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M-estimates of location
for the robust central tendency of fuzzy data

Beatriz Sinova, Marı́a Ángeles Gil and Stefan Van Aelst

Abstract—The Aumann-type mean has been shown to possess
valuable properties as a measure of the location or central
tendency of fuzzy data associated with a random experiment.
However, concerning robustness its behaviour is not appropriate.
The Aumann-type mean is highly affected by slight changes in the
fuzzy data or when outliers arise in the sample. Robust estimators
of location, on the other hand, avoid such adverse effects. For
this purpose, this paper considers the M-estimation approach
and discusses conditions under which this alternative yields
valid fuzzy-valued M-estimators. The resulting M-estimators are
applied to a real-life example. Finally, some simulation studies
show empirically the suitability of the introduced estimators.

Index Terms—fuzzy number-valued data, M-estimators, ran-
dom fuzzy numbers, robust location of fuzzy data.

I. INTRODUCTION

IN the current information age, new types of data emerge
and we have to face the new challenging problems associ-

ated with the analysis of these data. Among these new types
of data, fuzzy number-valued outcomes are more and more
used in real-life applications to model data from intrinsically
imprecise attributes.

When analyzing fuzzy data from a statistical viewpoint, the
interest is often focused on the location (central tendency)
of the random mechanism that generated the data. More
concretely, fuzzy data can be assumed to be measurements
of a random fuzzy number (fuzzy random variable in Puri and
Ralescu’s sense [1]) and the statistical analysis may concern
the location of the distribution of this fuzzy number-valued
random element.
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A well-known measure of the location of the distribution of
a random fuzzy number is its Aumann-type mean (Puri and
Ralescu [1]), which satisfies that

- it is well-defined under quite general conditions,
- it extends the mean value of a real-valued random vari-

able,
- it preserves the main valuable properties of the real-

valued mean (it is a ‘linear’ operator - i.e., it is equivariant
under fuzzy arithmetic-based linear transformations-, it
fulfils Fréchet’s principle w.r.t. most of the L2 metrics
between fuzzy numbers, and it is coherent with the usual
fuzzy arithmetic).

However, the Aumann-type mean also inherits from the mean
of a real-valued random variable its high sensitivity to either
the existence of outliers or small changes in the data. When
looking for a more robust location measure, it seems conve-
nient to follow successful approaches that were developed for
other types of data. In this respect, this paper focuses on the
well-known M-estimation approach.

To adapt the M-estimation approach to the case where the
available data are fuzzy number-valued, two methodologies
can be considered, namely:

• By using a suitable L2 metric, fuzzy data can be repre-
sented as functional data resulting from (a convex cone
within) certain Hilbert space-valued random elements
(see, for instance, González-Rodrı́guez et al. [2] and
Sinova et al. [3]). Consequently, we may adopt existing
results and methods from Functional Data Analysis (more
specifically, Kim and Scott’s ideas and results [4], [5]) to
the fuzzy case. This approach is valid whenever one can
guarantee that the resulting measure cannot move out of
the cone of the fuzzy data.

• Ad hoc fuzzy-valued M-estimators can be developed by
using particular metrics based on specific representations
of fuzzy numbers. For these representations there should
exist sets of necessary and sufficient conditions which
guarantee that the representation corresponds to a fuzzy
number. Two ad hoc M-estimators have been introduced
in Sinova et al. [6], [7] by using convenient L1 metrics
between fuzzy data. The corresponding fuzzy-valued M-
estimators are quite easy to compute since their level
sets can be expressed in terms of medians of real-
valued random variables. It has also been shown that
they preserve valuable properties of the median of a real-
valued random variable, such as its robustness and strong
consistency.
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This paper aims to approach the problem by using M-
estimators which have been proposed in the area of Functional
Data Analysis. Some recent proposals in the context of robust
nonparametric density estimation connect ideas from tradi-
tional kernel density estimation with standard M-estimation.
These proposals can be adapted to Hilbert space-valued ran-
dom elements and they can be shown to yield valid estimators
when restricted to random fuzzy numbers.

The relevant concepts about fuzzy number-valued data and
random fuzzy numbers, i.e. one-dimensional random fuzzy
sets are recalled in Section II. In Section III M-estimators of
location for random fuzzy numbers are formally introduced.
Necessary and sufficient conditions guaranteeing their exis-
tence, as well as their expression as a weighted mean of
the fuzzy-valued sample data are provided. This feature is
crucial for fuzzy data to guarantee that the corresponding M-
estimators are fuzzy-valued under the considered conditions.
Properties of the M-estimators are examined in detail. The
weighted mean expression for M-estimators allows us to ex-
tend the iteratively re-weighted least squares algorithm used in
classical M-estimation for the computation of sample location
M-estimates for fuzzy data, as is illustrated by means of an
example. Although the conditions for the existence of the M-
estimators cover the extension of several important classical
M-estimators, some recently proposed ad hoc M-estimators do
not satisfy these conditions. We recall these proposals here for
reasons of comparison. The use of fuzzy-valued M-estimators
of location is illustrated by means of a real-life example.

Section IV presents the results of several simulation studies
that have been carried out to empirically compare the robust-
ness behavior of the location M-estimators introduced in this
paper to the ad hoc proposals. Some concluding remarks are
gathered in Section V.

II. FUZZY DATA AND RANDOM FUZZY NUMBERS

Fuzzy data appear in several domains. They are mainly
used to describe imprecise human assessments such as ratings,
opinions, judgments or perceptions in a natural and easy-to-
handle way. In particular, when conducting quality ratings,
satisfaction valuations and many other surveys, it can often
not be expected that responses are expressed as fixed values
in a precise scale, since they are essentially imprecise (see e.g.
De la Rosa de Sáa et al. [8] for a recent detailed discussion
about this point).

Fuzzy number-valued data can be interpreted as a ‘level-
wise’ extension of interval-valued data, where the levels add a
certain gradualness to the imprecision of interval-valued data.
Formally, they are defined as follows:

Definition II.1. F∗
c (R) is the space of the (bounded) fuzzy

numbers, that is, the mappings Ũ : R → [0, 1] such that their
α-levels

Ũα =

 {x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0,

are nonempty compact intervals. Ũ(x) can be interpreted as
the ‘degree of compatibility’ of x with Ũ ’ (or ‘degree of truth’
of the assertion “x is Ũ”).

To perform statistics with fuzzy data, one of the key tools is
given by the arithmetic to operate with these data. Most of the
theoretical and practical studies with fuzzy data consider the
usual and natural approach corresponding to Zadeh’s extension
principle, which in this case extends level-wise the usual
interval arithmetic.

