammation. A shift from M1 to M2 

predominance is necessary for the shift from inflammation to repair 110, 112-113. In the spinal 

cord and brain of ALS patients strong microglial activation and proliferation is present 114-117. 

In the mutant SOD1 mouse, this microgliosis is already present before disease onset and 

escalates with disease progression 45, 118. Microglia isolated from mutant SOD1 mice at 

disease onset have an M2 phenotype whereas microglia isolated at end-stage have an M1 

phenotype 113.   

  

Oligodendrocytes are glial cells responsible for myelination in the CNS allowing rapid and 

efficient propagation of action potentials 119. Myelination is a key process in the developing 

brain and continues after birth up to 30 years of age 120. Remyelination also occurs during 

neuronal injury or degeneration 119. This process is not performed by existing mature 

oligodendrocytes, but involves generation of new oligodendrocytes from oligodendrocyte 

precursor cells (OPCs). OPCs can be found throughout grey and white matter and start 

proliferating in response to neuronal insult 121. In spinal cords of ALS mice and patients 

oligodendrocytes show morphological and functional changes starting before disease onset 
15, 122-124. Similarly to neurons, oligodendrocytes show mislocalisation of TDP43 which is a 

pathological hallmark of ALS 125. In spinal cords of ALS patients and mutant SOD1 mice, 

oligodendrocyte degeneration is observed 124. This degeneration of oligodendrocytes is 

compensated by enhanced proliferation and differentiation of OPCs. However these newly 

formed oligodendrocytes are dysfunctional as suggested by reduced expression of 

monocarboxylate transporter 1 (MCT1), a lactate transporter essential for the metabolic 

support of motor axons. This reduced MCT1 expression was also detected in ALS patients is 

also decreased in ALS mice and patients 15, 124. As a result the motor neurons loose an 

important source of trophic support 15, 93, 124.  

 

1.2.5 Mitochondrial dysfunction  

 

The large dimensions of the motor neurons implicit a high demand of energy and a high 

metabolic rate, which is supplied through a high level of mitochondrial activity 126. During 

mitochondrial oxidative phosphorylation reactive oxygen species (ROS) are formed, which 



22 
 

have important effects on cell signaling and homeostasis 127-128. ROS levels can increase 

dramatically upon stress which may result in an imbalance between production and 

decomposition of ROS. This oxidative stress can damage several cellular components such as 

proteins, lipids and DNA 128. In sporadic ALS patients, increased oxidative stress was detected 

compared to control samples 61. Furthermore, mitochondrial abnormalities such as 

vacuolization and swelling have been detected in mutant SOD1 mice, even in 

presymptomatic stages, as well as in ALS patients 129. It is uncertain whether these changes 

are primary or secondary in nature, but they may contribute to cell death in ALS as 

mitochondria contribute to calcium buffering (see below for excitotoxicity) and the 

regulation of apoptosis 59, 130. Mutant SOD1 mice show decreased levels of anti-apoptotic 

proteins and increased levels of pro-apoptotic proteins 131. These mice also showed an 

increased mitochondrial release of cytochrome c into the cytosol initiating the caspase 

pathway 132.  

 

1.2.6 Impaired axonal transport  

 

Motor neurons have very long axons that connect the cell body with the synapses. 

Impairment of axonal transport, both forward and reverse, has been shown to be affected 

even before disease onset 133-136. Both in ALS patients and mutant SOD1 mice abnormal 

accumulation of microfilaments in the cell body and in the axons has been observed 137-141. 

Abnormalities of the location of mitochondria throughout the motor neuron have been 

observed as well in ALS 126. Again, it is uncertain whether these changes are primary or 

secondary phenomena.   
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2 The ephrin axonal repellent system  

 

The family of Eph receptors is the largest of receptor tyrosine kinases and is named after the 

high EphA1 expression in an Erythropoietin-Producing human Hepatocellular carcinoma cell 

line 142. This family is subdivided in two classes (EphA and EphB) based on sequence 

similarity and ligand affinity 143. They interact with ephrin ligands that are also subdivided 

into two classes: ephrinA and ephrinB ligands. In the mammalian system there are nine EphA 

receptors (EphA1-EphA8, EphA10) that interact with five ephrinA ligands (efnA1-efnA5) and 

five EphB receptors (EphB1-EphB4, EphB6) that interact with three ephrinB ligands (efnB1-

efnB3). There is some interclass promiscuity as EphA4 also interacts with efnB ligands and 

EphB2 also interacts with efnA5 144-147. As both Eph receptors and ephrin ligands are 

membrane bound, cell-cell interaction is required for activation. Eph-ephrin interaction can 

induce both repulsion and attraction between cells as observed during cell migration and 

axon guidance 148-149.   

 

The ephrin system has major functions both in development and in adulthood. During 

embryonic development, the ephrin system plays a role in axon guidance, formation of 

tissue boundaries, cell migration, segmentation and angiogenesis 150-153. In adulthood it plays 

an important role in long-term potentiation, bone mineral metabolism, T-cell and stem cell 

differentiation 154-157. Eph-ephrin signaling has also been implicated in the pathogenesis of 

several diseases 158-160. Both Eph receptors and ephrin ligands are expressed in cancer cells 

and tumor vasculature. They have been shown to affect growth, migration, invasiveness, 

angiogenesis and metastasis of different types of tumors. Furthermore, the ephrin system is 

also involved in repair after nervous system injury, neurodegenerative disorders, diabetes, 

viral infections and bone remodeling diseases 159.  

 

 

2.1 Eph receptor structure  

 

The Eph receptor extracellular domain consists of an N-terminal ligand-binding domain 

(LBD), a cysteine-rich domain (CRD) with a Sushi domain and an Epidermal Growth Factor 

(EGF)-like domain and two fibronectin (FN) type III repeats (Figure 2) 161. The intracellular 

domain consists of a juxtamembrane domain with two conserved tyrosine residues, a kinase 

domain, a sterile α-motif (SAM) and a PDZ-binding motif (post synaptic density protein 95 

(PSD-95) Drosophila discs-large imaginal disc protein (DlgA) ZO-1 tight junction).   

 

The LBD determines the affinity for the ephrin ligands. It contains a hydrophobic channel and 

a polar docking site on the lower site of the LBD, of which the latter is only of importance for 

interaction with ephrinB ligands 144, 146.  
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Figure 2 Schematic representation of the Eph receptor and the ephrin ligands. The Eph extracellular 
domain contains a ligand-binding domain (LBD), a cystein-rich domain (CRD) with a Sushi domain and 
an Epidermal Growth Factor (EGF)-like domain and two fibronectin type III repeats. The Eph 
intracellular domain consists of a juxtamembrane region, a kinase domain, a Sterile alpha (SAM) 
domain and a PDZ-binding motif. EphrinB ligands contain cytoplasmic domain with a PDZ-binding 
domain at the C-terminus. EphrinA ligands are attached to the cell-membrane with a 
Glycosylphosphatidyl Inositol (GPI)-anchor. Figure based on several articles 161-163. 

 

In the inactive state, the juxtamembrane region tightly associates with the kinase domain 

(Figure 3) 164. Upon ephrin binding, Eph receptors are activated, which is characterized by 

the phosphorylation of two tyrosine residues in the juxtamembrane region and one tyrosine 

residue in the kinase domain (Figure 3) 165-166. Phosphorylation of the tyrosine residue in the 

kinase domain induces repositioning of this segment, unblocking the kinase active site. It is 

still unclear how ephrin binding induces Eph receptor autophosphorylation. One possibility is 

that ephrin binding increases the local concentration of receptors thereby promoting 

transphosphorylation. Another possibility is that Eph receptor clustering physically 

destabilizes the juxtamembrane region initiating receptor activation (Figure 3, further 

discussed in 2.3 Eph/ephrin clustering) 167.  
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Figure 3 Schematic representation of Eph/ephrin clustering. In the inactive state the 
juxtamembrane region associates tightly with the kinase domain. Eph/ephrin clustering starts with 
the recognition and binding of Eph receptors and ligands on opposing cell surfaces. Heterodimers are 
formed, which can tetramerize into heterotetramers, thereby forming a ring structure in which each 
receptor interacts with two ligands and each ligand interacts with two receptors. Receptor activation 
includes the phosphorylation of tyrosine residues in the juxtamembrane region and in the kinase 
domain. These clustering interfaces allow binding of other heterotetramers resulting in an array of 
well-ordered Eph receptors. This clustering also results in lateral recruitment of non-ligand-bound 
Eph receptors. Figure based on several articles 149, 161-162, 168-169. 

 

Several of the extracellular and intracellular domains are involved in the formation of 

Eph/ephrin clusters, including the CRD, FNIII repeats, SAM 170. The FNIII repeats are also 

involved in cis-interaction with ephrin ligands 163, 171-172. The SAM domain is not essential for 

Eph clustering, but may stabilize the array of clustered Eph receptors 161, 173-174. 

 

After clustering, several tyrosine residues are phosphorylated forming binding sites for 

intracellular adaptors 175. Phosphorylation of the tyrosine residues in the juxtamembrane 

region form binding sites for cytoplasmic targets with Src Homology 2 (SH2) or 

Phosphotyrosine binding (PTB) domains. Oligomerization and phosphorylation of the SAM 

domain creates interaction sites for downstream signaling molecules such as protein 

tyrosine phosphatases (PTP) 176-177.   
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2.2 Ephrin ligand structure  

 

All ephrin ligands contain a conserved receptor-binding domain (RBD). The RBD contains a 

hydrophobic loop that is inserted into the hydrophobic core of the LBD upon receptor 

binding. Ephrin ligands are subdivided in two classes based on the way they are attached to 

the cell membrane (Figure 2). EphrinA ligands are attached to the cell membrane via a 

Glycosylphosphatidyl Inositol (GPI) anchor. However, as they lack a cytoplasmic domain, 

they depend on the association with co-receptors (p75NTR (p75 neurotrophin receptor), Ret 

(rearranged during transfection) and TrkB (Tropomyosin receptor kinase B)) for further 

signaling 178-180. EphrinB ligands contain a transmembrane domain followed by a conserved 

cytoplasmic region and a C-terminal PDZ-binding motif 181. This cytoplasmic region contains 

tyrosine residues that become phosphorylated upon receptor binding 182-183.  

 

 

2.3 Eph/ephrin clustering  

 

To obtain full biological activity Eph receptors need to be clustered, through a seeding 

mechanism 168. This mechanism involves two interaction interfaces: the heterodimerization 

interface between receptor and ligand, and the clustering interface between two adjacent 

Eph receptors. Eph/ephrin clustering starts with the recognition and binding of Eph 

receptors and ligands on opposing cell surfaces (Figure 3) 161. Heterodimers are formed, 

which can tetramerize into heterotetramers, thereby forming a ring structure in which each 

receptor interacts with two ligands and each ligand interacts with two receptors (Figure 3) 
184. This heterotetramerization has been observed both for EphA/efnA and EphB/efnB 

clustering 184-185. The Eph/ephrin heterotetramers assemble into hetero-oligomeric clusters 

via direct Eph/Eph interactions. Most likely these clustering interfaces allow them to bind to 

other heterotetramers resulting in an array of well-ordered Eph receptors. This clustering 

also results in lateral recruitment of non-ligand-bound Eph receptors 186. The clustering 

interfaces involve LBD-LBD interactions through salt bridges and hydrogen bonds, and CRD-

CRD interactions through van der Waals interactions 170, 185, 187. Interaction between 

fibronectin repeats has also been suggested, but this has not been confirmed 163, 185.   

 

Only ligands that are clustered (both membrane-bound ligands and artificially clustered 

ligands) can trigger signaling, while non-clustered or soluble ligands act as antagonists 175, 188-

191. Moreover, clustering of ephrin ligands increases the local Eph receptor concentration, 

thereby stimulating downstream signaling 168.  
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In normal conditions, Eph receptors and ephrin ligands are present at the cell surface in 

distinct membrane regions, the cholesterol-rich lipid rafts 192. These rafts enable trans-

signaling between Eph receptors and ephrin ligands on opposing cells, and block cis-

interactions between Eph receptors and ephrin ligands on the same cell 192-193. Cis-

interaction makes Eph receptors less responsive to ephrin ligands in trans abolishing the 

induction of tyrosine phosphorylation (Figure 4) 149.   

 

 

Figure 4 Cis-interaction between ephrin ligands and Eph receptors. This cis-interaction abolishes the 
induction of tyrosine phosphorylation and makes Eph receptors less responsive to ephrin ligands in 
trans. Adapted from Pitulescu et al., 2010 149. 

 

2.4 Signaling 

 

Interaction between Eph receptors and ephrin ligands can result in bidirectional signaling: 

forward signaling in the Eph-bearing cell and reverse signaling in the ephrin-bearing cell 

(Figure 5) 159. The Eph-ephrin signal is complex due to a large number of possible Eph-ephrin 

interactions, co-expression of different Eph receptors, cis-interaction influencing the signal 

and cross-talk with other signaling pathways 175. This complexity makes it difficult to clearly 

define the signaling pathways underlying many Eph functions 175. Signaling from the same 

Eph-ephrin pair can result in opposing responses, such as adhesion and retraction, 

depending on cell type, tissue and organ context. In general, Eph receptor phosphorylation 

results in cell-cell segregation while the same Eph receptor can stimulate cell-cell adhesion 

via kinase-independent signaling pathways 149, 194. Many of the functions of Eph receptors 

involve signaling in both ways regulating cytoskeleton dynamics and morphology. One of the 

most common cellular responses to Eph receptor activation is actin stress fiber 

depolymerisation leading to cytoskeletal collapse, inducing cell-cell segregation 194.   
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Figure 5 Bidirectional signaling. Interaction between Eph receptors and ephrin ligands can result in 
signaling in two directions: signaling in the Eph-bearing cell (forward signaling) and signaling in the 
ephrin-bearing cell (reverse signaling). Adapted from Pitulescu et al., 2010 149. 

 

 

 

2.5 Regulation of Eph/ephrin signaling  

 

The Eph/ephrin interaction and subsequent signaling is regulated in different ways and at 

different levels. At the RNA level there is transcriptional and post-transcriptional regulation 
195. Eph/ephrin signaling is also influenced by different interaction partners such as ligand-

interaction in cis, protein tyrosine phosphatases (PTPs), γ-secretases and matrix 

metalloproteinases (MMP) such as A Disintegrin and Metalloproteinase (ADAM). Ligand 

interactions in cis make Eph receptors less responsive to ephrin ligands in trans 149, 172. PTPs 

block Eph receptor phosphorylation and counteract Eph receptor endocytosis 196-197.  ADAM 

interaction with Eph receptors is promoted by ephrin-induced clustering (Figure 6A). ADAM 

cleaves ephrinA ligands, thereby disrupting the Eph/ephrin interaction, resulting in cell de-

adhesion. EphrinB ligands are cleaved both by MMPs and y-secretases, producing an 

intracellular domain (ICD) which activates downstream signaling 198. This process of cleavage 

has been reported for the EphA4 and EphB2 receptor 199-201. Another mechanism to 

terminate Eph/ephrin interaction is trans-endocytosis involving the uptake of full-length 

transmembrane EphB-ephrinB signaling complexes in the cell, enabling cell de-adhesion 

(Figure 6B) 149. Whether the Eph/ephrin complex is taken up by the cell with the Eph 

receptor or the cell with the ephrin ligand, is determined by the Eph/ephrin signaling as this 
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process requires a functional Eph kinase. However, the exact mechanism is not completely 

understood 202.   

 

 

Figure 6 Regulation of Eph/ephrin signaling. (A) Upon clustering ADAM cleaves ephrinA ligands, 
thereby disrupting the Eph/ephrin interaction and inducing cell de-adhesion. (B) Trans-endocytosis 
involving the uptake of full-length transmembrane EphB-ephrinB signaling complexes in the cell, 
enabling cell de-adhesion. Adapted from Pitulescu et al., 2010 149.  

 
 

2.6 Epha4 

 

In the CNS, Epha4 is highly expressed in cell bodies, dendritic spines and axons of neurons in 

various brain regions 203-204. Neuronal Epha4 expression regulates dendritic spine 

morphology, which plays an important role in synaptic plasticity including long-term 

potentiation (LTP) and long-term depression (LTD) 201, 205-206, while synaptic activity itself is 

able to increase Epha4 phosphorylation 207. Furthermore, Epha4 has been shown to be 

involved in several neurological disorders including acute injuries, neuroinflammation and 

neurodegenerative diseases 175.   

 

 

2.6.1 CNS trauma  

 

Total EphA4 expression has been found to be upregulated in reactive astrocytes in brains of 

traumatic brain injury (TBI) patients who deceased more than one day after the injury 208, 

while phosphorylated EphA4 levels were significantly increased both in the ipsi- and 

contralateral hemisphere of individuals who died more than 8 hours after TBI 208. In mouse 

models, this upregulation was only found in the cortex ipsilateral to the injury, but not in the 

hippocampus. Disappointingly, transgenic reduction of Epha4 levels in the hippocampus and 
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cortex did not result in improved outcome 209.    

The results obtained in studies on spinal cord injury (SCI) have been somewhat inconsistent.  

Some 210-212 but not all 213-214 studies have found Epha4 to be upregulated in reactive 

astrocytes at the lesion site 210-211 and in the proximal axonal stumps 212. Epha4-/- mice 

showed increased axonal regeneration, which was shown by forward labeling of axons 

crossing the lesion site in Epha4-/- mice 210. Furthermore, in rats treated with an EphA4 

inhibitor, corticospinal tract axons sprouting was enhanced 213. Both genetic knockdown as 

well as pharmacological blocking of Epha4 improved functional recovery including walking, 

climbing and grasping in mice after SCI 210, 213. Disappointingly, this enhanced functional 

recovery was not seen in a rat model for SCI in which Epha4 expression was reduced using 

Epha4 antisense-oligodeoxyncleotides 215.   

 

2.6.2 Stroke 

 

Epha4 was found to be highly upregulated in several experimental stroke models. In a focal 

cerebral ischemia rat model, Epha4 was highly upregulated in the glial scar 7 and 14 days 

after ischemia 214. In a forebrain ischemia-reperfusion rat model, Epha4 was also found to be 

upregulated in the CA1 region 216. Furthermore, higher expression of Epha4 was also shown 

in sprouting neurons after stroke in aged mice compared to sprouting neurons in younger 

mice, which may contribute to the reduced functional recovery in aged mice 217. Inhibiting 

Epha4 by Epha4-Fc delivery in mice seven days post-stroke enhanced sprouting within the 

motor cortex 218.   

 

Downregulation as well as inhibition of Epha4 enhanced recovery after stroke in two 

different experimental stroke models 216, 219. In a mouse model of photothrombotic stroke, 

enhanced motor recovery was observed in mice with reduced expression of Epha4 219. 

Blocking Epha4 by Epha4-Fc delivery 30 minutes after ischemia-reperfusion in rats, lead to 

attenuated apoptotic neuronal death, suggesting a neuroprotective effect of Epha4 

inhibition 216.  

 

  

2.6.3 Multiple Sclerosis (MS)  

 

In active MS lesions in the human brain, EphA4 was found to be upregulated in inflammatory 

cells, macrophages, reactive astrocytes and axons 220. In mice with experimental 

autoimmune encephalomyelitis (EAE), a model for MS, Epha4 was expressed on reactive 

astrocytes surrounding lesions 221. In Epha4-/- mice with EAE, disease onset was delayed and 

its course less severe. Pharmacological blocking of Epha4 using soluble Epha4-Fc also 

delayed disease onset and slowed disease evolution. Genetic and pharmacological inhibition 

of Epha4 did not affect histopathological characteristics of the lesions including the numbers 

of infiltrating T-cells and macrophages, the number and size of the lesions and the extent of 
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astrocytosis, although axonal abnormalities were attenuated in Epha4-/- mice with EAE 221.

  

  

2.6.4 ALS 

 

The clinical presentation of ALS varies greatly between ALS patients. Even within one family 

carrying the same mutation, disease onset and disease progression can be very 

heterogeneous 2, 28. This suggests that ALS is a multifactorial disease influenced by modifying 

genes and environmental factors.  In previous experiments in our laboratory, a zebrafish 

model of ALS was used to screen for modifying genes that could rescue the axonal 

phenotype. This axonal phenotype, shorter and more aberrantly branched motor axons, is 

caused by overexpression of mutant SOD1 in zebrafish embryos 13. A morpholino-based 

knockdown of receptor tyrosine kinase 2 (rtk2), the zebrafish orthologue of human EphA4, 

completely rescued the axonal phenotype 35. This result was confirmed in the SOD1G93A ALS 

mouse model where deletion of only one Epha4 allele resulted in a longer survival compared 

to controls. In blood samples of ALS patients an inverse correlation was identified between 

EphA4 expression and disease onset suggesting lower levels of EphA4 to be associated with a 

less severe phenotypic expression of the disease. Sequencing of EphA4 in humans with ALS 

identified two previously unknown mutations which are associated with unusual long 

survival.  

  

As genetic interference had a beneficial effect in the ALS fish and mouse model, it was also 

tested whether pharmacological inhibition could result in a beneficial effect. The small 

compound, a 2-hydroxy-4(2, 5-dimethylpyrrol-1-yl) benzoic acid derivative (C1), completely 

rescued the axonal phenotype in the zebrafish model of ALS. Intracerebroventricular 

delivery of the KYL-peptide delayed onset and increased survival in the SOD1G93A rat model. 

This dodecapeptide is a specific EphA4 antagonist which has been extensively studied in vitro 

and in vivo with beneficial effects in spinal cord injury 213, 222. The properties of C1 will be 

further discussed in Chapter 4.   

 

 

2.6.5 Alzheimer’s Disease (AD)  

 

In the hippocampus of AD patients in the initial stage of the disease, EphA4 expression was 

found to be decreased and in their frontal lobe, the expression of the EphA4 intracellular 

domain (EICD) was reduced 223-224. This fragment is obtained after cleavage of EphA4 by γ-

secretase and enhances the formation of dendritic spines 201. Furthermore, increased 

abundance of EphA4 has been found in neuritice plaques, although this study did not find a 

difference in EphA4 expression 225.   

In the hippocampus of two AD mouse models 223, but not in two other ones 226-227, Epha4 

expression was reduced, even before the occurrence of behavioral changes. However, in the 
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AD mouse models where no difference in Epha4 expression was found, an increase in Epha4 

activity could be detected 226-227. This enhanced Epha4 activation was also seen in 

hippocampal slices, cultured neurons and synaptoneurosomes exposed to amyloid beta (Aβ) 

oligomers 227-228.  

Experimental AD mice showed decreased long-term potentiation (LTP) that was rescued 

when Epha4 was genetically or pharmacologically downregulated 227. Pharmacological 

blocking of the Epha4 receptor also rescued LTP in an in vitro model for Aβ toxicity 228. 

 

 

2.6.6 Parkinson’s Disease (PD) and Huntington’s Disease (HD)  

 

In a study searching for biomarkers in cerebrospinal fluid (CSF) of PD patients, a peptide 

derived from EphA4 was found to be abundantly present 229. In HD brains, decreased EphA4 

mRNA levels have been found, and decreased EphA4 protein levels in the CSF of HD patients 

have been reported 230. No functional studies in models for these disorders have been 

performed.  

 

2.6.7 Conclusion 

 

In spite of some inconsistencies in terms of Epha4 expression, an increase in Epha4 activity 

as measured by Epha4 phosphorylation was observed in all disorders. In agreement with 

this, and again in spite of inconsistencies of results obtained using different strategies, 

blocking Epha4 positively affected the functional outcome in all neurological disorders 

tested, suggesting that Epha4 activation negatively affects the pathogenesis of these 

disorders.  
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Aims 
 

The variability of the phenotypic expression of ALS is unexplained, but it is thought to be 

genetic and/or environmental in nature. We previously identified the Epha4 receptor to be 

contributing to this variability. Knockdown of Epha4 in the zebrafish model of ALS resulted in 

a rescue of the axonal phenotype. Epha4 deletion and inhibition of the receptor resulted in 

increased survival in the ALS mouse and rat model respectively. Furthermore EphA4 

expression in blood of sporadic ALS patients inversely correlated with survival indicating that 

patients with higher EphA4 expression have shorter survival. With the present work, we aim 

to gain more insight in the pathogenesis of ALS by studying the mechanism of action of 

Epha4 (I) and to test the therapeutic potential of modifying Epha4 in ALS (II).   

    

The aim of part one is to investigate the mechanism of action of the hazardous effect of 

Epha4 on ALS. The ephrin system is a very complex system due to a large number of possible 

Eph-ephrin interactions, bidirectional signaling, co-expression of different Eph receptors, cis-

interaction influencing the signal and cross-talk with other signaling pathways. To unravel 

the mechanism of action of the hazardous effect of Epha4 on ALS, we will focus on the effect 

of the Epha4 receptor on motor neuron degeneration and on the role of its interaction 

partners.  

 

The aim of part two is to explore the therapeutic potential of EphA4 antagonists in the 

pathogenesis of ALS. We will test the potential of existing EphA4 antagonists. In addition, as 

most existing EphA4 inhibitors lack specificity and only block EphA4 activation at higher 

concentration, we will use Nanobody technology to generate a new, selective EphA4 

inhibitor.  
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Part I: Exploring the mechanism of the beneficial 

effect of EphA4 inhibition in ALS 
 

Introduction 

 
We previously showed that EphA4 is a modifier of ALS both in animal models and in patients 
35. In a mouse model of ALS, the SOD1G93A mouse, genetically reducing the levels of Epha4 to 

half of the normal levels resulted in increased motor performance and survival. 

Histopathological analysis showed that more ventral horn motor neurons were preserved in 

mice with reduced Epha4 levels, Epha4+/-; SOD1G93A mice, compared to their littermate 

controls. Furthermore, Epha4+/-; SOD1G93A mice had a higher percentage of fully innervated 

neuromuscular junctions. These data indicate that 50% reduction of Epha4 expression slows 

motor neuron degeneration in the SOD1G93A ALS mouse model. Interestingly, these findings 

could be translated to human ALS, as an inverse correlation between EphA4 expression in 

blood samples and disease onset was identified in sporadic ALS patients.   

 

We next studied the mechanism through which Epha4 exerted its role as a modifier of motor 

neuron degeneration. We previously studied the possible effect of decreased Epha4 

expression on gliosis and excitotoxicity. Indeed, in an animal model for spinal cord injury a 

reduction of Epha4 was shown to be associated with a decrease in gliosis, which is of interest 

since astrocytes are important contributors to motor neuron degeneration in ALS 210. 

However, in ALS mice with reduced Epha4 no reduction in gliosis was observed 35. 

Furthermore, the expression of the glial glutamate transporter (GLT1) was demonstrated to 

be upregulated in the hippocampus of mice with lower levels of Epha4 205. Excitotoxicity is a 

generally accepted mechanism in ALS, and therefore, we hypothesized that the beneficial 

effect of reduced Epha4 expression may be explained by an upregulation of GLT1 in the 

spinal cord of ALS mice. However, although an upregulation of GLT1 was confirmed in the 

hippocampus, no change of GLT1 expression was found in the spinal cord of Epha4+/-; 

SOD1G93A mice 35.   

In part I of this thesis, we further studied the mechanism through which Epha4 modifies ALS. 

We explored the contribution of Epha4 to the vulnerability of motor neurons and their 

sprouting potential following injury (Chapter 1). Furthermore, we studied whether the effect 

of Epha4 on motor neuron degeneration is mediated through forward or reverse signaling 

(Chapter 2). Finally, we investigated the possible involvement of one particular Epha4 ligand, 

ephrinb2, in the pathogenesis of ALS (Chapter 3). 
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Chapter 1. Epha4 as a vulnerability factor in motor neurons   

 
Published in: Van Hoecke A et al., Nature Medicine, 2012  

Experiments in collaboration with Annelies Van Hoecke 

1.1  Introduction 

 

In previous work studying the spinal cord of mice overexpressing human wild type SOD1 

(SOD1WT) or mutant SOD1 (SOD1G93A), we found Epha4 to be mainly or even exclusively 

present in spinal cord motor neurons, as it was below detection threshold in other cell types, 

such as astrocytes or microglia 35.  

In ALS, motor neurons are selectively affected. Some mechanisms that may at least partially 

explain the vulnerability of motor neurons have been discussed above. Interestingly, not all 

motor neurons are equally vulnerable. There are subpopulations of motor neurons such as 

the oculomotor neurons and neurons in Onuf’s nucleus that are more resistant to 

neurodegeneration. Furthermore, there are motor neurons with different physiological 

characteristics that are also differentially vulnerable in ALS.  

The aim of the present study was to further study the role of Epha4 in motor neurons during 

disease development and progression in ALS and to elucidate whether Epha4 contributes to 

the vulnerability of motor neurons.  
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1.2  Results  

1.2.1 Vulnerable motor neurons in ALS have higher expression of Epha4  

  

Epha4 protein expression in lysates of lumbar spinal cord decreases during disease 

progression in mutant SOD1 mice 35. We first studied whether this decrease merely reflects 

the decrease of the number of motor neurons known to occur during ALS. To this end, we 

quantified Epha4 expression in motor neurons of the anterior horn of the spinal cord. Motor 

neurons from the spinal cord of SOD1G93A mice were isolated at different time points during 

the disease using Laser Capture Microdissection (LCM) followed by quantification of Epha4 

mRNA expression using quantitative Polymerase Chain Reaction (qPCR) (Figure 1.1A). 

