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ABSTRACT
A multisite photometric campaign for the β Cephei and eclipsing variable 16 Lacertae is
reported. 749 h of high-quality differential photoelectric Strömgren, Johnson and Geneva
time series photometry were obtained with 10 telescopes during 185 nights. After removing
the pulsation contribution, an attempt was made to solve the resulting eclipse light curve
by means of the computer program EBOP. Although a unique solution was not obtained, the
range of solutions could be constrained by comparing computed positions of the secondary
component in the Hertzsprung–Russell diagram with evolutionary tracks. For three high-
amplitude pulsation modes, the uvy and the Geneva UBG amplitude ratios are derived and
compared with the theoretical ones for spherical-harmonic degrees � ≤ 4. The highest degree,
� = 4, is shown to be incompatible with the observations. One mode is found to be radial,
one is � = 1, while in the remaining case � = 2 or 3. The present multisite observations are
combined with the archival photometry in order to investigate the long-term variation of the
amplitudes and phases of the three high-amplitude pulsation modes. The radial mode shows
a non-sinusoidal variation on a time-scale of 73 yr. The � = 1 mode is a triplet with unequal
frequency spacing, giving rise to two beat-periods, 720.7 d and 29.1 yr. The amplitude and
phase of the � = 2 or 3 mode vary on time-scales of 380.5 d and 43 yr. The light variation of
2 And, one of the comparison stars, is discussed in the appendix.
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1 IN T RO D U C T I O N

16 (EN) Lacertae = HR 8725 (B2 IV, V = 5.59), a member of Lac
OB1a, is a single-lined spectroscopic binary (Lee 1910; Struve &
Bobrovnikoff 1925) and an eclipsing variable. The orbital period,
derived from the epochs of minimum light, Porb = 12.096 84 d
(Jerzykiewicz 1980; Pigulski & Jerzykiewicz 1988). The system
consists of a well-known β Cephei variable and an undetected sec-
ondary. The β Cephei variation of the primary is dominated by three
pulsation modes with frequencies close to 6 d−1. According to Fitch
(1969, henceforth F69), who based his analysis on archival 1951,
1952 and 1954 radial-velocity (RV) and photoelectric blue-light
observations, the first two modes have constant amplitudes, while
the amplitude of the third mode varies on a time-scale of months.
F69 described the first two modes as singlets, having frequencies
f1 = 5.911 34 and f2 = 5.852 86 d−1, and the third mode as a doublet,
consisting of two terms with frequencies f3,1 = 5.499 90 and f3,2 = f1

− 5forb = 5.497 99 d−1. Comparable frequencies were derived from
the 1964 and 1965 photoelectric observations, obtained by one of
us (MJ) at Lowell Observatory, viz. f1 = 5.911 20 ± 0.000 05,
f2 = 5.855 03 ± 0.000 10, and f3 = 5.503 22 ± 0.000 09 d−1

(Jarzȩbowski et al. 1979). The first value agrees with that of F69, but
the other two differ from F69’s f2 and f3,1 by 0.0022 and 0.0033 d−1,
respectively. From these differences, Jarzȩbowski et al. (1979) con-
cluded that F69’s values of f2 and f3,1 suffered from an error of one
cycle per year (yr−1).

An analysis of all photometric observations of 16 Lac obtained
throughout 1992 was carried out by Jerzykiewicz & Pigulski (1996,
1999, henceforth JP96, JP99). The main results of the analysis
can be summarized as follows: (1) the amplitudes of the f1 and
f2 modes vary on a time-scale of decades, the reciprocal time-
scales amounting to 0.014 and 0.020 yr−1, respectively, (2) the third
mode is confirmed to be a doublet, but with frequencies different
from those derived by F69, viz. f3,1 = 5.502 5779 ± 0.000 0005
and f3,2 = 5.504 0531 ± 0.000 0008 d−1. Note that none of these
frequencies bears a simple numerical relation to the orbital period.
Moreover, JP96 demonstrated that there is no correlation of the
pulsation amplitudes with the orbital phase.

The RV data available at the time were shown by JP96 to be
consistent with the above-mentioned photometric results. The RV
data, however, were much less numerous than the photometric data,
making this conclusion somewhat uncertain. The situation has im-
proved after Lehmann et al. (2001, henceforth L01), provided new
RV observations, more than doubling the number of existing mea-
surements. A periodogram analysis of these and the older data led
L01 to a number of frequency solutions, the details of which de-
pended on the weights assigned to the RV measurements from a
particular source. As far as the periods are concerned, the results
valid for all weighting schemes can be summarized as follows: (1)
the first mode is an equidistant triplet with the central term having
the largest amplitude and a period, P1, equal to 0.169 167 07 d
(f1 = 5.911 316 0 d−1). The remaining two periods, P +

1 and P −
1 in

the notation of L01, are equal to 0.169 166 05 and 0.169 168 09 d,
respectively. The frequency separation of the triplet amounts to
0.000 0356 d−1, corresponding to the amplitude-modulation fre-
quency of 0.0130 yr−1, (2) the second mode is a doublet; in the order
of decreasing amplitude, the periods, P2 and P +

2 in the notation of
L01, are equal to 0.170 855 53 and 0.170 770 74 d, respectively
(f2 = 5.852 8981 and f +

2 = 5.855 8041 d−1), resulting in a beat pe-
riod of 344 d (the beat frequency of 0.002 91 d−1), (3) the third mode
is also a doublet; in the order of decreasing amplitude the periods
are P3 = 0.181 732 51 and P +

3 = 0.181 683 52 d (f3 = 5.502 5928

and f +
3 = 5.50407 65 d−1); in this case the beat period is equal to

674 d. Conclusions (1) and (3) approximately agree with the results
of JP96 and JP99, but conclusion (2) does not. The disagreement
is twofold. First, the time-scale of the amplitude modulation of the
f2 term derived by L01 is less than one fiftieth of that derived by
JP96 and JP99. Secondly, L01’s f2, i.e. the frequency of the higher
amplitude component of the f2, f +

2 doublet has a value close to that
originally determined by F69 and dismissed by Jarzȩbowski et al.
(1979) as a yearly alias of the photometric f2 value they derived.
Note that f2 of Jarzȩbowski et al. (1979) is close to f +

2 , the frequency
of the smaller amplitude component of the f2, f +

2 doublet. This, of
course, is the consequence of the doublet’s beat-period having its
value close to 1 yr.

In addition to the three modes just discussed, six fainter terms
were detected by Jerzykiewicz (1993) in his 1965 data. The v am-
plitudes of these terms ranged from 2.1 ± 0.14 to 0.7 ± 0.14 mmag,
and the frequencies were equal to (in the order of decreasing am-
plitude) 0.1653, 7.194, 11.822, 11.358, 11.414, and 11.766 d−1.
The first of these is equal to twice the orbital frequency, suggesting
ellipsoidal variability. However, the observed amplitude and phase
excluded this possibility. The third frequency is equal to 2f1 and the
three last frequencies are the combination terms f2 + f3, f1 + f3 and
f1 + f2. The 7.194-d−1 term was attributed by Jerzykiewicz (1993)
to an independent pulsation mode and was used as such, together
with the three strongest ones, in an asteroseismic study of the star
(Dziembowski & Jerzykiewicz 1996). Subsequently, however, this
term was shown by Sareyan et al. (1997) and Handler et al. (2006) to
be due to a light variation of 2 Andromedae, used by Jerzykiewicz
(1993) as a comparison star.

During a multisite photometric campaign carried out between
2003 August 2 and 2004 January 9, 16 Lac has been observed to-
gether with the β Cephei variable 12 (DD) Lacertae. Results of
the observations of 12 Lac and their analysis were published some
years ago (Handler et al. 2006). In the next section, we describe
the 2003–2004 multisite campaign’s photometric observations and
reductions. In Section 3, we carry out a frequency analysis of the
campaign’s uvy time series of 16 Lac. In Section 4, we use the anal-
ysis results to remove the intrinsic component of the variation from
the time series, thus bringing out the eclipse, and discuss the eclipse
solutions and the evolutionary state of the secondary component. In
Section 5, we derive the primary component’s fundamental parame-
ters. Section 6 is devoted to determining the harmonic degree of the
three highest amplitude pulsation modes of 16 Lac. The long-term
variation of the photometric amplitudes and phases of these three
modes is investigated in Section 7 using the present and archival
data. The last section contains a summary and discussion of the
results. The light variation of 2 And is examined in the appendix.

2 O B S E RVAT I O N S A N D R E D U C T I O N S

Our 2003–2004 photometric observations of 16 Lac were carried out
at 10 observatories on three continents with small- to medium-sized
telescopes (see Table 1). In most cases, single-channel differential
photoelectric photometry was acquired. At the Sobaeksan Opti-
cal Astronomy Observatory (SOAO) and the Białków Observatory
(BO) the photometry was done with CCD cameras. Wherever possi-
ble, Strömgren uvy filters were used. At the Sierra Nevada and San
Pedro Martir (SPM) Observatories simultaneous uvby photometers
were available, including b filters as well. However, the u data from
SPM were unusable. At BO, a Strömgren y filter was used. At four
observatories where no Strömgren filters were available, we used
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726 M. Jerzykiewicz et al.

Table 1. Log of the photometric measurements of 16 Lac. Observatories are listed in the order of their geographic longitude.