Definition II.2. Let Ũ , Ṽ ∈ F∗
c (R). The sum of Ũ and Ṽ is

defined as the fuzzy number Ũ + Ṽ ∈ F∗
c (R) given for each

α ∈ [0, 1] by

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα

=
[
inf Ũα + inf Ṽα, sup Ũα + sup Ṽα

]
.

Let Ũ ∈ F∗
c (R) and γ ∈ R. The product of Ũ by the scalar

γ is defined as the fuzzy number γ ·Ũ ∈ F∗
c (R) given for each

α ∈ [0, 1] by

(γ · Ũ)α = γ · Ũα =

{ [
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0[

γ · sup Ũα, γ · inf Ũα

]
otherwise.

A. Distances between fuzzy data

It is well-known that when F∗
c (R) is endowed with this

arithmetic it determines a semi-linear but not a linear space. As
a consequence from this fact, there is no ‘difference operation’
between these values that is simultaneously well-defined and
preserves the main properties of the difference between real
values in connection with the sum.

Moreover, it should be pointed out that, although fuzzy
numbers are formalized as [0, 1]-valued functions, one cannot
treat fuzzy data directly as if they were functional data in the
way they are usually handled in Functional Data Analysis.
This is due to to the fact that the functional arithmetic on
F∗

c (R) can yield elements that lie outside this space and thus
the meaning of fuzzy data is lost.

These concerns have been substantially overcome by devel-
oping statistical methods for imprecise data based on suitable
distances between fuzzy numbers. On one hand, distances
allow to ‘translate’ the equality of fuzzy numbers into the
distance between these values being equal to 0. On the other
hand, appropriate distances also allow us to ‘identify’ fuzzy
set-valued data with functional data through their so-called
support function (see Puri and Ralescu [1]). Distances between
fuzzy data have received a lot of attention in the literature.
They have often been considered in connection with studies
of similarity between fuzzy numbers, as well as for statistical
purposes such as classification of fuzzy data or inferential
statistics with fuzzy number-valued random elements.

In this paper, a parameterized and versatile family of dis-
tances has been chosen, although a few other distances will
occasionally be mentioned. This family of distances has been
introduced by Bertoluzza et al. [9] (see Casals et al. [10] for a
recent review, and Trutschnig et al. [11] for its generalization
to fuzzy vector-valued data). It is formalized as follows:

Definition II.3. Let θ ∈ (0,+∞) and let φ be an abso-
lutely continuous probability measure on ([0, 1],B[0,1]) with
the mass function being positive on (0, 1). The mid/spr-
based L2 distance is defined as the mapping Dφ

θ : F∗
c (R)
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× F∗
c (R) → [0,+∞) which associates with each pair Ũ , Ṽ

of elements from F∗
c (R), the value

Dφ
θ (Ũ , Ṽ ) =

[∫
[0,1]

(
mid Ũα −mid Ṽα

)2

dφ(α)

+ θ

∫
[0,1]

(
spr Ũα − spr Ṽα

)2

dφ(α)

]1/2

,

where mid Ũα = (inf Ũα + sup Ũα)/2 and spr Ũα

= (sup Ũα − inf Ũα)/2.

The mid/spr-based metric has been shown to be very
suitable for the development of statistical methodology for
experimental fuzzy set-valued data. For instance, González-
Rodrı́guez et al. [2] provides a detailed explanation of an
approach to ANOVA with fuzzy data based on the functional
data identification. The recent reviews of Blanco-Fernández et
al. [12], [13], [14], [15] and Gil et al. [16] summarize most
of these statistical developments.

In these distances, differences in center and shape are taken
into account through the mid and spr functions, respectively.
The parameter θ and the measure φ do not have a stochastic
meaning. The parameter θ weighs the influence of the ‘de-
viation in shape’ between the fuzzy data with respect to the
influence of their ‘deviation in center’. Note that the choice
θ = 1 corresponds to a generalization of the well-known
distance ρ2 by Diamond and Kloeden [17], which for any
Ũ , Ṽ from F∗

c (R) is given by

Dφ
1 (Ũ , Ṽ ) = ρφ

2 (Ũ , Ṽ )

=

[
1

2

∫
[0,1]

(
inf Ũα − inf Ṽα

)2

dφ(α)

+
1

2

∫
[0,1]

(
sup Ũα − sup Ṽα

)2

dφ(α)

]1/2

.

Another interesting choice is associated with the value θ=1/3,
since (see Casals et al. [10]) it can be equivalently expressed
as

Dφ
1/3(Ũ , Ṽ ) =

√∫
[0,1]

∫
[0,1]

(
Ũ

[η]
α − Ṽ

[η]
α

)2

dφ(α) dℓ(η),

with ℓ = Lebesgue measure on ([0, 1],B[0,1]) and Ũ
[η]
α

= η · sup Ũα + (1− η) · inf Ũα for all η ∈ [0, 1]).
The mid/spr-based distances are L2 metrics that, through

the support function (Puri and Ralescu’s sense [1]), allow us
to embed the space of fuzzy numbers into a convex cone of a
Hilbert space by a Rådstrom-type isometry. More details can
be found in Trutschnig et al. [11] and González-Rodrı́guez et
al. [2] (see also Blanco-Fernández et al. [12] and Gil et al. [16]
for recent reviews). In this way, despite the fact that fuzzy data
should not be treated directly as functional data, they can be
treated as functional data by considering the identification via
the support function. As one can see later, this identification
is crucial for the extension of M-estimators to fuzzy data.

B. Random Fuzzy Numbers

To formalize the statistical analysis of fuzzy data, an essen-
tial tool is the adaptation of a suitable model for the random
mechanism generating fuzzy data. The notion of random fuzzy
number in Puri and Ralescu’s sense [18], [1] is a soundly
established and well-supported model within the probabilistic
setting. This notion is based on the ideas of Fréchet [19] and
Féron [20]. In this model, fuzziness is assumed to affect the
nature of values/data and randomness is assumed to affect their
generation. Random fuzzy numbers can be defined as follows:

Definition II.4. Let (Ω,A, P ) be a probability space modeling
a random experiment. A mapping X : Ω → F∗

c (R) is said
to be a random fuzzy number associated with the random
experiment if, and only if, for each α ∈ [0, 1] the interval-
valued mapping Xα (where Xα(ω) =

(
X (ω)

)
α

for all ω ∈ Ω)
is a random compact interval or equivalently, the real-valued
functions inf Xα and supXα are random variables.

It should be highlighted that a random fuzzy number is
a Borel-measurable mapping with respect to the Borel σ-
field associated with several metrics like, for instance, the
mid/spr-based distance (see, for instance, González-Rodrı́guez
et al. [2] and Gil et al. [16]). As a consequence from the Borel-
measurability, crucial concepts such as the induced distribution
of a random fuzzy number or the stochastic independence of
random fuzzy numbers can be immediately stated.