Surprisingly, Epha4 levels in motor neurons were reduced in late-symptomatic mice, 

compared to pre-symptomatic mice. This suggests that expression within the motor neuron 

is decreasing when the disease progresses or that motor neurons with higher levels of Epha4 

are the most vulnerable as they die off first, while motor neurons with low Epha4 levels are 

less vulnerable, as they appear to survive until the late stages of the disease (Figure 1.1B).  

 

Figure 1.1 Motor neurons in late-symptomatic mice have lower levels of Epha4. (A) Image of ventral 
horn of lumbar spinal cord before (left) and after (right) LCM. (B) Epha4 mRNA expression in 
microdissected motor neurons of presymptomatic (Pre-sym) and late-symptomatic (Late-symp) 
SOD1G93A mice and age-matched SOD1WT mice (ANOVA p = 0.0033, n = 3). Polr2a was used as internal 
control, and levels were subsequently normalized to the 60-d value obtained in SOD1WT mice. 
Adapted from Van Hoecke et al., 2012.  

 

Differential vulnerability of motor neurons in ALS has been related to size and physiological 

subtype. Large, FF motor neurons are more vulnerable231. We therefore studied the 

expression of Epha4 in relation to size of the motor neuron. As shown in figure 1.2A., large 

motor neurons appear to be more susceptible to ALS, as has been described previously231. 

Interestingly, Epha4 expression was significantly higher in microdissected large motor 

neurons (> 600 µm²) compared to that in smaller motor neurons (250 - 400 µm²) (Figure 
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1.2B). In agreement with this, we found that the protective effect of a reduction of Epha4 in 

SOD1G93A mice was most pronounced in the large motor neurons (Figure 1.2C). Thus, 

expression levels of Epha4 correlate with vulnerability of neurons to ALS.  

 

Figure 1.2 Vulnerable motor neurons in ALS have higher expression of Epha4. (A) Relative number 
of small (250–400 μm2) and large (>600 μm2) motor neurons in the ventral horn of spinal cord of late-
symptomatic SOD1G93A mice (n = 9) and age-matched SOD1WT controls (n = 6; two-way 
ANOVA, pgenotype × motor neuron size = 0.018, t-test small motor neurons p = 8.1 × 10−4, t-test large motor 
neurons p = 2.80 × 10−5). (B) Epha4 expression in small and large laser-captured microdissected 
motor neurons of nontransgenic mice (n = 3, t-test p = 0.044). Polr2a was used as internal control. (C) 
Relative number of small and large motor neurons in the spinal cord of late-symptomatic Epha4+/−; 
SOD1G93A mice (n = 9) compared to age-matched Epha4+/+; SOD1G93A littermates (n = 9; two-way 
ANOVA pgenotype × motor neuron size = 0.031, t-test small motor neurons p = 0.018, t-test large motor 
neurons P = 0.011). Adapted from Van Hoecke et al., 2012. 
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1.2.2 Epha4 is a determinant of the re-innervating capacity of motor neurons 

 

We then wondered whether Epha4 is just a marker of vulnerable neurons, or whether it 

plays a mechanistic role. Large motor neurons have limited regenerating capacity as 

evaluated by sprouting and reduced re-innervation capacity. Therefore, vulnerability and 

regeneration capacity are thought to be interrelated 75.  We therefore studied the role of 

Epha4 in re-innervation capacity of the motor neuron by investigating its effect on 

neuromuscular re-innervation following axotomy of the sciatic nerve (Figure 1.3A). As shown 

in figure 1.3B, the re-innervation capacity in Epha4 knockout mice was significantly and 

dose-dependently improved compared to wild type mice, suggesting that Epha4 reduces the 

re-innervating capacity of spinal motor neurons (Figure 1.3B).   

 

 

Figure 1.3 Epha4 is a determinant of the re-innervating capacity of motor neurons . (A) Schematic 

representation of sciatic nerve axotomy. (B) Re-innervation of gastrocnemius neuromuscular 

junctions after sciatic nerve axotomy in Epha4+/+ (n = 10), Epha4+/− (n = 8, OR 2.15 ± [1.76–2.63]) 

and Epha4−/− mice (n = 5, OR 4.98 ± [3.93–6.31]).  ***p< 0.001. Adapted from Van Hoecke et al., 

2012. OR, Odds ratio 
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1.3  Discussion 

 

Previous work in our laboratory has shown that Epha4 is a modifier of ALS. However, the 

mechanisms by which Epha4 reduction/inhibition attenuate motor neuron degeneration 

remain unknown. In SOD1G93A mouse with 50% reduction of Epha4 expression, astrogliosis 

and GLT1 expression were not altered. In this chapter we showed that motor neurons with 

lower levels of Epha4 are less vulnerable as they survived until the late stages of the disease. 

Large motor neurons that are more vulnerable have higher Epha4 expression compared to 

smaller motor neurons. In agreement with this, the protective effect of reduced Epha4 

expression in the SOD1G93A mouse was most pronounced in the large motor neurons. 

Furthermore, reduced Epha4 expression improved the re-innervating capacity of spinal 

motor neuron axons in a model of sciatic nerve axotomy. Together these results suggest that 

Epha4 contributes to the differential vulnerability of motor neurons in ALS and that high 

Epha4 expression reduces the re-innervating capacity of large motor neurons, possibly 

making them vulnerable for degeneration and thereby attenuating ALS disease progression 

(Figure 1).  

  

Mutant SOD1 mice resemble to a remarkable degree the precise pattern in selective motor 

neuron degeneration both in terms of regional vulnerability and motor neuron subtype seen 

in patients with sporadic ALS. Similar to what is seen in mutant SOD1 mice, the large motor 

neurons are the ones affected earliest in ALS patients 78. Moreover, EMG patterns of single 

motor units in a distal muscle in ALS patients show similar patterns of denervation and re-

innervation 76. This de- and re-innervation results in fiber type grouping, characteristic for 

what is seen in ALS patients 232. It is thought that sprouting from surviving motor neurons 

can compensate for the motor neuron degeneration in early stages of the disease. Even 

though a similar pattern in selective motor neuron degeneration is observed in ALS patients, 

we don’t know whether EphA4 also contributes to the vulnerability in motor neurons in ALS 

patients. Further experiments, including determining EphA4 expression within human motor 

neurons, might help to elucidate whether EphA4 contributes to the vulnerability of motor 

neurons in ALS patients.  

Several other factors have been identified that contribute to the differential vulnerability of 

motor neurons in ALS. MMP9 has been identified to be selectively expressed in the 

vulnerable motor neurons, more specifically in the fast motor neurons 74. These fast motor 

neurons (FF) are the ones affected earliest both in mutant SOD1 mice as in ALS patients 75-77. 

The degeneration of these FF motor neurons is followed by degeneration of the FR motor 

neurons and only later by the S motor neurons. There is compensatory re-innervation which 

differs between the different motor neuron sybtypes. The motor end plates, from which the 

degenerating FF axons have retracted, will subsequently be innervated by FR motor neuron 

axons. Later in the disease process, the FR-motor neurons become involved, cannot maintain 

their neuromuscular junctions anymore and will retract their axons and degenerate. The S 
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motor neurons will compensate for the degeneration of these axons by re-innervating motor 

end plates left by degenerating FF and FR motor neurons 75. The axons of S motor neurons 

are involved in the terminal stages of the disease only. This regeneration/sprouting capacity 

of different motor neurons subtypes correlates with its vulnerability and is important in the 

pathogenesis of ALS. Experimental increase of motor unit activity in the hind limbs of mutant 

SOD1 mice saved the motor units that are normally lost during early stages of the disease 

suggesting that the vulnerable motor units are saved by increasing their neuromuscular 

activity thereby converting them to more resistant motor units 233. Furthermore, FF and FR 

motor neurons in mutant SOD1 mice lacking MMP9 both adopt an axonal dieback 

phenotype comparable to that of S motor neurons as their rate of muscle denervation was 

similar to that of S motor neurons with normal MMP9 levels 74.  The exact mechanism 

underlying this sequential degeneration of the different motor neuron subtypes is unknown. 

However, it has been shown that UPR activation is initiated selectively in the vulnerable 

motor neurons and activated in resistant motor neurons late in disease, shortly before they 

start to degenerate 45. In mutant SOD1 mice with a deletion of MMP9 the UPR was initiated 

at later stages, suggesting MMP9 enhances the activation of the UPR thereby inducing 

axonal degeneration 74.   
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Chapter 2. Exploring the Epha4 signaling direction  
 

Experiments in collaboration with Laura Rué 

2.1  Introduction 

 

Interaction between Eph receptors and ephrin ligands can result in signaling in two 

directions: signaling in the Eph-bearing cell (forward signaling) and signaling in the ephrin-

bearing cell (reverse signaling) (Figure 5). Reduction of Epha4 expression results in decreased 

Epha4 signaling in both directions. It is unknown which signaling direction is involved in the 

modifying effect of Epha4 (Figure 2.1). To study the contribution of forward and reverse 

signaling on the beneficial effect observed upon Epha4 reduction, we obtained a transgenic 

mouse in which the Epha4 receptor is modified to lack forward signaling, but in which 

reversed signaling is unaffected 206. In this Epha4eGFP/eGFP mouse the cytoplasmic domain has 

been replaced by an enhanced Green Fluorescent Protein (eGFP), removing all intracellular 

binding sites. Previous studies already used this mouse model to distinguish between 

forward and reverse signaling. Both homozygous Epha4eGFP/eGFP and Epha4-/- mice show 

aberrant organization of thalamocortical projections 234-235. However, in contrast to Epha4-/- 

mice, long-term potentiation (LTP) is not affected in Epha4eGFP/eGFP mouse 206. These date 

indicate that Epha4 forward signaling is required for corticospinal tract formation, while 

Epha4 reverse signaling is involved in LTP. These aberrations in the formations of the 

corticospinal tract result in a rabbit-like hopping gate in both the Epha4-/- and Epha4eGFP/eGFP 

mice 234, 236.  Since the motor performance is difficult to assess in these homozygous Epha4-/- 

and Epha4eGFP/eGFP mice due to the hopping gate, survival and motor performance were 

assessed using Epha4+/-; SOD1G93A and Epha4eGFP/+ mice 234.   

 

We first molecularly characterized the Epha4eGFP/+ mice and then investigated the effect of 

replacing Epha4 by Epha4eGFP on the course of ALS. We hypothesized that if a similar 

protective effect on ALS is observed in the Epha4eGFP/+; SOD1G93A mice as in the EphA4+/-; 

SOD1G93A, the beneficial effect is mediated by a decrease of forward signaling. However, if 

no effect is observed in the Epha4eGFP/+; SOD1G93A mice, the beneficial effect observed in the 

Epha4+/-; SOD1G93A mice is caused by a decrease in reverse signaling.   
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Figure 2.1 Schematic representation of the Epha4+/- mouse and the Epha4eGFP/+ mouse. In the 
Epha4+/- mouse, Epha4 is deleted abolishing both the forward and the reverse signaling. In the 
Epha4eGFP/+ mouse, one Epha4 allele is replaced with an Epha4eGFP isoform abolishing only the 
forward signaling. 
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2.2  Results 

 

2.2.1 Epha4 expression and phosphorylation 

 

We determined the expression of the Epha4eGFP isoform and wild type Epha4 protein in 

lysates of spinal cord, hippocampus and cortex using an N-terminal Epha4 antibody since this 

detects both wild type Epha4 as well as the Epha4eGFP isoform (Figure 2.2A,B). 

Quantification of their expression levels in the heterozygous Epha4eGFP/+ mice showed higher 

expression of the Epha4eGFP isoform compared to wild type Epha4 (Figure 2.2C,D).   

 

 

Figure 2.2 Expression levels of wild type Epha4 and Epha4eGFP in CNS of adult mice. (A) A 
monoclonal antibody against the extracellular part of Epha4 recognised wild type Epha4 and 
Epha4eGFP in adult spinal cord (SC), hippocampus (Hipp) and cortex (Cx). (B) An antibody against GFP 
identified the lower band as Epha4eGFP. (C,D) Expression levels of wild type Epha4 (n = 4, 100%) and 
Epha4eGFP (n = 4, 143%) in the spinal cord of Epha4eGFP/+ mice (p = 0.0122). GAPDH (37 kDa) was 
used as a loading control. *p<0.05. Error bars denote standard deviation.   
 

Epha4 expression levels in the spinal cord of nontransgenic, Epha4+/- and Epha4eGFP/+ were 

compared. Using a C-terminal Epha4 antibody, Epha4+/- mice and Epha4eGFP/+ mice had 

similar levels of the Epha4 cytoplasmic domain, which are 50% compared to the Epha4 levels 

in nontransgenic animals (Figure 2.3A,C). Next, we determined to what extent Epha4 

phosphorylation was affected in the heterozygous Epha4eGFP/+ mouse. Replacement of the 

Epha4 wild type protein by the Epha4eGFP isoform removes the kinase domain and the 

phosphorylation sites present in the kinase domain and the juxtamembrane region. We 

focused on the phosphorylation levels of Y779, located in the kinase domain of the Epha4 

receptor. Phosphorylation of Y779 was comparable in the Epha4eGFP/+ mice and the Epha4+/- 
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mice, but reduced compared to nontransgenic animals (Figure 2.3B,D). These results indicate 

that Epha4 expression and phosphorylation status is similar in Epha4eGFP/+ and in Epha4+/- 

mice.  

 

 

Figure 2.3 Phosphorylation levels of Epha4 in the spinal cord of Epha4+/-, Epha4eGFP/+ and 
nontransgenic mice. (A, C) Epha4 expression in lumbar spinal cords of Ntg mice (n = 14, 100% 
expression), Epha4+/- mice (n = 8, 61% expression) and Epha4eGFP/+ mice (n = 8, 52% expression). (B, D) 
Phosphorylation of Y779, a Epha4 kinase domain residue, in lumbar spinal cords of Ntg mice (n = 9, 
100% expression), Epha4+/- mice (n = 4, 69% expression) and Epha4eGFP/+ mice (n = 4, 70% expression). 
GAPDH (37 kDa) was used as a loading control. ANOVA tests were used for statistical analysis, 
***p<0.001. Error bars denote standard deviation. 
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2.2.2 Abolishing Epha4 forward signaling in the SOD1G93A mouse model   

 

Epha4eGFP/+ mouse were crossbred with the SOD1G93A mouse model. Replacement of one 

Epha4 allele in the SOD1G93A mouse with an Epha4eGFP isoform, did not affect disease 

onset, assessed by hanging wire and rotarod performance (Figure 2.4A,B). Survival and 

disease duration was unaltered in the Epha4eGFP/+; SOD1G93A mouse, in contrast to the 

Epha4+/-; SOD1G93A which showed a beneficial effect on survival and disease duration (Figure 

2.4C,D)35.  

 

Figure 2.4 Deletion of the Epha4 cytoplasmic domain did not affect disease onset and survival in 
SOD1G3A mice. (A) Disease onset as determined by hanging wire. Median disease onset:  109 d 
(Epha4+/+; SOD1G93A, n = 29) and 109 d (Epha4eGFP/+; SOD1G93A, n = 30). (B) Disease onset as 
determined by rotarod. Median disease onset:  104.5 d (Epha4+/+; SOD1G93A, n = 28) and 106 d 
(Epha4eGFP/+; SOD1G93A, n = 31). (C) Median survival: 155 d (Epha4+/+; SOD1G93A, n = 29) and 157 d 
(Epha4eGFP/+; SOD1G93A, n = 33). (D) Average disease duration as determined by hanging wire or 
rotarod respectively: 47and 50 d (Epha4+/+; SOD1G93A, n = 29), 46 and 51 d (Epha4eGFP/+; SOD1G93A, n = 
30). 
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In order to assess subtle effects on motor neuron degeneration too small to affect the 

clinical status of the animals, we quantified the number of motor neurons in the spinal 

ventral horn, and studied the degree of neuromuscular innervation. Histopathological 

analysis of age-matched mice showed no difference in preserved ventral horn motor 

neurons nor neuromuscular junctions in Epha4eGFP/+; SOD1G93A mice as compared to 

littermate controls (Epha4+/+; SOD1G93A) (Figure 2.5).   

 

 

 

Figure 2.5 Ventral horn motor neurons and neuromuscular junctions were not preserved in the 
Epha4eGFP/+; SOD1G93A mice compared to their age-matched littermate controls (Epha4+/+; SOD1G93A). 
(A) Relative number of small and large motor neurons in the spinal cord of late-
symptomatic Epha4eGFP/+; SOD1G93A mice (n = 3) compared to age-matched Epha4+/+; SOD1G93A 

littermates (n = 5) (B) Percentage completely innervated neuromuscular junctions: 48% (Epha4eGFP/+; 
SOD1G93A, n = 8) versus 50% (Epha4+/+; SOD1G93A, n = 9, age-matched controlled). 

These data show that replacement of one Epha4 allele by an Epha4eGFP isoform did not 

affect disease onset and survival in a mouse model of ALS. Thus, abolishment of Epha4 

forward signaling by deleting the Epha4 cytoplasmic domain did not influence ALS, 

suggesting that it is a reduction of Epha4 reverse signaling that is beneficial for motor 

neuron degeneration in ALS . 

2.2.3 Abolishing Epha4 forward signaling negatively affects the re-innervating capacity of 

motor neurons 

 

Previously, we showed that Epha4 determines the re-innervating capacity of motor neurons 

(Figure 1.3). In general, sprouting of motor neurons is increased when Epha4 is deleted 

and/or blocked 212-213, 217. More specifically, it is thought to be mediated by abolishing Epha4 
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forward signaling 234. We therefore studied the role of Epha4 forward signaling in re-

innervation capacity of the motor neuron by investigating the effect of replacing the Epha4 

cytoplasmic domain with a eGFP protein on neuromuscular re-innervation following 

axotomy of the sciatic nerve. As shown in figure 2.6A, the re-innervation capacity in Epha4 

knockout mice was significantly improved compared to wild type mice. Surprisingly, 

Epha4eGFP/eGFP mice showed reduced re-innervation capacity compared to wild type mice 

(Figure 2.6B). These data show that we have to be cautious to interprete the data of this 

transgenic mouse model as replacement of the Epha4 cytoplasmic domain not only 

abolishes forward signaling, but most likely interferes with different aspects of Epha4 

signaling such as cleavage and clustering.    

 

  

Figure 2.6 Re-innervation of gastrocnemius neuromuscular junctions after sciatic nerve 
axotomy. (A) Re-innervation of gastrocnemius neuromuscular junctions after sciatic nerve 
axotomy in Epha4+/+ (n = 11) and Epha4−/− mice (n = 8, OR 2.014 ± [1.675–2.422]). (B) Re-
innervation of gastrocnemius neuromuscular junctions after sciatic nerve axotomy 
in Epha4+/+ (n = 13) and Epha4eGFP/eGFP mice (n = 8, OR 0.423 ± [0.332–0.539]). ****p<0.0001. 
OR, Odds ratio 
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2.3 Discussion 

 

Interaction between Eph receptors and ephrin ligands can result in bidirectional signaling, 

meaning forward signaling in the Eph-bearing cell and reverse signaling in the cell that 

expresses the ephrin ligand. Deletion of one Epha4 allele in the SOD1G93A mouse model 

abolishes both forward and reverse signaling, thereby increasing survival in these mice 35. 

Furthermore Epha4-/- mice showed enhanced re-innervation capacity following axotomy of 

the sciatic nerve. To investigate whether the hazardous effect of Epha4 on ALS and the re-

innervation capacity after sciatic nerve axotomy is mediated through forward or reverse 

signaling, we used the Epha4eGFP/eGFP mouse in which the cytoplasmic domain has been 

replaced by an enhanced Green Fluorescent Protein (eGFP) 206.  

Replacement of one Epha4 allele in the SOD1G93A mouse with an Epha4eGFP isoform, did not 

affect survival even though deletion of one Epha4 allele did increase survival (Figure 2.7) 35. 

Thus, it appears that reverse rather than forward signaling underlies the pathogenic 

contribution of Epha4 in ALS. Although negative outcomes are always difficult to rely upon, 

we do think this conclusion is valid in view of the large number of mice that we used in these 

experiments. Furthermore, we excluded subtle effects on the disease by investigating the 

number of remaining motor neurons and neuromuscular innervation.  

Still, our observation needs to be interpreted with caution. First, we only used heterozygous 

Epha4eGFP/+ mice as homozygous Epha4eGFP/eGFP mice have a rabbit-like hopping gate making 

it difficult to assess motor performance 206. Furthermore, we found that the replacement of 

the intracellular domain of Epha4 by eGFP results in increased abundance of this hybrid 

molecule. This is also evident from the blots that have been published when this mouse was 

reported 206. There may be several reasons for this.  Epha4 can be cleaved both by MMPs 

and by γ-secretases yielding Epha4 extra- and intracellular domains 201, 237. This cleavage of 

Epha4 is important for the modulation of its expression and function 238. Removal of the 

intracellular domain might impair proper cleavage of Epha4 thereby altering its expression 

level, as we observed. In addition, complete removal of the intracellular domain also 

abolishes the SAM-domain, which is involved in receptor clustering, which may affect 

processing of the receptors. Finally, the Eph receptors are endocytosed resulting in 

breakdown of the receptor in lysosomes 239. In this way the duration and intensity of 

downstream signaling can be regulated. It has been shown that Epha4 can indeed be 

endocytosed 240-241. Removal of the cytoplasmic domain in the Epha4eGFP isoform might 

interfere with this process of endocytosis and termination of signaling. Because of the 

increased abundance of the Epha4eGFP, it is possible that its reverse signaling is actually 

enhanced, in addition to its forward signaling being reduced.  

That replacing the intracellular Epha4 domain with eGFP may have effects other than just 

blocking the forward signaling is also suggested by the results of our axotomy experiments. 

It has been shown that Epha4 plays a negative role in sprouting of neurons. Epha4 is 
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upregulated in axonal stumps after injury 212 and in sprouting neurons of aged mice after 

stroke which contributes to reduced recovery 217. Furthermore, blocking Epha4 induced 

more sprouting after spinal cord injury 210. It is generally accepted that this negative effect 

on sprouting can be assessed in vitro by studying the inhibiting (collapsing) effect of ephrin 

ligands on the axonal growth cone. Growth cone collapse by stimulation with ephrin ligands 

is thought to be mediated by Epha4 forward signaling through the kinase function as this 

collapse could not be induced in Epha4eGFP/eGFP neurons and in Epha4KD/KD neurons in which 

the kinase domain has been mutated 234. As these data indicate that Epha4 regulation of 

sprouting is mediated through forward signaling, we investigated the re-innervation capacity 

of Epha4eGFP/eGFP mice following sciatic nerve axotomy. Surprisingly, we found that 

Epha4eGFP/eGFP mice showed reduced re-innervation capacity following sciatic nerve axotomy 

while in Epha4-/- mice this re-innervation capacity was enhanced 35. These data suggest that 

in the Epha4eGFP/eGFP mouse in vivo, the outgrowth enhancing effect of deleting the forward 

signaling, is abolished by the outgrowth inhibiting effect generated through the remaining 

reverse signaling, which is likely to be even further enhanced because of the increased 

abundance of the EphA4eGFP molecule as explained above. 

Therefore, to confirm our conclusion that the hazardous effect of Epha4 on ALS is mediated 

through reverse signaling, it is of interest to investigate the effect of a more subtle inhibition 

of forward signaling on ALS. This can be done by studying the Epha4KD/KD mouse 242. In this 

mouse model the kinase domain is not functional by the replacement of the critical lysine 

residue K653 by a methionine. So far all functions mediated through Epha4 forward signaling 

are thought to be mediated through the kinase domain, as no functions have been assigned 

to the SAM domain and the PDZ domain 242-243. This Epha4KD/KD mouse model has some 

advantages over the Epha4eGFP/eGFP mouse. In the Epha4KD/KD mouse only one amino acid has 

been replaced, while in the Epha4eGFP/eGFP mouse the whole intracellular domain has been 

replaced. In this way no other domains involved in cleavage, clustering or endocytosis will be 

mutated. Crossbreeding of the Epha4KD/KD mouse with the mutant SOD1 mouse is being 

done in our lab. However, even in this experiment, we still have to be cautious to interprete 

these results as in the heterozygous Epha4KD/+ mouse which will be used to cross with the 

mutant SOD1 mouse, the Epha4KD isoform can still be phosphorylated through 

crossphosphorylation of the Epha4 wild type allele that is present. In the Epha4+/- and the 

Epha4eGFP/+ mice this crossphosphorylation is not possible as there is less Epha4 receptor or 

less Epha4 intracellular domain respectively. Homozygous EphA4KD/KD transgenic mice may 

solve the problem but are almost impossible to obtain, as we also experienced with the 

homozygous ephA4 knockout mice.   
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Chapter 3. The role of ephrin ligands in ALS  
 

All experiments performed by Lies Schoonaert. Vessel permeability assay in collaboration with 

Thomas Mathivet 

3.1 Introduction  

 

Epha4 is a promiscuous receptor, interacting with both ephrina and ephrinb ligands. Reverse 

signaling through interaction of Epha4 with both ephrin A and ephrin B ligands has been 

reported. The formation of the anterior commissure of the forebrain depends on Epha4 

reverse signaling through ephrinb2 242, 244. Furthermore, long-term potentiation is mediated 

through reverse signaling involving the interaction of Epha4 on the motor neurons and 

ephrina3 on the astrocytes 205. Since our data suggest reverse signaling to be involved in the 

modifying effect of Epha4 on ALS pathogenesis, we intended to determine which Epha4 

ligands might be involved in this process. 

Reverse signaling can occur through interaction of Epha4 with ephrin ligands on surrounding 

cells such as muscle cells, astrocytes, microglia and oligodendrocytes 245. At the 

neuromuscular junction, Epha4 can interact with ephrina1, ephrina2, ephrina5 and ephrinb1 
246-247. In the CNS, ephrina1, ephrina3, ephrina5, ephrinb1 and ephrinb2 have been identified 

in oligodendrocyte precursor cells and in mature oligodendrocytes 248-250. Ephrina5 and 

ephrinb2 are upregulated during oligodendrocyte differentiation 248. Astrocytes express 

ephrina2, ephrina3, ephrina5 and ephrinb2 251-252. Ephrina3 has a crucial function in synaptic 

plasticity as it is involved the regulation of hippocampal dendritic spine morphology and 

regulates the abundance of glial glutamate transporters 205, 253-255. Astrocytic ephrinb2 

regulates adult hippocampal neurogenesis and is highly upregulated in reactive astrocytes 

after spinal cord lesions 252, 256-257. Ephrina5 is highly upregulated in astrocytes at the peri-

lesioned area after experimental stroke 218. Since our data suggest reverse signaling to be 

involved in the modifying effect of Epha4 on ALS pathogenesis, we intended to study the 

Epha4 ligands which may be involved in this process.  
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3.2 Results 

3.2.1 Expression profile of ephrin ligands in the SOD1G93A mouse 

 

As Epha4 interacts with ephrina ligands as well as ephrinb ligands, we investigated 

expression of all ephrin ligands in spinal cord of SOD1G93A mice at different time points 

during the disease progression using qPCR. Different ligands showed different changes 

during disease progression. Expression of ephrina2, ephrina3, ephrina5 and ephrinb2 

decreased at end stage (Figure 3.1B,C,E,G). Ephrina1, ephrina4, ephrinb1 and ephrinb3 did 

not change expression during disease course (Figure 3.1A,D,F,H).   
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Figure 3.1 Expression profile of ephrin ligands in the spinal cord of nontransgenic, SOD1WT and 
SOD1G93A mice. (A) Quantitative RT-PCR of ephrina1 in ventral spinal cords of nontransgenic mice at 
P200 (n = 5, 100% expression), SOD1WT mice at P200 (n = 5, 102% expression) and SOD1G93A mice at 
P90 (n = 5, 64% expression), P145 (n = 5, 58% expression) and ES (n = 5, 49% expression). (B) 
Quantitative RT-PCR of ephrina2 in ventral spinal cords of nontransgenic mice at P200 (n = 5, 100% 
expression), SOD1WT mice at P200 (n = 5, 85% expression) and SOD1G93A mice at P90 (n = 5, 51% 
expression), P145 (n = 5, 29% expression) and ES (n = 5, 18% expression). (C) Quantitative RT-PCR of 
ephrina3 in ventral spinal cords of nontransgenic mice at P200 (n = 5, 100% expression), SOD1WT mice 
at P200 (n = 5, 88% expression) and SOD1G93A mice at P90 (n = 5, 50% expression), P145 (n = 5, 23% 
expression) and ES (n = 5, 13% expression). (D) Quantitative RT-PCR of ephrina4 in ventral spinal 
cords of nontransgenic mice at P200 (n = 6, 100% expression), SOD1WT mice at P200 (n = 6, 78% 
expression) and SOD1G93A mice at P90 (n = 6, 204% expression), P145 (n = 6, 146% expression) and ES 
(n = 6, 98% expression). (E) Quantitative RT-PCR of ephrina5 in ventral spinal cords of nontransgenic 
mice at P200 (n = 5, 100% expression), SOD1WT mice at P200 (n = 6, 106% expression) and SOD1G93A 
mice at P90 (n = 5, 101% expression), P145 (n = 4, 71% expression) and ES (n = 6, 65% expression). (F) 
Quantitative RT-PCR of ephrinb1 in ventral spinal cords of nontransgenic mice at P200 (n = 5, 100% 
expression), SOD1WT mice at P200 (n = 5, 148% expression) and SOD1G93A mice at P90 (n = 5, 84% 
expression), P145 (n = 5, 56% expression) and ES (n = 5, 67% expression). (G) Quantitative RT-PCR of 
ephrinb2 in ventral spinal cords of nontransgenic mice at P200 (n = 6, 100% expression), SOD1WT 
mice at P200 (n = 6, 133% expression) and SOD1G93A mice at P90 (n = 6, 138% expression), P145 (n = 
6, 104% expression) and ES (n = 6, 91% expression). (H) Quantitative RT-PCR of ephrinb3 in ventral 
spinal cords of nontransgenic mice at P200 (n = 5, 100% expression), SOD1WT mice at P200 (n = 5, 
96% expression) and SOD1G93A mice at P90 (n = 5, 67% expression), P145 (n = 5, 35% expression) and 
ES (n = 5, 29% expression). ANOVA tests were used for statistical analysis, *p<0.05. Error bars denote 
standard deviation. RT-PCR, Real-Time Polymerase Chain Reaction; ES, End Stage 
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3.2.2 Expression profile of ephrinb2 

  

In view of the pathogenic role of astrocytes in ALS and the fact that astrocytes are known to 

confer a hazardous effect in ALS, we focused on the ephrin ligands expressed by the 

astrocytes, and in particular on ephrinb2, as it is expressed both on resting and reactive 

astrocytes 252, 256. Furthermore, there is evidence that astrocytic ephrinb2 affects recovery 

from spinal cord injury 256-257. This improved recovery was correlated with an increased 

regenerative capacity of sprouting spinal cord axons 212, 257.  