Amount of data
Observatory Longitude Latitude Telescope (Nights) (h) Filter(s) Observer(s)

Sierra Nevada −3◦23′ 37◦04′ 0.9 m 18 75.9 uvby ER, PJA, RG
Mercator −17◦53′ 28◦46′ 1.2 m 33 104.2 Geneva KU, RD, JDD, TV,

JDR, BA, POB
Fairborn −110◦42′ 31◦23′ 0.75-m APT 57 205.5 uvy –
Lowell −111◦40′ 35◦12′ 0.5 m 19 96.8 uvy MJ
SPM −115◦28′ 31◦03′ 1.5 m 10 36.4 uvby EP, JPS, LP
Sobaeksan Optical +128◦27′ 36◦56′ 0.6 m 5 31.9 V SLK, JAL, SHK
Astronomy
Mt. Dushak-Erekdag +57◦53′ 37◦55′ 0.8 m 12 63.4 V TND, NID
Mayaki +30◦17′ 46◦24′ 0.5 m 6 13.0 V AIM
Piszkéstető +19◦54′ 47◦55′ 0.5 m 13 56.1 V MP, DZ, DL, VA
Białków +16◦40′ 51◦29′ 0.6 m 12 67.2 y ZK, GM, JMŻ, AP, MS

Total 185 749.3

Johnson’s V. Finally, as the photometer at the Mercator telescope
had Geneva filters installed permanently, we used this filter sys-
tem. We chose the two ‘classical’ comparison stars: 10 Lac (O9V,
V = 4.88) and 2 And (A3Vn, V = 5.09). A check star, HR 8708
(A3Vm+F6V, V = 5.81), was additionally observed during one of
the SPM runs. HD 216854 (F5, V = 7.31) was used as a comparison
star at SOAO; its constancy was checked against two fainter stars. At
BO, BD +40◦4950a = PPM 63607 = GSC 3223−01835 (F5/K0,
V = 9.29) was used as a sole comparison star. In order to compen-
sate for the large brightness difference between the programme and
the comparison star (∼3.7 mag), BO observers took a sequence
of CCD frames with short and long exposure-times, such that
16 Lac was well exposed on the frames with short exposure-times,
while the comparison star, on the frames with long exposure-times.
Reductions of the SOAO and BO observations included calibrat-
ing all CCD frames in a standard way and processing them with the
DAOPHOT II package (Stetson 1987). Then, magnitudes were obtained
by means of aperture photometry, the magnitudes of the comparison
stars were interpolated for the times of observation of 16 Lac and
differential magnitudes were calculated. In the case of the BO data,
several consecutive data points were averaged, resulting in the final
time series.

As we mentioned in the Introduction, 2 And turned out to be
a low-amplitude periodic variable. We shall discuss the variability
of 2 And in the appendix. No evidence for photometric variability
of 10 Lac was found. We thus proceeded by pre-whitening the
variability of 2 And with a fit determined from all its differential
magnitudes relative to 10 Lac. The residual magnitudes of 2 And
were then combined with the 10 Lac data into a curve that was
assumed to reflect the effects of transparency and detector sensitivity
changes only. These combined time series were binned into intervals
that would allow good compensation for the above-mentioned non-
intrinsic variations in the target star time series and were subtracted
from the measurements of 12 and 16 Lac. Note that the binning
minimizes the noise in the differential light curves of the targets.
Finally, the photometric zero-points of the different instruments
were compared and adjusted if required. In particular, adjustments
were necessary for the SOAO and BO observations because they
were obtained with different comparison stars. Measurements in the
Strömgren y and the Johnson and Geneva V filters were analysed
together because these filters have very nearly the same effective
wavelength; the combined y, V light curve is henceforth referred to
as ‘the y data.’ For further details of the reductions, common to 12
and 16 Lac, see Handler et al. (2006).

For both stars, 12 and 16 Lac, the y data were the most exten-
sive by far. In the case of 16 Lac, there were 3190 y-filter mea-
surements (including Johnson and Geneva V-filter measurements,
see above), 2012 v-filter measurements, and 1686 u-filter measure-
ments. The Mercator, Fairborn, Lowell, and Mayaki data included
measurements falling between the first and the fourth contacts of
six eclipses. Omitting these measurements resulted in the time se-
ries suitable for frequency analysis; in the process, the number of
measurements was reduced to 3055, 1895, and 1583 in y, v, and
u, respectively. In all cases, the measurements spanned an interval
of 179.2 d. The number of measurements in the Geneva filters was
411, with 395 taken outside eclipses. In both cases the data spanned
129.9 d. A sample of the light curves of 16 Lac is presented in
Fig. 1.

3 FR E QU E N C Y A NA LY S I S

Using the results of JP99’s analysis (see the Introduction), we can
predict blue-light amplitudes of the fi (i = 1, 2, 3) modes for the
epochs of our 2003–2004 observations. In the case of f1 and f2, the
amplitudes predicted under an assumption of sinusoidal variations
with the reciprocal time-scales of 0.014 and 0.020 yr−1 amount to
12.4 and 15.1 mmag, respectively, and both amplitudes should be
very nearly constant over the 179.2-d interval spanned by the data.
In the case of f3, the amplitude should increase from 3.9 to 9.6 mmag
over this interval. A preliminary analysis of the y data showed that
these predictions are in error, grossly so in the case of the first two
modes. In order to examine this issue in detail, we divided the y,
v, and u data into adjacent segments; except for the first segments
in all filters and the last two segments in v and u, the segments
partly overlapped. The first y segment spanned 40 d and each of the
remaining y, v, and u segments, about 29 d. In each segment, we
then derived the amplitudes, Ai (i = 1, 2, 3), by the method of least
squares using the following observational equations:

�mj = A0 +
N∑

i=1

Ai cos(2πfitj + �i), (1)

where N = 3, �mj are the y, v, or u differential magnitudes, fi (i = 1,
2, 3) are assumed to be equal to 5.9112, 5.8550 and 5.5032 d−1,
respectively, and tj are HJD ‘minus’ an arbitrary initial epoch. The
assumed values of the frequencies fi (i = 1, 2, 3) are approximately
equal to the weighted means of the values given in Tables 4, 5 and 8,
respectively, with the weights equal to the corresponding amplitudes
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16 (EN) Lac and 2 And 727

Figure 1. A sample of our u, v, and y light curves of 16 Lac (plus signs, diamonds, and circles, respectively). The lines are the synthetic light curves computed
as explained in Section 3. Note the deviation of the measurements from the fit due to three consecutive eclipses on the nights JD 245 2917, JD 245 2929, and
JD 245 2941. The amount of data displayed is about half the total.

(see Section 7). Note that the first y segment covers about two cycles
of the longest beat-period in the variation of 16 Lac, the one arising
from the interference of f1 and f2, and the remaining segments,
about 1.5 cycle. An examination of the residuals from the least-
squares solutions revealed six deviant observations in the second
y segment, all from the Mayaki Observatory. After rejecting these
observations, the residuals in all but one segment fell within an
interval of ±0.015 mag; the exception was the first u segment in
which there were five residuals outside the ±0.015 mag interval,
but all smaller in their absolute value than 0.018 mag.

Results of the above exercise are presented in Fig. 2 for the y and
v amplitudes (points and circles, respectively), and in Fig. 3 for u.
The error bars shown in the figures extend one standard deviation on
each side of the plotted symbols. However, the standard deviations
are not the formal standard deviations of the least-squares solutions
of equations (1) but twice the formal standard deviations. In this,
we follow Handler et al. (2000) and Jerzykiewicz et al. (2005)
who – while dealing with time series observations similar to the
present ones – showed that the formal standard deviations were
underestimated by a factor of about 2.

The solid line in the bottom panel of Fig. 2 shows the predicted
blue-light amplitude of the f3 mode (see the first paragraph of
this section). The predicted blue-light amplitude of the f1 mode,
12.4 mmag, is a factor of about 2 greater than the observed y and
v amplitudes seen in the top panel of Fig. 2. In the case of the f2

mode, the prediction fails on two accounts: (1) the observed ampli-
tudes vary from nearly zero to about 0.8 of the predicted value of

Figure 2. The y (points) and v (circles) amplitudes of the f1, f2, and f3
modes of 16 Lac (from top to bottom) plotted as a function of HJD. The
line in the bottom panel shows predicted blue-light amplitude of the f3 mode
(see the text for details).
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728 M. Jerzykiewicz et al.

Figure 3. The u amplitudes of the f1, f2, and f3 modes of 16 Lac (from top
to bottom) plotted as a function of HJD.

15.1 mmag on a time-scale about 50 times shorter than that deter-
mined by JP99, and (2) the median values of the observed y and v

amplitudes are a factor of about 2 smaller than predicted blue-light
amplitude.

Standard frequency analysis and successive pre-whitening with
sinusoids applied to the 2003–2004 y magnitudes yielded the fol-
lowing frequencies (in the order they were identified from the power
spectra): 5.503, 5.591, 5.856 and 5.852 d−1. The first three numbers
are very nearly equal to f3, f1 and f2, while the fourth is close to f2.
The amplitudes amounted to 8.8, 5.9, 4.3 and 1.8 mmag, respec-
tively. The first two amplitudes are close to the mean y amplitudes
A3 and A1, while the sum of the third and the fourth is close to
the mean A2 (see Fig. 2). In addition, the fourth frequency differs
from the third by less than the frequency resolution of the data.
Clearly, the fourth frequency is an artefact. This shows that because
of the variable amplitudes of the f2 and f3 modes, the usual proce-
dure of pre-whitening with sinusoids is inadequate in the present
case. Therefore, instead of the usual procedure, we tried the fol-
lowing two methods: (1) pre-whitening separately in each segment,
(2) pre-whitening with A1 assumed constant, A2 assumed to vary
quadratically with time, and A3, linearly. Both methods were ap-
plied to the y data; in the case of v and u, we limited ourselves
to method 1. In method 1, we computed residuals from the least-
squares fit of equation (1) in each segment. Then, we took straight
means of the residuals for a given tj in the overlapping parts of adja-
cent segments, so that for each tj there was one residual. In method
2, we used equation (1) with A1 = const, A2 = B1 + C1tj + D1t

2
j ,

and A3 = B2 + C2tj. Since the first segment’s A2 would not fit the
quadratic relation derived from the remaining segments (see the
middle panel of Fig. 2), we applied the quadratic equation sepa-
rately to this segment and then to the remaining data. In this case,
there was no need to average residuals because the first and sec-
ond segment do not overlap. Using the residuals as data, we then
computed the amplitude spectra and the signal-to-noise ratio (S/N)
as a function of frequency, where S is the amplitude for a given

Figure 4. The S/N spectra, computed from the y data pre-whitened with
the frequencies f1 = 5.9112 d−1, f2 = 5.8550 d−1, and f3 = 5.5032 d−1 by
means of method 1 (upper panel) and method 2 (lower panel). For details,
see the text.

frequency, and N is the mean amplitude in 1 d−1 frequency inter-
vals; in the first frequency interval, we omitted the amplitudes for
f ≤ 1/T, where T is the total span of the data. For the y residuals,
the S/N are plotted in Fig. 4 as a function of frequency. We shall
refer to the plots of this sort as the signal-to-noise spectra or S/N
spectra. In Fig. 4, the S/N spectra are shown for method 1 and 2 in
the upper and lower panel, respectively. In both cases, the highest
S/N peak occurs at 11.359 d−1, a frequency very nearly equal to
the combination frequency f2 + f3. The corresponding amplitudes
amount to 0.56 and 0.59 mmag, and the S/N values are equal to 4.3
and 4.5, respectively. Thus, both peaks are significant according to
the popular criterion of Breger et al. (1993). In the S/N spectrum
of method 1 residuals pre-whitened with f2 + f3, the highest peak,
having the amplitude of 0.64 mmag and S/N = 4.2, occurred at
6.299 d−1. In the analogous spectrum of method 2 residuals, there
were no peaks with S/N >4; the peak at 6.299 d−1 had S/N = 3.4.
The frequency of 6.299 d−1 we shall refer to as f4. In the S/N spec-
trum of method 1 residuals pre-whitened with the five frequencies,
there was a peak at 0.085 d−1, rather close to forb, but there was
no peak at 2forb, although one was present at this frequency in the
power spectra of the 1965 V data (see fig. 1 of Jerzykiewicz 1993).
The amplitude and S/N at forb were equal to 0.55 mmag and 2.1,
respectively. At 2forb, the corresponding numbers were 0.34 mmag
and 1.3, respectively; the 1965 V amplitude was equal to 2.1 mmag.