The best known measure of location of a random fuzzy
number is the Aumann-type mean, which is given by

Definition II.5. Let X be a random fuzzy number and assume
that the expected values of the random variables inf X0 and
supX0 are finite. The Aumann-type mean of X is the fuzzy
number Ẽ(X ) ∈ F∗

c (R) such that for each α ∈ [0, 1](
Ẽ(X )

)
α
= [E(inf Xα), E(supXα)] .

Note that this notion, introduced by Puri and Ralescu [1],
is coherent with the usual fuzzy arithmetic. In particular, if
the possible values of a random fuzzy number X are given by
{x̃1, . . . , x̃m} and P (X = x̃i) = P ({ω ∈ Ω : X (ω) = x̃i}),
then it holds that

Ẽ(X ) = P (X = x̃1) · x̃1 + . . .+ P (X = x̃m) · x̃m.

That is, (
Ẽ(X )

)
α

=

[
m∑
i=1

inf(x̃i)α · P (X = x̃i),
m∑
i=1

sup(x̃i)α · P (X = x̃i)

]
.

The Aumann-type mean of a random fuzzy number is
supported by Strong Laws of Large Numbers (see e.g. Colubi
et al. [21]) and also by the Fréchet approach [19], since it is
the fuzzy number minimizing the ‘mean square error’ of X
about a fuzzy number. That is,

Ẽ(X ) = arg min
Ũ∈F∗

c (R)
E

[(
Dφ

θ (X , Ũ)
)2

]
for every θ and φ for which the expectation exists.
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III. LOCATION M-ESTIMATES FROM FUZZY DATA

M-estimation is a well-established approach that yields
robust estimators. M-estimators were first introduced by Hu-
ber [22] to estimate the location of real-valued data with the
aim of limiting the influence of outliers on methods like least
squares and maximum likelihood. For this purpose, the key
idea consists of replacing the square of the ‘errors’ with a
(usually less rapidly increasing) loss function applied to the
errors of the data. In this respect, M-estimators were presented
as intermediaries between the sample mean and median.

In this section, the notion of M-estimators is extended to the
case of fuzzy number-valued data. Sufficient conditions on the
loss function to guarantee that the M-estimation process leads
to well-defined (i.e., fuzzy-valued) estimates are established.
Following Huber’s ideas [22], [23], a location M-estimate
in connection with a random fuzzy number is formalized as
follows:

Definition III.1. Let (Ω,A, P ) be a probability space and
X : Ω → F∗

c (R) an associated random fuzzy number. More-
over, let ρ be an arbitrary continuous real-valued function
(which will be referred to hereinafter as the loss function),
and (X1, . . . ,Xn) a simple random sample from X . Then,
the sample fuzzy M-estimator of location is the fuzzy number-
valued statistic ̂g̃M [(X1, . . . ,Xn)], given by

̂g̃M [(X1, . . . ,Xn)] = arg min
g̃∈F∗

c (R)

1

n

n∑
i=1

ρ(Dφ
θ (Xi, g̃)),

if it exists.

The ρ-function in Definition III.1 generalizes the squared
loss function in the least squares approach. Actually, it is
usually assumed to vanish at 0 and to be non-decreasing.

If the whole class of fuzzy numbers Fc(R) (including
unbounded ones, with non-compact 0-level) is considered, it
is possible to prove that the M-estimator of location is Borel
measurable, and therefore, a statistic.

Proposition III.1. Let (Ω,A, P ) be a Polish probability space
and X : Ω → Fc(R) an associated random fuzzy number.
Moreover, let (X1, . . . ,Xn) be a simple random sample from
X and ρ a continuous loss function. Then, the M-estimator of
location is well-defined.

It is very common in practice to fix a bounded referential
in R, as is the case for the fuzzy rating scale by Hesketh et al.
[37]. When adopting this situation and working on Fc([a, b]),
for certain a, b ∈ R such that a < b, instead of Fc(R),
Proposition III.1 also holds.

To show that Definition III.1 yields valid estimators for the
location of fuzzy random variables, we have to show that
the estimators are indeed fuzzy-valued statistics. This is an
immediate corollary of the following representer theorem.

A. Representer theorem for M-estimates with fuzzy data

Kim and Scott [4], [5] recently proposed a robust non-
parametric density estimator by combining a traditional kernel
density estimator with ideas from standard M-estimation. An
interesting contribution of Kim and Scott’s work lies in their

analysis of the conditions to ensure the existence of sample
M-estimates of location. These conditions allow us to express
the M-estimates as weighted linear combinations of the sample
elements. This feature will be very convenient to assure that
the M-estimates are indeed fuzzy number-valued statistics.

The novel representer theorem that will be stated in Theo-
rem III-A.1 is an adaptation of Kim and Scott’s work [4], [5] to
the fuzzy-valued case by means of the isometrical embedding
mentioned before. It expresses the sample location M-estimate
for fuzzy number-valued data as a convex linear combination
of the sample components, x̃1, . . . , x̃n.

Theorem III-A.1. Consider F∗
c (R) endowed with the metric

Dφ
θ . Let x̃n = (x̃1, . . . , x̃n) be a sample of independent

observations from a random fuzzy number X : Ω → F∗
c (R) on

a probability space (Ω,A, P ). Moreover, let ρ be a continuous
loss function which satisfies the assumptions

• ρ is non-decreasing, ρ(0) = 0 and limx→0 ρ(x)/x = 0,
• Let ϕ(x) = ρ′(x)/x and ϕ(0) ≡ limx→0 ϕ(x). Then ϕ(0)

exists and it is finite.
Then, the sample M-estimate of location exists and it can be
expressed as ˜̂gM [x̃n] =

n∑
i=1

wi · x̃i

with wi ≥ 0 and
∑n

i=1 wi = 1. Furthermore,

wi ∝ ϕ(Dφ
θ (x̃i, ˜̂gM [x̃n])).

Many loss functions ρ that are used to compute M-
estimators satisfy the above-mentioned conditions. One of the
most well-known loss functions which fulfills the required
conditions is the Huber loss function [23], which is given by

ρa(x) =

 x2/2 if |x| ≤ a

a(|x| − a/2) otherwise,
,

with a > 0 a tuning parameter. Note that the Huber loss func-
tion is convex, but not strictly convex. Huber’s loss function
yields a hybrid approach between squared and absolute error
losses. Indeed, it corresponds to a parabola in the vicinity of 0
and increases linearly from the given level a onwards, so that
one can put appropriate emphasis on large and small errors.
Some discussions on the choice of the tuning parameter a can
be found in e.g. Wang et al. [25] and Debruyne et al. [26].