To investigate the role of ephrinb2 in the pathogenesis of ALS, we first studied the ephrinb2 

expression profile in spinal cords of wild type SOD1 and mutant SOD1 mice. Ephrinb2 

immunoreactivity was present in neurons and oligodendrocytes in SOD1WT and SOD1G93A, as 

shown by its colocalisation with the neuronal marker Neuronal-specific nuclear protein 

(NeuN) and the oligodendrocytic marker Mouse Monoclonal APC antibody (cc1) (Figure 3.2 

and 3.3). Ephrinb2 expression was not detected in microglia, as shown by absence of its 

colocalisation with the microglial marker Cluster of Differentiation Molecule 11B (cd11b) 

(Figure 3.4). Interestingly, in the spinal cord of end stage SOD1G93A mice, ephrinb2 expression 

was prominently present in reactive astrocytes, which is in accordance with high ephrinb2 

expression in reactive astrocytes after spinal cord lesions (Figure 3.5) 256-257.  

In mutant SOD1G93A mice ephrinb2 was expressed in the nucleus of astrocytes at P60 and 

P90 (Figure 3.6A). From P120 on ephrinb2 was highly expressed in the nucleus and the 

processes of reactive astrocytes. Ephrinb2 was present in neurons at all stages (Figure 3.6B). 
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Figure 3.2 Motor neurons in the spinal cord of end stage SOD1G93A mice and age-matched SOD1WT 
mice express ephrinb2. Ephrinb2 was co-stained with the neuronal marker, NeuN, in the spinal cord 
of SOD1WT (150 d) and end stage SOD1G93A mice.  

 

 

Figure 3.3 Oligodendrocytes in the spinal cord of end stage SOD1G93A mice and age-matched 
SOD1WT mice express ephrinb2. Ephrinb2 was co-stained with the oligodendrocytic marker, cc1, in 
the spinal cord of SOD1WT (150 d) and end stage SOD1G93A mice.  
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Figure 3.4 Microglia in the spinal cord of end stage SOD1G93A mice and age-matched SOD1WT mice 
do not express ephrinb2. Ephrinb2 was co-stained with the microglial marker, cd11b, in the spinal 
cord of SOD1WT (150 d) and end stage SOD1G93A mice. 

 

 

Figure 3.5 Reactive astrocytes in the spinal cord of end stage SOD1G93A mice ephrinb2. Ephrinb2 was 
co-stained with the neuronal marker, GFAP, in the spinal cord of SOD1WT (150 d) and end stage 
SOD1G93A mice. Resting astrocytes in the spinal cord of SOD1WT mice only showed faint 
immunoreactivity in their nucleus, but reactive astrocytes in the spinal cord of end stage SOD1G93A 
mice expressed ephrinb2 both in their cell bodies and their processes. 
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Figure 3.6 Ephrinb2 expression in astrocytes and motor neurons over disease progression in the 
SOD1G93A mouse model. (A) At P60 and P90 ephrinb2 showed weak expression in the nucleus of 
astrocytes, while it was highly expressed in the nucleus and the processes of reactive astrocytes from 
P120 on. Co-labeling was performed with ephrinb2 (red) and the astrocytic marker GFAP (green). (B) 
Ephrinb2 was expressed in motor neurons during the disease course. Co-labeling was performed with 
ephrinb2 (red) and the neuronal marker NeuN (green). 

 

In order to investigate whether these mice data are of relevance for human ALS, we studied 

ephrinB2 expression in the spinal cord of ALS patients and controls. As shown in figure 3.7, 

ephrinB2 expression was found to be present in motor neurons in the spinal cord of controls 

and of ALS patients. Interestingly, reactive astrocytes present in the spinal cord of ALS 

patients abundantly expressed ephrinB2 (Figure 3.7) much alike what we observed in the 

mutant SOD1 mouse model.  
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Figure 3.7 EphrinB2 was expressed in motor neurons and reactive astrocytes in spinal cord of ALS-
patients and controls. Neuronal expression was shown by DAB-staining of the neuronal marker 
Smi32 in control and ALS spinal cord. GFAP expression was detected in resting astrocytes in control 
spinal cord and in reactive astrocytes in ALS spinal cord. EphrinB2 expression was observed in 
neurons in control and ALS spinal cord and in reactive astrocytes in ALS spinal cord. DAB, 3,3' 
diaminobenzidine tetrahydrochloride  

 

 

In SOD1G93A mice, ephrinb2 mRNA expression in the spinal cord was somewhat variable 

during the disease course; expression was lowest at P140, slightly increasing again during 

end stage disease (Figure 3.8C). These small fluctuations were not apparent at the protein 

level (Figure 3.9). mRNA and protein levels of ephrinb2 were unaltered in nontransgenic and 

SOD1WT mice at similar time points (Figure 3.8A,B and figure 3.9).   

 

  

 

 

 

 



 
 

61 
 

 

Figure 3.8 Expression profile of ephrinb2 in the spinal cord of nontransgenic, SOD1WT and SOD1G93A 
mice. (A) Quantitative RT-PCR of ephrinb2 in ventral spinal cords of nontransgenic mice at different 
ages: P60 (n = 5, 100% expression), P90 (n = 6, 104% expression), P120 (n = 6,109% expression) and 
P140 (n = 9, 95% expression). (B) Quantitative RT-PCR of ephrinb2 in ventral spinal cords of SOD1WT 
mice at different ages: P60 (n = 4, 100% expression), P90 (n = 4, 103% expression), P120 (n = 5, 101% 
expression) and P140 (n = 5, 102% expression). (C) Quantitative RT-PCR of ephrinb2 in ventral spinal 
cords of SOD1G93A mice at different ages:  P60 (n = 7, 100% expression), P90 (n = 5, 83% expression), 
P120 (n = 7, 79% expression), P140 (n = 4, 59% expression) and ES (n = 4, 70% expression). ANOVA 
tests were used for statistical analysis, *p<0.05. Error bars denote standard deviation. RT-PCR, Real-
Time Polymerase Chain Reaction; ES, End Stage 
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Figure 3.9 Expression profile of ephrinb2 in the spinal cord of nontransgenic, SOD1WT and SOD1G93A 
mice. (A,D) Western blot for ephrinb2 on ventral spinal cords of nontransgenic mice at different 
ages: P60 (n = 5, 100% expression), P90 (n = 5, 99% expression), P120 (n = 5, 83% expression), P140 
(n = 5, 71% expression). (B,E) Western blot for ephrinb2 on ventral spinal cords of SOD1WT mice at 
different ages: P60 (n = 4, 100%) , P90 (n = 4, 103% expression), P120 (n = 4, 113% expression) and 
P140 (n = 3, 103% expression). (C,F) Western blot for ephrinb2 on ventral spinal cords of SOD1G93A 
mice at different ages: P60 (n = 4, 100% expression), P90 (n = 4, 87% expression), P120 (n = 4, 77% 
expression), P140 (n = 4, 82% expression) and ES (n = 4, 74% expression)) at different ages. GAPDH 
(37 kDa) was used as loading control (Figure A,B,C). Error bars denote standard deviation; ES, End 
Stage 
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3.2.3 Effect of ephrinb2 on ALS in the SOD1G93A mouse model 

 

To assess the role of ephrinb2 in the pathogenesis of ALS, we studied the effect of deletion 

of ephrinb2 in the SOD1G93A mouse model. As the ephrinb2-/- mouse is embryonically lethal 

with major cardiovascular defects, we used the ephrinb2 conditional knockout mouse 

(Figure 3.10A) 258. In this mouse model exon two of the ephrinb2 gene is flanked by loxP sites 

and will be excised when the Cre enzyme is present and active (Figure 3.10A). To ascertain 

that ephrinb2 levels are not altered by the insertion of the loxP sites we performed 

quantitative real-time PCR on brain and spinal cord of efnb2+/+, efnb2fl/+ and efnb2fl/fl mice; 

as expected no differences in ephrinb2 RNA levels were observed (Figure 3.10B,C).  

 

Figure 3.10 The ephrinb2 conditional knockout mouse. (A) Schematic representation of the 

ephrinb2 conditional knockout mouse (B) Quantitative RT-PCR of ephrinb2 in lumbar spinal cords of 

efnb2+/+ mice (n = 3, 100% expression), efnb2fl/+ mice (n = 4, 105% expression) and efnb2fl/fl mice (n = 

4, 93% expression). (B) Quantitative RT-PCR of ephrinb2 in brains of efnb2+/+ mice (n = 3, 100% 

expression), efnb2fl/+ mice (n = 4, 103% expression) and efnb2fl/fl mice (n = 4, 91% expression). Error 

bars denote standard deviation. RT-PCR, Real-Time Polymerase Chain Reaction 
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3.2.4 Effect of selective deletion of ephrinb2 from astrocytes in the SOD1G93A mouse model 

 

As ephrinb2 expression is upregulated in reactive astrocytes, we investigated whether 

deletion of ephrinb2 from reactive astrocytes influences disease progression in ALS. To this 

end, we used a GFAPCre mouse in which Cre is expressed in astrocytes from E14.5 on 259. 

Therefore, our laboratory assessed the selectivity of the GFAPCre system by crossbreeding 

this GFAPCre mouse with an enhanced Yellow Fluorescent Protein (eYFP) reporter mouse 260. 

In this reporter mouse the eYFP cDNA was preceded by a loxP-flanked stop sequence. YFP 

expression showed highest expression in astrocytes as expected, but was also expressed in 

neurons and oligodendrocytes (A. Nonneman et al. unpublished results). These findings 

suggest that in the efnb2fl/fl; GFAP mouse ephrinb2 expression is not exclusively reduced in 

astrocytes, but also in other cell types.  

Therefore we used the Cx30CreER mouse which expresses the Cre enzyme in astrocytes only 
261. In the spinal cord of Cx30CreER mice crossed with the eYFP reporter mouse, YFP 

expression was present specifically in the astrocytes (A. Nonneman et al. unpublished 

results). High recombination efficiency was detected as almost all astrocytes showed YFP 

expression.  

  

In the Cx30CreER mouse expression of the CreER fusion protein can be induced after 

administration of Tamoxifen (Tx). We crossbred the homozygous ephrinb2 conditional 

knockout mice with the Cx30CreER and the SOD1G93A mouse. All mice were treated with Tx 

60 days after birth (P60). To assess deletion of ephrinb2, we compared the ephrinb2 protein 

expression in spinal cord lysates of efnb2fl/fl; Cx30; SOD1G93A and efnb2fl/fl; SOD1G93A 20 days 

after Tx administration (P80) and at end stage. No difference in ephrinb2 expression was 

detected between efnb2fl/fl; Cx30; SOD1G93A mice and efnb2fl/fl; SOD1G93A mice at P80, which 

is probably explained by the fact that astrocytes only weakly express ephrinb2 early in the 

disease (Figure 3.13A,B). However, at ES, when astrocytes abundantly express ephrinb2, a 

clear decrease in ephrinb2 protein expression was observed in efnb2fl/fl; Cx30; SOD1G93A mice 

(Figure 3.13C,D).  
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Figure 3.13 Ephrinb2 excision in lumbar spinal cord in efnb2fl/fl; SOD1G93A mice and efnb2fl/fl; Cx30; 
SOD1G93A mice at P80 and end stage (A,B) Western blot of ephrinb2 in lumbar spinal cords of 
efnb2fl/fl; SOD1G93A mice at P80 (n = 5, 100% expression) and efnb2fl/fl; Cx30; SOD1G93A mice at P80 (n = 
5, 83% expression, p = 0.3804). (C,D) Western blot of ephrinb2 in lumbar spinal cords of efnb2fl/fl; 
SOD1G93A mice at ES (n = 5, 100% expression) and efnb2fl/fl; Cx30; SOD1G93A mice at ES (n = 5, 72% 
expression, p = 0.0573). GAPDH was used as loading control. Error bars denote standard deviation; 
ES, End Stage 

 

We then investigated the effect of this selective deletion of ephrinb2 from the astrocytes on 

disease onset and survival in the SOD1G93A mouse. Onset as assessed by hanging wire test 

was not different in efnb2fl/fl; Cx30; SOD1G93A mice as compared to efnb2fl/fl; SOD1G93A mice 

(Figure 3.14A). Unexpectedly, deletion of ephrinb2 from astrocytes worsened disease: 

disease duration was shortened by not less than 34% (efnb2fl/fl; SOD1G93A (34d) and efnb2fl/fl; 

Cx30; SOD1G93A (22.5 d) p = 0.0482) (Figure 3.14B) and survival was decreased (Average 

survival: efnb2fl/fl; SOD1G93A (166d) and efnb2fl/fl; Cx30; SOD1G93A (157 d) p = 0.0297) (Figure 

3.14C,D). Overall, deleting ephrinb2 specifically from astrocytes aggravated the ALS 

phenotype.  
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Figure 3.14 Astrocytic deletion of ephrinb2 with the Cx30CreER mouse did not influence disease 
onset, but decreased the survival in SOD1G3A mice. (A) Disease onset as determined by hanging wire. 
Median disease onset:  133 d (efnb2fl/fl; SOD1G93A, n = 24) and 135 d (efnb2fl/fl; Cx30; SOD1G93A, n = 
24). (B) Average disease duration as determined by hanging wire: 34 d (efnb2fl/fl; SOD1G93A, n = 24), 23 
d (efnb2fl/fl; Cx30; SOD1G93A, n = 24, p = 0.0482). (C,D) Average survival: 166 d (efnb2fl/fl; SOD1G93A, n = 
24) and 157 d (efnb2fl/fl; Cx30; SOD1G93A, n = 24) p = 0.0297. *p < 0.05. Error bars denote standard 
deviation. 

 

To better understand this unexpected result, we investigated whether deleting ephrinb2 

from astrocytes affects the glial population: astrocytes, microglia, NG2 glia and 

oligodendrocytes, all known to play a role in ALS. To do so, we studied the mRNA levels of 

several glial markers in whole spinal cord lysates of efnb2fl/fl; Cx30; SOD1G93A and efnb2fl/fl; 

SOD1G93A mice at P80 and at ES. As expected, the mRNA levels of astrocytic (Glial Fibrillary 

Acid Protein (GFAP) and 10-formyltetrahydrofolate dehydrogenase (Aldh1l1)), microglial 

(CX3C Chemokine Receptor 1 (CX3CR1)) and oligodendrocyte precursor (Neural/glial antigen 

2 (NG2)) markers were increased and the oligodendrocytic marker Myelin Basic Protein 

(MBP) was significantly decreased at end stage compared to P80 mice (Figure 3.15). 

Interestingly, efnb2fl/fl; Cx30; SOD1G93A mice at end stage showed decreased levels of GFAP 

mRNA, a reactive astrocyte marker, compared to efnb2fl/fl; SOD1G93A mice (Figure 3.15A). 

This difference was not seen for Aldh1l1, a general astrocyte marker (Figure 3.15B). 

Surprisingly, the mRNA level of the microglial marker CX3CR1 was highly upregulated in 

efnb2fl/fl; Cx30; SOD1G93A mice compared to efnb2fl/fl; SOD1G93A mice (Figure 3.15C). The 
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mRNA level of NG2 was not different between efnb2fl/fl; Cx30; SOD1G93A and efnb2fl/fl; Cx30; 

SOD1G93A mice (Figure 3.15D). MBP expression was decreased in efnb2fl/fl; Cx30; SOD1G93A 

mice at end stage compared to efnb2fl/fl; SOD1G93A mice (Figure 3.15E). Thus, reduced 

astrocytic ephrinb2 expression resulted in a decrease expression of GFAP, a marker for 

reactive astrocytes expression, and MBP, an oligodendrocyte marker, and an increase in 

CX3CR1, a marker for microglia. 

 

Figure 3.15 Quantitative RT-PCR analyses of glia-related molecules in the lumbar spinal cord of 
efnb2fl/fl; SOD1G93A and efnb2fl/fl; Cx30; SOD1G93A mice. (A) Quantitative RT-PCR of GFAP in lumbar 
spinal cords of efnb2fl/fl; SOD1G93A mice at P80 (n = 4, 100% expression) and ES (n = 4, 580% 
expression), and efnb2fl/fl; Cx30; SOD1G93A mice at P80 (n = 4, 87% expression) and ES (n = 4, 484% 
expression); two-way ANOVA, both age and genotype factor are statistically significant, t-test age p = 
0.0215. (B) Quantitative RT-PCR of Aldh1l1 in lumbar spinal cords of efnb2fl/fl; SOD1G93A mice at P80 (n 
= 4, 100% expression) and ES (n = 4, 166% expression), and efnb2fl/fl; Cx30; SOD1G93A mice at P80 (n = 
4, 110% expression) and ES (n = 4, 154% expression); two-way ANOVA, only age factor is statistically 
different. (C) Quantitative RT-PCR of CX3CR1 in lumbar spinal cords of efnb2fl/fl; SOD1G93A mice at P80 
(n = 4, 100% expression) and ES (n = 4, 159% expression), and efnb2fl/fl; Cx30; SOD1G93A mice at P80 (n 
= 4, 87% expression) and ES (n = 4, 191% expression); two-way ANOVA, both age and genotype are 
statistically significant, t-test ES p = 0.0069. (D) Quantitative RT-PCR of NG2 in lumbar spinal cords of 
efnb2fl/fl; SOD1G93A mice at P80 (n = 4, 100% expression) and ES (n = 4, 109% expression), and 
efnb2fl/fl; Cx30; SOD1G93A mice at P80 (n = 4, 118% expression) and ES (n = 4, 140% expression); two-
way ANOVA, only genotype factor is statistically significant. (E) Quantitative RT-PCR of MBP in lumbar 
spinal cords of efnb2fl/fl; SOD1G93A mice at P80 (n = 4, 100% expression) and ES (n = 4, 65% 
expression), and efnb2fl/fl; Cx30; SOD1G93A mice at P80 (n = 4, 94% expression) and ES (n = 4, 48% 
expression); two-way ANOVA, both age and genotype factor are statistically significant, t-test ES p = 
0.0434. Each result was normalized with qBase to 18s, GAPDH and polr2a. *p < 0.05, **p < 0.01, ***p 
< 0.001. Error bars denote standard deviation. RT-PCR, Real-Time Polymerase Chain Reaction; ES, End 
Stage 
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To explain how impairing astrocyte function through astrocyte-specific deletion of ephrinb2 

worsens ALS, we considered the role ephrinb2 plays in the sprouting of endothelial cells 262-

263. Ephrinb2 might have a similar effect in astrocytes on the motility and morphology of its 

processes. As one functions of the astrocytes is the establishment and maintenance of the 

BBB with their so-called endfeet, we hypothesized that loss of ephrinb2 from astrocytes may 

impair the integrity of the blood brain barrier, which then may contribute to worsening  of 

the disease. BBB integrity was assessed by perfusing efnb2fl/fl; Cx30CreER and efnb2fl/fl mice 

two to three months after tamoxifen administration with Evans blue fluorescent dye. 

Leakage of the dye into the parenchyma was used as a measure for BBB leakiness. 

Extravasation of dye in the brain of efnb2fl/fl; Cx30CreER mice clearly exceeded that in 

efnb2fl/fl mice (Figure 3.16). These data suggest that deletion of ephrinb2 from the astrocytes 

impairs the integrity of the BBB.  

 

 

Figure 3.16 Evans blue quantification in the brain of efnb2fl/fl and efnb2fl/fl; Cx30 mice. Two hours 
after Evans blue intravenous injection efnb2fl/fl (n = 5) and efnb2fl/fl; Cx30 (n = 8) mice were sacrificed 
and intracardially perfused with 2% PFA solution. Evans blue quantity was calculated using a standard 
curve. A significant increase was detected in the brain of efnb2fl/fl; Cx30 mice. *p < 0.05. Error bars 
denote standard deviation. PFA, paraformaldehyde 

 

To further elucidate this in the context of ALS, we investigated the BBB integrity in SOD1G93A 

mice at different time points during the disease progression. Increased BBB leakage and 

Blood Spinal Cord Barrier (BSCB) leakage was detected in brain and in spinal cord in SOD1G93A 

mice during disease progression while no leakage was detected in age-matched SOD1WT 

mice (Figure 3.17A,B). Deletion of ephrinb2 from astrocytes in SOD1G93A mice further 

increased BBB leakiness in brain as well as in spinal cord (Figure 3.17C,D). The increased 

leakage was already detectable at P100-110, to further increase at P140.  



 
 

69 
 

 

Figure 3.17 Evans blue quantification in brain and spinal cord. Two hours after Evans blue 
intravenous injection mice were sacrificed and intracardially perfused with 2% PFA solution. Evans 
blue quantity was calculated using a standard curve. (A) Evans blue extravasation in brain of SOD1WT 
mice at P140 (n = 5, mean = 1.00) and SOD1G93A mice at P60 (n = 4, mean = 1.12), P80 (n = 3, mean = 
0.96), P100 (n = 6, mean = 1.67) and P140 (n = 4, mean = 2.01). (B) Evans blue extravasation in spinal 
cord of SOD1WT mice at P140 (n = 5, mean = 1.00) and SOD1G93A mice at P60 (n = 4, mean = 1.32), P80 
(n = 3, mean = 1.25), P100 (n = 6, mean = 1.54) and P140 (n = 4, mean = 1.92). (C) Evans blue 
extravasation in brain of efnb2fl/fl; SOD1G93A mice at P100 – 110 Cx30Cre negative (n = 4, mean = 1.00) 
and Cx30Cre positive (n = 5; mean = 1.42) and efnb2fl/fl; SOD1G93A mice at P140 Cx30Cre negative (n = 
4, mean = 1.00) and Cx30Cre positive (n = 5; mean = 2.16). (D) Evans blue extravasation in spinal cord 
of efnb2fl/fl; SOD1G93A mice at P100 – 110 Cx30Cre negative (n = 4, mean = 1.00) and Cx30Cre positive 
(n = 5; mean = 1.46) and efnb2fl/fl; SOD1G93A mice at P140 Cx30Cre negative (n = 4, mean = 1.00) and 
Cx30Cre positive (n = 5; mean = 2.00). p < 0.05; **p < 0.01. Error bars denote standard deviation. 
PFA, paraformaldehyde 
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3.3 Discussion 

 

In this chapter, we explored the potential role of ephrin ligands in the pathogenesis of ALS. 

We quantified all ephrins in the spinal cord of the SOD1G93A mouse, and although the 

expression of some ephrins temporarily increased with disease progression, no consistent 

pattern emerged. We therefore concentrated on astrocytic ephrins, more specifically on 

ephrinb2. We found ephrinb2 to be expressed in neurons, oligodendrocytes and astrocytes. 

We detected high ephrinb2 expression in the neurons in the spinal cord of adult SOD1WT and 

SOD1G93A mice which is in agreement with high ephrinb2 RNA expression in isolated cortical 

neurons of P7 mice 264. This neuronal expression decreased during disease progression as 

motor neurons degenerate. The astrocytic ephrinb2 expression also changed with disease 

progression in the SOD1G93A mouse model. At P60 and P90 ephrinb2 showed weak nuclear 

expression in astrocytes while from P120 on ephrinb2 was detected throughout the 

astrocytes, including its processes. The expression of ephrinb2 in reactive astrocytes has 

already been reported 256-257. mRNA and protein levels of ephrinb2 did not show major 

changes over disease progression in the SOD1G93A mouse model, which can be explained by a 

decreased neuronal expression as neurons degenerate and an upregulated expression in 

reactive astrocytes.   

To delete ephrinb2 from reactive astrocytes we intended to use the GFAPCre mouse in 

which Cre is expressed in astrocytes from E14.5 on 259. However, as previously reported in 

the CNS GFAP is not only expressed in astrocytes, but also in ependymal cells 265. In our 

laboratory we showed GFAP to be present mainly in astrocytes, but also in neurons and 

oligodendrocytes (A. Nonneman et al., unpublished results). In addition, outside the central 

nervous system GFAP could also be detected in kidney, testis, skin, bone, pancreas and liver 
266-269. Therefore we used the Cx30CreER mouse which expresses the Cre enzyme only in 

astrocytes 261. In the spinal cord Cx30 was present specifically in astrocytes (A. Nonneman et 

al., unpublished results). Outside the CNS, expression of Cx30 has also been detected in the 

ear and in the skin, but deletion of Cx30 did not affect hearing and did not cause skin 

disorders 270-271. Thus, the Cx30CreER mouse is a suitable mouse model to study the effect of 

astrocyte specific deletion of ephrinb2 on the disease progression in ALS.  

Astrocyte-specific deletion of ephrinb2 in the SOD1G93A mouse did not affect disease onset, 

but aggravated the disease. Current experiments are being done to support this worsening 

in terms of motor neuron counts and neuromuscular innervation. This worsening of the 

clinical disease progression was associated with evidence for increased severity at the 

molecular level, as shown by increased microglial activation and oligodendrocytic 

dysfunction. Although it is possible that increased CX3CR1 and decreased MBP reflect faster 

progression of the disease, it is possible that these molecular changes are directly induced by 

the lack of ephrinb2 in astrocytes and thus the cause of the faster progression. Indeed, 

astrocytes affect microglial activation, and are a supplier of lactate providing metabolic 
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support to the oligodendrocytes. Thus, clinical as well as biochemical analysis demonstrate 

that astrocyte-specific deletion of ephrinb2 worsens ALS.   

Previously we showed that Epha4 reverse signaling through ephrin ligands at least partially 

contributes to the effect of Epha4 in ALS. As Epha4 is mainly expressed on motor neurons, it 

interacts with ephrin ligands on surrounding cells including astrocytes, microglia and 

oligodendrocytes 35. As ephrinb2 is highly expressed on reactive astrocytes, which play an 

important role in the pathogenesis of ALS, we hypothesized that the effect of Epha4 in ALS is 

at least partially mediated through its interaction with astrocytic ephrinb2. We expected 

that reducing astrocytic ephrinb2 levels thereby abolishing its interaction with neuronal 

Epha4 would result in a protective effect. Counterintuitively we found a decrease in survival 

when ephrinb2 is deleted in the astrocytes, suggesting that the effect of Epha4 in ALS is not 

mediated though astrocytic ephrinb2 signaling. However, we have to be cautious when 

interpreting these results. Next to Epha4, ephrinb2 interacts with several EphB receptors of 

which EphB4 is the most important one 149. Deleting ephrinb2 from the astrocytes will 

abolish the interaction with Epha4, but also with other Eph receptors which might negatively 

influence the pathogenesis of ALS. To elucidate whether ephrinb2 reverse signaling is 

involved in the effect of Epha4 in the pathogenesis of ALS, we would have to block 

specifically the interaction between Epha4 and ephrinb2, which is difficult to accomplish 

because of the presence of other interaction partners for both Epha4 and ephrinb2.   

Absence of ephrinb2 can obviously affect multiple functions of the astrocyte. One such 

function is the establishment of the blood brain barrier. The BBB consists of endothelial cells 

surrounded by pericytes and astrocytes. Astrocytes are important regulators in the 

development and maintenance of the BBB through their so-called their endfeet 272. 