In the case of the v-filter residuals, computed using method 1, the
S/N spectrum showed the highest peak at 6.301 d−1, very nearly
equal to f4. In the second S/N spectrum, obtained from the residuals
computed with this frequency included in pre-whitening, the highest
peak occurred at 11.359 d−1, the same combination frequency as
that found in the y residuals. The S/N amounted to 3.8 and 3.9 in
the first and the second spectrum, so that in the second spectrum
the Breger et al. (1993) criterion of S/N >3.5 for a combination
frequency was satisfied. The amplitudes were now greater than
the y-filter ones, viz. 0.61 and 0.64 mmag, respectively. At low
frequencies, there were peaks close to forb and 2forb. The S/N and
the amplitude at forb amounted to 2.7 and 0.66 mmag, while at 2forb,
to 2.4 and 0.58 mmag. The phase of maximum light of the forb term
was 0.49 ± 0.04 orbital phase, suggesting a reflection effect. In the
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Figure 5. The y, v and u residuals from the five-term pulsational solutions
plotted as a function of orbital phase. The y deviant points (see Fig. 6) are
not shown.

case of the 2forb term, the phase of maximum light was 0.51 ± 0.04
orbital phase, excluding an ellipsoidal variation as the cause. The
1965 B amplitude at 2forb was equal to 1.6 mmag, and the phase
of maximum light was 0.68 ± 0.02 orbital phase (see Jerzykiewicz
1993, table 7). In the case of the u-filter residuals, the highest peak
in the first S/N spectrum was at 12.359 d−1, the +1 d−1 alias of
the combination frequency f2 + f3. In the second S/N spectrum, the
highest peak occurred at 1.092 d−1, and the second highest peak, at
6.301 d−1. At 11.359 d−1 in the first spectrum and at 6.301 d−1 in
the second spectrum, S/N were equal to 3.9 and 3.1, respectively,
and the f2 + f3 and f4 amplitudes were equal to 0.82 and 0.80 mmag.
At forb, the S/N and the amplitude amounted to 2.0 and 0.75 mmag,
while at 2forb, to 1.0 and 0.38 mmag.

The S/N spectrum of the y residuals, computed by means of
method 1 but with all five significant terms (i.e. f1, f2, f3, f2 + f3,
and f4) included showed no peaks higher than 3.8. We decided to
terminate the frequency analysis at this stage. The y, v, and u fits
computed with the five terms taken into account were used to plot
the synthetic light curves in Fig. 1.

4 THE ECLIPSE

4.1 The EBOP solutions

The residuals, computed by means of method 1 with the five terms
taken into account (see the last paragraph of the preceding section)
for all y, v, and u observations, including those obtained during
eclipses, are plotted in Fig. 5 as a function of orbital phase. The
ephemeris used in computing the phases was that of Pigulski &
Jerzykiewicz (1988), i.e.

Min. light = HJD 243 9054.568 + 12.096 84E. (2)

In Fig. 6, the y residuals are shown in a limited range of orbital phase
around the primary eclipse (lower panel) and those around the phase
of the secondary mid-eclipse, predicted by the spectroscopic ele-
ments from solution IV of L01 (upper panel). No secondary eclipse

Figure 6. The y residuals from the five-term pulsational solution in a limited
interval of orbital phase around the primary and secondary eclipse. The
vertical line in the upper panel indicates the predicted epoch of the secondary
mid-eclipse. The other lines are fragments of the synthetic light curve,
computed as described in the text. The open circles are deviant points not
included in the analysis.

can be detected: the mean y residual in the ±0.008 phase interval
around the predicted mid-eclipse epoch amounts to 0.2 ± 0.4 mmag.
Clearly, the secondary component is much fainter than the primary.

In an attempt to derive the parameters of 16 Lac, we used
Etzel’s (1981) computer program EBOP. The program, based on the
Nelson–Davis–Etzel model (Nelson & Davis 1972; Popper & Etzel
1981), is well suited for dealing with detached systems such as the
present one. The spectroscopic parameters ω and e, needed to run
the program, were taken from solution IV of L01. The components
were assumed to be spherical because the secondary component’s
mass is much smaller than that of the primary and the system is
well detached: for any reasonable assumption about the primary
component’s mass, the mass ratio would be equal to about 0.13 and
the semimajor axis of the very nearly circular relative orbit, to about
50 R� or eight primary component’s radii. However, we included
reflected light from the secondary because a trace of a reflection
effect can be seen in Fig. 5, especially in y and v, in agreement
with the results of the frequency analysis (see the fourth and the
penultimate paragraphs of Section 3). The primary’s limb-darkening
coefficients were interpolated from table 2 of Walter Van Hamme1

for Teff = 22 500 K, log g = 3.85 (see Section 5.1) and [M/H] = 0
(Thoul et al. 2003; Niemczura & Daszyńska-Daszkiewicz 2005).
Unfortunately, since nothing is known about the secondary com-
ponent except that it is much fainter than the primary, the central
surface brightness of the secondary, Js, which EBOP uses as a funda-
mental parameter, must be derived indirectly. In units of the central
surface brightness of the primary, we have

Js = k−2 (1 − up/3) ls

(1 − us/3) lp
, (3)

where lp and ls are the normalized lights of the primary and the sec-
ondary, respectively, up and us are the limb darkening coefficients,
and k = rs/rp is the ratio of the radii. For y, we have

log
ls

lp
= 2 log k + 4 log kT + �BC/2.5, (4)

1 http://www2.fiu.edu/∼vanhamme/limdark.htm, see also Van Hamme
(1993)
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where kT = Teff,s/Teff,p is the ratio of the effective temperatures of
the components and �BC = BCs − BCp is the difference of the
bolometric corrections. Introducing ls/lp from this equation into
equation (3) we get

Js = 1 − up/3

1 − us/3
k4

T10�BC/2.5. (5)

The bolometric correction of the primary component was taken from
table 3 of Flower (1996) for Teff,p = 22 500 K. Assuming Teff,s, we
read the secondary’s bolometric correction from the same table as
above. Assuming further log g = 4.0 and [M/H] = 0, we read the
secondary’s limb-darkening coefficients from table 2 of Walter Van
Hamme. Setting the integration ring size to 1◦ and the remaining pa-
rameters to their default EBOP values, we run the program for several
values of Teff,s with rp, the relative radius of the primary component,
i, the inclination of the orbit, k, the ratio of the radii, and Ss, the
reflected light from the secondary as unknowns. As data, we used
the y residuals (see Fig. 5, bottom panel). Unfortunately, we failed
to find a solution which would converge. Convergent solutions were
obtained if one of the first three unknowns, rp, i or k, was fixed. After
a number of trials, we decided to fix k, leaving rp, i, and Ss as the un-
knowns. For a given k, identical triples of rp, i, and Ss were obtained
for different Teff,s, i.e. different Js. For example, for k = 0.23, rp

was equal to 0.1278 ± 0.0015 and i was 82.◦93 ± 0.◦10, the same for
Teff,s = 5000 and 6050 K; Ss was equal to 0.000 23 ± 0.000 05 for
5000 K, and to 0.00025 ± 0.000 05 for 6050 K. The synthetic light
curves computed from these solutions were very nearly identical
everywhere but around the secondary eclipse: the computed depth
of the secondary eclipse was equal to 0.1 mmag for Teff,s = 5000 K,
while it was 0.7 mmag for Teff,s = 6050 K. The mean residual in
the ±0.008 phase interval around the predicted mid-eclipse epoch
amounted to 0.3 ± 0.4 and −0.2 ± 0.4 mmag for 5000 and 6050 K,
respectively. The mean residual was equal to 0.0 ± 0.4 mmag for
5750 K, and the computed depth of the secondary eclipse was then
0.5 mmag. For this computed depth of the secondary eclipse, the
mean residual was equal to 0.0 ± 0.4 mmag regardless of k.