Another well-known loss function is the Hampel loss func-
tion [27], which corresponds to

ρa,b,c(x) =



x2/2 if 0 ≤ |x| < a

a(|x| − a/2) if a ≤ |x| < b

a(|x| − c)2

2(b− c)
+

a(b+ c− a)

2
if b ≤ |x| < c

a(b+ c− a)

2
if c ≤ |x|,

where the nonnegative parameters a < b < c allow us to
control the degree of suppression of large errors. The smaller
their values, the higher this degree.
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The performance of M-estimators thus depends on the
choice on the tuning parameter(s) that appear in both loss
functions. To fix these tuning parameter(s), one can follow
the ideas in Kim and Scott [5], that is,

1) Choose as starting solution an easily computable robust
centrality measure (to ensure the robustness of the M-
estimator unless we can assure that the M-estimator is
unique);

2) Compute the distances between the fuzzy observations
and this initial solution;

3) Set a equal to the median of these real-valued distances
for both loss functions. For Hampel’s loss function, set
b and c equal to the 75th and the 85th percentiles of the
obtained distances, respectively.

An example of the Huber loss function for a = 2.36 (used in
Example III.1) is shown in Figure 1. Figure 1 displays the loss
function ρ2.36, its derivative ρ′2.36 and ϕ2.36 (corresponding to
the quotient of ρ′2.36 and the identity function).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5         

        
        

ρa
ρ
′
a

ϕa

Fig. 1. Huber loss function ρ2.36, its derivative ρ′2.36 and ϕ2.36

To illustrate the Hampel loss function for the values of the
tuning parameters in Example III.1 below, Figure 2 displays
the loss function ρ2.36,3.18,3.51, its derivative ρ′2.36,3.18,3.51 and
ϕ2.36,3.18,3.51.

0 1 2 3 4 5
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4
5
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0
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0
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1
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Fig. 2. Hampel loss function ρa,b,c (top), its derivative ρ′a,b,c (bottom left)
and ϕa,b,c (bottom right) with a = 2.36, b = 3.18 and c = 3.51

The following (artificial) example explains the algorithm
to compute the M-estimates corresponding to the Huber loss
function ρ2.36 and to the Hampel loss function ρ2.36,3.18,3.51
based on the L2 metric Dℓ

1/3.

Example III.1. Consider a sample x̃3 = (x̃1, x̃2, x̃3)
with three trapezoidal/triangular fuzzy values given by x̃1

= Tra(0, 2, 3, 4), x̃2 = Tri(1, 1.5, 2) and x̃3 = Tri(3, 4, 5)
(displayed in grey in Figure 3).

The parameter values are fixed to a = 2.36, b = 3.18 and
c = 3.51. For the Huber loss function ρ2.36, the corresponding
M-estimate of location can then be determined by means of
the following algorithm:
Step 1. Take as initial estimate g̃M(1) (k = 1) a ‘central’ value.

In this case, we have chosen the 1-norm median (see
Subsection III-C) as initial robust location measure.
Fix a tolerance ε = 10−7.

Step 2. Update the weights

w
(k)
i =

ϕ(Dℓ
1/3(x̃i, g̃

M
(k)))∑n

j=1 ϕ(D
ℓ
1/3(x̃j , g̃M(k)))

and the estimate

g̃M(k+1) =
n∑

i=1

w
(k)
i · x̃i.

Step 3. Repeat Step 2 until

|J(g̃M(k+1))− J(g̃M(k))|
J(g̃M(k))

< ε.

The final estimate is given by the trapezoidal fuzzy number
Tra(1.33, 2.50, 2.83, 3.66), which has been displayed in black
(straight line) in Figure 3.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3. A Huber (black line) M-estimate of location of the sample of the grey
fuzzy data (using Dℓ

1/3
)

Analogously, the corresponding M-estimate of location for
the Hampel loss function ρ2.36,3.18,3.51 can be calculated,
which in this example is almost indistinguishable from the
solution for the Huber loss function.

B. Properties of M-estimates satisfying the representer
theorem

In this subsection, we state several interesting properties
of the fuzzy-valued M-estimates when the conditions of the
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representer theorem are satisfied. These properties have not
been studied by Kim and Scott in the context of density
estimation yet. Proofs can be found as the supplementary
material.

In particular, the M-estimates are translation equivariant
and under additional assumptions also scale (and, hence,
symmetry) equivariant.

Proposition III-B.1. (Translation equivariance) Consider
F∗

c (R) endowed with the metric Dφ
θ . Let x̃n = (x̃1, . . . , x̃n)

be a sample of independent observations from a random fuzzy
number X : Ω → F∗

c (R) on a probability space (Ω,A, P ).
Moreover, let ρ be an arbitrary continuous loss function
fulfilling the assumptions in Theorem III-A.1, such that the
corresponding sample M-estimate of location is unique.

Let Ũ ∈ F∗
c (R). If ̂

g̃M [x̃n + Ũ ] is the location M-estimate
based on x̃n + Ũ , then it holds that

̂
g̃M [x̃n + Ũ ] = ˜̂gM [x̃n] + Ũ ,

where ˜̂gM [x̃n] is the location M-estimate based on x̃n, which
satisfies

i) ˜̂gM [x̃n] =
∑n

i=1 wi · x̃i,
ii) wi ∝ ϕ(Dφ

θ (x̃i, ˜̂gM [x̃n])),
iii)

∑n
i=1 wi = 1.

Proposition III-B.2. (Scale equivariance) Consider F∗
c (R)

endowed with the metric Dφ
θ . Let x̃n = (x̃1, . . . , x̃n) be

a sample of independent observations from a random fuzzy
number X : Ω → F∗

c (R) on a probability space (Ω,A, P ).
Moreover, let ρ be an arbitrary continuous loss function
fulfilling the assumptions in Theorem III-A.1, such that the
corresponding sample M-estimate of location is unique.

If ρ satisfies the condition ϕ(k · x) ∝ ϕ(x) for every k
∈ (0,∞) (i.e., the coefficient of proportionality is independent
of x), then for all c ∈ R it holds that

̂g̃M [c · x̃n] = c · ˜̂gM [x̃n],

where ̂g̃M [c · x̃n] is the location M-estimate based on c · x̃n,
and ˜̂gM [x̃n] is the location M-estimate based on x̃n, which
satisfies

i) ˜̂gM [x̃n] =
∑n

i=1 wi · x̃i,
ii) wi ∝ ϕ(Dφ

θ (x̃i, ˜̂gM [x̃n])),
iii)

∑n
i=1 wi = 1.

For instance, if ϕ is a power function, then the correspond-
ing M-estimate is scale equivariant.