Astrocyte-specific deletion of ephrinb2 induced BBB leakage in adult mice. In the mouse ALS 

model as well as in humans, a leaky BBB has been demonstrated before and astrocytic 

endfeet are known to be swollen and dissociated from the endothelium 273-275. We found 

that deleting ephrinb2 from astrocytes enhanced the existing BBB leakiness in mutant SOD1 

mice. The finding that this increase is evident already early in the disease, and that leakiness 

is also found in the absence of mutant SOD1, suggests that the increased BBB permeability in 

the astrocytic ephrinb2 deleted mice is not just a reflection of enhanced disease progression. 

However, further investigation is needed to elucidate whether BBB impairment is a direct 

consequence of astrocytic ephrinb2 deletion or a secondary phenomenon. The 

morphological basis for this abnormality requires electronmicroscopic evaluation of the 

endothelial-pericytic-astrocytic tripartite and is currently being carried out in our laboratory.  

These data show that the BBB plays a role in the pathogenesis of ALS. BBB impairment has 

been observed in mutant SOD1 animal models as well as in ALS patients 276. In mutant SOD1 

mice the BBB breakdown can be detected prior to motor neuron degeneration and 

inflammation. Furthermore, reduced levels of tight junction proteins and microhemorrhages 

were observed before alterations in inflammation could be detected 277.  However, the 
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specific cause of BBB in the pathogenesis of ALS has not been identified and further 

investigation is needed to elucidate whether BBB impairment is a initial factor or a 

secondary phenomenon.  

In conclusion, deletion of ephrinb2 from astrocytes worsens ALS. Thus, ephrinb2 is unlikely 

to be the ligand through which Eph4 contributes to ALS. Our findings demonstrate that loss 

of ephrinb2 from astrocytes impairs BBB function and enhanced BBB leakiness at least 

partially contributes to the hazardous effect of astrocytic ephrinb2 deletion on ALS.  
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Materials and methods  

 

1. Animal housing, breeding, evaluation and experiments 

 
Animal housing and ethics statement  
 
Mice were housed in the ‘KU Leuven’ animal facilities with a 12 h light-dark cycle at a 

temperature of 20 °C. Animals were given free access to standard rodent chow and water 

and were helped with their food and fluid intake at the end of their disease. All animals 

received care in accordance to The Principles of Laboratory Animal Care formulated by the 

National Society for Medical Research and the Guide for the Care and Use of Laboratory 

Animals published by the National Institutes of Health (NIH publication no. 86-23, revised 

1996). Protocols were designed to minimize animal discomfort and all experiments were 

approved by the Ethical Committee for Animal Research of the University of Leuven, 

Belgium. 

 

Animals 

Epha4-/- mice (C57/Bl6J background) were generated as previously described 236 and were 

kindly provided by Professor A.M. Turnley (University of Melbourne, Victoria, Australia). 

Both the EphA4eGFP/eGFP mouse (C57/Bl6J background) as well as the conditional ephrinb2 

knockout mouse (efnb2fl/fl, official name: Efnb2<tm4Kln>, C57/Bl6J background) were 

generated as previously described 206 and were kindly provided by Professor R. Klein (Max-

Planck-Institute of Neurology, Munich, Germany). The Cx30CreER mouse (Tg(Gjb6-cre/ERT2), 

C57/Bl6J background) was generated as previously described 261 and was kindly provided by 

Professor Dr. F.W. Pfrieger (European Neuroscience Institute, Strasbourg, France). 

Transgenic mice overexpressing wild type human SOD1 [B6SJL-Tg(SOD1)2Gur/J; stock 

number: 002297] and mutant human SOD1 [B6SJL-Tg(SOD1*G93A)1Gur/J; stock number: 

002726] as well as the CAGGCreER mouse (B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J; stock number: 

004682) were purchased from Jackson Laboratory. GFAPCre mice (B6.Cg-Tg(GFAP-

cre)8Gtm/Nci; stock number: 01XN3) were purchased from the Mouse Repository.  

 

Evaluation of mice 

Three times a week motor performance was evaluated with the rotarod test and the hanging 

wire test. For the rotarod test, a rotarod treadmill (Ugo Basile, Varese, Italy) rotating at 15 

rpm during 300 s was used. Each mouse was given three trials of 300 s, three times a week 

starting at 60 days after birth. Disease onset was defined as the time point when rotarod 

performance was reduced with more than 50%. Disease onset by the hanging wire test was 
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defined as the time point at which the mouse failed to hang upside down for at least one 

min on a grid one meter above a soft surface. End stage of the disease was determined as 

the inability to turn around within 30 s after placement on their back. At this moment the 

mouse was scarified and this time point was considered as the time of death. Late-

symptomatic stage was considered as the time point when mice could not sustain the 

hanging wire test for more than 2 s. At this time point all littermates were sacrificed for 

pathology. 

 

Sciatic nerve axotomy. 

Sciatic nerve axotomy was performed on Epha4+/+, Epha4+/− and Epha4−/− mice. After 

anesthesia with 3% isoflurane, a small incision was made unilaterally at midthigh level. 

Muscles were separated to visualize and transect the sciatic nerve. Afterwards, muscle and 

skin were sutured separately. Twenty days after sciatic nerve axotomy, the gastrocnemius 

muscle was instantly frozen in cooled isopentane (VWR, Paris, France) upon dissection and 

stored at -80°C for further analysis. 

 

Vessel permeability assay (BBB leakage) 

Mice were anesthetized and injected intravenously with 100 μl 1% Evan's blue solution 

(Sigma-Aldrich, St. Louis, USA). Two h after injection, mice were sacrificed and intracardially 

perfused with a 2% paraformaldehyde (PFA) (VWR, Paris, France) solution. Dissected brains 

were weighed and incubated in a formamide (Sigma-Aldrich, St. Louis, USA) solution at 56°C 

for 24 h to extract the dye. The absorbance of the solution was measured with the Victor 

Multilabel Plate Reader (PerkinElmer, Zaventem, Belgium) at 620 nm. The amount of Evans 

Blue is calculated using a standard curve. Data were expressed as fold increase compared to 

wild type animals with weight normalization.  

 

2. Histopathology 

 

Neuromuscular junction staining 

After embedding the muscles in Tissue-Tek O.C.T compound (Sakura, Antwerp, Belgium), 20 

μm thick longitudinal sections were made. Sections were washed twice with 1X Phosphate 

Buffered Saline (PBS) (Sigma-Aldrich, St. Louis, USA) for 5 min and blocked with 5 % normal 

donkey serum (Sigma- Aldrich, St. Louis, USA) in PBST (PBS with 0.1% Triton X-100(Sigma- 

Aldrich, St. Louis, USA, T8787)) for 1 h at room temperature. To visualize neuromuscular 

junctions, sections were simultaneously incubated with Alexa-555-conjugated 
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α‐bungarotoxin (1/5,000, Invitrogen, Carlsbad, CA, B35451) and Alexa-488-conjugated NF-

200 (1/500, Cell Signaling Technologies, Danvers, MA, USA, #80245) diluted in PBST for 2 h at 

room temperature. Sections were washed twice with PBST for 5 min and mounted with 4',6-

diamidino-2-phenylindole (DAPI)-containing Vectashield (Vectorlabs Inc., Burlinglame, CA). 

Fluorescent stains were visualized with a Zeiss Axio Imager M1 microscope (Carl Zeiss, Jena, 

Germany), using the monochrome AxioCam Mrm camera. At least 200 neuromuscular 

junctions were analysed for each mouse. 

 

Cresyl violet staining 

Spinal cords were dissected, fixed in 4% paraformaldehyde (PFA, VWR, Paris, France) and 

cryoprotected in 30% sucrose (Sigma-Aldrich, St. Louis, USA, S0389) in 1x PBS (Sigma-Aldrich, 

St. Louis, USA). After embedding the spinal cords in Tissue-Tek O.C.T compound (Sakura, 

Antwerp, Belgium), fresh frozen sections (20µm) were cut on a cryostat (Leica, Wetzlar, 

Germany) and every tenth slide was captured, in total 10 slides per animal. First, sections 

were hydrated for 3 min in 100% EtOH (VWR, Paris, France), 3 min in 95% EtOH, 3 min in 

70% EtOH and immersed with cresyl violet acetate for 5 min (0.5%, Sigma-Aldrich, St. Louis, 

USA), followed by rehydration for 20s in 70% EtOH with 0.1% acetic acid, 3 min in 95% EtOH, 

3 min in 100% EtOH and three times 3 min in 100% Histoclear (National Diagnostics, Georgia, 

USA, HS-200). Motor neurons were visualized with a Zeiss Axio Imager M1 microscope (Carl 

Zeiss, Jena, Germany) using the monochrome AxioCam Mrc5 camera. The number of 

neurons in different size groups was calculated using Axiovision 4 software (Zeiss, Jena 

Germany) thereby normalizing to the area of normal appearing neurons in the ventral horn. 

Neurons with a cell body area >250 µm² were considered motor neurons. 

 

3. Laser capture microdissection 

 

Cresyl violet staining 

Mice were anesthetized with 10 % Nembutal (Ceva chemicals, Hornsby, NSW, Australia) and 

were transcardially perfused with 1X PBS (Sigma-Aldrich, St. Louis, USA). The lumbar spinal 

cord was dissected and embedded in Tissue-Tek OCT compound (Sakura, Antwerp, Belgium). 

Frozen sections (20µm) were cut on a cryostat (Leica, Wetzlar, Germany) and mounted on 

1.0 PEN membrane slides (Zeiss, Göttingen, Germany). First, sections were hydrated for 3 

min in 100% EtOH (VWR, Paris, France), 3 min in 95% EtOH, 3 min in 70% EtOH and 

immersed with cresyl violet acetate for 5 min (0.5%, Sigma-Aldrich, St. Louis, USA), followed 

by rehydration for 20s in 70% EtOH with 0.1% acetic acid, 3 min in 95% EtOH and 3 min in 

100% EtOH.  
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Laser capture microdissection 

Laser capture microdissection is a method to isolate the cells of interest under direct 

microscopic visualization 278. A laser is coupled to the microscope and focuses on the spinal 

cords mounted on 1.0 PEN membrane slides (Zeiss, Göttingen, Germany). Ventral horn 

neurons of the lumbar spinal cord with a cell body area larger than 250 µm2 were considered 

as motor neurons and microdissected using a laser capture microdissection system (Zeiss, 

Göttingen, Germany). The outline of the motor neurons was predefined by the user and cut 

out with the laser after which the sample is sucked up and captured in adhesive caps 

(Adhesive Cap 500 opaque, Zeiss, Göttingen, Germany). At least 1,500 motor neurons were 

collected for each condition.  

 

Quantitative real-time PCR 

Total RNA was extracted from the captured motor neurons using the TRIPURE method 13. 

RNA concentrations were determined by a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, DE, USA). cDNA was synthesized from 1 µg of total RNA using the 

Superscript III polymerase according to manufacturer’s instructions (Invitrogen, Carlsbad, 

CA). Quantitative Real-Time PCR reactions were performed using TaqMan Universal PCR 

master mix (Applied Biosystems, Foster city, CA, USA, 4305719) and commercially available 

TaqMan gene expression assays against EphA4 (Invitrogen, Carlsbad, CA, Mm01256005_m1) 

and Polr2a (Invitrogen, Carlsbad, CA, USA, Mm00839502_m1). Thermal cycling was 

performed on the 7900HT Fast and the Step One Plus (AB) Real-time PCR system (Applied 

Biosystems, Foster city, CA, USA) using a standard amplification protocol.  

 

4. Molecular Biology 

 

Western Blot 

All mice were anesthetized with 10 % Nembutal (Ceva chemicals, Hornsby, NSW, Australia). 

Mouse spinal cords, hippocampi and cortices were dissected and homogenised in RIPA lysis 

buffer (Sigma-Aldrich, St. Louis, USA) with proteinase (cOmplete; Roche, Vilvoorde, Belgium) 

and phosphatase inhibitors (phosphostop; Roche, Vilvoorde, Belgium) using the 

MagnNaLyser (Roche, Vilvoorde, Belgium). Protein concentration was determined using the 

Micro-BCA assay (Thermo Scientific, Breda, Nederland, 23235). Freshly made 8% SDS-PAGE 

gels (GFP blots) or 10% SDS-PAGE gels (ephrinb2 blots) were used for electrophoresis. 

Fifteen or twenty microgram was loaded for each sample. After SDS-PAGE the gel was 

transferred to Immobilon-P membrane (Millipore, Overijse, Belgium, IPVH00010) and 

subsequently blocked with 10% Bovine Serum Albumin (Serva, Heidelberg, Germany, 11930) 
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for 1 h at room temperature. As primary antibodies N-terminal mouse anti-EphA4 (1/1,000; 

ECM Biosciences, Lexington, USA, EM2801), chicken anti-GFP (1/1,000; Aves labs, Tigard, 

USA, GFP-1020), mouse C-terminal EphA4 (1/500; Invitrogen, Carlsbad, CA, 37-1600), mouse 

β-actin (1/10,000; Sigma-Aldrich, St. Louis, USA, A2228), goat anti-ephrinb2 (1/500, R&D, 

Abingdon, UK, AF496), rat anti-GFAP (1/1,000; Invitrogen, Carlsbad, CA, 13-0300) and mouse 

anti-GAPDH (1/5,000, Thermo Scientific, Breda, Nederland, AM4300) were used. As 

secondary antibodies anti-mouse-HRP (horse radish peroxidase), anti-rabbit-HRP, anti-goat-

HRP (all 1/5,000; DAKO, Heverlee, Belgium) were used. FEMTO ECL (Thermo Scientific, 

Breda, Nederland, 34095) was used as substrate and the signal was detected using LAS4000 

(GE Healthcare, Diegem, Belgium).  

 

Immunoprecipitation 

Mouse spinal cords were dissected and homogenized in RIPA lysis buffer (Sigma-Aldrich, St. 

Louis, USA) supplemented with proteinase (cOmplete; Roche, Vilvoorde, Belgium) and 

phosphatase inhibitors (phosphostop; Roche, Vilvoorde, Belgium) using the MagnNaLyser 

(Roche, Vilvoorde, Belgium). Protein concentration was determined using the Micro-BCA 

assay (Thermo Scientific, Breda, Nederland, 23235). Five µg of mouse anti-EphA4 antibody 

(Invitrogen, Carlsbad, CA, 37-1600) was incubated with 1.5 mg protein G Dynabeads (Life 

Technologies, Merelbeke, Belgium, 10004D) for 10 min at room temperature. One mg of 

CNS lysate was added and samples were rotated for 2h at 4°C. After washing the beads with 

1x PBS, the target antigen was eluted with 20 µl of elution buffer (Life Technologies, 

Merelbeke, Belgium, 10007D) by heating 10 min at 70°C. The eluate was separated on a 

Novex Nupage 4-12% bis tris gel (Life Technologies, Merelbeke, Belgium, NP0321BOX). After 

SDS-PAGE the gel was transferred to Immobilon-P membrane (Millipore, Overijse, Belgium, 

IPVH00010) and subsequently blocked with 10% Bovine Serum Albumin (Serva, Heidelberg, 

Germany, 11930) for 1 h at room temperature. Rabbit phospho-EphA4 (Tyr-799) (1/500; 

ECM Biosciences, Lexington, USA, EP2751) and mouse C-terminal EphA4 (1/500; Invitrogen, 

Carlsbad, CA, 37-1600) were used as primary antibodies and secondary antibodies anti-

mouse-HRP and anti-rabbit-HRP (all 1/5,000; DAKO, Heverlee, Belgium) were used. Femto 

ECL (Thermo Scientific, Breda, Nederland, 34095) was used as a substrate and the signal was 

detected using LAS4000 (GE Healthcare, Diegem, Belgium). 

 

Digital droplet PCR 

Spinal cord RNA was extracted using the TRIPURE method 13. RNA was quantified and 

reverse-transcribed using random hexamer and oligodT priming and Superscript III 

polymerase (Invitrogen, Carlsbad, CA, 18080051). Gene expression assays for ephrinb2 

covering exon 1-2 (IDT, Leuven, Belgium Mm.PT.58.29108694) and β-actin (Applied 

Biosystems, Foster city, CA, USA, 4351315,) and the ddPCRTM Supermix for Probes (no dUTP) 
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(Bio-Rad, Hercules, CA, USA, 186-3025) were used. Samples were subsequently placed into 

the QX200 Droplet Generator (Bio-Rad, Hercules, CA, USA), which uses proprietary reagents 

and microfluidics to partition the samples into 20.000 nanoliter-sized droplets. The droplets 

are transferred to a 96-well plate for PCR-amplification using the T100TM Thermal Cycler 

(Bio-Rad, Hercules, CA, USA). Following PCR amplification of the nucleic acid target in the 

droplets, the samples are placed in the QX200 Droplet Reader (Bio-Rad, Hercules, CA, USA), 

which analyzed each droplet individually. With the QuantaSoftTM software the PCR-positive 

and PCR-negative droplets are counted and analyzed.  

 

Quantitative real-time PCR 

Spinal cord RNA was extracted using the TRIPURE method 13. RNA was quantified and 

reverse-transcribed using random hexamer and oligodT priming and Superscript III 

polymerase (Invitrogen, Carlsbad, CA,  18080051). For quantitative real-time PCR TaqMan 

gene expression assays for ephrinb2 covering exon 1-2 (IDT, Leuven, Belgium, 

Mm.PT.58.29108694), ephrinb2 covering exon 4-5 (IDT, Leuven, Belgium, 

Mm.PT.58.7363143), 18s (Invitrogen, Carlsbad, CA, USA, Mm04277571_s1), polr2a (IDT, 

Leuven, Belgium, Mm.PT.39a.22214849), GAPDH (IDT, Leuven, Belgium, Mm.PT.39a.1), GFAP 

(IDT, Leuven, Belgium, Mm.PT.58.10570926) and the TaqMan Fast Universal PCR Master Mix 

(Applied Biosystems, Foster city, CA, USA, 4352042) were used. SYBR Green assays were run 

for Aldh1l1 (Fw primer GCAGGTACTTCTGGGTTGCT, Rv primer GGAAGGCACCCAAGGTCAAA), 

NG2 (Fw primer AGGCTGAGGTAAATGCTGGG, Rv primer GCAGGTGGTGAGGACAGTAG), 

CX3CR1 (Fw primer CGTGAGACTGGGTGAGTGAC, Rv primer GGACATGGTGAGGTCCTGAG) 

and MBP (Fw primer CATCCTTGACTCCATCGGGC, Rv primer CAGGGTACCTTGCCAGAGC), 

using the Fast SYBR Green Master Mix (Applied Biosystems, Foster city, CA, USA, 4385618). 

All primers are ordered at IDT, Leuven, Belgium. Expression levels were normalised to 

polr2a, GAPDH and 18s using qBase. Thermal cycling was performed on the Step One Plus 

(AB) Real-time PCR systems (Applied Biosystems, Foster city, CA, USA). Each reaction was 

done in triplicate.  

 

5. Stainings 

 

Immunostaining 

Spinal cords were dissected, fixed in 4% paraformaldehyde (PFA, VWR, Paris, France) and 

cryoprotected in 30% sucrose (Sigma-Aldrich, St. Louis, USA, S0389) in 1x PBS (Sigma-Aldrich, 

St. Louis, USA). After embedding the spinal cords in Tissue-Tek O.C.T compound (Sakura, 

Antwerp, Belgium), fresh frozen sections (20µm) were cut on a cryostat (Leica, Wetzlar, 

Germany). Co-labeling was established by immunostaining for goat anti-ephrinb2 (1/75 

https://www.thermofisher.com/order/catalog/product/4385618
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overnight at 4°C, Neuromics, Edina, Minnesota, USA, GT15026-100), mouse anti-NeuN 

(1/200 1h room at temperature (RT), Millipore, Overijse, Belgium, MAB377), mouse anti-

GFAP (1/500 1h at RT, Invitrogen, Carlsbad, CA, USA, A-21282), anti-cc1 (1/200 1h at RT, 

Abcam, Cambridge, Massachusetts, USA, Ab16794), rat anti-cd11b (1/200 1h at RT, AbD 

Serotec, Bio-rad, Hercules, CA, USA, MCA618R) and anti-iba1 (1/200 1h at RT, WAKO, 

Richmond, USA, 019-19741). After incubation with primary antibodies, the slides were 

washed three times with PBST and consequently incubated with Alexa-488/555 labeled 

secondary antibodies (1/500 1h at RT, Invitrogen, Carlsbad, CA, USA). All slides were washed 

twice with PBST for 5 min and once with PBS for five min, and mounted with Prolong® Gold 

Antifade Mountant with DAPI (Thermo Scientific, Breda, Nederland, P36935). Pictures were 

taken with the Leica SP8x confocal microscope (Leica, Diegem, Belgium). 

 

DAB staining 

After embedding the human spinal cords in Tissue-Tek O.C.T compound (Sakura, Antwerp, 

Belgium), fresh frozen sections (20µm) were cut on a cryostat (Leica, Wetzlar, Germany). 

Tissue was fixed for 15 min with 4% paraformaldehyde (PFA, VWR, Paris, France). 

Endogenous peroxidases were blocked by incubating the slides for 30 min with 0.3% H2O2 

(VWR, Paris, France) in 50% MeOH (VWR, Paris, France). Samples were incubated with goat 

anti-ephrinb2 (1/75 overnight 4°C, Neuromics, Edina, Minnesota, USA, GT15026-100), mouse 

anti-smi32 (1/200, Covance, Princeton, NJ, USA, SMI-32R) and sheep anti-GFAP (1/500 1h at 

RT, Abcam, Cambridge, Massachusetts, USA, ab90601). After incubation with primary 

antibodies, the slides were washed three times with PBST and consequently incubated with 

biotinylated secondary antibodies (1/500 1h RT, DAKO, Heverlee, Belgium). The signal is 

amplified using an avidin-biotin peroxidase complex and visualised with 3,3' 

diaminobenzidine tetrahydrochloride (DAB) (Vectastain ABC kit, Vectorlabs Inc., Burlinglame, 

CA). Pictures were taken with a Zeiss Axio Imager M1 microscope (Carl Zeiss, Jena, Germany) 

using the monochrome AxioCam Mrc5 camera. 
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Part 2.  Exploration of the therapeutic potential of 

EphA4 inhibitors 

Introduction  

 
EphA4 has been found to play a role in cancer biology and in the pathogenesis of several 

neurological disorders 279. It is upregulated in spinal cord injury, traumatic brain injury and 

stroke, and blocking the receptor increases functional recovery in models for these 

conditions 208, 210, 219. Interestingly, inhibition of EphA4 improves LTP defects in a mouse 

model for AD and improves outcome in animal models for ALS 228, 280-281. The finding that 

EphA4 expression is inversely correlated with survival in ALS patients, suggests that EphA4 is 

involved in human pathology as well 281. These findings suggest that EphA4 inhibition opens 

perspectives for treatment of neurological disorders.  

Inhibition of EphA4 signaling can be obtained through targeting the adenosine triphosphate 

(ATP)-binding pocket in the kinase domain or by blocking the interaction with ephrin ligands 
282-283. Because the ATP-binding pocket is highly conserved among tyrosine kinases, it is very 

difficult to develop specific inhibitors. Targeting the ligand-binding domain on the other 

hand allows the development of more selective compounds, but poses several problems. 

One of these is the large protein interaction surface to be covered (for EphA4 more than 900 

A²) 284-285, and the dynamic nature of the ligand-binding domain, as EphA4 adapts a 

conformation like other EphA receptors to interact with ephrina ligands and like EphB 

receptors to interact with ephrinb ligands 144, 146, 286.  

So far, two classes of EphA4 binding site antagonists have been described (Table 1): a family 

of benzoic acid derivates, of which the so-called C1 compound is the most studied one, and 

peptidergic antagonists. Of the peptidergic antagonists, the dodecapeptide KYL (named after 

its first three amino acids) has been extensively studied in vitro and in vivo 222. It has been 

reported to have beneficial effects in spinal cord injury and in ALS models similar to that 

seen when Epha4 is knocked down genetically 213, 222, 281, 287. However, peptidergic inhibitors 

have limited potency and/or are not stable 283. The KYL peptide has a KD value of 

approximately 1 µM and a very short half-life in serum (11 min in mouse serum) 222, 287. An 

EphA4 inhibitor with higher potency, the cyclic peptide APY-βAla8.am has been reported 

recently, but is awaiting further characterization 284. All other EphA4 inhibitors lack 

specificity and block EphA4 activation at higher concentrations only (micromolar range) 

(Table 1) 282, 288-289.  

In the present chapter, we first have explored the potential of the small compound C1, an 

antagonist that targets both EphA4 and EphA2 290, and of which we previously showed that it 

corrects the phenotype in the zebrafish ALS model. Second, we have used Nanobody 

technology in order to generate selective and stable Epha4 antagonists 291-292. Nanobodies 
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(Nbs) are small antigen-binding fragments derived from camelid heavy-chain antibodies that 

are devoid of light chains. They are superior to conventional antibodies in terms of stability, 

solubility and immunogenicity 291. Furthermore, they are much smaller than conventional 

antibodies (12-15 kDa vs. 150-160 kDa) and can penetrate small clefts and cavities 293. We 

generated Nbs against the ligand-binding domain of the EphA4 receptor. 

 

 

 

Table 1. Overview of known EphA4 inhibitors. ND = not determined. For all compounds and 
peptides all properties concerning specificity, interaction and activity are indicated. Three 
compounds are able to inhibit EphA4 in the micromolar range. Five peptides can inhibit EphA4 in 
micromolar range with cAPY peptide in nanomolar range.   
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Chapter 4. Exploring the use of existing EphA4 inhibitors in ALS 
 

Experiments in collaboration with Division of Pharmaceutical Analysis, KU Leuven 

4.1 Introduction 

We aimed to explore the use of existing EphA4 inhibitors in animal models for ALS. Several 

EphA4 inhibitors have been published in literature, but many of them are not very selective 

(Table 1). We explored the in vivo use of compound 1 (C1), a 2-hydroxy-4(2,5-dimethyl-1-

pyrrol-1-yl)benzoic acid derivative (Figure 4.1).  

  

Figure 4.1 Structure of compound 1 (C1). 

In a high throughput screen 10,000 compounds from the DIVERSetTM library (ChemBridge, 

Inc.) were tested and 43 compounds were able to inhibit the binding between the KYL-

peptide and the EphA4 receptor 290.  One compound was also able to inhibit the binding of 

EphA4 to ephrina5. Fourtynine additional compounds belonging to the same class of 2,5-

dimethylpyrrolyl benzene derivatives were tested of which two were able to inhibit the 

binding of EphA4 both to the KYL-peptide and to ephrina5. Compound 1 binds into the high 

affinity ephrin-binding channel of the EphA4 ligand-binding domain, thereby inhibiting the 

binding of ephrin ligands, except for ephrina4 and ephrinb2 290, 294. Stimulation of the 

hippocampal cell line HT22 with preclustered ephrina5 induces EphA4 phosphorylation, 

which can be inhibited in a dose-dependent way by C1 290. Furthermore, the ephrin system 

has inhibitory effects on axonal outgrowth, which can be assessed in vitro by studying their 

inhibiting (collapsing) effect on the axonal growth cone. Neuronal stimulation with ephrin 

ligands induces this growth cone collapse, which can be inhibited by C1 290. The usefulness of 

this compound has already been shown in previous zebrafish work in our laboratory, in 

which we showed that blocking the EphA4 receptor with C1 could completely rescue the 

axonal phenotype in the zebrafish model of ALS 35.  

Newly synthesized C1 is not active, but when exposed to air and light, C1 undergoes 

spontaneous oxidation forming an active form of C1 thereby acquiring a dark brown color 
295. However, to date the active form of the compound has not been identified 295. 
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4.2 Results 

 

To validate the protective effect of EphA4 inhibition by C1 in other animal models, the 

feasibility of treating SOD1G93A mice with this compound was investigated. A bioanalytical 

method using High Performance Liquid Chromatography (HPLC) with UV detection (HPLC-

UV) was developed to detect and quantify the drug in biological samples. This work was 

performed by Yan Xu, under supervision of Hui Chen, in collaboration with Prof. Dr. A. Van 

Schepdael (Division of Pharmaceutical Analysis, KU Leuven).   

 

 

First, the method was validated using spiked cerebrospinal fluid (CSF) samples (Figure 4.2). 

There was no interference in the chromatogram of CSF matrix at the retention time of C1. 

The retention time of C1 corresponded with the oxidation product of the compound. Next, 

the method was validated for other biological samples (blood, kidney, liver, brain and spinal 

cord), by comparing control samples to spiked samples (data not shown).  

  

 

  
Figure 4.2. Chromatogram of a spiked CSF sample (2) versus control CSF sample (1).   