4.2 Evolutionary state of the secondary component

For a range of k, synthetic light curves computed from the solutions
with an assumed depth of the secondary eclipse are indistinguish-
able from one another. Each solution yields an abscissa for plotting
the secondary component in the HR diagram. For an assumed mass
of the primary component, one can also have the secondary’s radius
in absolute units from rp, i and the spectroscopic elements K1 and
e, and therefore, the secondary’s ordinate in the HR diagram. For
three values of the assumed depth of the secondary eclipse, 0.1, 0.5
and 0.7 mmag, and the primary component’s mass Mp = 10 M�,
positions of the secondary component in the HR diagram are shown
in Fig. 7 for a range of k. For the range of k shown in Fig. 7, the
assumption of Mp = 10 M� implies 1.30 ≤ Ms < 1.31 M�. There-
fore, without making noticeable errors, we can compare the HR-
diagram positions of the secondary component with M = 1.30 M�
evolutionary tracks. The evolutionary tracks plotted in the figure
are the 1.30 M�, Y = 0.265, Z = 0.0175 Pisa pre-main-sequence
(pre-MS) tracks (Tognelli, Prada Moroni & Degl’Innocenti 2011,
http://astro.df.unipi.it/stellar-models/). The tracks were computed
using the mixing-length theory of convection with three values of
the mixing length l = αHp, where α is the mixing-length parameter
and Hp is the pressure scaleheight. The mid-value of l (α = 1.68)
was calibrated by means of the Pisa standard solar model (for fur-
ther details see Tognelli et al. 2011). The thickened segment of the

Figure 7. The HR-diagram positions of the secondary component of
16 Lac for three series of eclipse solutions, obtained with the ratio of the
radii k = rs/rp as the parameter and assuming the depth of the secondary
eclipse to be equal to 0.1 mmag (open circles), 0.5 mmag (dots) and 0.7
mmag (open squares). The open circles correspond to k from 0.21 to 0.31
with a step of 0.02, the dots, to k from 0.21 to 0.27 with a step of 0.02, and
the open squares, to k equal to 0.21, 0.23, and 0.25; three open circles and
one dot are labelled with their values of k. Also shown are Pisa 1.3 M�
pre-MS evolutionary tracks for three values of the mixing-length parameter
α (the solid line, the green dash–dotted line and the red dashed line). The
thickened segment of the α = 1.68 track indicates the age of 16.3 ± 1.3 Myr,
i.e. the evolutionary age of the primary component (see Section 5.2).

α = 1.68 track indicates the age within 1σ of 16.3 Myr, the evo-
lutionary age of the primary component (see Section 5.2). Since
the duration of the pre-MS phase of the primary component’s evo-
lution is of the order of 0.1 Myr, we conclude that the secondary
component is in the pre-MS contraction phase, the same conclusion
as that reached long ago by Pigulski & Jerzykiewicz (1988). Now,
the points of intersection of the three series of the eclipse solutions
in Fig. 7 with the pre-MS tracks constrain the ratio of the radii to
0.23 � k � 0.27. If the mass of the primary component were as-
sumed to be equal to Mp = 8.8 M�, corresponding to Ms ≈1.20 M�,
the constraints would be 0.21 � k � 0.25. If Mp = 11.2 M� (Ms

≈1.40 M�), 0.23 � k � 0.29. Thus, for 8.8 ≤ Mp ≤ 11.2 M� we
get 0.21 � k � 0.29. Over this range of k, the relative radius of the
primary component, rp, is a monotonically increasing function of
k, while the inclination of the orbit, i, is monotonically decreasing
with k, and both are virtually independent of the assumed depth
of the secondary eclipse. Thus, from the last inequality we have
0.125 � rp � 0.132 and 83.◦4 � i � 82.◦0. More importantly, we
can also obtain the lower and upper bound of the logarithmic sur-
face gravity of the primary component: 3.78 � log gp � 3.87. The
formal standard deviations of rp, i and log gp, equal to 0.0013, 0.◦10
and 0.011 dex, respectively, are – not surprisingly – much smaller
than the allowed ranges of rp, i and log gp.

The eclipse solutions which predict the depth of the secondary
eclipse to be equal to 0.5 mmag yield synthetic light curves which
best fit the data around the secondary eclipse (see the end of the last
paragraph of Section 4.1) while they fit the data elsewhere as well as
do the other solutions. The fact that the corresponding line in Fig. 7
(the solid line with dots) crosses the α = 1.68 evolutionary track
at an evolutionary age within the range of the evolutionary age of
the primary component (see Section 5.2) is encouraging. It would
be worthwhile to carry out space photometry of 16 Lac in order to
find out whether the depth of the secondary eclipse is indeed close
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to 0.5 mmag. In any case, space photometry will be necessary to
better constrain the range of k, and therefore the ranges of rp, i and
log gp.

5 FU N DA M E N TA L PA R A M E T E R S

5.1 The effective temperature and the surface gravity

The effective temperature and surface gravity of 16 Lac can be
obtained from the Strömgren indices using several photometric cal-
ibrations available in the literature. The c1 index from Hauck &
Mermilliod (1998), corrected for the interstellar reddening in the
standard way (Crawford 1978), yielded the following values of Teff

(with the calibration referenced in the parentheses after each value):
22 435 K (Davis & Shobbrook 1977), 22 580 K (UVBYBETA2),
22 430 K (Sterken & Jerzykiewicz 1993), and 22 635 K (Balona
1994). In the case of the Balona (1994) calibration, the β index
was also needed in addition to c0. Taking a straight mean of these
values, we get Teff = 22 520 K, with a formal standard error equal
to 50 K. The latter number is so small because the four photometric
calibrations are not independent; they all rely heavily on the OAO-2
absolute flux calibration of Code et al. (1976). Realistic standard
deviations of the effective temperatures of early-type stars, esti-
mated from the uncertainty of the absolute flux calibration, amount
to about 3 per cent (Napiwotzki et al. 1993; Jerzykiewicz 1994) or
680 K for the Teff in question. Thus, Teff of 16 Lac, obtained from
the Strömgren indices, is equal to 22 520 ± 680 K. The most re-
cent spectroscopic determinations of Teff include 22 900 ± 1000 K
(Thoul et al. 2003), 21 500 ± 750 K (Prugniel, Vauglin & Koleva
2011) and 23 000 ± 200 K (Nieva & Przybilla 2012). A straight
mean of these numbers is equal to 22 470 ± 480 K, in surpris-
ingly good agreement with the photometric value. We shall adopt
22 500 ± 600 K as the Teff of 16 Lac.

The logarithmic surface gravity of 16 Lac derived from β and
c0 turned out to be equal to 3.93 (UVBYBETA) and 3.90 (Balona
1994). The good agreement between these values may be mislead-
ing: according to Napiwotzki et al. (1993), the uncertainty of photo-
metric surface gravities of hot stars is equal to 0.25 dex. We conclude
that the photometric log g of 16 Lac is equal to 3.90 ± 0.25. The
spectroscopic values of log g are equal to 3.80 ± 0.20 (Thoul et al.
2003), 3.75 ± 0.17 (Prugniel et al. 2011) and 3.95 ± 0.05 (Nieva &
Przybilla 2012). A straight mean of these numbers is equal to 3.83,
with a standard error equal to 0.06 dex. We shall adopt 3.85 ± 0.15
as the log g of 16 Lac, where the adopted standard deviation, equal to
the median of the standard deviations of the individual log g values,
is a compromise between the standard deviation of the photomet-
ric log g and that of the spectroscopic log g of Nieva & Przybilla
(2012). Note that because of negligible brightness of the secondary
component, the Teff and log g we adopted pertain to the primary
component.

5.2 The effective temperature – surface gravity diagram

In Fig. 8, the primary component of 16 Lac is plotted in the log Teff–
log g plane using the effective temperature and surface gravity from

2 A FORTRAN program based on the grid published by Moon & Dworetsky
(1985). Written in 1985 by T.T. Moon of the University London and modified
in 1992 and 1997 by R. Napiwotzki of Universitaet Kiel (see Napiwotzki,
Schönberner & Wenske 1993).

Figure 8. The primary component of 16 Lac plotted in the effective temper-
ature – surface gravity plane using Teff and log g from Section 5.1 (dot with
error bars). The dashed horizontal lines indicate the lower and upper bound
of log gp, obtained in Section 4.2 from the eclipse solutions and pre-MS
evolutionary tracks. The 9, 10 and 11 M� evolutionary tracks are explained
in the text.

Section 5.1 (dot with error bars). The dashed horizontal lines indi-
cate the lower and upper bound of log gp, obtained in Section 4.2
from the eclipse solutions. Also shown are evolutionary tracks com-
puted by means of the Warsaw–New Jersey evolutionary code (see
e.g. Pamyatnykh et al. 1998), assuming the initial abundance of hy-
drogen X = 0.7 and the metallicity Z = 0.015, the OPAL equation
of state (Rogers & Nayfonov 2002) and the OP opacities (Seaton
2005) for the latest heavy element mixture of Asplund et al. (2009).
For lower temperatures, the opacity data were supplemented with
the Ferguson tables (Ferguson, Alexander & Allard 2005; Serenelli
et al. 2009). We assumed no convective-core overshooting and
Vrot = 20 km s−1 on the zero-age main sequence, a value consistent
with the observed Vrotsin i (Gł ↪ebocki, Gnaciński & Stawikowski
2000) under the assumption that the rotation and orbital axes are
aligned. The effect of rotation on log g was taken into account by
subtracting the centrifugal acceleration, amounting in the present
case to about 0.001 dex.

The evolutionary mass at the position of the dot in Fig. 8,
Mev = 9.8 ± 1.3 M�; the standard deviation of log g is responsible
for the standard deviation of Mev. If the lower and upper bound of
log gp were used, the result would be 9.3 � Mev � 10.8 M�. Ac-
cording to Nieva & Przybilla (2012), Mev = 9.8 ± 0.3 M�. In this
case, the small standard deviation of Mev is the consequence of the
small standard deviations these authors assign to their spectroscopic
Teff and log g. The evolutionary age of 16 Lac, obtained from Fig. 8,
amounts to 16.3 ± 1.5 Myr, in surprisingly good agreement with the
Blaauw’s (1964) estimate of the age of Lac OB1a. The most recent
asteroseismic analysis of the star (Thoul et al. 2003) has led to a
mass of 9.62 ± 0.11 M� and an age of 15.7 Myr. Clearly, the accu-
racy of the asteroseismic values is much higher than that attainable
by either the photometric or spectroscopic method. However, the
sensitivity of the asteroseismic values to the details of modelling
needs to be examined. We leave this for a future paper.