Note that the extra condition on the loss function in The-
orem III-B.2 is a strong requirement. Most loss functions for
M-estimates of location do not satisfy this property. Therefore,
similarly as in the real setting (see e.g. Maronna et al. [28])
the resulting M-estimate, especially its robustness, may depend
heavily on the considered measurement units. To avoid this
drawback, we determine the values of the tuning parameters
in the considered loss functions based on the distribution of
the distances for the particular dataset, as already explained
after Theorem III-A.1.

As an immediate consequence from the representer theorem
for fuzzy data, one can trivially prove that the M-estimates of
LR fuzzy numbers sharing L and R functions (see Dubois
and Prade [29]) also fall in the LR family. Recall that Ũ is
said to be an LR fuzzy number (b, c, b− a, d− c)LR if

Ũ(x) =



L

(
b− x

b− a

)
if x ∈ [a, b)

1 if x ∈ [b, c]

R

(
x− c

d− c

)
if x ∈ (c, d]

0 otherwise

where a, b, c, d ∈ R, a ≤ b ≤ c ≤ d, and L,R : [0, 1]
→ [0, 1] are continuous non-increasing functions such that
L(x) = R(y) = 1 iff x = y = 0 and L(x) = R(y) = 0 iff
x = y = 1).

Proposition III-B.3. Assume the conditions in Theo-
rem III-A.1 are fulfilled. Assume also that x̃n = (x̃1, . . . , x̃n)
is a sample of independent observations such that all x̃i’s
are LR fuzzy numbers sharing the L and R functions. Then,
the sample M-estimate of location is an LR fuzzy number
with the same L and R functions. In particular, if all x̃i’s
are trapezoidal fuzzy numbers, then the sample M-estimate of
location is trapezoidal as well.

Another interesting property when examining the adequacy
of the location M-estimates based on fuzzy data as cen-
tral tendency measures concerns their behavior in case of
symmetrically distributed samples. In the real-valued case, a
well-known result is that the median of a symmetric random
variable coincides with the point of symmetry whenever it
is unique. In the fuzzy-valued case, a similar result can be
obtained for location M-estimates under certain assumptions.

Let x̃n = (x̃1, . . . , x̃n) be a sample of independent obser-
vations from a random fuzzy number X : Ω → F∗

c (R) on a
probability space (Ω,A, P ). Then, the sample x̃n is said to be
symmetric about c ∈ R (see Sinova et al. [30]) if and only if
x̃n − c and c− x̃n (or, equivalently, 2c− x̃n and x̃n) include
exactly the same fuzzy data. We then have the following result:

Proposition III-B.4. Consider F∗
c (R) endowed with the met-

ric Dφ
θ . Let x̃n = (x̃1, . . . , x̃n) be a sample of independent

observations from a random fuzzy number X : Ω → F∗
c (R)

on a probability space (Ω,A, P ). Moreover, let ρ be an
arbitrary continuous loss function fulfilling the assumptions
in Theorem III-A.1, such that the associate M-estimate is
unique. If the sample x̃n is symmetric about c ∈ R, then the
corresponding location M-estimate ̂g̃M [c · x̃n] is a symmetric
fuzzy number about c.

In addition to these properties, it is also of importance to
investigate the consistency of sample M-estimators as well as
their robustness.

Strong consistency concerns the almost sure convergence of
sample M-estimators to their population analogue, given by

g̃M (X ) = arg min
Ũ∈F∗

c (R)
E
[
ρ
(
Dφ

θ (X , Ũ)
)]

.
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In the literature, consistency has been formally guaran-
teed under certain conditions (see e.g. Vandermeulen and
Scott [31]). However, those results do not include most of
the commonly used loss functions. In order to cover, among
others, the well-known Huber and Hampel loss functions,
the following theorem is now stated under the assumption
that the referential fuzzy numbers are defined on is bounded
referential, as happens when using the fuzzy rating scale.

Theorem III-B.1. Consider the metric space (Fc([a, b]), D
λ
θ ),

with a, b ∈ R, a < b and θ > 0. Let X : Ω → F∗
c (R) be

a random fuzzy number associated with a probability space
(Ω,A, P ). Under any of the following assumptions:

• ρ is non-decreasing, subadditive and unbounded,
• ρ is the Huber loss function (for any tuning parameter

a > 0),
• ρ is the Hampel loss function (for any tuning parameters

c > b > a > 0),
and whenever g̃M (X ) exists and is unique, the sample M-
estimator of location is a strongly consistent estimator of
g̃M (X ), i.e.,

lim
n→∞

Dφ
θ (

̂g̃M [(X1, . . . ,Xn)], g̃
M (X )) = 0 a.s. [P].

We now investigate the robustness of location M-estimators
for fuzzy data by means of the finite sample breakdown
point, for short fsbp (Hampel [32], Donoho and Huber [33]).
The fsbp is a measure of robustness that can be adapted to
estimators taking values in general metric spaces (Cuevas et
al. [34]). It represents the smallest fraction of observations
in a sample that needs to be perturbed to make the (suitably
chosen) distance between the M-estimates in the original and
contaminated samples arbitrarily large.

The first result shows the importance of the translational
equivariance of M-estimators as stated in Proposition III-B.1.

Theorem III-B.2. Consider the metric space (F∗
c (R), D

φ
θ )

and θ any nonnegative value. Let X : Ω → F∗
c (R) be

a random fuzzy number associated with a probability space
(Ω,A, P ). Moreover, let ρ be an arbitrary continuous loss
function fulfilling the assumptions in Theorem III-A.1, such
that the corresponding sample M-estimate of location is
unique. Then, the finite sample breakdown point of the cor-
responding location M-estimator is at most 1

n⌊
n+1
2 ⌋, where

⌊·⌋ denotes the floor function.

Moreover, it is possible to prove that this upper bound
for the finite sample breakdown point is attained under an
additional sufficient condition on the loss function.

Theorem III-B.3. Consider the metric space (F∗
c (R), D

φ
θ )

and θ any nonnegative value. Let X : Ω → F∗
c (R) be

a random fuzzy number associated with a probability space
(Ω,A, P ). Moreover, let ρ be a continuous loss function
fulfilling the assumptions in Theorem III-A.1, such that the
corresponding sample M-estimate of location is unique. Under
any of these assumptions

• ρ has linear upper and lower bounds;
• ρa,b,c is a Hampel’s loss function whose tuning parame-

ters satisfy

ρa,b,c

(
max

1≤i,j≤n
Dφ

θ (x̃i, x̃j)

)
<

n− 2⌊n−1
2 ⌋

n− ⌊n−1
2 ⌋ − 1

·ρa,b,c(c);

the finite sample breakdown point of the corresponding loca-
tion M-estimator is exactly 1

n⌊
n+1
2 ⌋.