 

The pharmacokinetics of C1 were determined for nontransgenic mice injected 

intraperitoneally with the compound (50 mg/kg mouse) or the control solution. The 

concentration of C1 decreased very rapidly over time in all tissues evaluated and could no 

longer be detected eight hours after injection (Table 4.1).   
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Time after injection (h) Blood (µg/ml) Kidney (µg/ml) Liver (µg/ml) Brain (µg/ml) Spinal Cord (µg/ml) 

1 75.7 2.13 0.7 0.362 0.437 

4 14.65 <LOQ = 0.589 <LOQ = 0.589 <LOQ = 0.589 <LOQ = 0.589 

8 <LOD = 0.178 <LOD = 0.178 <LOD = 0.178 <LOD = 0.123 <LOD = 0.178 

Table 4.1. Detection of compound 1 at different time points after injection in nontransgenic mice. 
One hour after injection the concentration of the compound could be determined in all tissues. Four 
hours after injection the compound could still be detected, but not quantified. Eight hours after 
injection the concentration of the compound was below the detection limit. (LOD = limit of 
detection, LOQ = limit of quantification)  
 
 

 In a second approach we explored the possibility of continuous administration of C1 into the 

lateral ventricle using mini-osmotic pumps. We determined the stability of C1 in PBS at 37°C 

which revealed rapid degradation of the compound over a few days (Figure 4.3). These data 

indicate that the compound lacks the stability for continuous administration with mini-

osmotic pumps.  

 

 

 

 
Figure 4.3. Stability of C1 in PBS. Concentration of C1 in PBS over time at 37°C as determined with 
HPLC-UV. Error bars denote standard deviation.  
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4.3 Discussion 

  

 

Here we investigated the feasibility to treat SOD1G93A ALS mice with the C1-compound, a 

somewhat selective EphA4 inhibitor. We determined the pharmacokinetics for C1 in 

different tissues after intraperitoneal injection in nontransgenic mice. The concentration of 

C1 rapidly declined over time and was undetectable eight hours after injection, greatly 

limiting the therapeutic potential of C1-IP injection for the treatment of rodent ALS models.  

An alternative approach by delivering the compound directly into the CSF through mini-

osmotic pumps was explored. When treating ALS rodents with mini-osmotic pumps, 

preferentially pumps with long duration (4 weeks) are used to avoid repetitive surgeries, 

requiring the drug administered to be stable over a period of 4 weeks. The concentration of 

C1 in PBS solution at body temperature (37°C) was shown to decline over several days 

precluding the possibility of using it in mini-osmotic pumps.   

The instability of C1 has also been reported elsewhere 295-296. Not only this compound, but 

the whole class of 2,5-dimethyl-pyrrol-1-yl-benzoic acid inhibitors is potentially unstable 

during long-term storage 297. Thus, although C1 is a useful antagonist for certain short-term 

experiments, its chemical instability limits its potential for use in vivo 297.   
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Chapter 5. Identification and characterization of Nanobodies 

specific for the Ephrin A4 receptor 
 
Submitted: Schoonaert et al.   
EphA4 and Nanobody expression in collaboration with the Protein Service Facility (VIB). Nanobody 
generation in collaboration with the Nanobody Service Facility (VIB). Surface Plasmon Resonance in 
collaboration with Bart Roucourt. EphA4 phosphorylation assay in collaboration with Vertex 
Pharmaceuticals. All other experiments performed by Lies Schoonaert with assistance of Mieke 
Timmers. 

 

5.1 Introduction 

 

We explored the potential of Nanobody technology to specifically and potently block EphA4 

signaling 291-292. Nanobodies were discovered more than two decades ago at the Vrije 

Universiteit Brussel 298. Camelids among which camels, llamas and alpacas contain both 

conventional antibodies as well as heavy-chain antibodies (Figure 5.1) 291. Conventional 

antibodies consist of two identical heavy chains and two identical light chains. The N-

terminal variable domain of the heavy chain (VH) and the variable domain of the light chain 

(VL) interact with each other forming the antigen binding site (Figure 5.1). Heavy-chain 

antibodies lack the light chain and the first constant domain, and have some differences in 

the variable domain of the heavy chain (VHH) which are responsible for the association with 

the light chain in conventional antibodies 291. Nanobodies (Nbs) are the isolated VHH 

domains responsible for antigen binding. 

 
Figure 5.1 Antibodies and Nanobodies. The antigen binding sites of conventional antibodies are 
formed by the fusion of VH and VL domains with a flexible linker. Heavy-chain antibodies lack the 
light chain and the first constant domain of conventional antibodies. Their antigen binding site is 
consists of an autonomous single variable domain (VHH). VH, variable domain of heavy chain; VL, 
variable domain of light chain.  
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Nanobodies have many advantages over conventional antibodies. They are much smaller 

than conventional antibodies (12-15 kDa vs. 150-160 kDa) and are superior to conventional 

antibodies in terms of stability, solubility and immunogenicity 291, 293. Nbs are extremely 

stable with a long shelf-life of several months at 4°C, and even longer at  

-20°C and resistance to thermal and chemical denaturation 291. High solubility of Nbs is 

achieved by the presence of hydrophilic amino acids in one of the framework regions299. 

Furthermore, Nbs lack the Fragment crystallizable (Fc) region, which is important for the 

recruitment of immune cells and for effector functions, explaining their limited 

immunogenicity, to which also their small size and their high sequence similarity to human 

VH contribute 291. Of interest, 12 out of 14 amino acids that differ between Nanobody and 

human VH can be humanized thereby diminishing its immunogenicity, a necessary step to be 

accepted as human therapeutics 300. In general, conventional antibodies bind proteins with a 

flat interface, while Nbs can bind and penetrate into small clefts and cavities using their long 

Complementarity Determining Region 3 (CDR3), one of the regions responsible for the 

recognition of the antigen 301.  

Nbs are rapidly cleared from the blood (half-life of 1.5 h or less), and poorly penetrate the 

blood-brain barrier and cell membrane. Of notice, these drawbacks can be overcome 

through chemical modifications (see below). Furthermore, several methods have been 

tested to cross the blood-brain barrier 302.  
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5.2 Results 

5.2.1 Generation of anti-EphA4 LBD Nbs 

 

An alpaca was immunized with recombinant human EphA4 ligand-binding domain (LBD) 

according to standard procedures303. In addition to conventional antibodies, alpacas also 

produce heavy chain only antibodies in response to the recombinant protein. A phagemid 

library was constructed from the RNA from peripheral blood lymphocytes and transformed 

in E. coli TG1 cells. A library of about 2 × 108 independent transformants was obtained and 

about 87% of transformants harbored the vector with the right insert size.  The library was 

subjected to four consecutive rounds of panning, performed on solid-phase coated EphA4 

LBD. The phage population was enriched for antigen-specific phages after 3rd and 4th rounds 

of panning. In total, 190 individual colonies from 3rd and 4th rounds (95 from each round) 

were randomly selected and analyzed by ELISA for the presence of antigen-specific VHHs in 

their periplasmic extracts. In total, 41 colonies (14 and 27 from 3rd and 4th, respectively) 

scored positive in this assay. Sequencing of the VHH genes from 41 positive colonies resulted 

in 15 different Nbs,  belonging to 9 different clonally-unrelated B-cell clones based on 

sequence homology in the complementarity determining region 3 (CDR3) (Figure 5.2). Nbs 

belonging to the same group show very high sequence similarity suggesting they are from 

clonally-related B-cells as a result of hypermutation. Nbs 39, 16, 71, 28 and 22 most likely 

belong to unrelated B-cell clones. Their amino acid sequences are shown in Figure 5.2. Nbs 

are characterized by three complementarity determining regions (CDRs), all contributing to 

antigen binding specificity. The most important differences between clones are mainly 

located in the CDRs (Figure 5.2).  

 

 

 

Figure 5.2 Amino acid sequence of fifteen different anti-EphA4 LBD Nbs. The Nbs have been 
numbered according to Kabat numbering with reference sequence VH3-23/JH5 on top. The 
complementarity determining regions (CDRs) have been assigned according to the AbM definitions 
and are shown with a grey background. The Nbs belong to nine, clonally-unrelated B-cell clones and 
the different groups are shown alternatively in black and purple. According to the amino acid 
sequences Nb 90 and 60, Nb 19 and 57, Nb 34 and 47, Nb 31, 50, 10 and 53 belong to the same 
group. Nb 39, 16, 71, 28, 22 belong to unrelated B-cell clones.  
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5.2.2 Cloning and expression of the anti-EphA4 LBD Nbs 

 

To express and purify the selected Nbs, their genes were subcloned into the pHEN6c 

expression vector, in fusion with a PelB signal leader sequence and a C-terminal His6-tag. The 

pHEN6c vectors were transformed into WK6 E. coli cells enabling the expression of the Nbs 

as a fusion protein with the PelB peptide, directing the expressed protein to the bacterial 

periplasm. The expressed Nbs were extracted from the periplasm by osmotic shock, purified 

using immobilized metal-ion affinity chromatography (IMAC) and gel filtration 

chromatography. The purity of the fractions was analyzed with Coomassie-stained SDS-

polyacrylamide gels and western blot detection using His6-tag (data not shown). All Nbs 

could be detected at a position corresponding to about 15 kDa. There was no contamination 

with other proteins or Lipopolysaccharide (LPS), but there were obvious differences in 

expression levels of the Nbs (Table 5.1) and concentrating the poorly expressed ones 

resulted in protein aggregation. We therefore eliminated Nbs 90, 16, 71, 28 and 10 from the 

screen. The remaining 10 were used for further screening. 

 

  mg Nb per liter of culture 

Nb 90 0.22725 

Nb 60 1.14 

Nb 19 0.6204 

Nb 57 2.33 

Nb 39 3.2 

Nb 16 0.14 

Nb 34 7.29 

Nb 47 0.7812 

Nb 71 0.0945 

Nb 28 0.0585 

Nb 22 18.855 

Nb 31 21.7125 

Nb 50 3.59 

Nb 10 0 

Nb 53 7.7 
 

Table 5.1 Concentration of Nbs expressed in and purified from E. coli. Nb 90, 16, 71, 28 and 10 did 
not yield high concentration and concentrating them led to aggregation.  
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5.2.3 Analysis of EphA4 binding 

 

We next determined whether the Nbs recognised EphA4 under reducing conditions. None of 

them bound recombinant EphA4 (data not shown) on Western Blot; an EphA4 monoclonal 

antibody was used as a positive control and readily bound the recombinant protein. These 

data suggest that the Nbs target a conformational epitope on the EphA4 LBD.   

To test whether the Nbs were indeed able to bind native EphA4, we performed 

immunoprecipitation experiments (Figure 5.3). Nbs 31, 50, 57, 53 and 39 precipitated EphA4 

protein and  EphA4 in turn precipitated these Nbs (data shown for Nbs 53 and 39 in Figure 

5.3A,B). In contrast to the other Nbs, Nanobody 22 showed lower binding to mouse EphA4 

compared to human EphA4 (Figure 5.3C). This is unexpected as the amino acid similarity 

between the LBD of human and mouse EphA4 is over 98%. Nbs 19, 34 and 47 showed non-

specific binding to the beads and to recombinant ephrinb2 (data shown for Nanobody 19 

and 47 in Figure 5.3D,E). Nanobody 60 did not show non-specific binding to the beads, but 

precipitated with recombinant ephrinb2 indicating non-specific binding (Figure 5.3F).   

 

Figure 5.3 Immunoprecipitation of EphA4 with different Nbs (left panel). Immunoprecipitation of 
Nb with EphA4 (right panel). (A,B) Nb 53 and 39 could capture EphA4 and could be captured by 
EphA4. (C) Nb 22 showed lower affinity for mouse EphA4 compared to human EphA4. (D,E) Nb 19 
and 47 showed aspecific binding to the beads. (F) Nb 60 showed aspecific binding to ephrinb2. 
Immunoprecipitation with ephrinb2 (Efnb2) was performed as a control experiment.  
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To identify the Nbs with the highest affinity we determined their binding kinetics to EphA4 

using Surface Plasmon Resonance (SPR). The EphA4 ligand-binding domain (LBD) was 

immobilized onto the chip and Nbs (1 nM to 300 nM) were used as analyte. SPR analysis 

revealed that Nbs 34 and 47 did not bind to the EphA4 LBD (Table 5.2). Nbs (60, 57, 39, 22, 

31, 50) showed binding in low nanomolar range, while Nanobody 19 showed binding in the 

higher nanomolar range only.   

 

We next investigated the affinity of the Nbs for the EphA4 LBD, their affinity for full-length 

recombinant human and for the mouse EphA4 receptor. Most Nbs showed similar binding to 

the full-length receptor as to the EphA4 LBD. Nanobody 31 showed somewhat higher 

binding to the EphA4 LBD than to full length EphA4. Nanobody 22 showed a twofold 

difference in binding affinity between human and mouse EphA4, in agreement with what we 

found in the immunoprecipitation experiments described above (Figure 5.3C). 

Based on these results, we selected seven Nbs (60, 57, 39, 22, 31, 50 and 53) with affinity in 

the nanomolar range for both the EphA4 LBD and the full-length receptor. Nbs 34, 47 and 19 

showed low affinity for EphA4 and were omitted from further analysis. 
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5.2.3 Cross-reactivity with other Eph receptors 

 

The homology between the different Eph receptors is very high. We therefore used 

Alphascreen technology to study the specificity of the Nbs generated. All Eph receptors 

tested showed binding with ephrina5 and/or ephrinb2 indicating that all receptors adapt 

their correct conformation. Ephrina5 interacted with all EphA receptors and with EphB2 as 

has been previously shown (Figure 5.4A) 145. Ephrinb2 interacted with all EphB receptors and 

EphA4, but not with EphB6 for which no ligands have been identified so far (Figure 5.4B) 146, 

304. The control Nanobody did not bind to any of the Eph receptors as expected (data not 

shown).  

  

 

Figure 5.4 Interaction of ephrina5 and ephrinb2 with different Eph receptors. (A) Ephrina5 
interacted with different EphA receptors and with EphB2. (B) Ephrinb2 interacted with different EphB 
receptors and EphA4. Values indicated represent mean with SD 

 

 

Alphascreen analysis showed that Nanobody 60 interacted with several Eph receptors other 

than EphA4 (Figure 5.5A), in agreement with the immunoprecipitation results obtained with 

Nanobody 60 (Figure 5.3F). Nanobody 57 bound EphA4, but also EphA3 and EphA7, and 

Nanobody 50 bound EphA4 but also EphA3, EphA6, EphA7 and EphA8 (Figure 5.5B,F). Nbs 

22, 39, 31 and 53 were almost completely selective for EphA4, although some binding to 

EphA7 was noted (Figure 5.5C, D, E, G). We therefore selected the latter four for further 

screening.  
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Figure 5.5 Cross-reactivity with other Eph receptors (Alphascreen). (A) Next to EphA4 Nb 60 also 
interacted with many other different Eph receptors. (B,C,D,E,F) Nb 57, 22, 39, 31 and 53 had highest 
selectivity to the EphA4 receptor. (F) Nb 50 had low selectivity for EphA4 as it also interacts with 
EphA3, EphA6, EphA7 and EphA8. Error bars denote standard deviation.  
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5.2.4 Competition with ephrin ligands for the interaction with EphA4 

 

EphA4 interacts with most of the ephrins 144, 146. We therefore investigated whether the Nbs 

selected were able to displace these ligands from the EphA4 receptor. We determined the 

optimal concentration for the different ephrin ligands for a fixed concentration of the EphA4 

LBD to avoid the hooking effect (oversaturation of donor and acceptor beads inhibiting their 

association) and added increasing concentrations of the Nbs. The control Nanobody did not 

show any interaction with the different Eph receptors, as expected (data not shown). The 

KYL peptide, a known EphA4 inhibitor was used as a positive control. 

Nb 39 and Nb 53 completely displaced all ephrin ligands from EphA4 binding in a 

concentration range lower than the KYL-peptide (Figure 5.6A-H). Nbs 22 and 31 were less 

potent. Nb 22 completely displaced ephrina3 (Figure 5.6C) and almost completely displaced 

ephrinb ligands (Figure 5.6F, G, H) from EphA4 binding, but no full displacement of the other 

ephrina ligands was obtained with the concentrations tested (Figure 5.6A, B, D, E). Its 

potency was comparable to that of the KYL peptide.  Nanobody 31 completely displaced 

ephrina1, ephrinb1 and ephrinb2 at lower concentrations than the KYL-peptide (Figure 5.6A, 

F, G), completely displaced ephrina3 in concentrations similar to the KYL-peptide (Figure 

5.6C), but ephrina2, ephrina4, ephrina5 and ephrinb3 could not be completely displaced 

with the concentrations tested (Figure 5.6B, D, E). These data show that Nbs 39 and 53 are 

able to block the interaction of all ephrin ligands with the EphA4 ligand-binding domain. 
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Figure 5.6 Inhibition of ligand-binding. (A,D,E,H) Nb 22 and 31 did not show complete inhibition. Nb 
39 and Nb 53 showed complete inhibition of ligand-binding at a lower concentration than the KYL-
peptide. (B,F,G) Nb 22 did not show complete inhibition. Nb 39, Nb 53 and Nb 31 showed complete 
inhibition of ligand-binding at a lower concentration than the KYL-peptide. (C) Nb 39 and 53 showed 
complete inhibition of ligand-binding at a lower concentration than Nb 22, Nb 31 and the KYL-
peptide.  Error bars denote standard deviation.  

 

5.2.5 Inhibition of ephrin-induced EphA4 activation 

 

To assess the antagonistic properties of the Nbs, we tested their effect on ephrin-induced 

phosphorylation. Ephrin-induced phosphorylation was examined using the PathHunter assay 

in U2OS cells. All cells are stimulated with ephrina1 with or without the presence of an 

EphA4 antagonist and the resulting phosphorylation of EphA4 is measured. The control 

Nanobody did not have any effect on receptor phosphorylation (data not shown). The KYL 

peptide showed complete inhibition of ephrina1-induced phosphorylation with an IC50 value 

of 52.96 µM (Figure 5.7). Nbs 39 and 53 also reached complete inhibition of ephrina1-

induced phosphorylation, but at lower concentrations than the KYL-peptide with an IC50 of 

170 nM and 261 nM respectively (Figure 5.7). These data indicate that Nbs 39 and 53 are at 

least ten times more potent than the KYL peptide in ephrina1-induced phosphorylation of 

the EphA4 receptor. 
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Figure 5.7 Inhibition of phosphorylation. Nb 39 and Nb 53 showed complete inhibition of 
phosphorylation at a lower concentration than the KYL-peptide. Error bars denote standard 
deviation.  
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5.3 Discussion 

 
One EphA4 inhibitor, the KYL peptide, has been studied extensively in models for several 

neurological disorders such as acute injuries including spinal cord injury and stroke, and 

neurodegenerative disorders such as ALS and AD 280-281. Unfortunately, this peptide has a KD 

value of approximately 1 µM and a very short half-life in serum (11 min in mouse serum) 222, 

287. Only one very recent study has reported an EphA4 inhibitor with higher potency, the 

cyclic peptide APY-βAla8.am 284, which is yet to be characterized biologically. All other EphA4 

inhibitors lack specificity and need higher concentration (in the micromolar range) to block 

EphA4 activation (Table 1).  

As Nbs are known to be very specific, we used this approach to develop a selective EphA4 

inhibitor targeting the ligand-binding domain. Here, we describe the generation and 

screening of EphA4 inhibitors targeting the LBD based on the Nanobody (Nb) technology. We 

immunized alpacas with the human EphA4 LBD and identified 15 different Nbs against this 

LBD. In a series of experiments, we found Nb 39 and 53 to be at least ten times more potent 

than the KYL peptide with potencies in the nanomolar range. Nb 39 and Nb 53 were most 

selective for EphA4, but still showed considerable binding to EphA7. Interestingly, EphA7 KO 

mice as well as rats treated with EphA7 antisense oligonucleotides show enhanced recovery 

after SCI compared to control mice 305-306. Therefore, targeting EphA7 in addition to EphA4, 

may be of benefit rather than detrimental. This obviously needs further study. 

Conventional antibodies (about 150 kDa) have limited tissue penetration and bind to small 

receptor pockets because of their large size and preference for concave epitopes. Nbs on the 

other hand prefer clefts and small pockets and show higher tissue penetration. However, 

their small size limits their half-life to about 1.5 hours 307. This low half-life can be overcome 

by linking the Nb to a Nb that binds serum albumin which can increase the half-life to 20-30 

h in mice. In humans this strategy was shown to extend the half-life of Nbs to 19 days 308-309. 

Another strategy to increase the half-life is adding polyethyleenglycol (PEG) groups to the 

Nbs, taking care that the PEG groups do not influence the binding to EphA4 310. The addition 

of PEG groups increases the apparent molecular weight above the glomerular filtration limit 

avoiding renal clearance and/or evades cellular clearance mechanisms 311.  

We here describe Nbs targeting the EphA4 ligand-binding domain. Two Nbs were most 

selective for EphA4 and had KD and IC50 values in the nanomolar range. Both Nbs were able 

to block the interaction of EphA4 with all ephrin ligands and inhibit phosphorylation of 

EphA4. Future studies need to investigate whether these promising results can be translated  

in in vitro and in vivo functional models. In addition, the affinity of these Nbs can be further 

increased through error-prone PCR mutagenesis and/or making bispecific Nbs 312-313.    
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Material and Methods 

1. Pharmacokinetics compound 1 

 
Animal housing and ethics statement  
 
Nontransgenic mice with a C57/Bl6J background were purchased from the animal facility. 

Mice were housed in the ‘KU Leuven’ animal facilities with a 12 h light-dark cycle at a 

temperature of 20 °C. Animals were given free access to standard rodent chow and water 

and were helped with their food and fluid intake at the end of their disease. All animals 

received care in accordance to The Principles of Laboratory Animal Care formulated by the 

National Society for Medical Research and the Guide for the Care and Use of Laboratory 

Animals published by the National Institutes of Health (NIH publication no. 86-23, revised 

1996). Protocols were designed to minimize animal discomfort and all experiments were 

approved by the Ethical Committee for Animal Research of the University of Leuven, 

Belgium. 

 

Biodistribution of C1 

Nontransgenic mice were injected intraperitoneally (IP) with C1 (1 mg dissolved in DMSO, 

with 200 μl extra physiological water). Blood sample was saved in a heparin solution (1/10 in 

water) to prevent coagulation. Before organ samples were collected, the mice were perfused 

by 1x PBS (Sigma-Aldrich, St. Louis, USA) to remove all blood from the organs. Each organ 

sample was saved in 2 ml distilled water and homogenized. Sample preparation methods 

and the detection of C1 were optimised and validated in collaboration with the Division of 

Pharmaceutical Analysis, KU Leuven. The work was performed by Yan Xu, under supervision 

of Hui Chen and Prof. Dr. A. Van Schepdael. Briefly, for different samples, different sample 

preparation methods were applied. As the CSF sample has a very low protein content, it can 

be analyzed directly. For blood, liver and kidney samples, protein precipitation was needed. 

For spinal cord and brain samples, Solid Phase Extraction (SPE) was performed, to remove 

interfering matrix components and selectively concentrate the analyte. After sample 

preparation, all samples were analyzed with HPLC-UV.  

 

2. Nanobody screening 

 

Expression and purification of the EphA4 ligand-binding domain   

 

The EphA4 ligand-binding domain (AA 22 – AA 203 according to Singla et al., 2010 286) was 

cloned from the EphA4 Human cDNA ORF clone (Origene) and expressed in the E. coli strain 
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BL21 codon + pICA2 transformed with the pLH36Epha plasmid. Expression is induced by 

isopropyl b-D-1-thiogalactopyranoside under control of a pL-promotor developed by the 

Protein Service Facility of VIB. The pLH36 plasmid is provided with a His6- tag followed by a 

murine caspase-3 site. The murine caspase-3 site can be used for the removal of the His6-tag 

attached at the N terminus of the protein of interest during purification. The transformed 

bacteria were grown in Luria Bertani medium supplemented with ampicillin (100 µg/mL) and 

kanamycin (50 µg/mL) overnight at 28°C before 1/100 inoculation in a 20 liter fermenter 

provided with Luria Bertani medium supplemented with ampicillin (100 µg/mL) and 1% 

glycerol. The initial stirring and airflow was 200 rpm and 1.5 L/min, respectively. Further, this 

was automatically adapted to keep the pO2 at 30 %. The temperature was kept at 28°C. The 

cells were grown to an optical density of A600nm = 1.0, transferred at 20°C, and expression 

was induced by addition of 1 mM isopropyl b-D-1-thiogalactopyranoside overnight. Cells 

were then harvested and frozen at -20°C. After thawing, the cells were resuspended at 3 

mL/g in 20 mM NaH2PO4 pH 7.5, 500 mM NaCl, 20 mM imidazole and 1 mM 

phenylmethylsulfonyl fluoride. The cytoplasmic fraction was prepared by sonication of the 

cells followed by centrifugation at 18,000g for 30 min. All steps were conducted at 4°C. The 

clear supernatant was applied to a 74 mL Ni-Sepharose 6 FF column (GE Healthcare, Diegem, 

Leuven), equilibrated with 20 mM NaH2PO4 pH 7.5, 500 mM NaCl, 20 mM imidazole and 

0.1% CHAPS. The column was eluted with 20 mM NaH2PO4 pH7.4, 20mM NaCl, 400mM 

imidazole and 0.1% CHAPS after an extra wash step with 50 mM imidazole. The elution 

fraction was diluted 1/20 with 20 mM Tris pH 8.0 and 0.1% CHAPS and loaded on a 20-mL 

Source 15Q column (GE Healthcare, Diegem, Leuven) to remove contaminants. After 

equilibration, the protein of interest was eluted by a linear gradient over 20 column volumes 

of NaCl from 0 to 1 M in 20 mM Tris pH 8.0 and 0.1% CHAPS. To the EphA4-containing 

fractions, activated murine caspase-3 (1/100 % m/m murine caspase-3/EphA4) with 10 mM 

DTT was added to remove the His6-tag. After 1 h incubation at 37°C, the reaction solution 

was injected on a HiLoad 26/60 Superdex 75 prep grade with PBS as running solution for 

formulation and to remove minor contaminants, His6-tag and murine caspase-3. The 

obtained fractions were analyzed by SDS-PAGE and the concentration was determined using 

the Micro-BCA assay (Thermo Scientific, Breda, Nederland, 23235).  

 

Construction of a VHH library  

 

Nbs targeting the EphA4 ligand-binding domain (LBD) were obtained in collaboration with 

the VIB Nanobody Service Facility. An alpaca was injected subcutaneously on days 0, 7, 14, 

21, 28 and 35, each time with about 250 µg of human Ephrin A4 LBD. On day 39, 

anticoagulated blood was collected for lymphocyte preparation. A variable domain of heavy-

chain antibodies (VHH) library was constructed and screened for the presence of antigen-

specific Nbs. To this end, total RNA from peripheral blood lymphocytes was used as template 

for first strand cDNA synthesis with oligo(dT) primer. Using this cDNA, the VHH encoding 

sequences were amplified by PCR, digested with PstI and NotI, and cloned into the PstI and 
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NotI sites of the phagemid vector pMECS. A VHH library of about 2 × 10E8 independent 

transformants was obtained. About 87% of transformants harbored the vector with the right 

insert size.  

 

 

Isolation of hEphA4 LBD-specific Nbs  

 

To screen for the presence of EphA4-specific Nbs, the library was subjected to 4 consecutive 

rounds of panning, performed on solid-phase coated EphA4 LBD (concentration: ~200 g/ml, 

~20 g/well). The enrichment for antigen-specific phages after each round of panning was 

assessed by comparing the number of phages eluted from antigen-coated wells with the 

number of phages eluted from negative control (only-blocked) wells. These experiments 

suggested that the phage population was enriched for antigen-specific phages after 3rd and 

4th rounds of panning. In total, 190 individual colonies from 3rd and 4th rounds (95 from each 

round) were randomly selected and analyzed by ELISA for the presence of antigen-specific 

Nbs in their periplasmic extracts (ELISA using crude periplasmic extracts including soluble 

Nbs). Of 190 colonies, 41 colonies (14 and 27 from 3rd and 4th, respectively) scored positive 

in this assay. The selected clones were analysed and their VHH genes were sequenced to 

identify the different Nbs.   