6 TH E H A R M O N I C D E G R E E O F T H E TH R E E
H I G H E S T A M P L I T U D E M O D E S

6.1 From the uvy data

Our data are the most extensive photometric observations of 16 Lac
ever obtained. In addition, the three photometric passbands we used
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Table 2. The uy and uv amplitude ratios for the three highest amplitude modes. In the case of f2, the HJD 245 855.4 values were omitted in
computing the weighted means.

f1 f2 f3
HJD-245 2800 Ay/Au Av/Au Ay/Au Av/Au Ay/Au Av/Au

55.4 0.565 ± 0.078 0.560 ± 0.082 0.324 ± 0.870 0.270 ± 0.900 0.643 ± 0.088 0.697 ± 0.096
107.1 0.494 ± 0.040 0.540 ± 0.040 0.697 ± 0.108 0.843 ± 0.114 0.649 ± 0.040 0.723 ± 0.040
124.8 0.489 ± 0.028 0.567 ± 0.030 0.753 ± 0.066 0.816 ± 0.072 0.655 ± 0.026 0.719 ± 0.028
135.1 0.505 ± 0.034 0.588 ± 0.040 0.743 ± 0.072 0.831 ± 0.084 0.647 ± 0.028 0.706 ± 0.034
160.0 0.444 ± 0.050 0.494 ± 0.056 0.663 ± 0.084 0.676 ± 0.088 0.643 ± 0.042 0.685 ± 0.044
198.4 0.440 ± 0.060 0.517 ± 0.070 0.758 ± 0.056 0.818 ± 0.060 0.676 ± 0.046 0.723 ± 0.052

Wt. Mean = 0.488 ± 0.021 0.554 ± 0.023 0.734 ± 0.035 0.800 ± 0.038 0.652 ± 0.020 0.712 ± 0.022

include one on the short-wavelength side of the Balmer jump and
two in the Paschen continuum. Thus, we can derive the amplitude
ratios, Ay/Au and Av/Au, and the phase differences, �y − �u and
�v − �u, which will be more accurate than any available before
and sensitive to the harmonic degree of the pulsation modes. How-
ever, before computing the amplitudes and the phases we had to
tackle the problem of the differences in the number and the time
distribution between the y, v and u data. Since the u data are fewer
in number and less evenly distributed in time than the y data, there
were fewer u segments than the y segments (compare Fig. 3 with
Fig. 2). Consequently, the mean epochs of the u segments did not
match those of the y segments. To a smaller degree, this was also the
case with the v data. Because the amplitudes vary from one segment
to another, the amplitude ratios computed using amplitudes from
unmatched segments would be biased; the same goes for the phases
and the phase differences. We therefore divided the y and v data
into new segments, in most cases different from those we formed
in Section 3. In the new segments, the initial and final epochs and
the time distribution of the data matched those of the u segments as
closely as the data allowed. Then, the amplitudes and the phases in
each segment were derived by fitting equation (1) with N = 5 to the
data; the frequencies fi (i = 1, . . . ,4) and f5 = f2 + f3 were the same
as in Section 3. Finally, the amplitudes of the three highest ampli-
tude modes from the matching segments were used to compute the
amplitude ratios, and the phases, to compute the phase differences.
In spite of the high quality of our photometry, standard deviations
of the phase differences were rather large, rendering them useless
for mode identification. The amplitude ratios and their weighted
means are listed in Table 2. There is no evidence in the table for a
time-variability of the amplitude ratios, a result consistent with the
fact that we are dealing with normal pulsation modes. In computing
the weighted means, we assumed weights inversely proportional
to the squares of the standard deviations of the components. Stan-
dard deviations of the weighted means were computed by adding
the standard deviations of the components in quadrature and divid-
ing the sum by the number of components. Note that for f2, the
JD 245 2855.4 values are deviant. This is because at this epoch the
f2 amplitudes were close to zero. In computing the weighted means,
we omitted the JD 245 2855.4 values.

A comparison of the observed amplitude ratios with the theoret-
ical ones is presented in Fig. 9. The theoretical amplitudes were
computed according to the zero-rotation formulae of Daszyńska-
Daszkiewicz et al. (2002) using the non-adiabatic pulsational code
of Dziembowski (1977) and Kurucz line-blanketed LTE model at-
mospheres (Kurucz 2004) for [M/H] = 0.0 and the microturbulent
velocity ξ = 2 km s−1. The remaining input parameters were the
same as those used in computing the evolutionary tracks in Sec-
tion 5.2. The calculations were carried out for log Teff and log g

Figure 9. A comparison of the observed (symbols with error bars) and
theoretical (lines) uvy amplitude ratios for the three highest amplitude pul-
sation modes of 16 Lac, f1, f2 and f3. The observed amplitude ratios are the
weighted means listed in the bottom line of Table 2. The theoretical ampli-
tude ratios correspond to the dot in Fig. 8. The theoretical � = 3 amplitude
ratios are shown with the dashed line.

used to plot the dot in Fig. 8. The log gp obtained in Section 4.2, al-
though more precise than log g, was not used because it may be less
accurate on account of being model-dependent. As can be seen from
Fig. 9, f1 should be identified with a radial mode, notwithstanding
that the agreement between the observed and theoretical Ay/Au is
problematic. The remaining two modes are non-radial with � ≤ 3
because neither the � = 0, nor the � = 4 line fits their amplitude
ratios. In the case of f3, the observed and theoretical amplitude ratios
agree to within 1σ for � = 1, while in the case of f2, the observed
Av/Au falls about 1σ below the � = 2 and 3 lines while the observed
Ay/Au lies half-way between the � = 2 and 3 lines.

6.2 From the Geneva UBG data

The data obtained with the Geneva filters (see Section 2) cover
three intervals: JD 245 2861.6 to JD 245 2872.7, JD 245 2921.5 to
JD 245 2949.5, and JD 245 2971.3 to JD 245 2991.5. From the data
in the latter two intervals we derived the amplitude ratios, AG/AU

and AB/AU in the same way as from the uvy data in Section 6.1. The
amplitude ratios are listed in Table 3. The weighted mean amplitude
ratios are plotted as a function of the passbands’ central frequency
in Fig. 10. Also plotted are the theoretical amplitude ratios. The
harmonic-degree identification of � = 0 for f1 and � = 1 for f3

inferred in Section 6.1 from the uvy data is confirmed. In the case
of f2, � = 2 fits now better than � = 3. In addition, � = 3 would be
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Table 3. The Geneva UG and UB amplitude ratios for the three highest amplitude modes.

f1 f2 f3
HJD-245 2800 AG/AU AB/AU AG/AU AB/AU AG/AU AB/AU

135.7 0.477 ± 0.086 0.580 ± 0.086 0.727 ± 0.155 0.821 ± 0.158 0.647 ± 0.060 0.721 ± 0.060
181.9 0.476 ± 0.092 0.563 ± 0.090 0.778 ± 0.112 0.833 ± 0.108 0.676 ± 0.063 0.717 ± 0.060

Wt. Mean = 0.476 ± 0.063 0.572 ± 0.062 0.761 ± 0.096 0.829 ± 0.096 0.661 ± 0.044 0.719 ± 0.043

Figure 10. A comparison of the observed (symbols with error bars) and
theoretical (lines) UBG amplitude ratios for the three highest amplitude
pulsation modes of 16 Lac, f1, f2 and f3; the open square was shifted slightly
along the abscissa to avoid overlap. The observed amplitude ratios are
the weighted means listed in the bottom line of Table 3. The theoretical
amplitude ratios correspond to the dot in Fig. 8.

less satisfactory than � = 2 because of the effect of cancellation in
integrating over the stellar disc. However, the standard deviations
of the f2 amplitude ratios are rather large.

These harmonic-degree identifications, i.e. � = 0 for f1, � = 2
or, less satisfactorily, � = 3 for f2, and � = 1 for f3, agree with
the earlier identifications, based on the UBV amplitude ratios and
the V-amplitude to the RV-amplitude ratio (see Dziembowski &
Jerzykiewicz 1996). They have points in common with the spectro-
scopic identifications of Aerts et al. (2003a,b). An analysis of the
line profiles of the He I λ6678 Å line led Aerts et al. (2003a) to
the conclusion that f1 should be identified with a radial mode, f2,
with an � = 2, m = 0 mode, and f3, with an � = 1, m = 0 mode.
Subsequently, Aerts et al. (2003b) modified the harmonic-degree
identification for f3 to � < 3. For f2, the identification of Aerts et al.
(2003b) is thus more specific than ours, while the reverse is true
for f3.

7 LO N G - T E R M VA R I ATI O N O F TH E
A M P L I T U D E A N D P H A S E O F T H E
L A R G E - A M P L I T U D E T E R M S

7.1 The f1 term

All out-of-eclipse blue-filter observations of 16 Lac obtained
throughout 1992 span an interval of over 40 yr and consist of
6334 data points (see JP99). By supplementing these data with
our out-of-eclipse y observations, we formed a data set of 9384
points, spanning an interval of 53.4 yr. We shall refer to this set as
B&y. Subtracting the contribution of the fi and fj terms (i, j = 1,
2, 3, i 	= j) from B&y resulted in three sets which we shall refer

Figure 11. The amplitude spectra of B&y − 23, i.e. the 1950–1992 archival
blue-filter data and our y-filter data combined, freed from the contribution
of the f2 and f3 terms. Starting with the second panel from the top, the
data were pre-whitened with (1) f1,1 = 5.911 312 d−1, (2) f1,1 and f1,2 =
5.911 275 d−1, (3) f1,1, f1,2 and f1,3 = 5.911 350 d−1, (4) f1,1, f1,2, f1,3 and
f1,4 = 5.911 230 d−1, and (5) f1,1, f1,2, f1,3, f1,4 and f1,5 = 5.911 395 d−1.

to as B&y − 23, B&y − 13 and B&y − 12. We chose the archival
blue-filter observations and the present y observations because they
are much more numerous than observations in other filters. In the
following frequency analysis of the combined data, we shall neglect
the difference between the blue and yellow pulsation amplitudes.
This will lead to some amplitude smearing in the results reported in
this and the two following sections. In 1965, when the amplitudes
of the three high-amplitude terms were close to their maximum
values, the difference between the B and V amplitudes amounted
to 2.0 ± 0.21, 0.40 ± 0.21 and 0.70 ± 0.20 mmag for f1, f2 and f3,
respectively (see Jerzykiewicz 1993, tables 7 and 8). Thus, the am-
plitude smearing will be the largest (albeit far from severe) in the
case of f1 and very nearly negligible in the remaining cases.