Notice that Theorem III-B.3 includes Huber’s loss function,
which is linear for large values of its argument and thus can be
upper and lower bounded by straight lines. This result indicates
that the fsbp of both Huber and Hampel M-estimates (the latter
for sufficient large choices of the tuning parameters) is equal
to 1

n · ⌊n+1
2 ⌋. In contrast, the fsbp of the sample Aumann-type

mean has been shown to be equal to 1
n (see e.g. Sinova et

al. [6], [7]). M-estimates thus yield a huge gain in robustness
in comparison to the commonly used Aumann-type mean.

C. Related ad hoc estimators

The representer theorem guarantees the existence of sample
M-estimates of location as well as their expression as random
weighted means of the sample elements for loss functions
that satisfy the needed conditions. While several common
choices of the loss function ρ satisfy these conditions, there
are also some interesting choices which do not satisfy these
conditions. In particular, for the choice ρ(x) = |x|, which
yields the median in the real-valued case, one cannot apply
the results in Section III-A. However, Sinova et al. [6], [7]
proposed median-type M-estimates for random fuzzy numbers.
These M-estimates cannot be expressed as weighted means of
the sample elements, but level-wise they can be expressed in
terms of the classical medians of real-valued random variables
characterizing the fuzzy number. This makes computation of
the median-type M-estimators rather easy to accomplish in
practice. In particular, Sinova et al. [6] introduced the 1-norm
median as follows.

Definition III.2. Let x̃n = (x̃1, . . . , x̃n) be a sample of
independent observations from a random fuzzy number X : Ω
→ F∗

c (R) on a probability space (Ω,A, P ). The sample 1-

norm median of X is defined as the fuzzy number ̂̃
Me[x̃n]

∈ F∗
c (R) such that for each α ∈ [0, 1]( ̂̃

Me[x̃n]
)
α
=

[
Me

{
inf(x̃1)α, . . . , inf(x̃n)α

}
,

Me
{
sup(x̃1)α, . . . , sup(x̃n)α

}]
(where in case the real-valued median Me is non-unique the
mid-point convention is considered).

The 1-norm median satisfies

̂̃
Me[x̃n] = arg min

Ũ∈F∗
c (R)

1

n

n∑
i=1

(
ρ1

(
x̃i, Ũ

))
,

where for Ũ , Ṽ

ρ1(Ũ , Ṽ ) =
1

2

∫
[0,1]

∣∣∣inf Ũα − inf Ṽα

∣∣∣ dα
+
1

2

∫
[0,1]

∣∣∣sup Ũα − sup Ṽα

∣∣∣ dα
(see Diamond and Kloeden [17]).
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In other words, the 1-norm median corresponds to an M-
estimate associated with the loss function ρ(x) = |x| and the
L1 distance ρ1.

Similarly, Sinova et al. [7] have introduced the φ-
wabl/ldev/rdev median as follows.

Definition III.3. Let x̃n = (x̃1, . . . , x̃n) be a sample of
independent observations from a random fuzzy number X :
Ω → F∗

c (R) on a probability space (Ω,A, P ). Then the
sample φ-wabl/ldev/rdev median of X is defined as the fuzzy

number ̂̃
Me[x̃n] ∈ F∗

c (R) such that for each α ∈ [0, 1]( ˜̂Mφ[x̃n]
)
α
=

[
Me

{
wablφ(x̃1), . . . ,wabl

φ(x̃n)
}

−Me
{
ldevφx̃1

(α), . . . , ldevφx̃n
(α)},

Me
{
wablφ(x̃1), . . . ,wabl

φ(x̃n)
}

+Me
{
rdevφx̃1

(α), . . . , rdevφx̃n
(α)}

]
(where in case the real-valued median Me is non-unique the
mid-point convention is considered).

The φ-wabl/ldev/rdev median satisfies˜̂Mφ[x̃n] = arg min
Ũ∈F∗

c (R)

1

n

n∑
i=1

(
Dφ

1

(
x̃i, Ũ

))
,

where for Ũ , Ṽ

Dφ
1 (Ũ , Ṽ ) = |wablφ(Ũ)− wablφ(Ṽ )|

+
1

2

∫
[0,1]

|ldevφ
Ũ
(α)− ldevφ

Ṽ
(α)| dφ(α)

+
1

2

∫
[0,1]

|rdevφ
Ũ
(α)− rdevφ

Ṽ
(α)| dφ(α),

with wablφ(Ũ)=
∫
[0,1]

mid Ũα dφ(α), ldevφ
Ũ
(α)=wablφ(Ũ)

− inf Ũα, rdev
φ

Ũ
(α) = sup Ũα − wablφ(Ũ).

In other words, the φ-wabl/ldev/rdev median corresponds
to an M-estimate associated with the loss function ρ(x) = |x|
and the L1 distance Dφ

1 .
Since these ad hoc M-estimates have similar properties as

the M-estimates obtained through the representer theorem, we
make an empirical comparison in Section IV to investigate
finite-sample differences.

D. An illustrative real-life application

We now consider a real-life example with fuzzy-valued data
and compute the location M-estimates in Subsections III-A and
III-C.

Example III.2. In 2011, TIMSS (Trends in International
Mathematics and Science Study) and PIRLS (Progress in
International Reading Literacy Study) assessments have joined
for the first time to assess the fourth grade students in
three fundamental curricular areas: mathematics, science, and
reading.

The questionnaires in these studies are in a standard format,
to be answered in accordance with a 4-point Likert scale,
namely DISAGREE A LOT, DISAGREE A LITTLE, AGREE A
LITTLE and AGREE A LOT. As indicated in De la Rosa de

Sáa et al. [8], only limited conclusions can be obtained when
the Likert scale responses are encoded by consecutive integer
numbers.

On the other hand, the fuzzy rating scale has been intro-
duced (Hesketh et al. [37]) as an approach that allows to
combine a free-response format with a fuzzy valuation. In the
fuzzy rating scale, along a continuous line between two end-
points

• a respondent first selects or draws a ‘representative po-
sition/interval’ of the respondent rating (i.e., the set of
points which she/he considers to be fully compatible with
such a rating),

• the respondent then also indicates ‘latitudes of accep-
tance’ on either side by determining the highest and
lowest possible positions for the respondent rating (i.e.,
the set of points which she/he considers to be compatible
to some extent with such a rating).

The fuzzy rating scale allows to explore and exploit more
information than the Likert-scale. Moreover, from a statis-
tical perspective the fuzzy rating scale is usually also more
informative than the usual fuzzy linguistic approach (see e.g.
Herrera et al. [38], Dong et al. [39], Rodrı́guez et al. [40] for
some recent contributions to this approach), as shown by De
la Rosa de Sáa et al. [8].