 

Expression and purification of recombinant Nbs  

The Nanobody genes were subcloned into the pHEN6c expression vector, in fusion with a C-

terminal His6-tag. The pHEN6c vectors were transformed into WK6 E. coli cells and grown in 

Luria Bertani medium supplemented with ampicillin (100 µg/mL) and 0.1 % glucose at 37°C 

overnight. Further, the cultures were inoculated  1/100 to have 1 liter productions in Terrific 

Broth medium supplemented with ampicillin (100 µg/mL) and 0.1 % glucose in baffles shake 

flasks. The temperature was kept at 37°C. The cells were grown to an optical density of 

A600nm = 1.0, transferred at 28°C, and expression was induced by addition of 1 mM isopropyl 

b-D-1-thiogalactopyranoside overnight. Cells were then harvested and frozen at -20°C. The 

expressed Nbs were extracted from the periplasm by osmotic shock and purified using His 

GraviTrap (GE Healthcare, Diegem, Belgium) in parallel, equilibrated with 20 mm NaH2PO4, 

pH 7.5, 300 mM NaCl, 20 mM imidazole, and 1 mM PMSF. After loading, the columns were 

washed with 20 column volumes of the same buffer. The  Nanobody was first eluted with 20 

mM NaH2PO4, pH 7.5, 20 mM NaCl, 50 mm imidazole, 1 mM PMSF and then with 400 mM 

imidazole in the same buffer. Finally, the Nbs were desalted to PBS on sephadex G25 (GE 

Heathcare, Diegem, Belgium). The obtained fractions were analyzed with Coomassie-stained 

SDS-polyacrylamide gels. Protein concentration was measured by the Micro-BCA assay 

(Thermo Scientific, Breda, Nederland, 23235).  
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Immunoprecipitation experiments 

One and a half mg protein G Dynabeads (Life Technologies, Merelbeke, Belgium, 10004D) 

were preblocked with 1% BSA for 1 h at room temperature, washed four times with PBS and 

incubated with  2.5 µg of recombinant mouse or human EphA4 protein (R&D, Abingdon, UK, 

641-A4-200 and 6827-A4-050) for 10 min at room temperature. After washing four times 

with PBS the beads were incubated with 1 µg Nanobody overnight at 4°C. The beads were 

washed four times with PBS, boiled for 10 min in reducing sample buffer (Thermo Scientific, 

Breda, Nederland, 39000) and proteins were fractionated with a Novex Nupage 4-12% bis 

tris gel (Life Technologies, Merelbeke, Belgium, NP0321BOX). After SDS-PAGE the gel was 

transferred to Immobilon-P membrane (Millipore, Overijse, Belgium, IPVH00010) and 

subsequently blocked with 10% Blotting-grade blocker (Bio-Rad, Hercules, CA, USA, 

1706404) for 1 h at room temperature. Mouse anti-EphA4 antibody 1/1,000 (ECM 

Biosciences, Lexington, USA, EM2801) and mouse anti-HA antibody 1/1,000 (Covance, 

Princeton, NJ, USA,MMS-101P) were used to detect EphA4 and Nanobody respectively. 

EphA4 was captured with Nanobody anti-HA magnetic Dynabeads (Life Technologies, 

Merelbeke, Belgium, 88837) were used and all following steps were performed as described 

above.  

 

Surface Plasmon Resonance 

The equilibrium dissociation constant (KD) and the association (ka) and dissociation rates (kd) 

were determined using surface plasmon resonance detection on a BIACore T200 (GE 

Healthcare). Two approaches were used. First, the extracellular N-terminal domain of human 

EphA4 was immobilized directly onto a CM5 S series sensor chip (GE Heathcare, Diegem, 

Belgium, BR100530) using standard amine coupling. After activation of the carboxyl moieties 

on the matrix on the chip surface with a 7-min injection of a 1:1 mixture of 0.4 M EDC and 

0.1 M NHS, the N-terminal domain of human EphA4 (50 µg/ml in 10 mM acetate, pH 4.5) 

was immobilized to a predefined level of response units (RU). Approximately 300 RU of N-

terminal domain of human EphA4 was bound onto flow channels. The remaining activated 

carboxyl groups were blocked by injecting 1 M ethanolamine (pH 8.5) for 7 minutes. Flow 

rate was kept constant at 10 µl/min.  A flow channel activated with EDC/NHS and 

immediately afterwards blocked by ethanolamine served as reference channel. Throughout 

the analysis 10 mM Hepes, 150 mM NaCl, 3 mM EDTA, 0.01 mM Surfactant P-20 pH 7.35 was 

used as running buffer. 20 mM glycine pH 2.5 was used to regenerate the channels (remove 

all bound proteins). The second approach used the anti-human Fc capture kit as described by 

the manufacturer. Briefly, approximately 8000 RU anti-human Fc antibody was capture on 

the surface of the channels using amine coupling as described above. In a next step, EphA4-

hFc (both human and mouse EphA4 (R&D, Abingdon, UK, 641-A4-200 and 6827-A4-050) 

fusion protein (2 µg /ml diluted in running buffer) was injected (10 µl/min for 6 minutes) 

over de the channel resulting in the capture of approximately 500 RU of EphA4-hFc fusion 
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protein on the surface of the channel. In this approach, a channel with only anti-human Fc 

antibody served as reference. 3M MgCl2 was used as regeneration buffers. The Nbs were 

diluted to the indicated concentrations in running buffer and injected (60 µl/min) over the 

channel with immobilized EphA4 and the reference channel. After correction of the response 

using the responses from the reference channel and a blank injection of running buffer over 

the Eph4A-immobilized channel (double referencing), kinetic parameters were determined 

using Biacore T200 evaluation software (GE Heathcare, Diegem, Belgium).   

 

Phosphorylation assay 

The amount of phosphorylation of EphA4 was determined using the PathHunter assay 

(DiscoveRx Corporation, Birmingham, UK) with U2OS cells adapted for the EphA4 receptor 

according to manufacters instructions. In short, a small peptide epitope is expressed 

recombinantly on the intracellular C-terminus of the EphA4 receptor tyrosine kinase. An 

interaction partner containing SH2 domains is co-expressed with a larger sequence, termed 

enzyme activator (EA). Ephrina1-induced activation causes dimerisation leading to 

crossphosphorylation. The SH2-EA fusion protein binds the phosphorylated receptor forcing 

the complementation of EA and the peptide epitope, yielding an active β-galactisodase 

enzyme. This interaction can be visualised with a chemiluminscent substrate. Increasing 

concentrations of the Nbs are added to the medium before ephrina1 stimulation.   

EphA4 U2OS cells were plated into white opaque 384-well plates at a volume of 20 µl 

containing 5,000 cells. After short centrifugation to ensure contact with the bottom of the 

plate, the plate is incubated for 24h at 37°C 5% CO2. Five µl Nb dilutions or vehicle are added 

per well followed by short centrifugation of the plate and incubation for 1h at 37°C. Five µl 

of ephrina1 (1.2 µg/ml) or vehicle is added to each well followed by short centrifugation of 

the plate and incubation for 3h at room temperature. Twelve µl of detection reagent 

(Galacton Star, Emerald II solution, PathHunter cell assay buffer in relative volumes of 1:5:19 

respectively) is added followed by short centrifugation ensuring contact with media. After 

one hour incubation at room temperature the plate can be read on a Pherastar (BMG 

Labtech, Ortenberg, Germany). Percentage activity is calculated as (signal – positive control)/ 

(negative control– positive control)*100. The positive control is background without any 

ephrin added. The negative control is maximum signal with ephrin stimulation without any 

Nanobody added.   

 

AlphaScreen 

To test the specificity of the Nbs for the different Eph receptors all Nbs were biotinylated 

with a five times molar excess of EZ link NHS biotin (Thermo Scientific, Breda, Nederland, 

21217). The Nbs were incubated with the biotin for two hours on ice allowing the interaction 

of the biotin with the primary amines on the surface of the protein. Ten µl of biotinylated 
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Nbs (100 nM) were incubated with 10 µl of a subhooking concentration of mouse 

recombinant Eph receptor (R&D, Abingdon, UK, 641-A4-200) for one hour in standard buffer 

(50 mM Hepes, 100 mM NaCl, 0.1% Triton and 0.1% BSA). The determined subhooking 

concentrations are 3 nM for EphB4, 10 nM for EphA2, A4, B2 and B3, 30 nM for EphA3, A6, 

A7 and B6, and 100 nM for EphA8. Ten µl of anti-IgG AlphaLISA acceptor beads (20 µg/ml; 

Perkin Elmer, Zaventem, Belgium, AL103M and AL105M) and 10 µl streptavidin donor beads 

(20 µg/ml; Perkin Elmer, Zaventem, Belgium, 6760002) were subsequently incubated for one 

hour and 30 minutes respectively at room temperature, protected from light. The plate was 

read on the Envision Multilabel Reader (Perkin Elmer, Zaventem, Belgium). A Nanobody 

targeting the Superoxide Dismutase 1 protein (SOD1) was used as a negative control. 

 

To test the inhibition of interaction between EphA4 and its different ligands, the EphA4 LBD 

(2mg/ml) was biotinylated with a two and a half times molar excess of EZ link NHS biotin 

(Thermo Scientific, Breda, Nederland, 21217) for two hours on ice allowing the interaction of 

the biotin with primary amines on the surface of the protein. Five µl of a subhooking 

concentration of biotinylated EphA4 LBD (10 nM) was incubated with five µl of different 

concentrations of Nb for one hour in standard buffer (50 mM Hepes, 100 mM NaCl, 0.1% 

Triton and 0.1% BSA). Subsequently five µl of subhooking concentration of ephrin ligand was 

added and incubated for one hour at room temperature. The determined subhooking 

concentrations are 3 nM for efna1 and efna4, and 10 nM for efna2-3, efna5 and efnb1-3. 

Next five µl of anti-IgG AlphaLISA acceptor beads (20 µg/ml, Perkin Elmer, Zaventem, 

Belgium, AL103M and AL105M) and five µl streptavidin donor beads (10 µg/ml, Perkin Elmer, 

Zaventem, Belgium, 6760002) were added and incubated for one hour and 30 minutes 

respectively at room temperature, protected from light. The plate was read on the Envision 

Multilabel Reader (Perkin Elmer, Zaventem, Belgium). A Nanobody targeting the Superoxide 

Dismutase 1 protein (SOD1) was used as a negative control.   
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General discussion 
 

Epha4 plays an important role in embryonic development as an axonal guidance repellent 
151, 314. The role of Epha4 in the adult central nervous system has been addressed only 

recently. It has been found to play a role in synaptic plasticity, and has been implicated in 

the pathogenesis of several disorders such as cancer and several neurological disorders such 

as trauma, neuroinflammatory and neurodegenerative diseases 219, 221, 227. We have 

previously shown Epha4 to be a modifier of ALS, in animal models as well as in patients 35. 

Reduced Epha4 expression increased motor performance and survival of the SOD1G93A 

mouse model and EphA4 expression inversely correlated with disease severity in ALS 

patients. However, the mechanism through which Epha4 reduction/inhibition attenuated 

ALS pathogenesis is unclear. In this present work, we addressed several aspects of Epha4 

biology in ALS and developed Nanobodies against EphA4 as a tool for future mechanistic or 

therapeutic studies.   

 

 

Epha4 contributes to the vulnerability of motor neurons  and determines re-innervation 

capacity 

 

Epha4 is mainly expressed in motor neurons in the spinal cord of SOD1WT and SOD1G93A mice. 

We confirmed that large motor neurons are more vulnerable in ALS, and demonstrated that 

these are preferentially rescued when Epha4 is reduced. Thus, vulnerability and 

regeneration capacity seem to be somehow interrelated or may even be two characteristics 

a the same biological reality. Of interest, we showed that Epha4 at least partially determines 

sprouting capacity of motor neurons. Mice with decreased Epha4 expression showed a dose-

dependent improvement in neuromuscular junctions re-innervation after sciatic nerve injury 
35. This enhanced sprouting was also detected in rats after corticospinal tract injury when 

treated with an Epha4 antagonist 213. It is tempting to speculate that this is also reflected in 

what is well known to occur in the growth cone of embryonic motor neurons. Epha4 

expressed on the growth cone interacts with ephrin ligands on adjacent cells leading to the 

reorganization of the cytoskeleton through RhoGTPases and induces growth cone collapse 
212, 315-317. This sprouting capacity can be restored by treatment with Epha4 antagonists as 

shown by the rescue of the growth cone collapse in cultured neurons 213, 284.  
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Epha4 reverse signaling in the biology of ALS  

 

Interaction between Eph receptors and ephrin ligands can result in forward signaling in the 

Eph-bearing cell and reverse signaling in the ephrin-bearing cell. We found that partial 

replacement of Epha4 by an Epha4 molecule in which the cytoplasmic domain of Epha4 has 

been replaced by an eGFP cassette, did not influence ALS in the SOD1G93A mouse model. This 

indicates that it is the reverse signaling of Epha4 that is hazardous in ALS and explains the 

modifying effect of Epha4 in ALS. Some caution is needed for the interpretation of this 

observation. Indeed, in the Epha4 molecule, the entire intracellular domain is absent, which 

affects expression of the Epha4eGFP isoform, receptor clustering, and endocytosis. Thus, 

more than reverse signaling may be affected in this Epha4eGFP molecule. This is indeed 

evident from the axotomy experiments in which reduced regeneration was seen, indicating 

that the replacement of the intracellular domain with eGFP results in more than silencing 

the reverse signaling. Therefore, it may be of interest to repeat this experiment with a 

mouse in which the kinase activity is silenced through a point mutation rather than through 

the replacement of the entire domain. These experiments are being performed in the lab.  

In spite of these considerations, it can be concluded that reverse signaling at least partially 

contributes to the effect of Epha4 in ALS. This can occur through interaction with ephrin 

ligands on muscle cells, astrocytes, oligodendrocytes, microglial cells or motor neurons 

themselves (through cis interaction), as all these cells are known to express ligands for 

Epha4.  

 

 

Ephrins in ALS 

We quantified all ephrins in the spinal cord of the SOD1G93A mouse, and concentrated on 

astrocytic ephrins as no consistent pattern emerged. Ephrina2, ephrina3 and ephrinb2 are 

expressed on astrocytes 251-252. The role of ephrina2 in astrocytes has not yet been 

elucidated. Ephrina3 on the other hand is a crucial regulator of synaptic function and 

plasticity 205. Astrocytic ephrina3 is critical in the regulation of hippocampal dendritic spine 

morphology and it regulates the abundance of glial glutamate transporters which is crucial 

to prevent glutamate toxicity under pathological conditions 205, 253-255. Under normal 

physiological conditions, ephrinb2 signaling in astrocytes regulates adult hippocampal 

neurogenesis 252. After spinal cord injury, its expression is highly upregulated in the 

astrocytes of the glial scar after spinal cord lesions 256. Furthermore, the deletion of ephrinb2 

from reactive astrocytes reduced glial scar formation and improved recovery after spinal 

cord injury 256-257. This improved recovery was correlated with an increased regenerative 

capacity of sprouting spinal cord axons 212, 257. Ephrina5 has not been detected on resting 

astrocytes, but its expression is highly upregulated in astrocytes at the peri-lesioned area 

after experimental stroke 218. In this model, high astrocytic ephrina5 expression inhibited 
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axonal sprouting and motor recovery 218. Both ephrina5 and ephrinb2 are interesting 

interaction candidates of Epha4 in the pathogenesis of ALS, as their expression is 

upregulated in reactive astrocytes which is a hallmark of ALS. Here, we explored the role of 

ephrinb2 during ALS pathogenesis.  

 

 

Ephrinb2 in ALS 

In normal conditions, ephrinb2 is highly expressed in motor neurons. In ALS, the declined 

ephrinb2 expression due to motor neuron loss is accompanied by an obvious ephrinb2 

expression in reactive astrocytes, which may explain why total spinal cord levels barely 

change. Transgenically deleting ephrinb2 from the astrocytes worsened disease in the 

SOD1G93A mouse. Ephrinb2 therefore unlikely is involved in the Epha4 reverse signaling, 

which mediates the hazardous reverse signaling explaining the beneficial effect of Epha4 

inhibition. Two of our findings, likely to be related, may explain the hazardous effect of the 

deletion of ephrinb2 from the ALS mouse. First the expression of CX3CR1, a marker for CNS 

microglia and inflammatory cells from the circulation, was greatly increased, indicating 

increased inflammation in the spinal cord, which may enhance motor neuron degeneration. 

Second, we found evidence for disruption of the BBB upon deletion of ephrinb2 form 

astrocytes. The BBB consists of endothelial cells, pericytes and astrocytes creating a 

neurovascular unit with the adjacent neurons 318. Evidence for abnormalities of the BBB and 

BSCB has been found in animal models of ALS and in ALS patients 276, 319-320. Barrier 

impairment has even been detected in mutant SOD1 mice and rats before motor neuron 

degeneration and inflammation 277, 320. Reduction of tight junction proteins and swollen 

astrocyte-endfeet that dissociate from the endothelium has been found 273, 276, 321. We found 

that astrocyte-specific deletion of ephrinb2 worsened the BBB leakage in mutant SOD1 mice, 

an effect that became more pronounced when disease progressed. Further investigation is 

needed to investigate the role of astrocytic ephrinb2 on tight junction expression and the 

association of its astrocyte-endfeet with the endothelium, but already, our data suggest that 

alterations in the BBB and BSCB enhance motor neuron degeneration 276 and that 

understanding the BBB pathophysiology may implicate therapeutic options.  

Furthermore, the question arises which receptor astrocytic ephrinb2 interacts with to have 

its effect in ALS and on the BBB. Obvious candidates are EphB2 and EphB4 on endothelial 

cells, which have been studied extensively, especially during development 322-324. However, 

as VEGFR1 and VEGFR2 have been detected in astrocytes, it is also possible that ephrinb2 

interacts in cis with a VEGFR thereby regulating its internalization and signaling 262-263, 325-326. 

Of interest is the notion that ephrinb2 and VEGF have been shown to be very tightly linked 

during angiogenesis and lymphangiogenesis 263, 327. More specifically, ephrinb2 regulates the 

internalization and signaling of VEGFR2 and VEGFR3 262-263. VEGF is upstream of ephrinb2 
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and controls its expression 328-329. We have previously found that VEGF may be involved in 

the biology of ALS, as decreasing VEGF expression enhances ALS and treatment of ALS rats 

with VEGF attenuates their disease 330-331. Similarly astrocyte-specific deletion of ephrinb2 

worsened the disease progression, suggesting that reducing ephrinb2 levels might interfere 

with VEGF signaling at play in the astrocytes. However, further investigation is needed to 

elucidate whether reducing ephrinb2 levels in astrocytes impairs VEGFR internalization and 

VEGF signaling in this way contributing to the worsened disease progression. VEGF is 

neurotrophic factor and it protects motor neurons from insults such as glutamate-mediated 

excitotoxicity 332. However, VEGF might also affect motor neurons through an indirect effect 

on glial cells such as astrocytes. VEGF might influence the release of neurotrophic factors 

and they might protect motor neurons from excitotoxicity by inducing GluR2 expression 

and/or regulating glial glutamate transporter expression 333. Further investigation is needed 

to elucidate whether these mechanisms are at play in the worsened disease progression of 

efnb2fl/fl; Cx30; SOD1G93A mice.  

 

 

Developing a specific Epha4 inhibitor 

Blocking the EphA4 receptor attenuates motor neuron degeneration. However, EphA4 

antagonists have major shortcomings as discussed above. We therefore set out to develop 

better tools. As it is the reverse signaling, which likely underlies the effects of EphA4 in ALS, 

inhibitors of its forward (kinase-dependent) signaling, if specific ones could be generated, 

are less attractive. We therefore took the challenge of generating blockers of the 

extracellular, ligand-binding domain through the development of Nanobodies. So far, no 

conventional antibodies are available that target the EphA4 ligand-binding domain, most 

likely due to the dynamic nature of this domain 144, 146, 286. However, Nanobodies have been 

used to fix receptors in one conformation, thereby facilitating the development of crystal 

structures to determine its structure 293, 334. This property of Nbs is useful for the 

development of a Nb targeting a dynamic structure such as the EphA4 ligand-binding 

domain.  

From the fifteen Nbs initially identified in the screen, we found two Nanobodies (Nb 39 and 

Nb 53) with high affinity for EphA4. These Nbs were most selective for EphA4, though they 

also show binding to EphA7. Furthermore, they blocked the interaction with all ephrin 

ligands and inhibited ephrin-induced phosphorylation. Nb 39 and Nb 53 are at least 10 times 

more potent than the KYL-peptide. EphA7 has not as extensively been studied as EphA4, but 

similar results as EphA4 have been shown in spinal cord injury 305, 335. This suggests that 

blocking both EphA4 and EphA7 might result in an even better outcome. However, this will 

need further investigation.  
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Among existing EphA4 antagonists, both Nb39 and 53 are good inhibitors with KD values in 

the high nanomolar range. However, most Nanobodies published so far have KD values in the 

low nanomolar, even picomolar range 336. The affinity of these Nbs can be further increased 

through error-prone PCR mutagenesis and/or making bispecific Nbs 312-313. Nbs are easily 

engineered into multivalent and multispecific formats 312. Bivalent or bispecic Nbs can be 

obtained by connecting two identical or two different Nbs with a linker thereby improving 

the avidity. However, dimerisation of Eph receptors induces clustering and subsequently 

activation, which can be obtained with a preclustered antibody 337. Therefore we have to be 

cautious how to design multivalent Nbs. As linking two Nbs targeting the ligand-binding 

domain is likely to induce clustering, another option would be to link a Nb targeting the 

ligand-binding domain with a second Nb targeting another region of the EphA4 extracellular 

domain. However, further investigation is needed to elucidate which would be the best 

option.  

Overall, further studies are needed to investigate whether the promising results of the can 

be translated in in vitro and in vivo functional models. We will investigate whether Nb 39 and 

53 are able to rescue ephrin-induced growth cone collapse, which has been shown for 

known EphA4 antagonists 213, 284. The best Nb will be tested in in vivo functional models. As 

EphA4 plays a role in acute injuries as well as in neurodegenerative disorders, the usefulness 

of the Nb can be tested in different models.   

 

Future perspectives 

We have previously shown Epha4 to be a modifier of ALS in animal models and in patients. 

We tried to unravel the mechanism of action of the hazardous effect of EphA4 in ALS. We 

found Epha4 to contribute to the vulnerability of motor neurons in the SOD1G93A mouse 

model. Future experiments are needed to elucidate whether this also holds true in ALS 

patients. Next to vulnerability, we also investigated the role of the signaling direction of the 

ephrin system in ALS. Experiments with the Epha4eGFP/eGFP mouse model showed that Epha4 

reverse signaling at least partially contributes to the hazardous effect of Epha4 in ALS. 

However, as as we have to be cautious when interpreting these results, we are currently 

repeating this experiments with a mouse in which the kinase activity is silenced through a 

point mutation rather than through the replacement of an entire domain. Comparing all 

results together will give us more insight in the complex signaling of the ephrin system and 

which signaling contributes to the hazardous effect of Epha4 in ALS.  

 

 

Epha4 interacts with different ephrin ligands. In this PhD thesis we focused on the role of 

ephrinb2 in the pathogenesis of ALS. We found reduction of astrocytic ephrinb2 to have a 

detrimental role in ALS pathogenesis. Further research is currently being performed in our 
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laboratory to elucidate the mechanism of action. As ephrinb2 is not likely to be the 

interaction partner of Epha4 in its hazardous effect on ALS, the role of another ephrin 

ligands will be investigated. Recent data in our laboratory showed ephrina5 to be 

upregulated in reactive astrocytes (data not shown). We are currently elucidating the role of 

ephrina5 in the pathogenesis of ALS.  

We also explored the therapeutic potential of EphA4 inhibitors in the pathogenesis of ALS. 

We found C1 to be chemically unstable thereby limiting its potential for in vivo use. We are 

currently testing the therapeutic potential of new EphA4 inhibitors such as APY-βAla8.am in 

the pathogenesis of ALS. In addition, we tried to develop specific EphA4 inhibitors using 

Nanobody technology. We found two Nanobodies, Nb 39 and Nb 53 to be good EphA4 

inhibitors. Future experiments are needed to investigate its therapeutic potential both in 

vitro and in vivo in the pathogenesis of ALS. In addition, we will try to improve the specificity 

and affinity of Nb39 and 53.  

  

EphA4 as therapeutic target? 

In this first part of PhD thesis we tried to unravel the mechanism of action of EphA4 in the 

pathogenesis of ALS. Using different transgenic mouse models, we revealed new aspects of 

the ephrin system on a molecular level. However, the experiments with these mouse models 

showed that we have to be cautious when interpreting these results. Influencing the system 

has led to surprising results, showing again the complexity of this system. The hazardous 

effect of Epha4 has also been shown in other neurological disorders, but the mechanism of 

action and the best way to target EphA4 awaits further investigation and could vary between 

different disorders.  

In the second part of this PhD thesis we explored the therapeutic potential of EphA4 

inhibitors of ALS and developed new EphA4 inhibitors using Nanobody technology. Several 

EphA4 inhibitors have been developed, but many of them have major shortcomings as 

discussed above. Improved inhibitors have been developed (Nb 39 and Nb 53, APY-

βAla8.am), but further refinement is needed to increase its affinity, selectivity and 

pharmacokinetic properties. In addition, EphA4 inhibitors must be able to reach their target 

which is prevented by the BBB. In acute injuries this barrier is impaired, but in 

neurodegenerative diseases such as ALS getting drugs across the BBB still remains a major 

challenge.  

To conclude, improvements in EphA4 inhibitors and unraveling the ephrin system might 

open new possibilities to treat several neurological disorders.  

  



 
 

113 
 

Summary 
 

Amyotrophic Lateral Sclerosis (ALS) is a dramatic neurodegenerative disease due to its 

progressive character, the short survival of the patient and the enormous impact on his/her 

quality of life and that of his/her caretaker. Interestingly, ALS patients, even carrying the 

same mutation in SOD1, have great variations in clinical characteristics as age of onset, 

disease duration and severity of the disease. This indicates that ALS is a multifactorial 

disease influenced by modifying genes and environmental factors. Epha4 is such a genetic 

factor that modifies ALS both in animal models as well as in patients. We investigated the 

mechanism in which Epha4 is modifying the disease pathogenesis in ALS. We found that 

vulnerable motor neurons have high Epha4 expression and that Epha4 reduced the re-

innervating capacity of motor neurons, possibly contributing to the higher vulnerability of 

Epha4 expressing motor neurons in ALS. Furthermore, deleting the Epha4 cytoplasmic 

domain did not affect disease onset and survival in the SOD1G93A mouse model indicating 

that Epha4 forward signaling in the Eph-bearing cell does not play a role in the modifying 

effect of Epha4 in ALS. We therefore suggest that the reverse pathway in the ephrin-bearing 

cell should be modified in order to alter ALS pathology. We studied ephrinb2 as a possible 

ligand for the Epha4-mediated effect in ALS. It was highly expressed in motor neurons and in 

reactive astrocytes. However, deletion of ephrinb2 enhanced disease rather than 

attenuating it. Interestingly, deleting ephrinb2 from the astrocytes impaired the blood brain 

barrier integrity which possibly contributed to the reduced disease duration and survival in 

the SOD1G93A mouse model.  

To inhibit Epha4 reverse signaling we developed Nanobodies targeting the EphA4 ligand-

binding domain. Nb 39 and Nb 53 were selective for EphA4, and had KD and IC50 values in the 

nanomolar range. Both Nanobodies were able to block the interaction of EphA4 with all 

ephrin ligands and they inhibited ephrin-induced phosphorylation. In conclusion, blocking 

the interaction of EphA4 and its ephrin ligands will be the most efficient way to block EphA4 

reverse signaling and to develop a specific EphA4 antagonist.  
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Samenvatting 
 

Amyotrofe Laterale Sclerose (ALS) is een dramatische neurodegeneratieve aandoening door 

het progressieve karakter van de ziekte, de korte overleving van de patiënt en de grote 

impact op zijn levenskwaliteit en die van zijn omgeving. ALS-patiënten met dezelfde mutatie 

in SOD1 vertonen grote variabiliteit in klinische manifestatie van de ziekte zoals de leeftijd 

waarop de eerste symptomen voorkomen, de ziekteprogressie en de agressiviteit waarmee 

de ziekte evolueert. Dit toont aan dat ALS een multifactoriële ziekte is die beïnvloed wordt 

door modificerende genen en omgevingsfactoren. Epha4 is zo’n genetische factor die de 

ziekte beïnvloedt zowel in diermodellen als bij patiënten. We onderzochten het mechanisme 

van Epha4 dat het verloop van de ziekte beïnvloedt. Hoge Epha4-expressie verminderde het 

reïnnervatiepotentieel van grote motorneuronen, wat bijdraagt aan de hogere gevoeligheid 

van deze motorneuronen in ALS. Bovendien had de verwijdering van het intracellulaire 

domein van Epha4 geen invloed op het tijdstip van aanvang van de ziekte en de overleving 

van de SOD1G93A muis, wat er op duidt dat de voorwaartse signalisatie in de cel die EphA4 

bevat, geen rol speelt in het modificerende effect van Epha4 in ALS. Dit suggereert dat er 

geïnterfereerd moet worden met de terugwaartse signalisatie in de cel met de 

efrineliganden om de ziekte te beïnvloeden. Efrineb2, één van de Epha4-liganden, was 

duidelijk aanwezig in motorneuronen en reactieve astrocyten. Het verwijderen van efrineb2 

van de astrocyten tastte de bloedhersenbarrière aan, wat onder meer zorgde voor een 

verminderde duur van de ziekte in de SOD1G93A muis. Om de terugwaartse signalisatie van 

EphA4 te blokkeren, ontwikkelden we Nanobodies gericht tegen het ligand-bindende 

domein van EphA4. Nanobody 39 en 53 interageerden selectief met EphA4 en hadden KD en 

IC50 waardes in het nanomolaire bereik. Beide Nanobodies konden de interactie van EphA4 

met alle efrineliganden blokkeren en inhibeerden EphA4-fosforylatie geïnduceerd door 

efrinea1. Dit werk toont aan dat het blokkeren van de interactie tussen EphA4 en zijn 

efrineliganden de meest efficiënte manier zal zijn om de terugwaartse signalisatie van EphA4 

te blokkeren en om een specifieke EphA4-inhibitor te ontwikkelen.  