The amplitude spectra of B&y − 23 are shown in Fig. 11. The
abscissae of the highest peaks in the amplitude spectra are given
in the caption to the figure and are listed in the second column
of Table 4; the corresponding periods are given in column three.
The amplitudes and phases with their formal standard deviations,
obtained from a five-frequency least-squares fit of equation (1)
to B&y − 23 are listed in columns four and five. The standard
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Table 4. Fine structure of the f1 term.

j f1, j (d−1) P1, j (d) A1, j (mmag) �1, j (rad)

1 5.911 312 0.169 1672 12.45 ± 0.09 0.181 ± 0.007
2 5.911 275 0.169 1682 9.06 ± 0.09 4.080 ± 0.010
3 5.911 350 0.169 1661 3.27 ± 0.09 3.326 ± 0.027
4 5.911 230 0.169 1695 2.26 ± 0.09 1.836 ± 0.039
5 5.911 395 0.169 1648 1.35 ± 0.09 5.367 ± 0.065

Figure 12. Upper panel: the amplitude of the f1 term, A1, computed from
the parameters of the five-frequency fit of Table 4 (solid line), compared with
the yearly mean blue-light 1950–1992 A1 (the dots, circles and the triangle)
and the mean 2003 y and v A1 (the filled and empty square, respectively).
The dots, circles and the triangle are from fig. 2 (top) of JP99 but with the
error bars doubled. The 2003 error bars are not plotted because they would
be of about the same size as the symbols. Also shown is the amplitude,
computed using the parameters of a fit with the first three frequencies of
Table 4 (dashed line). Lower panel: the same for the phase of maximum
light of the f1 term. In both panels, the 2003 symbols are shifted along the
abscissa by ±0.5 yr to avoid overlap.

deviation of the fit amounted to 5.4 mmag. The epochs of observa-
tions were reckoned from HJD 244 5784.

The five-frequency fit accounts very well for the long-term varia-
tion of the amplitude and phase of the f1 term. This can be seen from
Fig. 12 where the amplitude and the phase of maximum light com-
puted from the parameters of Table 4 (solid lines) are compared with
the yearly mean amplitudes and the yearly mean phases of maxi-
mum light (upper and lower panel, respectively). The observed and
computed phases of maximum light, ϕmax, were obtained from the
observed and computed epochs of maximum light, HJDmax, using
the formula

ϕmax = 2π[E − (HJDmax − HJD0) f], (6)

where E is the number of cycles which elapsed from an arbitrary ini-
tial epoch HJD0 and f = f1,1 from Table 4. The computed amplitude
and phase of maximum light agree also with the nightly amplitudes
and the nightly phases of maximum light. This is illustrated in the
upper half of Fig. 13 where the solid lines of Fig. 12 are plotted
together with the 1965 B-filter amplitudes from JP96 and the 1965
B-filter phases of maximum light. The agreement between the com-
puted amplitude and the y and v amplitudes derived in Section 3 is
also satisfactory (see the upper panel of the lower half of Fig. 13).
The same goes for the computed and observed phases of maximum
light (the lower panel of the lower half of the figure). Note that the
lines in Figs 12 and 13 were not fitted to the points shown in the

Figure 13. Upper half, upper panel: the amplitude of the f1 term, A1,
computed from the parameters of the five-frequency fit of Table 4 (solid
line), compared with the nightly 1965 B-filter A1 from JP96 (dots). Lower
half, upper panel: the same for the y and v A1 derived in Section 3 (the dots
and circles, respectively). Upper half, lower panel: the phase of maximum
light of the f1 term, computed from the parameters of the five-frequency fit
of Table 4 (solid line), compared with the 1965 B-filter phases of maximum
light (dots). Lower half, lower panel: the same for the y and v phases of
maximum light (the dots and circles, respectively).

figures but were computed independently from the parameters of
the five-frequency fit. From Fig. 12, it is also clear that the three
first frequencies of Table 4 alone would be insufficient to account
for the variation of the phase, especially around 1900. This is an
important conclusion because the first three periods in Table 4, P1,1,
P1,2 and P1,3, are very nearly equal to the periods P1, P −

1 and P +
1

of L01, mentioned in the Introduction: the differences (in the sense
‘Table 4 minus L01’) amount to 0.000 000 13, 0.000 000 11 and
0.000 000 05 d, respectively.

The first three frequencies of Table 4 form a very nearly equally
spaced triplet, f1,2, f1,1, f1,3, with a mean spacing equal to 0.0137 yr−1.
The remaining frequencies, f1,4 and f1,5, flank the triplet at a distance
of 0.0164 yr−1 from the first and the last frequency of the triplet,
respectively. The triplet’s spacing implies a time-scale of 73 yr for
the long-term variation of the amplitude and phase of the f1 term,
while accounting for the non-sinusoidal shape of the variation seen
in Fig. 12 requires all five components. Note that the reciprocal of
the time-span of the data is equal to 1/53.4 = 0.0187 yr−1, so that
the spacings of the adjacent frequencies of the quintuplet amount to
about 3/4 of the formal frequency resolution of the data. That they
could be resolved nevertheless is due to their unequal amplitudes.

7.2 The f2 term

Frequency analysis of B&y − 13 yielded four frequencies be-
fore the noise prevented detecting further frequencies. However, a
four-frequency fit did not account very well for the variation of the
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Table 5. Fine structure of the f2 term.

j f2, j (d−1) P2, j (d) A2, j (mmag) B2, j (mmag d−1) �2, j (rad)

1 5.855 574 0.170 7775 6.828 ± 0.093 − 0.000 173 ± 0.000 021 5.017 ± 0.013
2 5.852 967 0.170 8535 3.592 ± 0.096 0.000 047 ± 0.000 016 5.199 ± 0.028
3 5.852 904 0.170 8554 3.008 ± 0.090 − 0.000 074 ± 0.000 023 5.483 ± 0.028
4 5.858 222 0.170 7003 2.164 ± 0.096 0.000 108 ± 0.000 016 3.836 ± 0.043

Figure 14. Upper panel: the amplitude of the f2 term, A2, computed from
the parameters of the four-frequency fit of Table 5 (solid line), compared with
the yearly mean blue-light 1950–1992 A2 (the dots, circles and the triangle)
and the mean 2003 y and v A2 (the filled and empty square, respectively).
The dots, circles and the triangle are from fig. 3 (top) of JP99 but with the
error bars doubled. The 2003 error bars are not plotted because they would
be of about the same size as the symbols. Lower panel: the same for the
phase of maximum light of the f2 term. In both panels, the 2003 symbols
were shifted along the abscissa by ± 0.5 yr to avoid overlap.

amplitude and phase of the f2 term. After a number of trials, we
found that the fit improved when the amplitudes were assumed to
vary uniformly with time, i.e. when constant amplitudes in the obser-
vational equations were replaced by A2,j + B2,jt. The parameters of a
least-squares fit with the amplitudes modified in this way are listed
in Table 5. The standard deviation of the fit amounted to 5.6 mmag.
The epochs of observations were reckoned from HJD 244 5784.
A comparison of the amplitudes and phases of maximum light
computed from the parameters of Table 5 (solid lines) with the
observed amplitudes and phases of maximum light is shown in
Figs 14 and 15. The observed and computed phases of maximum
light were obtained from the observed and computed maxima using
equation (5) with f = f2,1 from Table 5. The agreement between the
computed and observed amplitudes and phases of maximum light
of the f2 term seen in Figs 14 and 15 is less satisfactory than was
the case for f1 (Figs 12 and 13).

As can be seen from Table 5, f2,1 − f2,2 = 0.002 607 and
f2,4 − f2,1 = 0.002 648 d−1, so that f2,2, f2,1 and f2,4 form a very
nearly equidistant frequency triplet, with a mean separation equal
to 0.002 628 d−1. Although this number is close to 1 yr−1, it is
not an artefact because the aliases were removed in our procedure
of pre-whitening. The beat period corresponding to the mean sep-
aration of the triplet is equal to 380.5 d, a value about 10 per cent
greater than the beat-period between the L01 periods P2 and P +

2 .
The difference between f2,2 and f2,3 is equal to 0.000 063 d−1 or
0.023 yr−1, implying a time-scale of 43 yr. The latter number is
close to the time-scale of the variation of A2 derived by JP99 from
the 1950–1992 data.

Figure 15. Upper half, upper panel: the amplitude of the f2 term, A2,
computed from the parameters of the four-frequency fit of Table 5 (solid
line), compared with the nightly 1965 B-filter A2 from JP96 (dots). Lower
half, upper panel: the same for the y and v A2 derived in Section 3 (the dots
and circles, respectively). Upper half, lower panel: the phase of maximum
light of the f2 term, computed from the parameters of the five-frequency fit
of Table 5 (solid line), compared with the 1965 B-filter phases of maximum
light (dots). Lower half, lower panel: the same for the y and v phases
of maximum light (the dots and circles, respectively). The first-segment
y and v phases of maximum light, equal to −1.6 ± 1.0 and 1.7 ± 1.7 rad,
respectively, are not shown.

7.3 The f3 term

As we mentioned in the Introduction, the f3 term was found
by JP96 to be a doublet. Using all blue-filter observations
of 16 Lac available at the time, JP99 determined the dou-
blet frequencies to be f3,1 = 5.502 5779 ± 0.000 0005 and
f3,2 = 5.504 0531 ± 0.000 0008 d−1. Slightly different frequencies,
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Table 6. Fine structure of the f3 term.

j f3, j (d−1) P3, j (d) A3, j (mmag) �3, j (rad)

1 5.502 577 95 ± 0.000 000 33 0.181 733 000 ± 0.000 000 011 7.97 ± 0.10 1.914 ± 0.013
2 5.5040 5957 ± 0.000 000 58 0.181 684 080 ± 0.000 000 019 4.24 ± 0.10 2.484 ± 0.024
3 5.503 965 44 ± 0.000 001 27 0.181 687 187 ± 0.000 000 042 1.84 ± 0.09 2.348 ± 0.049

Figure 16. Upper panel: the amplitude of the f3 term, A3, computed from
the parameters of the three-frequency fit of Table 5 (solid line), compared
with the yearly mean blue-light 1950–1992 A3 from table A1 of JP96 and
table 1 of JP99 (the dots and circles; the latter represent data of lower weight)
and the mean 2003 y and v A3 (the filled and empty square, respectively).
The 2003 error bars are not plotted because they would be of about the
same size as the symbols. Lower panel: the same for the phase of maximum
light of the f3 term. In both panels, the 2003 symbols were shifted along the
abscissa by ±0.5 yr to avoid overlap.

equal to 5.502 5928 and 5.504 0765 d−1, were subsequently de-
rived by L01 from RV data. A frequency analysis of B&y − 12
showed this term to be a triplet. Using the frequencies read off
the amplitude spectra as starting values in a three-frequency non-
linear least-squares fit of equation (1) to B&y − 12 resulted in
the frequencies, amplitudes and phases listed in Table 6. The stan-
dard deviation of the fit amounted to 5.4 mmag. The epochs of
observations were reckoned from HJD 244 5784. A comparison
of the amplitudes and phases of maximum light computed from
the parameters listed in Table 6 with observations is shown in
Figs 16 and 17. The observed and computed phases of maximum
light were obtained from the observed and computed maxima using
equation (5) with f = f3,1 from Table 6.