It can be argued that fuzzy rating scale-based question-
naires are not as user-friendly as Likert scales. However,
minor training is usually sufficient to explain non-experts
how to respond on a fuzzy rating scale (see Hesketh et
al. [37]). To show how this fuzzy rating scale works by
means of a simple example, some of the items for the
Student questionnaire TIMSS/PIRLS (see http://timss.bc.edu/
timss2011/downloads/T11 StuQ 4.pdf) have been adapted in
accordance with this scale, and the questionnaire has been
conducted on the fourth grade students of the Colegio San
Ignacio in Oviedo-Asturias (Spain). Note that the questions
have not been modified with respect to the original ques-
tionnaire, but only the fuzzy rating scale has been added
as a second way to respond. The students received instruc-
tions (in Spanish) on how to answer the questions (see
http://carleos.epv.uniovi.es:8080/). We remark that this exam-
ple accurately follows the spirit of Zadeh, who has coined
it as the “precisiation of the imprecise” (see Zadeh [41]).
Surprisingly, no answer has been slightly more frequent with
the Likert than with the fuzzy rating scale.

We now analyze data from one of the considered items (a
different and more detailed analysis of datasets from the whole
adapted questionnaire can be found in Gil et al. [42]), referring
to the degree of agreement with the statement that studying
mathematics is harder than any other subject. The paper-and-
pencil format corresponding to this question is graphically
displayed in Figure 4.

Data from the 68 fourth grade students from Colegio San
Ignacio have been collected. The results are shown in the plot
on the left in Figure 5. The outputs for the four location M-
estimates discussed in the previous section are displayed in
the plot on the right in Figure 5.
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Fig. 4. An item about mathematics to fill out in the double-response
questionnaire
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Fig. 5. Sample fuzzy data and location M-estimates of the 68 fuzzy rating
scale-based responses to Question MS3

It can be seen that Hampel and Huber M-estimates, which
are based on the Dℓ

1/3 metric and use the 1-norm median as
initial solution, coincide.

It can be easily checked that the conditions for the repre-
senter theorem are satisfied for the Huber and Hampel M-
estimates in this example, whence (as shown in Proposi-
tion III-B.3) they preserve the trapezoidal shape of the sample
data.

This appealing property does not hold for the two median-
type M-estimates, as can be seen from Figure 5.

On the other hand, differences in the behavior of the L1-
type medians and the M-estimates in Figure 5 are mainly due
to the influence of the corresponding loss functions. In this
way, Huber and Hampel loss functions ‘penalize’ less (more)
the small (large) distances than the absolute value.

It is interesting to comment that after integer encoding of the
Likert-type responses, the medians for item MS3 correspond
to AGREE A LITTLE (6.6̂). Hence, as already pointed out by
De la Rosa de Sáa et al. [8], the fuzzy rating scale responses
offer richer nuances and expressiveness.

In the literature one can find several arguments to employ
triangular or trapezoidal fuzzy numbers or approximations
preserving exactly or approximately ambiguity, expected inter-
val, etc. (see, for instance, Pedrycz [44], Grzegorzewski [45],
[46], [47], Grzegorzewski and Pasternak-Winiarska [48], Ban
et al. [49], Lubiano et al. [50], and others). However, we
emphasize that to compute the location M-estimation of fuzzy
responses by means of the approaches in this paper, there is
no need for fuzzy data to be trapezoidal/triangular (see e.g.
Kosiński et al. [43] for some examples of other fuzzy data).

IV. EMPIRICAL COMPARATIVE ANALYSIS OF
M-ESTIMATES WITH FUZZY DATA

While it has been shown that the Aumann-type mean is
not robust (Sinova et al. [6], [7]), the M-estimators do show
robust behavior in terms of fsbp as discussed in Section III.
In this section we empirically compare the performance and
robustness of the fuzzy-valued M-estimators in more detail. In
particular, we consider the M-estimators based on the Huber
and Hampel loss functions using the Dℓ

1/3 and Dℓ
1 distances,

as well as the 1-norm and ℓ-wabl/ldev/rdev medians. For each
of the estimators, the mean squared error of the estimator is
approximated by simulation in different settings.

The general scheme of the simulations is as follows:

STUDY 1 (mid-points of the 1-levels generated from a sym-
metric distribution)

Based on four real-valued random variables, trapezoidal
fuzzy data are generated according to X = Tra(X1 − X2

− X3, X1 − X2, X1 + X2, X1 + X2 + X4). Each sample
contains a fraction cp of contaminated observations, where
cp = 0, 0.1, 0.2, or 0.4.

In the first case (CASE 1) the variables Xi are independent.
In particular,
• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2

1 for the regular
observations.

• X1 ∼ N (0, 3)+CD and X2, X3, X4 ∼ χ2
4 +CD for the

contaminated observations.
In the second case (CASE 2) dependence between the vari-
ables Xi is introduced as follows.
• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2

1 +1)2 +0.1 ·χ2
1

for the non-contaminated subsample (with χ2
1 indepen-

dent of X1),
• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ 1/(X2

1 + 1)2

+ 0.1 · χ2
1 + CD for the contaminated subsample (with

χ2
1 independent of X1).

The constant CD, which determines the distance between
the distribution of the regular and contaminated observations,
equals 0, 1, 5, 10, or 100. This yields 16 different settings for
each case.

STUDY 2 (mid-points of the 1-levels generated from an asym-
metric distribution)

For CASE 3, the trapezoidal fuzzy data are generated
according to X = Tra(X(1), X(2), X(3), X(4)), with X(1)

≤ X(2) ≤ X(3) ≤ X(4) the order statistics of X1, X2, X3, X4,
which are distributed as
• X1, X2, X3, X4 ∼ Beta(5, 1) for the regular observa-

tions.
• X1, X2, X3, X4 ∼ Beta(1, CD+1) for the contaminated

observations.
Trapezoidal fuzzy data are generated as in STUDY 1, but now
Xi are distributed as
• X1 ∼ Beta(5, 1), X2 ∼ Uniform[0,min{X1, 1 − X1}],

X3 ∼ Uniform[0, X1 − X2] and X4 ∼ Uniform[0, 1
− X1 −X2] for the regular observations.
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TABLE I
M-ESTIMATE SHOWING THE LOWEST ESTIMATED MEAN SQUARED ERROR FOR THE SIMULATION DESIGNS IN STUDIES 1 AND 2