  



116 
 

  



 
 

117 
 

References 
 

1. Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron 
death in ALS. Nat Rev Neurosci 2001;2:806-19. 
2. Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat 
Rev Neurol 2014;10:661-70. 
3. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med 2001;344:1688-700. 
4. Poppe L, Rue L, Robberecht W, Van Den Bosch L. Translating biological findings into new 
treatment strategies for amyotrophic lateral sclerosis (ALS). Exp Neurol 2014;262 Pt B:138-51. 
5. Hugon J. Riluzole and ALS therapy. Wien Med Wochenschr 1996;146:185-7. 
6. Neary D, Snowden J, Mann D. Frontotemporal dementia. Lancet Neurol 2005;4:771-80. 
7. Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat 
Neurosci 2014;17:17-23. 
8. Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial 
amyotrophic lateral sclerosis. Nature 1993;364:362. 
9. Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human 
Cu,Zn superoxide dismutase mutation. Science 1994;264:1772-5. 
10. Shibata N. Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide 
dismutase-1 mutation. Neuropathology 2001;21:82-92. 
11. Jaarsma D, Haasdijk ED, Grashorn JA, et al. Human Cu/Zn superoxide dismutase (SOD1) 
overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature 
motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic 
lateral sclerosis mutant SOD1. Neurobiol Dis 2000;7:623-43. 
12. Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-
deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 
1996;13:43-7. 
13. Lemmens R, Van Hoecke A, Hersmus N, et al. Overexpression of mutant superoxide 
dismutase 1 causes a motor axonopathy in the zebrafish. Hum Mol Genet 2007;16:2359-65. 
14. Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat 
Rev Neurol 2014;10:337-48. 
15. Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to 
neurodegeneration. Nature 2012;487:443-8. 
16. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar 
degeneration and amyotrophic lateral sclerosis. Science 2006;314:130-3. 
17. Deng HX, Zhai H, Bigio EH, et al. FUS-immunoreactive inclusions are a common feature in 
sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol 2010;67:739-48. 
18. Da Cruz S, Cleveland DW. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. 
Curr Opin Neurobiol 2011;21:904-19. 
19. Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev 
Neurosci 2013;14:248-64. 
20. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide 
repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 
2011;72:245-56. 
21. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the 
cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72:257-68. 
22. Gijselinck I, Van Langenhove T, van der Zee J, et al. A C9orf72 promoter repeat expansion in a 
Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral 
sclerosis spectrum: a gene identification study. Lancet Neurol 2012;11:54-65. 



118 
 

23. Belzil VV, Bauer PO, Prudencio M, et al. Reduced C9orf72 gene expression in c9FTD/ALS is 
caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol 
2013;126:895-905. 
24. Haeusler AR, Donnelly CJ, Periz G, et al. C9orf72 nucleotide repeat structures initiate 
molecular cascades of disease. Nature 2014;507:195-200. 
25. Fratta P, Mizielinska S, Nicoll AJ, et al. C9orf72 hexanucleotide repeat associated with 
amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 
2012;2:1016. 
26. Mori K, Arzberger T, Grasser FA, et al. Bidirectional transcripts of the expanded C9orf72 
hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 
2013;126:881-93. 
27. Marangi G, Traynor BJ. Genetic causes of amyotrophic lateral sclerosis: New genetic analysis 
methodologies entailing new opportunities and challenges. Brain Res 2014. 
28. Regal L, Vanopdenbosch L, Tilkin P, et al. The G93C mutation in superoxide dismutase 1: 
clinicopathologic phenotype and prognosis. Arch Neurol 2006;63:262-7. 
29. Dion PA, Daoud H, Rouleau GA. Genetics of motor neuron disorders: new insights into 
pathogenic mechanisms. Nat Rev Genet 2009;10:769-82. 
30. Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we 
really know? Nat Rev Neurol 2011;7:603-15. 
31. van Blitterswijk M, Mullen B, Wojtas A, et al. Genetic modifiers in carriers of repeat 
expansions in the C9ORF72 gene. Mol Neurodegener 2014;9:38. 
32. Figley MD, Gitler AD. Yeast genetic screen reveals novel therapeutic strategy for ALS. Rare Dis 
2013;1:e24420. 
33. Lee T, Li YR, Ingre C, et al. Ataxin-2 intermediate-length polyglutamine expansions in 
European ALS patients. Hum Mol Genet 2011;20:1697-700. 
34. Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are 
associated with increased risk for ALS. Nature 2010;466:1069-75. 
35. Van Hoecke A, Schoonaert L, Lemmens R, et al. EPHA4 is a disease modifier of amyotrophic 
lateral sclerosis in animal models and in humans. Nat Med 2012;18:1418-22. 
36. Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted 
RNA and protein homeostasis. Neuron 2013;79:416-38. 
37. Anderson P, Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of 
gene expression. Nat Rev Mol Cell Biol 2009;10:430-6. 
38. Li YR, King OD, Shorter J, Gitler AD. Stress granules as crucibles of ALS pathogenesis. J Cell Biol 
2013;201:361-72. 
39. Kato M, Han TW, Xie S, et al. Cell-free formation of RNA granules: low complexity sequence 
domains form dynamic fibers within hydrogels. Cell 2012;149:753-67. 
40. Schwartz JC, Wang X, Podell ER, Cech TR. RNA seeds higher-order assembly of FUS protein. 
Cell Rep 2013;5:918-25. 
41. King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like 
domains in neurodegenerative disease. Brain Res 2012;1462:61-80. 
42. Toretsky JA, Wright PE. Assemblages: functional units formed by cellular phase separation. J 
Cell Biol 2014;206:579-88. 
43. Rotunno MS, Bosco DA. An emerging role for misfolded wild-type SOD1 in sporadic ALS 
pathogenesis. Front Cell Neurosci 2013;7:253. 
44. Blokhuis AM, Groen EJ, Koppers M, van den Berg LH, Pasterkamp RJ. Protein aggregation in 
amyotrophic lateral sclerosis. Acta Neuropathol 2013;125:777-94. 
45. Saxena S, Cabuy E, Caroni P. A role for motoneuron subtype-selective ER stress in disease 
manifestations of FALS mice. Nat Neurosci 2009;12:627-36. 
46. Seeburg PH. The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor 
channels. Trends Pharmacol Sci 1993;14:297-303. 



 
 

119 
 

47. Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of 
excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002;26:438-58. 
48. Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking 
the glutamate transporter GLT-1. Science 1997;276:1699-702. 
49. Haugeto O, Ullensvang K, Levy LM, et al. Brain glutamate transporter proteins form 
homomultimers. J Biol Chem 1996;271:27715-22. 
50. Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends 
Neurosci 1992;15:303-8. 
51. Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca2+ in toxic cell killing. Trends 
Pharmacol Sci 1989;10:281-5. 
52. Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the 
pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 2006;1762:1068-82. 
53. Van Damme P, Van Den Bosch L, Van Houtte E, Callewaert G, Robberecht W. GluR2-
dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to 
excitotoxicity. J Neurophysiol 2002;88:1279-87. 
54. Maragakis NJ, Dykes-Hoberg M, Rothstein JD. Altered expression of the glutamate 
transporter EAAT2b in neurological disease. Ann Neurol 2004;55:469-77. 
55. Fray AE, Ince PG, Banner SJ, et al. The expression of the glial glutamate transporter protein 
EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 1998;10:2481-9. 
56. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate 
transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 1995;38:73-84. 
57. Howland DS, Liu J, She Y, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic 
rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 
2002;99:1604-9. 
58. Bruijn LI, Becher MW, Lee MK, et al. ALS-linked SOD1 mutant G85R mediates damage to 
astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 
1997;18:327-38. 
59. Kawamata H, Manfredi G. Mitochondrial dysfunction and intracellular calcium dysregulation 
in ALS. Mech Ageing Dev 2010;131:517-26. 
60. Van Damme P, Bogaert E, Dewil M, et al. Astrocytes regulate GluR2 expression in motor 
neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci U S A 2007;104:14825-30. 
61. Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic 
target. Free Radic Biol Med 2010;48:629-41. 
62. Batulan Z, Shinder GA, Minotti S, et al. High threshold for induction of the stress response in 
motor neurons is associated with failure to activate HSF1. J Neurosci 2003;23:5789-98. 
63. Lowenstein DH, Chan PH, Miles MF. The stress protein response in cultured neurons: 
characterization and evidence for a protective role in excitotoxicity. Neuron 1991;7:1053-60. 
64. Rordorf G, Koroshetz WJ, Bonventre JV. Heat shock protects cultured neurons from 
glutamate toxicity. Neuron 1991;7:1043-51. 
65. Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative 
stress. Adv Drug Deliv Rev 2009;61:310-8. 
66. Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD. Up-regulation of 
protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants 
associated with amyotrophic lateral sclerosis. J Neurochem 1999;72:693-9. 
67. Gizzi M, DiRocco A, Sivak M, Cohen B. Ocular motor function in motor neuron disease. 
Neurology 1992;42:1037-46. 
68. Kaminski HJ, Richmonds CR, Kusner LL, Mitsumoto H. Differential susceptibility of the ocular 
motor system to disease. Ann N Y Acad Sci 2002;956:42-54. 
69. Mannen T. Neuropathological findings of Onuf's nucleus and its significance. Neuropathology 
2000;20 Suppl:S30-3. 
70. Schroder HD, Reske-Nielsen E. Preservation of the nucleus X-pelvic floor motosystem in 
amyotrophic lateral sclerosis. Clin Neuropathol 1984;3:210-6. 



120 
 

71. Brockington A, Ning K, Heath PR, et al. Unravelling the enigma of selective vulnerability in 
neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression 
characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol 2013;125:95-109. 
72. Lorenzo LE, Barbe A, Portalier P, Fritschy JM, Bras H. Differential expression of GABAA and 
glycine receptors in ALS-resistant vs. ALS-vulnerable motoneurons: possible implications for selective 
vulnerability of motoneurons. Eur J Neurosci 2006;23:3161-70. 
73. Vanselow BK, Keller BU. Calcium dynamics and buffering in oculomotor neurones from 
mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone 
disease. J Physiol 2000;525 Pt 2:433-45. 
74. Kaplan A, Spiller KJ, Towne C, et al. Neuronal matrix metalloproteinase-9 is a determinant of 
selective neurodegeneration. Neuron 2014;81:333-48. 
75. Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P. Early and selective loss of 
neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 
2000;20:2534-42. 
76. Dengler R, Konstanzer A, Kuther G, Hesse S, Wolf W, Struppler A. Amyotrophic lateral 
sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 1990;13:545-50. 
77. Pun S, Santos AF, Saxena S, Xu L, Caroni P. Selective vulnerability and pruning of phasic 
motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 2006;9:408-19. 
78. de Carvalho MA, Pinto S, Swash M. Paraspinal and limb motor neuron involvement within 
homologous spinal segments in ALS. Clin Neurophysiol 2008;119:1607-13. 
79. Brown MC, Holland RL, Ironton R. Nodal and terminal sprouting from motor nerves in fast 
and slow muscles of the mouse. J Physiol 1980;306:493-510. 
80. Scotter EL, Chen HJ, Shaw CE. TDP-43 Proteinopathy and ALS: Insights into Disease 
Mechanisms and Therapeutic Targets. Neurotherapeutics 2015;12:352-63. 
81. Souza PV, Pinto WB, Oliveira AS. C9orf72-related disorders: expanding the clinical and 
genetic spectrum of neurodegenerative diseases. Arq Neuropsiquiatr 2015;73:246-56. 
82. Lino MM, Schneider C, Caroni P. Accumulation of SOD1 mutants in postnatal motoneurons 
does not cause motoneuron pathology or motoneuron disease. J Neurosci 2002;22:4825-32. 
83. Pramatarova A, Laganiere J, Roussel J, Brisebois K, Rouleau GA. Neuron-specific expression of 
mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci 
2001;21:3369-74. 
84. Jaarsma D, Teuling E, Haasdijk ED, De Zeeuw CI, Hoogenraad CC. Neuron-specific expression 
of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic 
mice. J Neurosci 2008;28:2075-88. 
85. Wang L, Sharma K, Deng HX, et al. Restricted expression of mutant SOD1 in spinal motor 
neurons and interneurons induces motor neuron pathology. Neurobiol Dis 2008;29:400-8. 
86. Boillee S, Yamanaka K, Lobsiger CS, et al. Onset and progression in inherited ALS determined 
by motor neurons and microglia. Science 2006;312:1389-92. 
87. Yamanaka K, Boillee S, Roberts EA, et al. Mutant SOD1 in cell types other than motor neurons 
and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A 
2008;105:7594-9. 
88. Ralph GS, Radcliffe PA, Day DM, et al. Silencing mutant SOD1 using RNAi protects against 
neurodegeneration and extends survival in an ALS model. Nat Med 2005;11:429-33. 
89. Wang L, Sharma K, Grisotti G, Roos RP. The effect of mutant SOD1 dismutase activity on non-
cell autonomous degeneration in familial amyotrophic lateral sclerosis. Neurobiol Dis 2009;35:234-
40. 
90. Beers DR, Henkel JS, Xiao Q, et al. Wild-type microglia extend survival in PU.1 knockout mice 
with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2006;103:16021-6. 
91. Yamanaka K, Chun SJ, Boillee S, et al. Astrocytes as determinants of disease progression in 
inherited amyotrophic lateral sclerosis. Nat Neurosci 2008;11:251-3. 
92. Lepore AC, Rauck B, Dejea C, et al. Focal transplantation-based astrocyte replacement is 
neuroprotective in a model of motor neuron disease. Nat Neurosci 2008;11:1294-301. 



 
 

121 
 

93. Kang SH, Li Y, Fukaya M, et al. Degeneration and impaired regeneration of gray matter 
oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 2013;16:571-9. 
94. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010;119:7-
35. 
95. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain 
barrier. Nat Rev Neurosci 2006;7:41-53. 
96. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends 
Neurosci 2009;32:638-47. 
97. Takano T, He W, Han X, et al. Rapid manifestation of reactive astrogliosis in acute 
hippocampal brain slices. Glia 2014;62:78-95. 
98. Molofsky AV, Krencik R, Ullian EM, et al. Astrocytes and disease: a neurodevelopmental 
perspective. Genes Dev 2012;26:891-907. 
99. Wilhelmsson U, Bushong EA, Price DL, et al. Redefining the concept of reactive astrocytes as 
cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 
2006;103:17513-8. 
100. Schiffer D, Cordera S, Cavalla P, Migheli A. Reactive astrogliosis of the spinal cord in 
amyotrophic lateral sclerosis. J Neurol Sci 1996;139 Suppl:27-33. 
101. Nagy D, Kato T, Kushner PD. Reactive astrocytes are widespread in the cortical gray matter of 
amyotrophic lateral sclerosis. J Neurosci Res 1994;38:336-47. 
102. Kushner PD, Stephenson DT, Wright S. Reactive astrogliosis is widespread in the subcortical 
white matter of amyotrophic lateral sclerosis brain. J Neuropathol Exp Neurol 1991;50:263-77. 
103. Vargas MR, Johnson JA. Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic 
potential of astrocytes. Neurotherapeutics 2010;7:471-81. 
104. Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release 
factors selectively toxic to motor neurons. Nat Neurosci 2007;10:615-22. 
105. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K. Non-cell autonomous effect of glia 
on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 2007;10:608-14. 
106. Fritz E, Izaurieta P, Weiss A, et al. Mutant SOD1-expressing astrocytes release toxic factors 
that trigger motoneuron death by inducing hyperexcitability. J Neurophysiol 2013;109:2803-14. 
107. Haidet-Phillips AM, Hester ME, Miranda CJ, et al. Astrocytes from familial and sporadic ALS 
patients are toxic to motor neurons. Nat Biotechnol 2011;29:824-8. 
108. Re DB, Le Verche V, Yu C, et al. Necroptosis drives motor neuron death in models of both 
sporadic and familial ALS. Neuron 2014;81:1001-8. 
109. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal 
and pathologic brain. Nat Neurosci 2007;10:1387-94. 
110. Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: the good, the bad, and the resting. J 
Neuroimmune Pharmacol 2009;4:389-98. 
111. Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial 
activation in motor neuron disease. Lancet Neurol 2011;10:253-63. 
112. Cherry JD, Olschowka JA, O'Banion MK. Neuroinflammation and M2 microglia: the good, the 
bad, and the inflamed. J Neuroinflammation 2014;11:98. 
113. Liao B, Zhao W, Beers DR, Henkel JS, Appel SH. Transformation from a neuroprotective to a 
neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 2012;237:147-52. 
114. Engelhardt JI, Tajti J, Appel SH. Lymphocytic infiltrates in the spinal cord in amyotrophic 
lateral sclerosis. Arch Neurol 1993;50:30-6. 
115. Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic 
lateral sclerosis brain and spinal cord tissue. Am J Pathol 1992;140:691-707. 
116. Turner MR, Cagnin A, Turkheimer FE, et al. Evidence of widespread cerebral microglial 
activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. 
Neurobiol Dis 2004;15:601-9. 
117. Lewis CA, Manning J, Rossi F, Krieger C. The Neuroinflammatory Response in ALS: The Roles 
of Microglia and T Cells. Neurol Res Int 2012;2012:803701. 



122 
 

118. Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to 
disease onset and progression in a transgenic model of familial ALS. Glia 1998;23:249-56. 
119. Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol 
2010;119:37-53. 
120. Sowell ER, Thompson PM, Tessner KD, Toga AW. Mapping continued brain growth and gray 
matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain 
maturation. J Neurosci 2001;21:8819-29. 
121. Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease. 
Trends Neurosci 2001;24:39-47. 
122. Niebroj-Dobosz I, Rafalowska J, Fidzianska A, Gadamski R, Grieb P. Myelin composition of 
spinal cord in a model of amyotrophic lateral sclerosis (ALS) in SOD1G93A transgenic rats. Folia 
Neuropathol 2007;45:236-41. 
123. Seilhean D, Cazeneuve C, Thuries V, et al. Accumulation of TDP-43 and alpha-actin in an 
amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol 2009;118:561-
73. 
124. Philips T, Bento-Abreu A, Nonneman A, et al. Oligodendrocyte dysfunction in the 
pathogenesis of amyotrophic lateral sclerosis. Brain 2013;136:471-82. 
125. Neumann M, Kwong LK, Truax AC, et al. TDP-43-positive white matter pathology in 
frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 
2007;66:177-83. 
126. Shi P, Gal J, Kwinter DM, Liu X, Zhu H. Mitochondrial dysfunction in amyotrophic lateral 
sclerosis. Biochim Biophys Acta 2010;1802:45-51. 
127. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and 
antioxidants in human health: current status and future prospects. J Assoc Physicians India 
2004;52:794-804. 
128. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative 
diseases: a review of upstream and downstream antioxidant therapeutic options. Curr 
Neuropharmacol 2009;7:65-74. 
129. Manfredi G, Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in 
ALS. Mitochondrion 2005;5:77-87. 
130. Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet 2009;43:95-118. 
131. Tan W, Pasinelli P, Trotti D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral 
sclerosis. Biochim Biophys Acta 2014;1842:1295-301. 
132. Kirkinezos IG, Bacman SR, Hernandez D, et al. Cytochrome c association with the inner 
mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J Neurosci 2005;25:164-72. 
133. Bilsland LG, Sahai E, Kelly G, Golding M, Greensmith L, Schiavo G. Deficits in axonal transport 
precede ALS symptoms in vivo. Proc Natl Acad Sci U S A 2010;107:20523-8. 
134. Perlson E, Jeong GB, Ross JL, et al. A switch in retrograde signaling from survival to stress in 
rapid-onset neurodegeneration. J Neurosci 2009;29:9903-17. 
135. Warita H, Itoyama Y, Abe K. Selective impairment of fast anterograde axonal transport in the 
peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene. Brain Res 
1999;819:120-31. 
136. Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity 
of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 1999;2:50-6. 
137. Carpenter S. Proximal axonal enlargement in motor neuron disease. Neurology 1968;18:841-
51. 
138. Hirano A. Cytopathology of amyotrophic lateral sclerosis. Adv Neurol 1991;56:91-101. 
139. Hirano A, Donnenfeld H, Sasaki S, Nakano I. Fine structural observations of neurofilamentous 
changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1984;43:461-70. 
140. Julien JP. A role for neurofilaments in the pathogenesis of amyotrophic lateral sclerosis. 
Biochem Cell Biol 1995;73:593-7. 
141. Julien JP. Neurofilaments and motor neuron disease. Trends Cell Biol 1997;7:243-9. 



 
 

123 
 

142. Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F. A novel putative tyrosine kinase receptor 
encoded by the eph gene. Science 1987;238:1717-20. 
143. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph 
Nomenclature Committee. Cell 1997;90:403-4. 
144. Bowden TA, Aricescu AR, Nettleship JE, et al. Structural plasticity of eph receptor A4 
facilitates cross-class ephrin signaling. Structure 2009;17:1386-97. 
145. Himanen JP, Chumley MJ, Lackmann M, et al. Repelling class discrimination: ephrin-A5 binds 
to and activates EphB2 receptor signaling. Nat Neurosci 2004;7:501-9. 
146. Qin H, Noberini R, Huan X, Shi J, Pasquale EB, Song J. Structural characterization of the 
EphA4-Ephrin-B2 complex reveals new features enabling Eph-ephrin binding promiscuity. J Biol Chem 
2010;285:644-54. 
147. Gale NW, Holland SJ, Valenzuela DM, et al. Eph receptors and ligands comprise two major 
specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 
1996;17:9-19. 
148. Klein R. Eph/ephrin signalling during development. Development 2012;139:4105-9. 
149. Pitulescu ME, Adams RH. Eph/ephrin molecules--a hub for signaling and endocytosis. Genes 
Dev 2010;24:2480-92. 
150. Cheng N, Brantley DM, Chen J. The ephrins and Eph receptors in angiogenesis. Cytokine 
Growth Factor Rev 2002;13:75-85. 
151. Egea J, Klein R. Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol 
2007;17:230-8. 
152. Holder N, Klein R. Eph receptors and ephrins: effectors of morphogenesis. Development 
1999;126:2033-44. 
153. Durbin L, Brennan C, Shiomi K, et al. Eph signaling is required for segmentation and 
differentiation of the somites. Genes Dev 1998;12:3096-109. 
154. Klein R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 
2009;12:15-20. 
155. Wu J, Luo H. Recent advances on T-cell regulation by receptor tyrosine kinases. Curr Opin 
Hematol 2005;12:292-7. 
156. Matsuo K, Otaki N. Bone cell interactions through Eph/ephrin: bone modeling, remodeling 
and associated diseases. Cell Adh Migr 2012;6:148-56. 
157. Genander M, Frisen J. Ephrins and Eph receptors in stem cells and cancer. Curr Opin Cell Biol 
2010;22:611-6. 
158. McCarron JK, Stringer BW, Day BW, Boyd AW. Ephrin expression and function in cancer. 
Future Oncol 2010;6:165-76. 
159. Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell 2008;133:38-
52. 
160. Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat 
Rev Cancer 2010;10:165-80. 
161. Himanen JP, Nikolov DB. Eph signaling: a structural view. Trends Neurosci 2003;26:46-51. 
162. Janes PW, Nievergall E, Lackmann M. Concepts and consequences of Eph receptor clustering. 
Semin Cell Dev Biol 2012;23:43-50. 
163. Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY. An extracellular steric seeding 
mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol 2010;17:398-402. 
164. Hubbard SR. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat Rev Mol Cell 
Biol 2004;5:464-71. 
165. Johnson LN, Noble ME, Owen DJ. Active and inactive protein kinases: structural basis for 
regulation. Cell 1996;85:149-58. 
166. Hubbard SR. Autoinhibitory mechanisms in receptor tyrosine kinases. Front Biosci 
2002;7:d330-40. 



124 
 

167. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Structural basis for 
autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane 
region. Cell 2001;106:745-57. 
168. Himanen JP, Yermekbayeva L, Janes PW, et al. Architecture of Eph receptor clusters. Proc 
Natl Acad Sci U S A 2010;107:10860-5. 
169. Murai KK, Pasquale EB. 'Eph'ective signaling: forward, reverse and crosstalk. J Cell Sci 
2003;116:2823-32. 
170. Himanen JP, Saha N, Nikolov DB. Cell-cell signaling via Eph receptors and ephrins. Curr Opin 
Cell Biol 2007;19:534-42. 
171. Falivelli G, Lisabeth EM, Rubio de la Torre E, et al. Attenuation of eph receptor kinase 
activation in cancer cells by coexpressed ephrin ligands. PLoS One 2013;8:e81445. 
172. Carvalho RF, Beutler M, Marler KJ, et al. Silencing of EphA3 through a cis interaction with 
ephrinA5. Nat Neurosci 2006;9:322-30. 
173. Singh DR, Cao Q, King C, et al. Unliganded EphA3 dimerization promoted by the SAM domain. 
Biochem J 2015;471:101-9. 
174. Stapleton D, Balan I, Pawson T, Sicheri F. The crystal structure of an Eph receptor SAM 
domain reveals a mechanism for modular dimerization. Nat Struct Biol 1999;6:44-9. 
175. Boyd AW, Bartlett PF, Lackmann M. Therapeutic targeting of EPH receptors and their ligands. 
Nat Rev Drug Discov 2014;13:39-62. 
176. Serra-Pages C, Kedersha NL, Fazikas L, Medley Q, Debant A, Streuli M. The LAR 
transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at 
focal adhesions. EMBO J 1995;14:2827-38. 
177. Stein E, Lane AA, Cerretti DP, et al. Eph receptors discriminate specific ligand oligomers to 
determine alternative signaling complexes, attachment, and assembly responses. Genes Dev 
1998;12:667-78. 
178. Lim YS, McLaughlin T, Sung TC, Santiago A, Lee KF, O'Leary DD. p75(NTR) mediates ephrin-A 
reverse signaling required for axon repulsion and mapping. Neuron 2008;59:746-58. 
179. Bonanomi D, Chivatakarn O, Bai G, et al. Ret is a multifunctional coreceptor that integrates 
diffusible- and contact-axon guidance signals. Cell 2012;148:568-82. 
180. Marler KJ, Becker-Barroso E, Martinez A, et al. A TrkB/EphrinA interaction controls retinal 
axon branching and synaptogenesis. J Neurosci 2008;28:12700-12. 
181. Daar IO. Non-SH2/PDZ reverse signaling by ephrins. Semin Cell Dev Biol 2012;23:65-74. 
182. Palmer A, Zimmer M, Erdmann KS, et al. EphrinB phosphorylation and reverse signaling: 
regulation by Src kinases and PTP-BL phosphatase. Mol Cell 2002;9:725-37. 
183. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell 
Biol 2002;3:475-86. 
184. Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB. Crystal 
structure of an Eph receptor-ephrin complex. Nature 2001;414:933-8. 
185. Himanen JP. Ectodomain structures of Eph receptors. Semin Cell Dev Biol 2012;23:35-42. 
186. Wimmer-Kleikamp SH, Janes PW, Squire A, Bastiaens PI, Lackmann M. Recruitment of Eph 
receptors into signaling clusters does not require ephrin contact. J Cell Biol 2004;164:661-6. 
187. Smith FM, Vearing C, Lackmann M, et al. Dissecting the EphA3/Ephrin-A5 interactions using a 
novel functional mutagenesis screen. J Biol Chem 2004;279:9522-31. 
188. Davis S, Gale NW, Aldrich TH, et al. Ligands for EPH-related receptor tyrosine kinases that 
require membrane attachment or clustering for activity. Science 1994;266:816-9. 
189. Carter N, Nakamoto T, Hirai H, Hunter T. EphrinA1-induced cytoskeletal re-organization 
requires FAK and p130(cas). Nat Cell Biol 2002;4:565-73. 
190. Dobrzanski P, Hunter K, Jones-Bolin S, et al. Antiangiogenic and antitumor efficacy of EphA2 
receptor antagonist. Cancer Res 2004;64:910-9. 
191. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, et al. Ephrin-A5 induces rounding, blebbing and 
de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J 
Cell Sci 2002;115:1059-72. 