The new values of f3,1 and f3,2 are very nearly equal to those
obtained by JP99. The new value of the beat-period is equal to
674.94 ± 0.30 d, in good agreement with the beat-period between
the L01’s periods P3 and P +

3 , mentioned in the Introduction. The
third frequency, placed asymmetrically between f3,1 and f3,2, gives
rise to two beat-periods, 720.73 ± 0.35 d and 29.09 ± 0.43 yr.

8 SU M M A RY A N D D I S C U S S I O N

Over the 179.2-d interval spanned by the present multisite uvy data,
the amplitude of the f1 term was constant but the amplitudes of the
f2 and f3 terms, A2 and A3, increased by several mmags (see Figs 2
and 3). The latter fact made the usual procedure of pre-whitening
inapplicable. In Section 3, using the values of the three frequen-
cies determined from all available B, b and y data (Section 7), we
pre-whitened the data piecewise, in segments so long that the three
terms could be resolved but short enough to neglect the variation of
A2 and A3. In the pre-whitened data, we detected two low-amplitude
terms having frequencies f5 = 11.3582 and f4 = 6.2990 d−1. The
former frequency is equal to f2 + f3, the latter is new. The am-

Figure 17. Upper half, upper panel: the amplitude of the f3 term, A3,
computed from the parameters of the three-frequency fit of Table 6 (solid
line), compared with the nightly 1965 B-filter A3 from JP96 (dots). Lower
half, upper panel: The same for the y and v A3 derived in Section 3 (the dots
and circles, respectively). Upper half, lower panel: the phase of maximum
light of the f3 term, computed from the parameters of the three-frequency fit
of Table 6 (solid line), compared with the 1965 B-filter phases of maximum
light (dots). Lower half, lower panel: the same for the y and v phases of
maximum light (the dots and circles, respectively).

plitudes of the f5 term amount to 0.57 ± 0.09, 0.64 ± 0.10 and
0.92 ± 0.15 mmag for y, v and u, respectively, while those of f4,
to 0.64 ± 0.09, 0.61 ± 0.10 and 1.05 ± 0.15 mmag, respectively.
The frequencies 2forb, 2f1, f1 + f3 and f1 + f2 seen in 1965 (see the
Introduction) were not found. Why f2 + f3 was present in 1965 and
2003–2004 while 2f1, f1 + f3 and f1 + f2 were absent in 2003–2004
is easy to understand: in 2003–2004 A2 was moderately smaller and
A3 was slightly smaller than in 1965 (see Figs 14 and 16) while
A1 decreased between 1965 and 2003–2004 to about one fourth
of its 1965 value (see Fig. 12). The fact that 2forb was missing in
2003–2004 suggests that it may be related to f1. Finally, f5 was not
detected in 1965 because its V and B amplitudes were then below
∼0.40 mmag.
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With the fi (i = 1, . . . , 5) terms taken into account, we repeated
the piecewise pre-whitening. The resulting residuals were used in
Section 4 to plot the eclipse light curves (Figs 5 and 6). The light
curves show no ellipticity effect and no secondary eclipse can be
detected. However, a marginal reflection effect is present. From the
y light-curves and the L01 spectroscopic elements ω and e, we com-
puted the relative radius of the primary, rp, the orbital inclination, i,
and the reflected light from the secondary, Ss, for a range of k = rs/rp

by means of EBOP (Etzel 1981). This allowed an examination of the
position of the secondary component in the HR diagram in relation
to pre-MS evolutionary tracks (Fig. 7), leading to the conclusions
that (1) the secondary component is in the pre-MS phase of its evo-
lution, and (2) the parameters of the system can be constrained to
0.21 � k � 0.29, 0.125 � rp � 0.132 and 83.◦4 � i � 82.◦0.

For f1, f2 and f3, the uvy and the Geneva UBG amplitude ratios are
derived from the multisite data and compared with the theoretical
ones for the spherical-harmonic degree � = 0, . . . ,4 in Section 6.
The theoretical amplitude ratios were computed using Teff and log g
of 16 Lac obtained in Section 5. In Section 6, the highest degree,
� = 4, is shown to be incompatible with the observations. The first
term, f1, could be identified with an � = 0 mode, while the third, f3,
with an � = 1 mode. In the case of f2, an unambiguous spherical-
harmonic degree identification was not possible: it can be either an
� = 2 or 3 mode, with the latter possibility less likely because of
the effect of cancellation in integrating over the stellar disc.

In Section 7, using the present y-filter magnitudes and archival
blue-filter magnitudes, we investigate the long-term variation of
the amplitudes and phases of the three high-amplitude terms over
the interval of 53.4 yr spanned by the data. In the case of f1, the
magnitudes can be represented by means of a sum of five sinusoidal
components with closely spaced frequencies (see Table 4). The first
three frequencies form an equally spaced triplet with a spacing of
0.0137 yr−1, implying a time-scale of 73 yr, in agreement with JP99
and L01. The sum of the five components accounts very well for
the non-sinusoidal shape of the variation seen in Fig. 12. Since the
f1 mode is radial, the regularities in the frequency spacings suggest
an underlying amplitude and phase modulation of a single pulsation
mode.

In the case of f2, we could represent the 1950–2003 magnitudes
by a sum of four sinusoidal components with uniformly variable
amplitudes (see Table 5). Of these, three components (f2,2, f2,1 and
f2,4 in the order of increasing frequency) form a triplet very nearly
equidistant in frequency with a mean separation of 0.002 628 d−1,
corresponding to a beat period of 380.5 d, while the f2,3 component
precedes the first member of the triplet by 0.023 yr−1, correspond-
ing to a beat-period of 43 yr. The 380.5-d beat-period dominates
the variation of the amplitude and phase (see Fig. 14); the 43-yr
beat-period is close to the time-scale of the variation of A2 derived
by JP99 from the 1950–1992 data. The f2,2, f2,1, f2,4 triplet may be
the result of (1) rotational splitting of a non-radial mode, (2) an acci-
dental coincidence of two non-radial modes, one rotationally split,
and (3) an accidental coincidence of three non-radial modes. In all
cases, only some members of the rotationally split multiplets would
be excited to observable amplitudes. In (1) and (2), the velocity
of the star’s rotation can be computed from the Ledoux first-order
formula using the radius from the eclipse solutions. The results are
Vrot � 1 km s−1 if (1), and Vrot � 2 km s−1 if (2). These numbers are
in severe conflict with the observed Vrot sin i (Gł ↪ebocki et al. 2000).
Thus, we are left with (3) and the problem why three accidentally
coincident modes should be nearly equidistant in frequency. Finally,
there is the possibility that our representation by means of a sum of
four sinusoidal components may be merely a formal description of

the complex long-term variation of the amplitude and phase of the
f2 term.

JP96 have noted that the reciprocal of the growth rates of several
� ≤ 2 pulsation modes which are excited in models of 16 Lac and
can be identified with the f1 and f2 terms are of the same order of
magnitude as the time-scales of 73 and 43 yr just mentioned. Since
amplitude and phase modulation on a time-scale of the order of
the reciprocal of the growth rate is predicted by the theory of non-
linear interaction of pulsation modes, JP96 suggested that these
time-scales in the observed long-term behaviour of the f1 and f2

modes result from (1) the 1:1 resonance between them, or (2) a
resonant coupling to other modes. These points still await theoretical
verification.

Finally, the f3 1950–2003 magnitudes could be represented by
a sum of three sinusoidal components (see Table 6). The first two
components have frequencies f3,1 and f3,2 very nearly equal to those
derived by JP96 and JP99 from the data available at the time. These
two frequencies produce a beat period of 720.73 ± 0.35 d which
dominates the amplitude and phase variation (see Fig. 16). The fre-
quencies f3,3 and f3,2 produce a beat period of 29.09 ± 0.43 yr. As
in the case of f2, assuming that the f3,1, f3,2 doublet is due to rota-
tional splitting of a non-radial mode leads to Vrot � 1 km s−1, much
smaller than observed. JP96 suggested that the doublet represents
an accidental near-coincidence of two self-excited modes. In view
of the unambiguous identification of the harmonic degree of the f3

term (Section 6), these two modes must both have � = 1. On the
other hand, the members of the f2,2, f2,1, f2,4 triplet may have dif-
ferent �, a situation encountered earlier in 1 Mon (Balona & Stobie
1980) and 12 Lac (Handler et al. 2006).
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Niemczura E., Daszyńska-Daszkiewicz J., 2005, A&A, 433, 659
Nieva M.-F., Przybilla N., 2012, A&A, 539, A143
Pamyatnykh A. A., Dziembowski W. A., Handler G., Pikall H., 1998, A&A,

333, 141
Pigulski A., Jerzykiewicz M., 1988, Acta Astron., 38, 401
Popper D. M., Etzel P. B., 1981, AJ, 86, 102
Prugniel Ph., Vauglin I., Koleva M., 2011, A&A, 531, A165
Rica Romero F. M., 2010, Rev. Mex. Astron. Astrofis., 46, 263
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A P P E N D I X A : T H E VA R I A B L E C O M PA R I S O N
S TA R 2 A N D RO M E DA E

A1 Frequency analysis

As mentioned in the Introduction, the comparison star 2 And turned
out to be a small-amplitude variable. Fig. A1 shows the results of a

Figure A1. Amplitude spectrum of 2 And. The top panel shows the spectral
window of the data, followed by the periodogram of the data in the middle
panel. Pre-whitening with f1 leaves only noise in the residuals (bottom
panel), aside from some residual extinction effects (peaks at 2.0, 3.0, 4.0
and 5.0 d−1).

Table A1. Amplitudes and relative phases of the sin-
gle frequency 7.195 301 d−1 for the variable compar-
ison star 2 And. Formal error estimates (following
Montgomery & O’Donoghue 1999) for the ampli-
tudes and phases are given.