STUDY 1 - CASE 1 STUDY 1 - CASE 2 STUDY 2 - CASE 3 STUDY 2 - CASE4

cp CD ρ1 Dℓ
1 Dℓ

1/3 ρ2 ρ1 Dℓ
1 Dℓ

1/3 ρ2 ρ1 Dℓ
1 Dℓ

1/3 ρ2 ρ1 Dℓ
1 Dℓ

1/3 ρ2

0.1 0 HAMP∗ HAMP∗ HAMP∗ HAMP∗ 1-n 1-n 1-n 1-n HAMP∗ HAMP∗ HAMP∗ HAMP∗ HAMP HAMP HAMP HAMP
0.1 1 HAMP HAMP HAMP HAMP 1-n 1-n HAMP∗ 1-n HAMP HAMP HAMP HAMP HAMP HAMP HAMP HAMP
0.1 5 HAMP HAMP HAMP HAMP 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP HAMP HAMP HAMP HAMP
0.1 10 HAMP HAMP HAMP HAMP 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP HAMP 1-n 1-n HAMP
0.1 100 HAMP HAMP HAMP HAMP 1-n 1-n HAMP 1-n HAMP HAMP HAMP HAMP HAMP∗ HAMP∗ HAMP∗ HAMP∗

0.2 0 HAMP∗ HAMP∗ HAMP∗ HAMP∗ 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP HAMP HAMP∗ HAMP∗ HAMP∗

0.2 1 HAMP∗ HAMP∗ HAMP∗ HAMP∗ 1-n HAMP∗ HAMP∗ HAMP∗ HAMP HAMP HAMP HAMP HAMP 1-n 1-n HAMP
0.2 5 HAMP HAMP HAMP HAMP 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP HAMP HAMP HAMP HAMP
0.2 10 HAMP HAMP HAMP HAMP 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP HAMP∗ HAMP HAMP∗ HAMP
0.2 100 HAMP HAMP HAMP HAMP 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP HAMP∗ HAMP∗ HAMP∗ HAMP∗

0.4 0 HAMP∗ w/l/r w/l/r HAMP∗ 1-n 1-n 1-n 1-n HAMP HAMP 1-n HAMP HAMP∗ HAMP∗ HAMP∗ HAMP∗

0.4 1 HAMP∗ HAMP∗ HAMP∗ HAMP∗ 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP HAMP∗ HAMP∗ HAMP∗ HAMP
0.4 5 HAMP∗ w/l/r w/l/r w/l/r 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP HAMP w/l/r w/l/r HAMP
0.4 10 HAMP∗ HAMP∗ HAMP∗ w/l/r 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP w/l/r w/l/r w/l/r HUB
0.4 100 HAMP∗ HAMP∗ w/l/r w/l/r 1-n 1-n 1-n 1-n HAMP 1-n 1-n HAMP w/l/r w/l/r w/l/r HUB

• X1 ∼ Beta(1, CD + 1), X2 ∼ min{X1, 1 − X1} ·
Beta(1, CD + 1), X3 ∼ (X1 − X2) · Beta(1, CD + 1)
and X4 ∼ (1 − X1 − X2) · Beta(1, CD + 1) for the
contaminated observations.

The same values of cp and CD as in STUDY 1 are considered.
For each of the four cases above, the simulation study was

performed according to the following steps.
Step 1. To determine the population analog of the M-estimates

for each case, N = 1000 samples of size n = 10000,
consisting of only regular fuzzy-number observations
(cp = CD = 0) have been generated. The population
target for each M-estimator is then taken as the Monte
Carlo average of the corresponding M-estimates in
these N samples.

Step 2. For each case and each combination of cp and CD,
we then generated N = 1000 random samples and
calculated the corresponding M-estimates. Based on
these M-estimates, the mean squared error w.r.t. the
population targets has been computed for each lo-
cation measure, using four different metrics, namely
ρ1,Dℓ

1, D
ℓ
1/3, and ρ2.

The results of our comparative analysis are summa-
rized in Table I, which lists for each setting the M-
estimator that yielded the lowest estimated mean squared
error. We used the abbreviations HAMP = M-estimator
with Hampel loss function, HUB = M-estimator with Hu-
ber loss function, 1-n = 1-norm median, w/l/r = φ-
wabl/ldev/rdev median. The notation ∗ distinguishes the
Hampel and Huber M-estimators computed by means of
the Dℓ

1 distance. The detailed results from the simula-
tions can be found at http://bellman.ciencias.uniovi.es/SMIRE/
Archivos/SimulationsMestimates.pdf.

From Table I it becomes clear that there does not exist a
uniformly most appropriate M-estimator of location. However,
the M-estimator based on Hampel’s loss function seems to be
the most suitable estimator in most of the situations when the
trapezoidal fuzzy data are assumed to be generated from inde-
pendent real random variables. In the case that these variables
are dependent, the 1-norm median seems to be most successful
when mid-points are generated from a symmetric distribution,

whereas there is a high diversity for asymmetrically distributed
mid-points.

Remark IV.1. In addition to the empirical advantages of the
M-estimators based on Hampel’s loss function, it should be
highlighted that thanks to the representer theorem, the M-
estimates of important classes of fuzzy data such as trapezoidal
data are guaranteed to give a location estimate that belongs to
the same class. This is because the estimates are expressible
as weighted averages. This result is not generally true for ad
hoc robust measures, which complicates their interpretation as
measure of the location of the fuzzy data.

V. CONCLUDING REMARKS

One of the advantages of the new location M-estimators
for random fuzzy numbers introduced in this paper lies in the
fact that the recently established representer theorem in the
context of robust density estimation could be easily extended
to the case of fuzzy -number data, as shown in Section III.
Although the M-estimates based on the representer theorem
have been developed for the Dφ

θ metric, other L2 metrics
between fuzzy numbers allowing to embed F∗

c (R) into a
convex cone of a Hilbert space are also worthwhile to consider.
For instance, in most of the examples and simulations in this
paper we have also considered the L2 metric based on the
wabl/ldev/rdev representation introduced in Sinova et al. [3],
but the conclusions were essentially the same.

It should be pointed out that, in spite of the fact that
the mathematical aparatus behind the M-estimates in Subsec-
tions III-A and III-B involves the Hilbert space-valued setting,
the particular case of fuzzy data is definitely much simpler
and easier-to-follow. Furthermore, due to the representer the-
orem, the computations reduce to the calculus of weighted
means. The main practical difficulty concerns the calculus
of the involved weights, but this iterative procedure can be
implemented in R [55] or similar tools.

Finally, an important remaining problem is to adapt the M-
estimates of location with unknown dispersion to the fuzzy-
valued case. This would formally overcome the lack of scale
equivariance for the location M-estimators. Therefore, the
tuning constant(s) in the loss functions would not need to be
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determined from the data anymore. We hope to solve this issue
in the future, when robust dispersion measures for fuzzy data
are also developed.
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