 
 

125 
 

192. Gauthier LR, Robbins SM. Ephrin signaling: One raft to rule them all? One raft to sort them? 
One raft to spread their call and in signaling bind them? Life Sci 2003;74:207-16. 
193. Marquardt T, Shirasaki R, Ghosh S, et al. Coexpressed EphA receptors and ephrin-A ligands 
mediate opposing actions on growth cone navigation from distinct membrane domains. Cell 
2005;121:127-39. 
194. Miao H, Burnett E, Kinch M, Simon E, Wang B. Activation of EphA2 kinase suppresses integrin 
function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2000;2:62-9. 
195. Arvanitis DN, Davy A. Regulation and misregulation of Eph/ephrin expression. Cell Adh Migr 
2012;6:131-7. 
196. Shintani T, Ihara M, Sakuta H, Takahashi H, Watakabe I, Noda M. Eph receptors are negatively 
controlled by protein tyrosine phosphatase receptor type O. Nat Neurosci 2006;9:761-9. 
197. Nievergall E, Janes PW, Stegmayer C, et al. PTP1B regulates Eph receptor function and 
trafficking. J Cell Biol 2010;191:1189-203. 
198. Georgakopoulos A, Litterst C, Ghersi E, et al. Metalloproteinase/Presenilin1 processing of 
ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J 2006;25:1242-52. 
199. Arvanitis D, Davy A. Eph/ephrin signaling: networks. Genes Dev 2008;22:416-29. 
200. Litterst C, Georgakopoulos A, Shioi J, et al. Ligand binding and calcium influx induce distinct 
ectodomain/gamma-secretase-processing pathways of EphB2 receptor. J Biol Chem 2007;282:16155-
63. 
201. Inoue E, Deguchi-Tawarada M, Togawa A, et al. Synaptic activity prompts gamma-secretase-
mediated cleavage of EphA4 and dendritic spine formation. J Cell Biol 2009;185:551-64. 
202. Halford MM, Chumley MJ, Henkemeyer M. Ephective endocytosis. Dev Cell 2003;5:536-7. 
203. Martone ME, Holash JA, Bayardo A, Pasquale EB, Ellisman MH. Immunolocalization of the 
receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res 1997;771:238-50. 
204. Tremblay ME, Riad M, Bouvier D, et al. Localization of EphA4 in axon terminals and dendritic 
spines of adult rat hippocampus. J Comp Neurol 2007;501:691-702. 
205. Filosa A, Paixao S, Honsek SD, et al. Neuron-glia communication via EphA4/ephrin-A3 
modulates LTP through glial glutamate transport. Nat Neurosci 2009;12:1285-92. 
206. Grunwald IC, Korte M, Adelmann G, et al. Hippocampal plasticity requires postsynaptic 
ephrinBs. Nat Neurosci 2004;7:33-40. 
207. Fu AK, Hung KW, Fu WY, et al. APC(Cdh1) mediates EphA4-dependent downregulation of 
AMPA receptors in homeostatic plasticity. Nat Neurosci 2011;14:181-9. 
208. Frugier T, Conquest A, McLean C, Currie P, Moses D, Goldshmit Y. Expression and activation 
of EphA4 in the human brain after traumatic injury. J Neuropathol Exp Neurol 2012;71:242-50. 
209. Hanell A, Clausen F, Djupsjo A, et al. Functional and histological outcome after focal 
traumatic brain injury is not improved in conditional EphA4 knockout mice. J Neurotrauma 
2012;29:2660-71. 
210. Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM. Axonal regeneration and lack of 
astrocytic gliosis in EphA4-deficient mice. J Neurosci 2004;24:10064-73. 
211. Willson CA, Irizarry-Ramirez M, Gaskins HE, et al. Upregulation of EphA receptor expression 
in the injured adult rat spinal cord. Cell Transplant 2002;11:229-39. 
212. Fabes J, Anderson P, Yanez-Munoz RJ, Thrasher A, Brennan C, Bolsover S. Accumulation of 
the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion. 
Eur J Neurosci 2006;23:1721-30. 
213. Fabes J, Anderson P, Brennan C, Bolsover S. Regeneration-enhancing effects of EphA4 
blocking peptide following corticospinal tract injury in adult rat spinal cord. Eur J Neurosci 
2007;26:2496-505. 
214. Parmentier-Batteur S, Finger EN, Krishnan R, et al. Attenuation of scratch-induced reactive 
astrogliosis by novel EphA4 kinase inhibitors. J Neurochem 2011;118:1016-31. 
215. Cruz-Orengo L, Figueroa JD, Velazquez I, et al. Blocking EphA4 upregulation after spinal cord 
injury results in enhanced chronic pain. Exp Neurol 2006;202:421-33. 



126 
 

216. Li J, Liu N, Wang Y, Wang R, Guo D, Zhang C. Inhibition of EphA4 signaling after ischemia-
reperfusion reduces apoptosis of CA1 pyramidal neurons. Neurosci Lett 2012;518:92-5. 
217. Li S, Overman JJ, Katsman D, et al. An age-related sprouting transcriptome provides 
molecular control of axonal sprouting after stroke. Nat Neurosci 2010;13:1496-504. 
218. Overman JJ, Clarkson AN, Wanner IB, et al. A role for ephrin-A5 in axonal sprouting, recovery, 
and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A 2012;109:E2230-9. 
219. Lemmens R, Jaspers T, Robberecht W, Thijs VN. Modifying expression of EphA4 and its 
downstream targets improves functional recovery after stroke. Hum Mol Genet 2013;22:2214-20. 
220. Sobel RA. Ephrin A receptors and ligands in lesions and normal-appearing white matter in 
multiple sclerosis. Brain Pathol 2005;15:35-45. 
221. Munro KM, Dixon KJ, Gresle MM, et al. EphA4 receptor tyrosine kinase is a modulator of 
onset and disease severity of experimental autoimmune encephalomyelitis (EAE). PLoS One 
2013;8:e55948. 
222. Murai KK, Nguyen LN, Koolpe M, McLennan R, Krull CE, Pasquale EB. Targeting the EphA4 
receptor in the nervous system with biologically active peptides. Mol Cell Neurosci 2003;24:1000-11. 
223. Simon AM, de Maturana RL, Ricobaraza A, et al. Early changes in hippocampal Eph receptors 
precede the onset of memory decline in mouse models of Alzheimer's disease. J Alzheimers Dis 
2009;17:773-86. 
224. Matsui C, Inoue E, Kakita A, et al. Involvement of the gamma-secretase-mediated EphA4 
signaling pathway in synaptic pathogenesis of Alzheimer's disease. Brain Pathol 2012;22:776-87. 
225. Rosenberger AF, Rozemuller AJ, van der Flier WM, Scheltens P, van der Vies SM, Hoozemans 
JJ. Altered distribution of the EphA4 kinase in hippocampal brain tissue of patients with Alzheimer's 
disease correlates with pathology. Acta Neuropathol Commun 2014;2:79. 
226. Lai WB, Wang BJ, Hu MK, Hsu WM, Her GM, Liao YF. Ligand-dependent activation of EphA4 
signaling regulates the proteolysis of amyloid precursor protein through a Lyn-mediated pathway. 
Mol Neurobiol 2014;49:1055-68. 
227. Fu AK, Hung KW, Huang H, et al. Blockade of EphA4 signaling ameliorates hippocampal 
synaptic dysfunctions in mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A 
2014;111:9959-64. 
228. Vargas LM, Leal N, Estrada LD, et al. EphA4 activation of c-Abl mediates synaptic loss and LTP 
blockade caused by amyloid-beta oligomers. PLoS One 2014;9:e92309. 
229. Shi M, Movius J, Dator R, et al. Cerebrospinal fluid peptides as potential Parkinson disease 
biomarkers: a staged pipeline for discovery and validation. Mol Cell Proteomics 2015;14:544-55. 
230. Fang Q, Strand A, Law W, et al. Brain-specific proteins decline in the cerebrospinal fluid of 
humans with Huntington disease. Mol Cell Proteomics 2009;8:451-66. 
231. Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from 
stressor thresholds to degeneration. Neuron 2011;71:35-48. 
232. Fischer LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: 
evidence in mice and man. Exp Neurol 2004;185:232-40. 
233. Gordon T, Tyreman N, Li S, Putman CT, Hegedus J. Functional over-load saves motor units in 
the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2010;37:412-
22. 
234. Egea J, Nissen UV, Dufour A, et al. Regulation of EphA 4 kinase activity is required for a subset 
of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 
2005;47:515-28. 
235. Dufour A, Seibt J, Passante L, et al. Area specificity and topography of thalamocortical 
projections are controlled by ephrin/Eph genes. Neuron 2003;39:453-65. 
236. Dottori M, Hartley L, Galea M, et al. EphA4 (Sek1) receptor tyrosine kinase is required for the 
development of the corticospinal tract. Proc Natl Acad Sci U S A 1998;95:13248-53. 
237. Janes PW, Saha N, Barton WA, et al. Adam meets Eph: an ADAM substrate recognition 
module acts as a molecular switch for ephrin cleavage in trans. Cell 2005;123:291-304. 



 
 

127 
 

238. Gatto G, Morales D, Kania A, Klein R. EphA4 receptor shedding regulates spinal motor axon 
guidance. Curr Biol 2014;24:2355-65. 
239. Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat 
Rev Mol Cell Biol 2009;10:609-22. 
240. Deininger K, Eder M, Kramer ER, et al. The Rab5 guanylate exchange factor Rin1 regulates 
endocytosis of the EphA4 receptor in mature excitatory neurons. Proc Natl Acad Sci U S A 
2008;105:12539-44. 
241. Cowan CW, Shao YR, Sahin M, et al. Vav family GEFs link activated Ephs to endocytosis and 
axon guidance. Neuron 2005;46:205-17. 
242. Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R. Kinase-dependent and kinase-
independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 2001;29:73-
84. 
243. Dufour A, Egea J, Kullander K, Klein R, Vanderhaeghen P. Genetic analysis of EphA-dependent 
signaling mechanisms controlling topographic mapping in vivo. Development 2006;133:4415-20. 
244. Cowan CA, Yokoyama N, Saxena A, et al. Ephrin-B2 reverse signaling is required for axon 
pathfinding and cardiac valve formation but not early vascular development. Dev Biol 2004;271:263-
71. 
245. Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative 
disorders: ALS and beyond. J Cell Biol 2009;187:761-72. 
246. Swartz ME, Eberhart J, Pasquale EB, Krull CE. EphA4/ephrin-A5 interactions in muscle 
precursor cell migration in the avian forelimb. Development 2001;128:4669-80. 
247. Donoghue MJ, Merlie JP, Sanes JR. The Eph Kinase Ligand AL-1 Is Expressed by Rostral 
Muscles and Inhibits Outgrowth from Caudal Neurons. Mol Cell Neurosci 1996;8:185-98. 
248. Linneberg C, Harboe M, Laursen LS. Axo-Glia Interaction Preceding CNS Myelination Is 
Regulated by Bidirectional Eph-Ephrin Signaling. ASN Neuro 2015;7. 
249. Prestoz L, Chatzopoulou E, Lemkine G, et al. Control of axonophilic migration of 
oligodendrocyte precursor cells by Eph-ephrin interaction. Neuron Glia Biol 2004;1:73-83. 
250. Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M, Parada LF. Ephrin-B3 is a myelin-
based inhibitor of neurite outgrowth. Proc Natl Acad Sci U S A 2005;102:10694-9. 
251. Jiao JW, Feldheim DA, Chen DF. Ephrins as negative regulators of adult neurogenesis in 
diverse regions of the central nervous system. Proc Natl Acad Sci U S A 2008;105:8778-83. 
252. Ashton RS, Conway A, Pangarkar C, et al. Astrocytes regulate adult hippocampal 
neurogenesis through ephrin-B signaling. Nat Neurosci 2012;15:1399-406. 
253. Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB. Control of hippocampal dendritic 
spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 2003;6:153-60. 
254. Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB. Glial ephrin-A3 regulates 
hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A 
2009;106:12524-9. 
255. Yang J, Luo X, Huang X, Ning Q, Xie M, Wang W. Ephrin-A3 reverse signaling regulates 
hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. J 
Neurochem 2014;131:383-94. 
256. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF. Ephrin-B2 and EphB2 regulation of 
astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 
2003;23:7789-800. 
257. Ren Z, Chen X, Yang J, et al. Improved axonal regeneration after spinal cord injury in mice 
with conditional deletion of ephrin B2 under the GFAP promoter. Neuroscience 2013;241:89-99. 
258. Adams RH, Wilkinson GA, Weiss C, et al. Roles of ephrinB ligands and EphB receptors in 
cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and 
sprouting angiogenesis. Genes Dev 1999;13:295-306. 
259. Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH. Astrocyte-specific 
inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell 
Biol 2002;22:5100-13. 



128 
 

260. Srinivas S, Watanabe T, Lin CS, et al. Cre reporter strains produced by targeted insertion of 
EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 2001;1:4. 
261. Slezak M, Goritz C, Niemiec A, et al. Transgenic mice for conditional gene manipulation in 
astroglial cells. Glia 2007;55:1565-76. 
262. Sawamiphak S, Seidel S, Essmann CL, et al. Ephrin-B2 regulates VEGFR2 function in 
developmental and tumour angiogenesis. Nature 2010;465:487-91. 
263. Wang Y, Nakayama M, Pitulescu ME, et al. Ephrin-B2 controls VEGF-induced angiogenesis 
and lymphangiogenesis. Nature 2010;465:483-6. 
264. Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of 
glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014;34:11929-47. 
265. Roessmann U, Velasco ME, Sindely SD, Gambetti P. Glial fibrillary acidic protein (GFAP) in 
ependymal cells during development. An immunocytochemical study. Brain Res 1980;200:13-21. 
266. Buniatian G, Traub P, Albinus M, et al. The immunoreactivity of glial fibrillary acidic protein in 
mesangial cells and podocytes of the glomeruli of rat kidney in vivo and in culture. Biol Cell 
1998;90:53-61. 
267. von Koskull H. Rapid identification of glial cells in human amniotic fluid with indirect 
immunofluorescence. Acta Cytol 1984;28:393-400. 
268. Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: 
identification, isolation, and culture. Gut 1998;43:128-33. 
269. Kasantikul V, Shuangshoti S. Positivity to glial fibrillary acidic protein in bone, cartilage, and 
chordoma. J Surg Oncol 1989;41:22-6. 
270. Boulay AC, del Castillo FJ, Giraudet F, et al. Hearing is normal without connexin30. J Neurosci 
2013;33:430-4. 
271. Xu J, Nicholson BJ. The role of connexins in ear and skin physiology - functional insights from 
disease-associated mutations. Biochim Biophys Acta 2013;1828:167-78. 
272. Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia 2013;61:1939-
58. 
273. Miyazaki K, Ohta Y, Nagai M, et al. Disruption of neurovascular unit prior to motor neuron 
degeneration in amyotrophic lateral sclerosis. J Neurosci Res 2011;89:718-28. 
274. Garbuzova-Davis S, Saporta S, Haller E, et al. Evidence of compromised blood-spinal cord 
barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One 2007;2:e1205. 
275. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, Sanberg PR. Ultrastructure of 
blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. Brain Res 
2007;1157:126-37. 
276. Garbuzova-Davis S, Sanberg PR. Blood-CNS Barrier Impairment in ALS patients versus an 
animal model. Front Cell Neurosci 2014;8:21. 
277. Zhong Z, Deane R, Ali Z, et al. ALS-causing SOD1 mutants generate vascular changes prior to 
motor neuron degeneration. Nat Neurosci 2008;11:420-2. 
278. Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science 
1996;274:998-1001. 
279. Boyd AW, Bartlett PF, Lackmann M. Therapeutic targeting of EPH receptors and their ligands. 
Nat Rev Drug Discov 2014;13:39-62. 
280. Fu AKY, Hung KW, Huang HQ, et al. Blockade of EphA4 signaling ameliorates hippocampal 
synaptic dysfunctions in mouse models of Alzheimer's disease. P Natl Acad Sci USA 2014;111:9959-
64. 
281. Van Hoecke A, Schoonaert L, Lemmens R, et al. EPHA4 is a disease modifier of amyotrophic 
lateral sclerosis in animal models and in humans. Nat Med 2012;18:1418-+. 
282. Noberini R, Lamberto I, Pasquale EB. Targeting Eph receptors with peptides and small 
molecules: progress and challenges. Semin Cell Dev Biol 2012;23:51-7. 
283. Tognolini M, Hassan-Mohamed I, Giorgio C, Zanotti I, Lodola A. Therapeutic perspectives of 
Eph-ephrin system modulation. Drug Discov Today 2014;19:661-9. 



 
 

129 
 

284. Lamberto I, Lechtenberg BC, Olson EJ, et al. Development and structural analysis of a 
nanomolar cyclic peptide antagonist for the EphA4 receptor. ACS Chem Biol 2014;9:2787-95. 
285. Guo FY, Lesk AM. Sizes of interface residues account for cross-class binding affinity patterns 
in Eph receptor-ephrin families. Proteins 2014;82:349-53. 
286. Singla N, Goldgur Y, Xu K, Paavilainen S, Nikolov DB, Himanen JP. Crystal structure of the 
ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations. 
Biochem Biophys Res Commun 2010;399:555-9. 
287. Lamberto I, Qin H, Noberini R, et al. Distinctive binding of three antagonistic peptides to the 
ephrin-binding pocket of the EphA4 receptor. Biochem J 2012;445:47-56. 
288. Wu B, Zhang Z, Noberini R, et al. HTS by NMR of combinatorial libraries: a fragment-based 
approach to ligand discovery. Chem Biol 2013;20:19-33. 
289. Han X, Xu Y, Yang Y, et al. Discovery and characterization of a novel cyclic peptide that 
effectively inhibits ephrin binding to the EphA4 receptor and displays anti-angiogenesis activity. PLoS 
One 2013;8:e80183. 
290. Noberini R, Koolpe M, Peddibhotla S, et al. Small molecules can selectively inhibit ephrin 
binding to the EphA4 and EphA2 receptors. J Biol Chem 2008;283:29461-72. 
291. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 
2013;82:775-97. 
292. De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and 
diagnostic tools. Trends Biotechnol 2014;32:263-70. 
293. Steyaert J, Kobilka BK. Nanobody stabilization of G protein-coupled receptor conformational 
states. Curr Opin Struct Biol 2011;21:567-72. 
294. Qin H, Shi J, Noberini R, Pasquale EB, Song J. Crystal structure and NMR binding reveal that 
two small molecule antagonists target the high affinity ephrin-binding channel of the EphA4 
receptor. J Biol Chem 2008;283:29473-84. 
295. Noberini R, De SK, Zhang Z, et al. A disalicylic acid-furanyl derivative inhibits ephrin binding to 
a subset of Eph receptors. Chem Biol Drug Des 2011;78:667-78. 
296. Tognolini M, Incerti M, Lodola A. Are we using the right pharmacological tools to target 
EphA4? ACS Chem Neurosci 2014;5:1146-7. 
297. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference 
compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 
2010;53:2719-40. 
298. Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies 
devoid of light chains. Nature 1993;363:446-8. 
299. Conrath K, Vincke C, Stijlemans B, et al. Antigen binding and solubility effects upon the 
veneering of a camel VHH in framework-2 to mimic a VH. J Mol Biol 2005;350:112-25. 
300. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General 
strategy to humanize a camelid single-domain antibody and identification of a universal humanized 
nanobody scaffold. J Biol Chem 2009;284:3273-84. 
301. Nguyen VK, Hamers R, Wyns L, Muyldermans S. Camel heavy-chain antibodies: diverse 
germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 
2000;19:921-30. 
302. Rissiek B, Koch-Nolte F, Magnus T. Nanobodies as modulators of inflammation: potential 
applications for acute brain injury. Front Cell Neurosci 2014;8:344. 
303. Vincke C, Gutierrez C, Wernery U, Devoogdt N, Hassanzadeh-Ghassabeh G, Muyldermans S. 
Generation of single domain antibody fragments derived from camelids and generation of manifold 
constructs. Methods Mol Biol 2012;907:145-76. 
304. Truitt L, Freywald A. Dancing with the dead: Eph receptors and their kinase-null partners. 
Biochem Cell Biol 2011;89:115-29. 
305. Figueroa JD, Benton RL, Velazquez I, et al. Inhibition of EphA7 up-regulation after spinal cord 
injury reduces apoptosis and promotes locomotor recovery. J Neurosci Res 2006;84:1438-51. 



130 
 

306. Figueroa JD, Benton RL, Velazquez I, et al. Inhibition of EphA7 up-regulation after spinal cord 
injury reduces apoptosis and promotes locomotor recovery. J Neurosci Res 2006;84:1438-51. 
307. Coppieters K, Dreier T, Silence K, et al. Formatted anti-tumor necrosis factor alpha VHH 
proteins derived from camelids show superior potency and targeting to inflamed joints in a murine 
model of collagen-induced arthritis. Arthritis Rheum 2006;54:1856-66. 
308. Dennis MS, Zhang M, Meng YG, et al. Albumin binding as a general strategy for improving the 
pharmacokinetics of proteins. Journal of Biological Chemistry 2002;277:35035-43. 
309. Dixon FJ, Maurer PH, Deichmiller MP. Half-lives of homologous serum albumins in several 
species. Proc Soc Exp Biol Med 1953;83:287-8. 
310. Veronese FM, Mero A. The impact of PEGylation on biological therapies. Biodrugs 
2008;22:315-29. 
311. Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. 
Adv Drug Deliv Rev 2002;54:531-45. 
312. Saerens D, Ghassabeh GH, Muyldermans S. Single-domain antibodies as building blocks for 
novel therapeutics. Curr Opin Pharmacol 2008;8:600-8. 
313. Sheedy C, MacKenzie CR, Hall JC. Isolation and affinity maturation of hapten-specific 
antibodies. Biotechnol Adv 2007;25:333-52. 
314. Bashaw GJ, Klein R. Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 
2010;2:a001941. 
315. Noren NK, Pasquale EB. Eph receptor-ephrin bidirectional signals that target Ras and Rho 
proteins. Cell Signal 2004;16:655-66. 
316. Shi L, Fu WY, Hung KW, et al. Alpha2-chimaerin interacts with EphA4 and regulates EphA4-
dependent growth cone collapse. Proc Natl Acad Sci U S A 2007;104:16347-52. 
317. Murai KK, Pasquale EB. New exchanges in eph-dependent growth cone dynamics. Neuron 
2005;46:161-3. 
318. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology 
and clinical implications. Ann Neurol 2011;70:194-206. 
319. Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MC, et al. Impaired blood-
brain/spinal cord barrier in ALS patients. Brain Res 2012;1469:114-28. 
320. Nicaise C, Mitrecic D, Demetter P, et al. Impaired blood-brain and blood-spinal cord barriers 
in mutant SOD1-linked ALS rat. Brain Res 2009;1301:152-62. 
321. Henkel JS, Beers DR, Wen S, Bowser R, Appel SH. Decreased mRNA expression of tight 
junction proteins in lumbar spinal cords of patients with ALS. Neurology 2009;72:1614-6. 
322. Salvucci O, de la Luz Sierra M, Martina JA, McCormick PJ, Tosato G. EphB2 and EphB4 
receptors forward signaling promotes SDF-1-induced endothelial cell chemotaxis and branching 
remodeling. Blood 2006;108:2914-22. 
323. Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG. Forward EphB4 signaling in endothelial 
cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci 
2003;116:2461-70. 
324. Salvucci O, Tosato G. Essential roles of EphB receptors and EphrinB ligands in endothelial cell 
function and angiogenesis. Adv Cancer Res 2012;114:21-57. 
325. Bernal GM, Peterson DA. Phenotypic and gene expression modification with normal brain 
aging in GFAP-positive astrocytes and neural stem cells. Aging Cell 2011;10:466-82. 
326. Krum JM, Mani N, Rosenstein JM. Roles of the endogenous VEGF receptors flt-1 and flk-1 in 
astroglial and vascular remodeling after brain injury. Exp Neurol 2008;212:108-17. 
327. Germain S, Eichmann A. VEGF and ephrin-B2: a bloody duo. Nat Med 2010;16:752-4. 
328. Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J. Shear stress increases expression of the 
arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. 
Arterioscler Thromb Vasc Biol 2009;29:2125-31. 
329. Bochenek ML, Dickinson S, Astin JW, Adams RH, Nobes CD. Ephrin-B2 regulates endothelial 
cell morphology and motility independently of Eph-receptor binding. J Cell Sci 2010;123:1235-46. 



 
 

131 
 

330. Lambrechts D, Storkebaum E, Morimoto M, et al. VEGF is a modifier of amyotrophic lateral 
sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 
2003;34:383-94. 
331. Storkebaum E, Lambrechts D, Dewerchin M, et al. Treatment of motoneuron degeneration by 
intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 2005;8:85-92. 
332. Llado J, Tolosa L, Olmos G. Cellular and molecular mechanisms involved in the 
neuroprotective effects of VEGF on motoneurons. Front Cell Neurosci 2013;7:181. 
333. Bogaert E, Van Damme P, Van Den Bosch L, Robberecht W. Vascular endothelial growth 
factor in amyotrophic lateral sclerosis and other neurodegenerative diseases. Muscle Nerve 
2006;34:391-405. 
334. Rasmussen SG, Choi HJ, Fung JJ, et al. Structure of a nanobody-stabilized active state of the 
beta(2) adrenoceptor. Nature 2011;469:175-80. 
335. Meier C, Anastasiadou S, Knoll B. Ephrin-A5 suppresses neurotrophin evoked neuronal 
motility, ERK activation and gene expression. PLoS One 2011;6:e26089. 
336. Fridy PC, Li Y, Keegan S, et al. A robust pipeline for rapid production of versatile nanobody 
repertoires. Nat Methods 2014;11:1253-60. 
337. Vearing C, Lee FT, Wimmer-Kleikamp S, et al. Concurrent binding of anti-EphA3 antibody and 
ephrin-A5 amplifies EphA3 signaling and downstream responses: potential as EphA3-specific tumor-
targeting reagents. Cancer Res 2005;65:6745-54. 
 
 

  



132 
 

  



 
 

133 
 

List of publications 
 

 

Schoonaert L, Roucourt B, Timmers M, Rue L, Haustraete J, Scheveneels W, Chavez Guttierez L, 

Dewilde M, Destrooper B, Van Den Bosch L, Van Damme P, Lemmens R, Robberecht W. Identification 

and characterization of Nanobodies specific for the ephrin A4 receptor. Manuscript in preparation 

 

Defourny J, Mateo Sanchez S, Schoonaert L, Robberecht W, Davy A, Nguyen L, Malgrange B. Cochlear 

supporting cell transdifferentiation and integration into hair cell layers by inhibition of ephrin-B2 

signalling (2015). Nature Communications  

 

Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, Laird AS, Peeters E, Philips T, Goris 

A, Dubois B, Andersen PM, Al-Chalabi A, Thijs V, Turnley AM, van Vught PM, Veldink JH, Hardiman O, 

Van Den Bosch L, Gonzalez-Perez P, Van Damme P, Brown RH Jr, van den Berg LH, Robberecht W. 

EphA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans (2012). 

Nature Medicine  

  



134 
 

  



 
 

135 
 

Presentations at international symposia 
 

Society for Neuroscience (Sfn), San Diego, USA, 2013; poster presentation entitled ‘Deleting ephrin-

b2 from reactive astrocytes is beneficial in ALS’  

 

European Network for the Cure of ALS (ENCALS), Sheffield, UK, 2013; oral presentation entitled’ 

Deleting ephrin-b2 from reactive astrocytes is beneficial in ALS’  

 

Society for Neuroscience (Sfn), New Orleans, USA, 2012; poster presentation entitled ‘Genetic 

screening in zebrafish identifies EphA4 of the ephrin axonal repellent system as a disease modifier of 

amyotrophic lateral sclerosis in rodent models and patients’  

 

European Network for the Cure of ALS (ENCALS), Dublin, Ireland, 2012; oral presentation entitled 

‘EphA4 inhibition rescues the motor axon phenotype in a zebrafish model for ALS and SMA’  

 

Society for Neuroscience (Sfn), Washington D.C., USA, 2011; poster presentation entitled ‘Inhibition 

of the EphA4 receptor rescues the axonopathy in a zebrafish model for ALS’ 

 









  

Lies Schoonaert 
EX

PLO
R

IN
G

 TH
E M

EC
H

A
N

ISM
 AN

D
 TH

E TH
ER

AP
E

U
TIC

 PO
TE

N
TIA

L O
F 

TH
E E

PH
R

IN
 S

Y
STE

M
 IN

 ALS
  

January 2016 
 

 

    

  

 

DOCTORAL SCHOOL of  
BIOMEDICAL SCIENCES 

….. 
 

EXPLORING THE MECHANISM 
AND THE THERAPEUTIC 

POTENTIAL OF THE EPHRIN 
SYSTEM IN ALS 

Lies Schoonaert 

Dissertation presented in partial  
fulfillment of the requirements for the  

degree of Doctor in Biomedical Sciences 
 

January 2016 

Supervisory Committee: 
Prof. Dr. Wim Robberecht 
Prof. Dr. Philip Vandamme 
Prof. Dr. Robin Lemmens 
 
 

  

Lies Schoonaert 
EX

PLO
R

IN
G

 TH
E M

EC
H

A
N

ISM
 AN

D
 TH

E TH
ER

AP
E

U
TIC

 PO
TE

N
TIA

L O
F 

TH
E E

PH
R

IN
 S

Y
STE

M
 IN

 ALS
  

January 2016 
 

 

    

  

 

DOCTORAL SCHOOL of  
BIOMEDICAL SCIENCES 

….. 
 

EXPLORING THE MECHANISM 
AND THE THERAPEUTIC 

POTENTIAL OF THE EPHRIN 
SYSTEM IN ALS 

Lies Schoonaert 

Dissertation presented in partial  
fulfillment of the requirements for the  

degree of Doctor in Biomedical Sciences 
 

January 2016 

Supervisory Committee: 
Prof. Dr. Wim Robberecht 
Prof. Dr. Philip Vandamme 
Prof. Dr. Robin Lemmens 
 
 


	Lege pagina
	Lege pagina
	Lege pagina
	Lege pagina
	Lege pagina
	Lege pagina