Amplitude φx − φy

Filter (mmag) (rad)

u 1.72 ± 0.13 − 0.16 ± 0.09
v 1.13 ± 0.08 − 0.05 ± 0.08
y 1.91 ± 0.07 0 by definition
U 2.07 ± 0.29 0.07 ± 0.14
B1 1.57 ± 0.25 − 0.17 ± 0.16
B 1.69 ± 0.25 − 0.06 ± 0.15
B2 1.65 ± 0.26 − 0.22 ± 0.16
V1 2.26 ± 0.25 − 0.02 ± 0.12
V 2.05 ± 0.22 0.01 ± 0.12
G 2.42 ± 0.26 − 0.04 ± 0.11

frequency analysis of the differential y magnitudes 2 And – 10 Lac.
The less accurate Sierra Nevada and Piszkéstető observations were
omitted.

The variability of 2 And can be described by a single frequency
(Fig. A1), which is confirmed by the analysis of the measurements
in the other filters. Non-linear least-squares fitting to our y-filter
data gives a value of 7.195 301 ± 0.000 12 d−1, whereby the er-
ror estimate was computed with the formulae of Montgomery &
O’Donoghue (1999). Fitting a sine curve of this frequency to the
data results in the amplitudes and relative phases, φx − φy (x = u,
v, U, B1, B, B2, V1, V, G), listed in Table A1.

A2 The cause of variability of 2 And

Given the spectral type of A3 Vn and the period of the variability,
one would immediately suspect that the light variations of 2 And
are due to δ Scuti-type pulsation. In fact, the star was so classified
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16 (EN) Lac and 2 And 739

Figure A2. The positions of 2 And A and B in the theoretical HR diagram.
Some stellar model evolutionary tracks labelled with their masses in solar
units (solid lines) are included. The borders of the δ Scuti instability strip
(adopted from Rodrı́guez, López-González & López de Coca 2000, dotted
lines) are included for comparison. The solid diagonal line is the ZAMS.

by Handler et al. (2006). However, if 2 And were a δ Scuti variable,
the amplitudes are generally expected to increase from y to v and
from G to B1, and then level out or drop again towards u and U (e.g.
see Heynderickx 1994). Interestingly, just the inverse is the case. In
the following, we investigate possible causes for this observation.

2 And is not a single star. It is a close visual binary discov-
ered over a century ago (Burnham 1894). The two components are
physically associated. The latest determination of the orbital pe-
riod is 74 yr with an eccentricity of 0.8 and a semimajor axis of
0.23 arcsec (Rica Romero 2010). Transforming the Tycho-2 pho-
tometry of the two components (Fabricius & Makarov 2000), to
the standard Johnson system according to Bessell (2000) gives:
VA = 5.24 mag, (B − V)A = 0.07 mag for 2 And A, and
VB = 7.51 mag, (B − V)B = 0.23 mag for 2 And B. Therefore
VA+B = 5.113 mag and (B − V)A+B = 0.086 mag, in reasonable
agreement with the measured V = 5.100 mag and B − V = 0.094 mag
for the system (Mermilliod 1991).

The revised Hipparcos parallax of 2 And (van Leeuwen 2007)
implies a distance of 129 ± 9 pc. Concerning reddening, a com-
parison of the results from the Galactic reddening law of Chen
et al. (1998) for 2 And, and the reddening of two stars within 4o

of 2 And in the sky, at a similar Hipparcos distance (HR 8870 and
HD 218394) lead us to adopt E(B − V) = 0.022 ± 0.022 mag and
A(V) = 0.07 ± 0.07 mag.

We then arrive at MV = −0.39 ± 0.16 mag for 2 And A and
1.88 ± 0.16 mag for 2 And B. The relations of Flower (1996) yield
estimates of Teff = 8950 ± 250 K and Mbol = −0.45 ± 0.16 mag
for 2 And A, and 7720 ± 250 K and 1.85 ± 0.16 mag for 2 And
B. The positions of the two components are shown in a theoretical
HR diagram in Fig. A2. The evolutionary tracks plotted in this
figure were computed with the Warsaw–New Jersey stellar evolution
code, the OPAL equation of state and the OPAL opacity tables
(Iglesias & Rogers 1996), a hydrogen abundance of X = 0.7, a metal
abundance of Z = 0.012 (Asplund et al. 2004), and no convective
core overshooting. We assumed Vrot = 250 km s−1 on the zero-age

main sequence, so that the observed Vrot sin i = 212 km s−1 (Royer,
Zorec & Gomez 2007) would be approximately matched.

One finds that 2 And A is an M = 2.7 ± 0.1 M� star that
probably has already left the main sequence (log g = 3.40 ± 0.12,
log age = 8.57 ± 0.04). Including core overshooting would decrease
M and the age but log g would remain virtually unchanged. 2 And
A is located off the δ Scuti instability strip. 2 And B is situated in
the centre of the strip (M = 1.78 ± 0.06 M�, log g = 3.90 ± 0.16,
log age = 8.84+0.07

−0.18).
With these parameters in hand, we shall test four possible hy-

potheses to explain the cause of the variability of 2 And: δ Scuti
pulsation or ellipsoidal variability, of either 2 And A or 2 And B.
Rotational modulation can be excluded immediately because either
star would have to rotate faster than its breakup velocity.

Regarding the hypothesis of δ Scuti pulsation, we computed theo-
retical pulsation amplitudes of δ Scuti models for the Strömgren and
Geneva passbands in the parameter ranges depicted in Fig. A2 for an
assumed RV amplitude, using the methodology by Balona & Evers
(1999). We note that whilst computing realistic absolute amplitudes
is still out of reach, amplitude ratios are easily obtainable.

We computed theoretical pulsation amplitudes of δ Scuti models
for the Strömgren and Geneva passbands. From the flux ratio of 2
And A to 2 And B in the y band (estimated from VA and VB) and
the observed y amplitude from Table A1 we then determined the
undiluted photometric amplitudes of 2 And A and 2 And B in the
Strömgren y band, (Atrue = 0.0022 and 0.0215 mag, respectively),
and used the model amplitudes to predict the intrinsic amplitudes in
the other bands. As the next step, we determined the flux ratio of the
two components of 2 And in the different passbands. To this end, we
used Kurucz (1994) model atmospheres, representing 2 And A with
a Teff = 9000 K, log g = 3.5 model atmosphere, and 2 And B with
a Teff = 7750 K, log g = 4.0 model atmosphere. We then integrated
the monochromatic fluxes from these model atmospheres over the
10 photometric passbands used, and scaled the resulting fluxes to
the observed ratio in y.

The results of these computations can be summarized as follows:
the behaviour of the pulsation amplitudes with wavelength is in-
consistent with the observations for any kind of assumed pulsation
of 2 And A. The reason is that the temperature of the star is so
high, that the pulsation amplitudes always increase towards shorter
wavelength, no matter which spherical degree of the pulsation was
tested (we checked for 0 ≤ l ≤ 8). The additional flux of 2 And B
does not change this behaviour due to the considerable luminosity
difference.

Assuming that 2 And B was a δ Scuti pulsator, and considering
the amplitude contamination due to the light of 2 And A, we find that
the observed pulsation amplitude versus wavelength dependence is
only consistent with modes of even spherical degree of l ≥ 6. We
recall that in such a scenario the intrinsic pulsation amplitude of
2 And B in the Strömgren y band, Atrue is 0.0215 mag. Geometric
cancellation of modes with l ≥ 6 decreases the observed amplitudes
to less than 1/50 of the intrinsic value (Daszyńska-Daszkiewicz et al.
2002), i.e. the intrinsic pulsation amplitude would be enormous in
this case. We therefore consider δ Scuti pulsation of either of the
two A-type stars in the 2 And system as highly unlikely.

A remaining possibility is an ellipsoidal variation of either com-
ponent. Consequently, we repeated the previous procedure under the
assumption of no colour dependence of the amplitude. We found
that the resulting wavelength-amplitude dependence explains the
observations much better than the δ Scuti-pulsation hypothesis.
This implies an orbital period of twice the observed value. Using
the effective temperatures, the luminosities and the masses derived
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above we find from the Kepler’s third law that in the case of 2 And
A the sum of the radii of the components Aa and Ab, RAa + RAb,
would be a factor of about 2 greater than the semimajor axis of
the relative orbit, a, regardless of whether we assume (1) equal lu-
minosity and mass components, or (2) the secondary component
much fainter and less massive than the primary component. In the
case of 2 And B, assumption (1) leads to RBa + RBb ≈ 1.5a, while
assuming (2) one gets RBa ≈1.0a. Thus, an ellipsoidal variation of
2 And B, arising from a tidal distortion of component Ba by a much
less massive secondary component Bb in a tight orbit may be the
cause of the variability of 2 And.

In order to examine the last possibility let us use the lowest order
approximation, certainly adequate in the present case, according to
which the amplitude of the light variation due to aspect changes
of the tidally distorted primary can be expressed by means of the
following formula:

δm = 1.629Aλq(RBa/a)3 sin2 i, (A1)

where δm is expressed in magnitudes, Aλ is the photometric distor-
tion parameter of Russell & Merrill (1952), q is the mass ratio of the
components, and i is the inclination of the orbit to the tangent plane
of the sky. We note that this formula is equivalent to equation 6
of Morris (1985). Neglecting the light variation of the secondary,

we have δm = Atrue. Then, taking into account the fact that in the
present case Aλ(RBa/a)3 ≈1, we get q ≈0.013 and 0.052 for i = 90◦

and 30◦, respectively. The corresponding masses of the secondary
component are equal to ∼0.03 and ∼0.11 M�, i.e. they are in the
range of the masses of brown dwarfs. Thus, our hypothesis that
2 And B is an ellipsoidal variable leads to the following model:
the 2 And Bb component is a brown dwarf in a tight orbit around
2 And Ba, a late A or an early F star. The amplitude of the RV
variation, K1 sin i, would be equal to 10 and 20 km s−1 for i = 90◦

and 30◦, respectively. According to the ephemeris provided by Rica
Romero (2010), the separation of the components A and B will be
0.135 arcsec in 2014 January, decreasing to 0.046 arcsec by 2018.
In the near future, it will be thus impossible to get a spectrogram
of 2 And B without an overwhelming contribution from 2 And A.
Consequently, measuring the RV of 2 And B may be very difficult.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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